当前位置:文档之家› MDS-4000输变电设备状态监测与故障诊断系统

MDS-4000输变电设备状态监测与故障诊断系统

MDS-4000输变电设备状态监测与故障诊断系统
MDS-4000输变电设备状态监测与故障诊断系统

MDS-4000输变电设备状态监测与故障诊断系统

MDS-4000系统简介

MDS-4000输变电设备状态监测与故障诊断系统是为满足国家电网公司智能电网建设、集约化生产管理及“三集五大”中大生产体系集中监控要求而开发的重要技术支撑系统。

MDS-4000输变电设备状态监测与故障诊断系统是智能电网建设的重要内容,它通过各种先进的传感技术、数字化技术、嵌入式计算机技术、广域分布的通信技术、在线监测技术以及故障诊断技术实现各类电网设备运行状态的实时感知、监视、分析、预测和故障诊断。输变电设备状态监测技术是实现智能变电站建设的关键支撑技术,是智能变电站建设的核心内容。因此,输变电设备状态监测与故障诊断系统的建设对提高国家电网公司生产管理水平、加强状态监测检修辅助决策应用、推动智能电网建设具有积极而深远的意义。

MDS-4000系统可为智能变电站提供在线监测与故障诊断的整体解决方案。系统可对变压器温度及负荷、油中溶解气体、油中微水、套管绝缘、铁芯接地电流、局部放电、辅助设备(冷却风扇、油泵、瓦斯继电器、有载分接开关等)、断路器及GIS中SF6气体密度及微水、GIS局部放电、断路器动作特性、GIS室内SF6气体泄露、电流互感器及容性电压互感器绝缘、耦合电容器绝缘和避雷器绝缘等信息进行综合监测。MDS-4000系统具有准确性高、可靠性高、互换性好等特点,是按照统一的结构方式、通讯标准、数据格式等的全面集成。

MDS-4000输变电设备状态监测与故障诊断系统依据获得的电力设备状态信息,采用基于多信息融合技术的综合故障诊断模型,结合设备的结构特性和参数、运行历史状态记录以及环境因素,对电力设备工作状态和剩余寿命作出评估;对已经发生、正在发生或可能发生的故障进行分析、判断和预报,明确故障的性质、类型、程度、原因,指出故障发生和发展的趋势及其后果,提出控制故障发展和消除故障的有效对策,达到避免电力设备事故发生、保证设备安全、可靠、正常运行的目的。

MDS-4000系统特点

MDS-4000系统技术特点

系统架构网络化:站内系统架构按照站控层、间隔层、过程层三层网络结构,也既是《智能变电站技术导则》中所规定的系统层及设备层两层网络结构,系统按照标准的IEC61850协议进行网络化的数据传输和网络化控制。

全站信息数字化:对高压设备本体或部件进行智能控制所需设备状态参量及进行就地数字化测量。测量结果可根据需要发送至站控层网络或/和过程层网络。设备状态参量包括变压器油温、有载分接开关分接位置,开关设备分、合闸状态等。

设备状态可视化:系统基于自监测信息和经由信息互动获得的设备其它信息,通过智能组件的自诊断,以智能电网其它相关系统可辨识的方式表述自诊断结果,使设备状态在电网中是可观测的。

通信协议标准化:全站实现通信协议标准化(遵循IEC61850标准),站控层具有智能高级应用,可对外提供统一的网络服务接口,系统满足《电力二次系统安全防护总体方案》和《变电站二次系统安全防护方案》要求。

监测功能模块化:监测功能可根据需求对《变电站智能化改造技术规范》中规定的监测项目进行灵活配置,各监测功能模块基于统一的通讯协议,具有“即插即用”的特点。

监测目标全景化:对整个变电站关键设备包括变压器、开关设备等进行全面的状态监测,实现监测目标全景化。

信息共享平台化:支持信息一体化平台应用要求,站内数据信息集中共享;满足集中监控、顺序控制、状态检修等要求;站控层采用一体化平台与电力数据网相连。

信息展现一体化:站内系统信息平台把经过整合的信息资源展现给用户,提供给用户最全面的全方位监测和故障诊断信息,大大提高了信息系统的易用性和效率,实现了信息展现一体化的建设目标。

MDS-4000系统组成

MDS-4000系统设备层由MDD3000系列智能汇控柜组成。智能汇控柜满足《高压设备智能化技术导则》、《智能变压器技术条件》的技术要求,采用组件化、标准化、就地化设计原则。智能汇控柜以监测对象进行组柜,满足高压设备全景式监测的要求。智能汇控柜是一个能独立运行的智能监测与诊断系统,由主IED (智能汇控柜处理器)、多个子IED(监测子系统)、交换机、继电保护装置等组成。各单元之间采用光纤连接,统一采用IEC61850通信规约。某一智能汇控柜故障不影响其他智能汇控柜的运行,同一智能汇控柜某一子IED故障也不影响其他IED的运行,系统可靠性高、扩展性好。

MDD3000T 智能变压器

在线监测系统

MDD3000G

智能断路器&GIS 在线监测系统

其他智能在线监测系统

MDS-4000系统组成图

MDD3000T 变压器智能在线监测系统

MDD3000T 系统是按照国家电网公司发布的Q/GDW Z 410-2010《高压设备智能化技术导则》和《油浸式电力变压器智能化技术条件》的要求开发而成,采用独立的智能汇控柜形式,是变压器的智能化装置,并可接入MDS-4000系统,成为智能变电站状态监测与评估系统组成部分。

MDD3000T 变压器智能汇控柜组成

MDD3000T 变压器智能汇控柜主要由iMAS2020T 嵌入式处理器(主IED )、iMGA2020色谱微水监测智能组件、iPDM2020T 局部放电监测智能组件、iIMM2020套管绝缘监测智能组件、iCSM2020冷却单元监测智能组件、iOLTC2020有载开关监测智能组件、iOCM2020工况信息监测智能组件以及光纤交换机组成,并可根据需要扩展其他监测智能组件。各智能组件均采用无风扇冷却方式以提高可靠性,采用上架式19英寸标准机箱安装在汇控柜内。

MDD3000T 智能汇控柜在现场就近变压器安装,采用双220V 交流电源或220V/110V 直流电源供电,通过电源自诊断实现电源的自动切换。汇控柜采用不锈钢和具有磁屏蔽功能涂层的保温材料组成的双层结构,内部有温湿度自动调节功能,确保汇控柜内所有智能组件和电气元件工作在良好的环境条件下。

MDD3000T智能汇控柜组成MDD3000T智能汇控柜主要功能

MDD3000G 智能断路器&GIS在线监测系统

MDD3000G系统是按照国家电网公司新发布的Q/GDW Z 410-2010《高压设备智能化技术导则》的要求开发而成,采用独立的智能汇控柜形式,是断路器和GIS的智能化装置,并可接入MDS-4000系统,成为智能变电站状态监测与评估系统组成部分。

MDD3000G智能汇控柜组成

MDD3000G智能汇控柜是断路器和GIS的智能化装置,主要由iMAS2020G嵌入式处理器(主IED)、iPDM2020G局部放电监测智能组件、iBMS2020断路器动作特性监测智能组件、iMOA2020避雷器绝缘监测智能组件、iIEM2020A SF6微水及密度监测智能组件、光纤交换机等组成。各智能组件均采用无风扇冷却方式设计以提高可靠性,采用上架式19英寸标准机箱安装在汇控柜内。

MDD3000G智能汇控柜组成MDD3000G智能汇控柜主要功能

MDS 4000 系统主要功能界面

MDS-4000系统主界面变电站一次主接线图

变压器监测用户界面(表格方式)

断路器与GIS监测用户界面(表格方式)断路器与GIS监测用户界面(图形方式)

电气设备故障诊断汇总

电气故障诊断 一、电气设备的状态及检测技术 1、电气设备的状态 (1)正常状态:设备具备其应有的功能,没有缺陷或缺陷不明显,缺陷严重程度仍处于容限范围内。 (2)异常状态:缺陷有了进一步的发展,设备状态发生变化,性能恶化,但仍能维持工作。(3)故障状态:缺陷发展到使设备性能和功能都有所丧失的程度。 (4)事故状态:功能完全丧失,无法进行工作状态。 2、电气设备的状态检测 (1)判断设备所处的状态; (2)根据其状态决定对待的方式。 二、电气设备的现代检测技术 1、现代故障诊断技术的构成: (1)故障诊断机理的研究:(理化原因等) (2)故障诊断信息学的研究:(数据采集与分析) (3)诊断逻辑和数学原理方面的研究:(诊断与决策) 2、现代故障诊断四项技术: (1)检测技术(采集信号、参数) (2)信号处理技术(提取状态信息) (3)识别技术(分析、判断) (4)预测技术(决策和预测) 3、故障诊断与状态监测的关系 (1)工况监测:对反映设备或系统工作状态的信息进行全面监测和分析,实时掌握设备基本工作状态。 (2)状态监测:又称简易诊断,通过监测结果与设定阈值之间的对比,仅对设备运行状态作出正常、异常或故障的判断,而对故障的性质、严重程度等不予或无法进行更深入的诊断。

4、故障诊断的成功因素 (1)故障信息源 (2)诊断方法 5、故障诊断技术的发展趋势(与当代前沿科技相融合) (1)人工智能技术:人工神经网络、专家系统等; (2)前沿数学:小波分析、模糊数学、分析几何等; (3)信息融合技术:证据理论等。 6、故障诊断的关注点 (1)故障阶段:尚未发展造成事故的阶段; (2)其目的是:防患于未然; (3)作用阶段:继电保护动作之前。 三、电气设备的传统检测技术 如果把有故障的电气设备比作病人,电工就好比医生。由中医诊断学的经典四诊(望、闻、问、切),结合电气设备故障的特殊性和诊断电气故障的成功经验,电气设备的检测技术归纳为“六诊”要诀,另外引申出电气设备诊断特殊性的“九法”、“三先后”要诀。 “六诊”、“九法”、“三先后”是行之有效的电气设备诊断的思想方法和工作方法。 事物往往是千变万化的和千差万别的,电气设备出现的故障是五花八门,“六诊”、“九法”、“三先后”电气故障诊断要诀,只是一种思想方法和工作方法,切记不能死搬硬套。检修人员要善于透过现象看本质,善于抓住事物的主要矛盾。 (一)“六诊”检测法 “六诊”------口问、眼看、耳听、鼻闻、手模、表测六种诊断方法,简单地讲就是通过“问、看、听、闻、摸、测”来发现电气设备的异常情况,从而找出故障原因和故障所在的部位。前“五诊”是凭借人的感官对电气设备故障进行有的放矢的诊断,称为感官诊断,又称直观检查法。同样,由于个人的技术经验差异,诊断结果也有所不同。可以采用“多人会诊法”求得正确结论。“表测”即应用电气仪表测量某些电气参数的大小,经过与正常数值对比,来确定故障原因和部位。 (1)口问 当一台设备的电气系统发生故障后,检修人员首先要了解详细的“病情”。即向设备操作人员了解设备使用情况、设备的病历和故障发生的全过程。 如果故障发生在有关操作期间或之后,还应询问当时的操作内容以及方法、步骤。总的来讲,了解情况要尽可能详细和真实,这些往往是快速找出故障原因和部位的关键。 例如:当维修人员巡查时,操作人员反应前处理一台打水离心泵不能启动,需要及时处理。这时维修人就要询问,水罐是否有水,上班和本班是否曾经运行,具体使用情况,是否运行一段时间后停止,还是未运行就不能开启。还要询问故障历史等等。了解具体情况后,到现场进行处理就会有条理,轻松解决问题。 (2)眼看 1)看现场 根据所问到的情况,仔细查看设备外部状况或运行工况。如设备的外形、颜色有无异常,熔丝有无熔断:电气回路有无烧伤、烧焦、开路、短路,机械部分有无损坏以及开关、刀闸、按钮插接线所处位置是否正确,改过的接线有无错误,更换的元件是否相符等:还要观察信

工程机械远程故障诊断及维护系统构架

安全管理编号:LX-FS-A18166 工程机械远程故障诊断及维护系统 构架 In the daily work environment, plan the important work to be done in the future, and require the personnel to jointly abide by the corresponding procedures and code of conduct, so that the overall behavior or activity reaches the specified standard 编写:_________________________ 审批:_________________________ 时间:________年_____月_____日 A4打印/ 新修订/ 完整/ 内容可编辑

工程机械远程故障诊断及维护系统 构架 使用说明:本安全管理资料适用于日常工作环境中对安全相关工作进行具有统筹性,导向性的规划,并要求相关人员共同遵守对应的办事规程与行动准则,使整体行为或活动达到或超越规定的标准。资料内容可按真实状况进行条款调整,套用时请仔细阅读。 摘要:本文介绍了工程机械行业的特点,详细阐述了设备故障诊断技术,进而结合设备故障诊断技术及计算机网络技术提出了基于集成媒体“看门狗”式的机电一体化产品的工程机械远程故障诊断及维护系统的构架。对工地上机械设备故障迅速诊断、尽快修复,保证施工正常进行具有十分重要的意义。 关键词:工程机械远程故障诊断与维护 近年来,随着国民经济的高速发展,一些高等级

常用简易的设备故障诊断方法

常用简易的设备故障诊 断方法 Document number:PBGCG-0857-BTDO-0089-PTT1998

常用简易的设备故障诊断方法 常用的简易状态监测方法主要有听诊法、触测法和观察法等。 1、听诊法 设备正常运转时,伴随发生的声响总是具有一定的音律和节奏。只要熟悉和掌握这些正常的音律和节奏,通过人的听觉功能就能对比出设备是否出现了重、杂、怪、乱的异常噪声,判断设备内部出现的松动、撞击、不平衡等隐患。用手锤敲打零件,听其是否发生破裂杂声,可判断有无裂纹产生,用听诊法对滚动轴承工作状态进行监测的常用工具是木柄螺丝刀,也可以使用外径为φ20mm左右的硬塑料管。 (1)滚动轴承正常工作状态的声响特点 滚动轴承处于正常工作状态时,运转平稳、轻快、无停滞现象,发出的声响和谐而无杂音,可听到均匀而连续的“哗哗”声,或者较低的“轰轰”声。噪声的强度不大。异常声响所反映的轴承故障锥入度大一点的新润滑脂。 (2)轴承在连续的“哗哗”声中发出均匀的周期性的“嗬罗”声。这种声音是由于滚动体和内外圈滚道出现伤痕、沟槽、锈蚀斑而引起的。声响的周期与轴承的转速成正比。应对轴承进行更换。 (3)轴承发出不连续的“梗梗”声。这种声音是由于保持架或者内外圈破裂而引起的。必须立即停机更换轴承。 (4)轴承发出不规律、不均匀“嚓嚓”声。这种声音是由于轴承内落入铁屑、砂粒等杂质而引起的。声响强度较小,与转速没有联系。应对轴承进行清洗,重新加脂或换油。

(5)轴承发出连续而不规则的“沙沙”声。这种声音一般与轴承的内圈与轴配合过松或者外圈与轴承孔配合过松有关系,声响强度较大。应对轴承的配合关系进行检查,发现问题及时修理。 (6)轴承发出连续刺耳啸叫声。这种声音是由于轴承润滑不良,缺油造成了干摩擦,或者滚动体局部接触过紧,如内外圈滚道偏斜,轴承内外圈配合过紧等情况而引起的。应及时对轴承进行检查找出问题,对症处理。 电子听诊器是一种振动加速度传感器。它将设备振动状况转换成电信号并进行放大,工人用耳机监听运行设备的振动声响,以实现对声音的定性测量。通过测量同一测点、不同时期、相同转速、相同工况下的信号,并进行对比,来判断设备是否存在故障。当耳机出现清脆尖细的噪声时,说明振动频率较高,一般是尺寸相对较小的、强度相对较高的零件发生局部缺陷或微小裂纹。当耳机传出混浊低沉的噪声时,说明振动频率较低,一般是尺寸相对较大的、强度相对较低的零件发生较大的裂纹或缺陷。当耳机传出的噪声比平时增强时,说明故障正在发展,声音越大,故障越严重。当耳机传出的噪声是杂乱无规律地间歇出现时,说明有零件或部件发生了松动。 2、触测法 用人手的触觉可以监测设备的温度、振动及间隙的变化情况。人手上的神经纤维对温度比较敏感,可以比较准确地分辨出80℃以内的温度。当机件温度在0℃左右时,手感冰凉,若触摸时间较长会产生刺骨痛感。10℃左右时,手感较凉,但一般能忍受。20℃左右时,手感稍凉,随着接触时间延长,手感渐温。30℃左右时,手感微温,有舒适感。40℃左右时,手感较热,有微烫感觉。50℃左右时,手感较烫,若用掌心按的时间较长,会有汗感。60℃左右

智能状态监测与故障诊断教程文件

智能状态监测与故障诊断 测控一班 高青春 20091398

第一章 绪论 在现代化的机械设备的生产和发展中,滚动轴承占很大的地位,同时它的故障诊断与监测技术也随着不断地发展,国内外学者对轴承的故障诊断做了大量的研究工作,各种方法与技巧不断产生、发展和完善,应用领域不断扩大,诊断精度也不断提高。时至今日,故障诊断技术己成为一门独立的跨学科的综合信息处理技术,它以可靠性理论、信息论、控制论、系统论为理论基础,以现代测试仪器和计算机为技术手段,总的来说,轴承故障诊断的发展经历了以下几个阶段:第一段:利用通用的频谱分析仪诊断轴承故障。第二阶段:利用冲击脉冲技术诊断轴承故障。第三阶段:利用共振解调技术诊断轴承故障。第四阶段:以计算机为中心的故障诊断。 国外的滚动轴承的故障诊断与监测技术要先于中国,而且这项技术的发展趋势啊已经趋向智能化状态,因为它机械化迅速,技术和设备都比较先进些,目前的技术也比较完善。但是总体来看,这其中的距离在不断拉近,我们相信不久的将来,中国也会使机械完善大国,也会完善和提高技术的精密度和准确度。【2】【3】

1.1轴承监测与故障诊断的意义 滚动轴承是机械各类旋转机械中最常用的通用零件部件之一,也是旋转机械易损件之一,在机械生产中的作用不可取代,据统计旋转机械的故障有30%是由轴承故障引起的,它的好坏对机器的工作状态影响极大,轴承的缺陷会导致机器剧烈振动和产生噪音,甚至会引起设备的损坏,因此,对重要用途的轴承进行状态监测与故障诊断是非常必要的【3】而且,可以生产系统的安全稳定运行和提高产品质量的重要手段和关键技术,在连续生产系统中,如果某台设备因故障而不能继续工作,往往会影响全厂的生产系正常统运行,从而会造成巨大的经济损失,甚至可能导致机毁人亡的严重后果。未达到设计寿命而出现故障的轴承没有被及时的发现,直到定期维修时才被拆下来报废,使得机器在轴承出现故障后和报废前这段时间内工作精度降低,或者未到维修时间就出现严重故障,导致整部机器陷于瘫痪状态。因此,进行滚动轴承工作状态及故障的早期检测与故障诊断,对于设备安全平稳运行具有重要的实际意义。【14】 1.2滚动轴承故障的分类: 滚动轴承的故障多种多样,有生产过程中产生的也有使用过程中后天造成一系列故障,其失效形式有: 1.2.1疲劳剥落: 指滚动体或滚道表剥落或脱皮在表面上,形成不规则 凹坑等甚至会一定深度下形成能裂纹,继扩展到接触表面发生剥落坑,最后大面积剥落,造成失效。【12】

机械设备故障诊断技术研究

题目:机械设备故障诊断技术研究 学号: 姓名: 专业: 指导教师: 2016 年 8 月 30 日

摘要 故障诊断技术对于机械设备的安全运行有着至关重要作用,一直是工程应用领域的重点和难点, 国内外已经对此问题进行了大量的研究工作。该论文介绍了机械设备故障诊断技术的基本概念,在总结研究各种诊断技术的基础上全面分析了现代故障诊断技术存在的问题, 并针对这些问题提出了故障诊断领域将来的研究方向。故障诊断是一项实用性很强的技术, 对其进行理论上的分析研究具有重要的现实意义。 关键词:机械设备故障;诊断技术;研究

第一章引言 随着现代科学技术在设备上的应用,现代设备的结构越来越复杂,功能越来越齐全,自动化程度也越来越高。由于许多无法避免的因素影响,会导致设备出现各种故障,从而降低或失去预定的功能,甚至会造成严重的以至灾难性的事故。国内外接连发生的由设备故障引起的各种空难、海难、爆炸、断裂、倒塌、毁坏、泄漏等恶性事故,造成了极大的经济损失和人员伤亡。生产过程中经常发生的设备故障事故,也会使生产过程不能正常运行或机器设备遭受损坏而造成巨大的经济损失。因此机械设备故障诊断技术在社会中的重要性越来越高,主要体现在[1]:(1)预防事故,保证人员和设备安全。 (2)推动设备维修制度的改革。维修制度从预防制度向预知制度的转变是必然的,而真正实现预知维修的基础是设备故障诊断技术的发展和成熟。 (3)提高经济效益。设备故障诊断的最终目的是避免故障的发生,使零部件的寿命得到充分发挥,延长检修周期,降低维修费用。 因此,机械设备故障诊断技术日益受到广泛重视,对机械设备故障诊断技术的研究也不断深入。但受于机械设备故障成因的复杂性和诊断技术的局限性,目前机械设备故障诊断仍存在一些问题。

(企业诊断)设备故障诊断与维修最全版

(企业诊断)设备故障诊断 与维修

《设备故障诊断和维修》学习提纲 第壹章绪论 掌握设备故障诊断的意义、目的、任务及其发展概况,熟悉设备故障诊断的概念、意义和目的,熟悉状态监测和故障诊断的任务,了解设备故障诊断技术的发展概况。 1、设备诊断技术、修复技术和润滑技术已列为我国设备管理和维修工作的三项基 础技术。 2、设备故障诊断是指在设备运行中或在基本不拆卸的情况下,通过各种手段,掌握设备运行状态,判定产生故障的部位和原因,且预测、预报设备未来的状态,从而找出对策的壹门技术。 3、设备故障诊断既要保证设备的安全可靠运行,又要获取更大的经济效益和社会效益。 4、设备故障诊断的任务是监视设备的状态,判断其是否正常;预测和诊断设备的故障且消除故障;指导设备的管理和维修。 5、设备故障诊断技术的发展历程:感性阶段→量化阶段→诊断阶段(故障诊断技术真正作为壹门学科)→人工智能和网络化阶段(发展方向)。 第二章设备故障诊断的基本概念 了解设备故障诊断的壹些基本概念和基本方法,明确设备故障诊断的重要目标——状态维修。要求掌握设备和设备故障的基本概念,全面、深入了解设备故障的概念、原因、机理、类型、模式、特性、分析及管理;了解设备故障诊断的基本方法和分类;熟知设备维修方式的发展和状态维修,认识设备故障诊断技术和状态维修的“因果”关系。 1、从系统论的观点,设备是由有限个“元素”,通过元素之间的“联系”,按照壹定的规律聚合而构成的。 2、设备的故障,是指系统的构造处于不正常状态,且可导致设备相应的功能失调,致使设 备相应行为(输出)超过允许范围,这种不正常状态称为故障状态。

3、理解故障原因、故障机理、故障模式、故障分析等概念。设备故障具有层次性、传播性、 放射性、相关性、延时性、不确定性等基本特性。 4、对故障进行分类的目的是为了弄清不同的故障性质,从而采取相应的诊断方法 5、设备故障诊断的基本方法包括传统的故障诊断方法、故障的智能诊断方法和故障诊断的 数学方法。 6、设备故障诊断的分类根据诊断对象、诊断参数、诊断的目的和要求、诊断方法的完善程 度等不同能够有各种分类方法。 7、我国的维修体制也在发生着深刻而巨大的变化,已从早期的事后维修和实施多年的定期 预防维修开始进入现代的预知性的视情(状态)维修。 8、实施设备状态维修的指导思想。 第三章设备故障诊断的技术基础 掌握设备故障诊断特别是振动诊断的技术基础,要求熟悉设备故障诊断技术的内容,掌握设备故障信息获取和检测方法的框架知识,了解设备故障常用的三种评定标准及相对判断标准的制定方法,熟悉故障诊断中的信号处理。掌握傅里叶变换在故障诊断中的应用。 1、设备故障诊断的内容包括状态监测、分析诊断和故障预测三个方面。其具体实施过程 为信息采集、信号处理、状态识别、诊断决策。 2、设备故障信息的获取方法包括直接观测法、参数测定法、磨损残渣测定法及设备性能 指标的测定。 3、设备故障的检测方法包括振动和噪声的故障检测、材料裂纹及缺陷损伤的故障检测、 设备零部件材料的磨损及腐蚀故障检测及工艺参数变化引起的故障检测。 4、设备故障的评定标准常用的有三种判断标准,即绝对判断标准、相对判断标准以及类 比判断标准。可用平均法制定相对判断标准。

远程故障诊断简介

远程故障诊断简介 1远程故障诊断 (2) 1.1 功能定义及流程 (2) 1.1.1 远程故障诊断 (2) 1.1.1.1 功能描述 (2) 1.1.1.2 流程说明 (2) 1.1.2 远程车况查询 (2) 1.1.2.1 功能描述 (2) 1.1.2.2 流程说明 (3) 1.1.3 故障预警 (3) 1.1.3.1 功能描述 (3) 1.1.3.2 流程说明 (3) 1.2 故障诊断涵盖汽车上哪些模块 (4) 1.2.1 动力总线部分 (4) 1.2.2 车身总线部分 (4) 1.3 故障诊断涵盖哪些故障项 (4) 1.3.1 OBDII 标准故障项 (4) 1.3.2 车型相关故障项 (6) 1.4 需要整车提供的信号 (9) 2长安目前开发诊断模块介绍 (9) 3如果在Telematics系统内嵌诊断模块功能,能实现哪些功能,对硬件系统有无要求10

1远程故障诊断 1.1 功能定义及流程 1.1.1远程故障诊断 1.1.1.1 功能描述 车主通过电话连接呼叫中心,请求中心客服人员向车辆下发远程故障诊断操作指令,实现在线远程车辆故障诊断,并将故障诊断报告发送到车载终端或者邮寄给车主。 1.1.1.2 流程说明 1)车主电话连接呼叫中心,请求客服人员下发故障诊断操作指令,进行远程故障诊断; 2)中心下发故障码查询指令至车载终端; 3)车载终端收到故障码查询指令后,执行故障码查询操作,如发动机系统、刹车系统、转向助力系统等各个子系统的故障码; 4)所有项目检测完成后,车载终端将查询到的故障码发送到中心服务器,中心服务器根据上报的故障码查询对应的故障描述信息,并进行统计分析,形成故障诊断报告,然后发送至车载终端(用户可以通过“车况检测报告”查看最新的故障诊断报告),或直接通过电子邮件的形式邮寄给车主; 5)当车载终端收到中心下发的故障诊断报告时,进行语音提醒并弹出提醒窗口提示车主及时进行查看。 1.1.2远程车况查询 1.1. 2.1 功能描述 车主通过电话连接呼叫中心(或通过web发起查询),请求客服人员向车辆下发远程车况查询指令,实现在线远程车况查询,并将车况查询报告通知或者邮寄给车主(与远程故障诊断流程类似,远程故障诊断是查询故障码,远程车况查询是查询车辆各个部件的状态参数)。

状态监测与故障诊断的基本图谱

状态监测与故障诊断的基本图谱 一、常规图谱 常规图谱又称稳态图谱,是在转速相对稳定、没有大幅度变化情况下的有关图谱,因此其不含开停车信息。 1. 机组总貌图 机组总貌图显示了机组的总貌,可了解机型、转子支撑方式、轴承位置、运行转速等,主要是查看探头的位置及位号。 2. 单值棒图 较为形象、直观地显示实时振动值,并可知低报、高报报警值及转速。 3. 多值棒图 多值棒图显示实时通频值及各主要振动分量的振动值,可大致了解机组运行是否正常。 正常运转状态下的多值棒图通常是:一倍频最大、且与通频相差不大,二倍频小于一倍频的一半,0.5倍频微量或无,可选频段很小,残余量不大。 其中: (1)通频值~即总振动值,为各频率振动分量相互矢量迭加后的总和。 (2)一倍频~为转子实际运行转速n下的频率f,又称工频、基频、转频, f = n/60 [Hz];转子动不平衡及轴弯曲、轴承不良(偏心)、热态对中不良、支承刚度异常、在临界转速区运行、电机气隙偏心等,都会引起一倍频振动分量的增大,发生概率依次降低。 (3)二倍频~二倍工频,转子热态不对中、裂纹、松动、水平方向上支承刚度过差等,都会引起二倍频振动分量增大,绝大多数是轴系不对中。 (4)0.5倍频~0.5倍工频,又称半频,油膜涡动会引起该频率段增大,轴承工作不良也会引起该段频率增大;旋转失速、摩擦也都有可能。 (5)可选频段~由用户根据机组常见故障自己定义的频段,一般可选择(0.4~0 .6)倍工频或(0.3~0 .8)倍工频,用来监测是否发生亚异步振动,如油膜涡动、旋转失速、密封流体激振、进汽(气)脉动、摩擦、松动等。主要是轴承因紧力、接触、摇摆、油档及油温等问题引起的油膜失稳、摩擦、旋转失速、进汽脉动。 (6)残余量~除上述频率成分外,剩余频率成分振动分量的总和,该部分振值高时,转子有可能发生摩擦、高频气流脉动等。 4. 波形图 波形图显示了振动位移与时间的关系,又称幅值时域图。 波形图显示了振幅、周期(即频率)、相位,特别是波形的形状和状态。 图中:① 振幅为正峰与负峰之间的位移量,比较各周期对应的峰高,即可知振幅值是否稳定;② 二个亮点之间为一个旋转周期,波形图的周期数可以选取,想了解波形重复性

(完整版)《设备故障诊断-沈庆根》知识点汇总

1.1.设备故障诊断的含义 设备故障诊断是指应用现代测试分析手段和诊断理论方法,对运行中的机械设备出现故障的机理、原因、部位和故障程度进行识别和诊断,并且根据诊断结论,确定设备的维修方案和防范措施。 1.2.设备故障诊断的过程 信号采集→信号处理→故障诊断→诊断决策→故障防治与控制 1.3.设备故障诊断的特性 多样性、层次性、多因素相关性、延时性、不确定性 1.4.三种维修制度 事后维修(故障维修)、定期维修(计划维修)、状态监测维修(预知性维修) 1.5设备故障的类型有哪些 ①结构损伤性故障(裂纹、磨损、腐蚀、变形、断裂、剥落和烧伤) ②运动状态劣化性故障(机械位置不良、刚性不足、摩擦、流体激振、非线性的谐波共振) 1.6设备故障诊断的功能 ①不停机不拆卸的状态下检测 ②可预测设备的可靠性程度 ③确定故障来源,提出整改措施 1.7.设备状态监测与故障诊断的技术和方法 振动信号监测诊断技术(普遍性、信息量丰富、易处理与分析) 声信号监测诊断技术(声音监听法、频谱分析法、声强法) 温度信号监测诊断技术 润滑油的分析诊断技术 其他无损检测诊断技术 1.8.设备故障状态的识别方法 信息比较诊断法、参数变化诊断法、模拟试验诊断法、函数诊断法、故障树分析诊断法、模糊诊断法、神经网络诊断法、专家系统 2.1信号的含义和分类 信号是表征客观事物状态或行为信息的载体 分类:确定性信号与非确定性信号;连续信号和离散信号;能量信号和功率信号;时限与频限信号 2.2.信号时域分解 直流分量和交流分量 脉冲分量 实部分量和虚部分量 正交函数分量 2.3.信号的时域统计 均值 均方值 方差

2.4.时域相关分析 相关系数: 2.5.频谱分析法 利用傅里叶变换的方法对振动的信号进行分解,并按频率顺序展开,使其成为频率的函数,进而在频率域中对信号进行研究和处理的一种过程,称为频谱分析 2.6.振动监测的基本参数振幅、频率、相位 2.7.旋转机械常用的振动信号处理图形 轴心轨迹:轴颈中心相对于轴承座在轴线垂直平面内的运动轨迹 转子振型:转子轴线上各点的振动位移所连成的一条空间曲线 轴颈涡动中心位置:在滑动轴承中,轴颈中心在激扰力作用下是绕着某一中心点运动的 波特图:描述转子振幅和相位随转速变化的关系曲线,纵坐标为振幅和相位,横坐标为转子的转速或转速频率 极坐标图:把转子的振幅与相位随转速的变化关系用极坐标的形式表示出来(直观,方便,清晰,抗干扰) 三维坐标图(级联图、瀑布图):随转速上升,机械振动的基础幅指上升 阶比谱分析:将频谱图上横坐标的每个频率值除以某个参考频率值(读数清晰、周期采样、精度高) 3.1旋转机械的故障类型有哪些 ①转自不平衡②转子不对中③滑动轴承故障④转子摩擦⑤浮动环密封故障 3.2转子不平衡的概念 转子受材料质量、加工、装配以及运行中多种因素的影响,其质量中心和旋转中心线中间存在一定量的偏心距,使得转子在工作时形成周期性的离心力干扰,在轴承上产生动载荷,从而引起机器振动的现象 不平衡产生的离心力大小 3.3转子不平衡振动的故障特征 ①不平衡故障主要引起转子或轴承径向振动,在转子径向测点上得到的频谱图,转速频率成分具有突出的峰值 ②单纯的不平衡振动,转速频率的高次谐波幅值很低,因此在时域上的波形是一个正弦波 ③转子的轴心轨迹形状基本上为一个圆或者椭圆,这意味着置于转轴同一截面上相互垂直的两个探头,其信号相位差接近90° ④转子的进动方向为同步正进动 ⑤除了悬臂转子外,对于普通两端支撑的转子,不平衡在轴向上的振幅一般不明显 ⑥转子振幅对转速变化很敏感,转速下降,振幅将明显下降 3.4转子不平衡振动的原因 ①固有质量不平衡(设计错误、材料缺陷、加工与装配误差、动平衡方法不正确) ②转子运行中的不平衡(转子弯曲、转子平衡状态破坏) 3.5怎样区别转子弯曲不平衡和质量不平衡 ①振幅随转速的变化:质量不平衡与转速之间按照固定的关系式变化,弯曲的没有

状态监测与故障诊断

状态监测与故障诊断与飞设密不可分 刚刚接触这门课的时候,我只知道这是民航飞行学院开设的课程,但还不知道这门课到底讲什么东西,对我们飞设来说到底有什么借鉴之处。经过几周的学习,我初步了解了这门课。简单说,状态监测与故障诊断和飞设之间有着密切的联系。他们是一种表里关系,是一种感知和应用的关系,两者互为支撑,共同促进了航空工业的进步发展。 状态监测与故障诊断促进了设计行业的发展。 状态监测与故障诊断为设计飞机提供了大量的、可靠的数据。 这提供了一种实验。通过对飞行器飞行状态、各个零部件的工作状态、各个系统的运行情况进行检测,我们可以获得大量的实时数据,进而进行详细的分析,即故障诊断。一方面我们可以检测出飞行器的故障来源,对飞行器进行维修。同时,我们可以统计飞行器各部分发生故障的频率和原因等,进而分析得出设计上的缺陷。这也可以作为设计飞机的依据,比如发动机轴承要用什么材质,设计寿命多长时间最为合适。再者,分析得到的数据可以对目前的设计理论进行验证,这对飞行器设计来说更为至关重要。 状态监测与故障诊断也可以给设计提出新的问题与要求。比如国内大气污染严重,飞机的空调系统收到了巨大的影响。这就要求飞机设计时采取某些措施来防止这些问题发生。 设计行业也促进了状态监测与故障诊断的发展。 飞行器设计理论可以指导状态监测与故障诊断的实际应用。 应用已经提出验证的的理论,我们可以初步分析出各部件的特性,这样便可以某些易损坏或是极度危险的零部件进行重点监控,这样不但更具可行性,而且还大大节约了人力物力,降低航空公司的运营成本。比如发动机是飞行器的核心部分之一,构建复杂,极易出现故障,所以要重点监测。 同时已有的理论基础可以为状态监测提供必要的手段,使其具有可行性。最简单的就是发动机的涡轮叶片,我们可以通过测量转子的惯性矩来分析判断叶片是否有松动,这样方便可行。 在理论方面,飞行器设计理论也在指导状态监测与故障诊断的发展,经过传感器采集的数据杂乱无章而且数目极为庞大。如果没有现有理论的指导,我们很难得到数据处理的方向方法,这样就得不到有价值的数据,更不要说进行故障诊断了。而应用现有理论我们可以有方向,有目的的对数据进行处理,这样我们就可以判断出是哪一方面有问题,到底有什么样的问题。 总之,状态监测与故障诊断给了我一个新的视角去看待问题,从另一个角度认识飞设这个专业。打个比方,过去我们专业所关注的是从已知到要求的问题,我们知道各种数据,所做的是对数据的分析与应用。而状态监测与故障诊断则是从要求到已知的问题,是一个反问题,我们要做的是我们如何才能得到我们所需要的数据,如何才能保证所得导数据的可靠性等。 除此之外,还有就是这门课的感受吧。 这门课也进行大半了,但是自己并没有达到自己想要的水平。总感觉有些遗憾。很多东西还是一知半解,还不能应用。我想一方面与专业基础有关系,很多基础性东西我们不懂不会,这就对理解内容造成了困难,先是听不懂,然后就不想听了,紧接着更听不懂了,直至彻底放弃掉。当然这也和上课态度以及这门课是拓展课有关吧。有的人说这门课对我没用,但我想说大

设备故障诊断技术说明

设备故障诊断技术简介

上海华阳检测仪器有限公司 Shanghai Huayang MeasuringInstruments Co., Ltd 目录 设备故障诊断技术定义

-----------------------------------------------( 3)一.设备维修制度的进展-----------------------------------------------( 4)二.检测参数类型-------------------------------------------------------( 5) 三.振动检测中位移、速度和加速度参数的选择-----------------------------( 5) 四.测点选择原则------------------------------------------------------( 6) 五.测点编号原则------------------------------------------------------( 7) 六.评判标准----------------------------------------------------------( 7) 七.测量方向及代号----------------------------------------------------

(10) 八.搜集和掌握有关的知识和资料----------------------------------------(10) 九.故障分析与诊断----------------------------------------------------(11) 十.常见故障的识不----------------------------------------------------(14) 1.不平衡------------------------------------------------------------(14) 2.不对中------------------------------------------------------------(14) 3.机械松动----------------------------------------------------------(15) 4. 转子或轴裂纹

常用简易的设备故障诊断方法

常用简易的设备故障诊断 方法 Prepared on 22 November 2020

常用简易的设备故障诊断方法 常用的简易状态监测方法主要有听诊法、触测法和观察法等。 1、听诊法 设备正常运转时,伴随发生的声响总是具有一定的音律和节奏。只要熟悉和掌握这些正常的音律和节奏,通过人的听觉功能就能对比出设备是否出现了重、杂、怪、乱的异常噪声,判断设备内部出现的松动、撞击、不平衡等隐患。用手锤敲打零件,听其是否发生破裂杂声,可判断有无裂纹产生,用听诊法对滚动轴承工作状态进行监测的常用工具是木柄螺丝刀,也可以使用外径为φ20mm左右的硬塑料管。 (1)滚动轴承正常工作状态的声响特点 滚动轴承处于正常工作状态时,运转平稳、轻快、无停滞现象,发出的声响和谐而无杂音,可听到均匀而连续的“哗哗”声,或者较低的“轰轰”声。噪声的强度不大。异常声响所反映的轴承故障锥入度大一点的新润滑脂。 (2)轴承在连续的“哗哗”声中发出均匀的周期性的“嗬罗”声。这种声音是由于滚动体和内外圈滚道出现伤痕、沟槽、锈蚀斑而引起的。声响的周期与轴承的转速成正比。应对轴承进行更换。 (3)轴承发出不连续的“梗梗”声。这种声音是由于保持架或者内外圈破裂而引起的。必须立即停机更换轴承。 (4)轴承发出不规律、不均匀“嚓嚓”声。这种声音是由于轴承内落入铁屑、砂粒等杂质而引起的。声响强度较小,与转速没有联系。应对轴承进行清洗,重新加脂或换油。

(5)轴承发出连续而不规则的“沙沙”声。这种声音一般与轴承的内圈与轴配合过松或者外圈与轴承孔配合过松有关系,声响强度较大。应对轴承的配合关系进行检查,发现问题及时修理。 (6)轴承发出连续刺耳啸叫声。这种声音是由于轴承润滑不良,缺油造成了干摩擦,或者滚动体局部接触过紧,如内外圈滚道偏斜,轴承内外圈配合过紧等情况而引起的。应及时对轴承进行检查找出问题,对症处理。 电子听诊器是一种振动加速度传感器。它将设备振动状况转换成电信号并进行放大,工人用耳机监听运行设备的振动声响,以实现对声音的定性测量。通过测量同一测点、不同时期、相同转速、相同工况下的信号,并进行对比,来判断设备是否存在故障。当耳机出现清脆尖细的噪声时,说明振动频率较高,一般是尺寸相对较小的、强度相对较高的零件发生局部缺陷或微小裂纹。当耳机传出混浊低沉的噪声时,说明振动频率较低,一般是尺寸相对较大的、强度相对较低的零件发生较大的裂纹或缺陷。当耳机传出的噪声比平时增强时,说明故障正在发展,声音越大,故障越严重。当耳机传出的噪声是杂乱无规律地间歇出现时,说明有零件或部件发生了松动。 2、触测法 用人手的触觉可以监测设备的温度、振动及间隙的变化情况。人手上的神经纤维对温度比较敏感,可以比较准确地分辨出80℃以内的温度。当机件温度在0℃左右时,手感冰凉,若触摸时间较长会产生刺骨痛感。10℃左右时,手感较凉,但一般能忍受。20℃左右时,手感稍凉,随着接触时间延长,手感渐温。30℃左右时,手感微温,有舒适感。40℃左右时,手感较热,有微烫感觉。50℃左右时,手感较烫,若用掌心按的时间较长,会有汗感。60℃左右

大型风力发电机组远程故障诊断系统资料

大型风力发电机组远程故障诊断系统 南京协宏软件技术有限公司 2015年01月

目录 1系统概述 (4) 1.1系统名称 (4) 1.2风电背景 (4) 2编制依据及系统概述 (4) 2.1系统概述 (5) 2.2技术基础 (5) 2.3项目技术特点 (5) 2.4设计制造的行业技术标准 (6) 3系统结构与特点 (7) 3.1系统结构总图 (7) 3.2系统测点配置 (7) 3.3系统硬件特点 (8) 3.3.1数据采集监测站Drivetrain DAU (8) 3.3.2数据服务器 (9) 3.3.3传感器 (9) 3.4系统实时监测功能 (10) 3.4.1实时监测 (10) 3.4.1总貌图描述 (12) 3.4.2棒图描述 (13) 3.4.3波形频谱图描述 (13) 3.4.4趋势跟踪图描述 (14) 3.5分析诊断功能 (15) 3.6数据管理功能 (20) 3.6.1数据记录的存储策略 (20)

3.6.2事故追忆功能 (20) 3.6.3数据传输的可靠性策略 (20) 3.6.4数据记录稀疏策略 (21) 3.6.5数据备份方法 (21) 3.6.6用户数据检索功能 (21) 4远程监测与诊断中心 (22) 4.1远程监测中心系统结构图 (22) 4.2系统硬件特点 (22)

1系统概述 1.1系统名称 大型风力发电机组远程故障诊断系统 1.2风电背景 近十年来,风力发电在全世界范围内得到了持续高速发展,为应对全球气候变化作出了重要贡献。风能作为一种清洁的可再生能源已成为低碳经济的重要标志之一。我国在大规模的风能利用方面虽然起步较晚,但近些年来发展非常快,到2009年年底,全国风力机械标准化技术委员会共制定发布风力发电国家标准和行业标准61项,累计装机容量跃过20GW大关,达到25.8053GW。2009年当年,我国新增风机10129台,装机容量13,8032GW,占全球新增风电装机的1/3,超过美国排名全球第一。据国家发改委能源司对未来国家能源战略划,到2020年中国的风电装机总容量将达到30GW。 风力发电机组面对各种恶劣的工作环境及严格的电网条件,运行工况复杂多变,各种因素使风力发电机组的可利用率,风电转换效率及使用寿命受到很大影响,很多重大事故的发生,往往源于一个数据的错误或一种信息的疏忽。在一个现代化的大型风电场中,可能会有十几台甚至几十台上百台风力机,如何有效地对各风力机状态进行监测和分析,使整个风电场安全、可靠、经济地运行就变得至关重要。 由于风场的选址受到地理条件及风能资源的限制,各风场之间的距离可能会非常遥远,特别是对于海上风场的情况。在这样的前提下,如何方便快捷地对各风场运行状况进行监测和分析以及实现风场间的远距离数据通讯,保证多风场的统一管理运营及维护,并使得广泛的国内、国际技术合作和多方在线断得以实现,成为今后风电行业的新兴发展方向。 本技术方案是依据风力发电机组远程状态监测与故障诊断的需求,结合我公司多年从事旋转机械远程在线状态监测和分析诊断以及风电设备状态监测及分析产品的开发和规模应用经验而编制的。 2编制依据及系统概述

电力设备故障诊断系统及应用

电力设备故障诊断系统及应用 电力设备运行状态对于整个电力系统的安全、可靠运行有着重要影响,而电力设备长时间运行过程中容易出现各种故障,造成严重的供电事故。通过运用科学合理的故障诊断方法,准确判断电力设备故障情况,为维护检修提供重要参考,并且加大对电力设备故障诊断系统的应用研究,降低电力设备故障发生率。文章分析了电力设备的状态监测技术,阐述了电力设备故障诊断系统应用,以供参考。 标签:电力设备;故障诊断系统;应用 近年来,我国电力系统快速发展,各种新型电力设备越来越多,这对于电力设备的故障诊断和维护提出了更高的要求。为了确保电力系统的稳定、经济、安全运行,应做好电力设备的故障诊断,通过运用简单的诊断技术和诊断方法,提高电力设备故障诊断准确率,加强电力设备状态监测,及时发现电力设备故障隐患,保障电力设备的安全性。 1 电力设备的状态监测技术 当前,电力设备故障监测和检修缺少合理、科学、明确的规范要求,这主要是由于各个地区存在较大的电气差别,根据电力设备运行状态,采用科学合理的故障状态检修方法,但是电力设备故障监测和检修主要依赖长期积累的实践经验,存在较大的主观性和随意性,但是实效性、规范性、客观性和科学性不足,而且电力设备故障监测和检修手段比较滞后。所以电力设备运行过程中,应做好状态监测,详细记录电力设备运行状态,做好评估和分类,为故障诊断和维修提供重要参考意见。电力设备状态监测包括以下内容:其一,为电力设备运行积累数据和资料,构建电力设备运行档案;其二,科学判断电力设备的运行状态,分析其处于异常或者正常状态,结合电力设备的故障征兆或者特征、运行状态等级、历史档案等,判断电力设备的故障程度和性质;其三,科学评估电力设备运行状态,合理分类,形成一定标准后,为电力设备状态检修提供重要参考依据,对电力设备故障或者异常状态进行有效估计,全面预测电力设备未来变化状态。对于电力设备的运行状态监测,要采取有效的方法和技术。 1.1 信号采集 结合当前我国电力系统建设发展现状,通过电力设备在线监测系统,持续检查和分析电力设备运行状态,利用各种运行状态量,分析电力设备运行状态,全面采集电力设备状态信息,包括磁力线密度、局部放电量、频率、电力、电压等信号,结合电力设备的各种状态量,采用合适的信号采集方法:其一,定时采样,按照电力系统运行状态,做好电力设备的定时采样;其二,一次性采样,每次采集一次合适长度的数据处理信号样本;其三,根据电力设备故障突变信号,实现自动化的信息采样;其四,结合电力设备故障诊断要求,采用峰值采样、转速跟踪采样等特殊方式。结合电力设备运行状态,采用合适的状态监测方法,对于断路器,采用振动监测法、跳闸轮廓法等,采集断路器运行状态信息;对于交流旋

电气设备故障诊断方法

电气设备故障诊断方法 电气故障现象是多种多样的,例如,同一类故障可能有不同的故障现象,不同类故障能是同种故障现象,这种故障现象的同一性和多样性,给查找故障带来了复杂性。但是,故障现象是查找电气故障的基本依据,是查找电气故障的起点,因而要对故障现象仔观察分析,找出故障现象中最主要的、最典型的方面,搞清故障发生的时间、地点、环境等。 1.直接感知有些电气故障可以通过人的手、眼、鼻、耳等器官,采用摸、看、闻、听等段,直接感知故障设备异常的温升、振动、气味、响声、色变等,确定设备的故障部位。 2.仪器检测许多电气故障靠人的直接感知是无法确定部位的,而要借助各种仪器、仪表,对故障设备的电压、电流、功率、频率、阻抗、绝缘值、温度、振幅、转速等等进行量,以确定故障部位。例如,通过测量绝缘电阻、吸收比、价质损耗,判定设备绝缘是否受潮;通过直流电阻的测量,确定长距离线路的短路点、接地点等。 利用眼睛、鼻子、耳朵、手等感觉器官,来进行直接观察,观察温度、声音、颜色、气味有否异常,以判断电源装置的运行情况。通过这种直观,将一些明显的故障能立即诊断出来,或者能帮助我们分析和掌握故障发生的部位、危及范围、严重程度以及元器件损坏情况。就是对那些隐蔽而复杂的故障,通过我们所直接观察到的各种现象,也能为进行诊断和分析提供重要依据,因此,直观是诊断故障的十分重要的第一步。 1.听一听有没有异常的声音。 2.嗅一嗅有没有异常气味,特别是有没有出现绝缘材料烧焦的气味。一般电气部件都由绝缘材料组成,当绝缘材料被通过的大电流(超过额定电流数倍)烧伤或烧焦后,会发出一种刺鼻的臭味,追踪气味的发生处,能帮助我们查找故障源。 3.查一查是否出出异常的温度。各种电源设各,不管是静止型还是旋转型,只要流过电流,就会产生热量,这种热量,使温度上升,但只要不超过额定温升是允许的。电源装置能持续正常的运行,这种温度基本处于饱和状态,变化不会很大。如果发现某元器件或某部位的温度突然升高,发热发烫,出现反常情况,表明可能出现故障或者有故障隐患存在,此时可根据热源去寻找故障点。检测电源装置的温度,通常采用如下几种方法。 (1)用手去摸一摸,赁感觉和经给来判断温度是否发生了异常。平时,要有意识地经常去体验设备的温度,掌握装置正常运行情况下的温度,因此,只要用手去摸一摸(但必须注意安全),就能知道温度是否超出了允许的最高温度。根据经验,在通常情况下,能够用手摸设备耐受10s左右的温度约为60度。 (2)对一些十分重要的部件或者特别需要监视的部位,可以安放温度计,用温度计来检测和监视它们的温度。 (3)对另外一些需要监视温度的部件或部位,但不便安放温度计,也不能用手摸它。在这种情况下,可以贴上示温片或涂上示温涂料,根据它们的颜色随着温度的变化而发生变化的性能,就可以知道温度是否出现了异常。 4.看一看有没有出现冒烟的情况,是否有被烧焦、烧黄或被烧得发黑的元器件。当过载和短路引起的大电流通过元器件(或零部件)时,轻者将远件烧得发烫,烤得变黄。重者将元器件(或零部件)烧得冒烟、发焦、发黑。对这种情况,可根据损坏的元器件,找出故障点,分析出故障原因。 5.看一看熔断器是否熔断。如果发现熔断器熔断,则应检查一下是哪一相的被熔断。再细细地看一下熔芯被烧断的情况和被熔断的程度。便如,对那些玻璃管熔断器,有的熔芯看上去是被慢慢地熔断的,在被熔断分开的两个断点处显得比较粗壮,头上呈现椭圆形,玻璃管仍然很透明,并且没有任何被损坏的痕迹,也没有任何发黑发黄的现象。这些多数是由于过负

电气设备故障诊断系统的分析及其设计

电气设备故障诊断系统的分析及其设计 李满平 (摘要)电牵引采煤机的工作环境恶劣,而且采煤机自身结构和组成也比较复杂,增加采煤机运行时发生故障的几率。采煤机发生故障容易出现停机,影响煤矿企业的正常生产。因此,完善采煤机发生故障的诊断系统对提高煤矿企业生产效率具有重要意义。文章首先对电牵引采煤机故障诊断系统进行简要分析,然后简单介绍故障诊断系统中的关键技术。 (关键词)电牵引采煤机;故障诊断;系统设计 0.引言 在科学技术不断进步和社会对煤炭需求量的增加,大功率和大釆高的电气设备被应用也煤矿行业,极大的推动了煤矿行业的发展。但是,大量电气设备的应用也存在设备故障问题。一旦设备发生故障轻则影响生产,重则造成严重的安全事故。因此,加强对电气设备诊断系统的研究和应用对保证生产安和煤矿企业的正常运行具有重要意义。虽然,我国许多煤矿企业也逐渐重视故障诊诊断系统应用,但是,从整体来看,我国煤矿行业应用的电气水平设备故障诊断系统技术水平较低,和国外发达国家还有较大的差距。因此,我国还要加强故障诊断系统的研发力度,提高我国故障诊断系统的水平。文章就电牵引采煤机的故障诊断系统设计谈谈自己的看法。 1.电牵引采煤机故障诊断系统 1.1实现诊断故障的手段 从电牵引采煤机故障部分分布频率来看,电牵引采煤机故障可分为机械零部件故障、液压系统故障、电气系统故障和润滑系统故障四种。其中机械零部件故障时诊断难度最大的故障类型。温度、压力、震动和噪声是电气设备传递故障信息的主要方式。根据信息传递方式,可采用噪声监视技术、红外线测温技术等一系列技术

来获取故障信号。并根据故障信号特点的不同,可使用小波分析法、基于贝叶斯决策判据、模糊逻辑、专家系统或者人工智能网络等多种手段来诊断设备存在的故障,达到快速诊断设备故障的目的。 1.2电牵引采煤机故障诊断系统设计方案 根据电牵引采煤机故障类型,故障诊断系统应包括测试子系统和信息处理子系统两个部分。测试子系统主要发挥实施监控的作用。它可以实际对电牵引采煤机的电气、机械、液压等多个系统运行时的关键数据进行检测,列如机械设备的温度和震动情况、液压和润滑系统的压力参数。电气系统的电流和电压等等。并保证各个系统的正常数据,为今后监控和诊断设备情况提供参考。信息处理子系统可实现自动化判别,依据判别结果判定设备故障。同时该子系统还能根据设备故障的特征和状态分析故障发展趋势、评定设备健康程度,并为设备维护人员制定维护计划提供维护作为参考。列如陕西铜川某矿公司的大功率电牵引采煤机,故障诊断系统可以实现对采煤机运行状态进行实时监控,在监控的同时传感器也在实时采集、存储和传送设备运行状态参数,诊断系统通过该网络实现与远程服务中的连接,实现远程对设备运行状态的分析和预测。 2故障诊断系统设计的关键技术 2.1故障动态演化机理 早期采煤机机械故障多由多因素诱发,及设备故障信号和设备参数系统的映射关系非常复杂。故障机理是从大量实践研究中发现的设备故障信号和设备参数相互联系的规律表达方式,如果系统参数发生变化,设备信号也会随之变化。而信号和设备故障之间的内在联系时故障诊断系统的基础,对采煤机而言,故障信号多为不规律的震动和异常噪声,不同故障的机理也有很大不同,再加上设备运行环境对故障信号的干扰,故障信号采集和处理难度更大。而且当前我国故障诊断系统只能根据采煤机的电压电流和温度等简单参数进行监测,并不能实现定了诊断故障和定位诊断故障。因此,对我国采煤机故障诊断系统的基础技术。

相关主题
文本预览
相关文档 最新文档