当前位置:文档之家› 2020年高中物理竞赛辅导课件★★理想气体的等体过程和等压过程

2020年高中物理竞赛辅导课件★★理想气体的等体过程和等压过程

理想气体基本热力过程要点

理想气体的基本热力过程 热力设备中,热能与机械能的相互转化,通常是通过气态工质的吸热、膨胀、放热、压缩等热力过程来实现的。 实际的热力过程都很复杂,而且几乎都是非平衡、非可逆的过程。但若仔细观察会发现,某些常见过程非常近似一些简单的可逆过程。 常见的主要有四种简单可逆过程-基本热力过程,指系统某一状态参数保持不变的可逆过程。 包括定容过程、定压过程、定温过程和绝热过程。 我们以1kg理想气体的闭口系统为例来分析这几种基本热力过程,分析方法包括5点: (1)依据过程特点建立过程方程式; (2)由过程方程和理想气体状态方程确定初、终态基本状态参数之间的关系,即P1、v1、T1和P2、v2、T2之间的关系; (3)绘制过程曲线; 我们主要绘制两种坐标图P-v图和T-s图,因为P-v图上可以表示过程中做功量的多少,而T-s图上可以表示过程中吸收或放出热量的多少; (4)分析计算△u,△h,△s; (5)分析计算过程的热量q和功w。 一、定容过程 定容过程即工质的容积在整个过程中维持不变,dv=0,通常是一定量的气体在刚性容器中进行定容加热或定容放热。 (1)依据过程特点建立过程方程式 定容过程的特点是体积保持不变,所以建立过程方程式: v=常数; 或dv=0 或v1=v2 (2)由过程方程和理想气体状态方程确定初、终态基本状态参数之间的关系 过程方程式:v1=v2

理想气体状态方程:112212 Pv P v T T = 由以上两个方程可以得到初末基本状态参数之间的关系: 122211 v v P T P T =???=?? 即定容过程中工质的压力与温度成正比。 (3)绘制过程曲线; 定容过程有两种情况:定容加热和定容放热。 (4)分析计算△u ,△h ,△s ; 2211 v v u u u c dT c T ?=-==?? 2 211p p h h h c dT c T ?=-==?? 222111 ln ln ln p v v v P P s c c c v P P ?=+=或222111ln ln ln v v T v T s c R c T v T ?=+= (5)分析计算过程的热量q 和功w 。 容积变化功:2 10w Pdv ==? 根据q=△u+w 可得: v q u c T =?=? 总结:定容过程中系统与外界无容积变化功,加给工质的热量全部用于增加工质的热力学能,而没有热能与机械能的转化。

高中物理竞赛辅导(2)

高中物理竞赛辅导(2) 静力学力和运动 共点力的平衡 n个力同时作用在物体上,若各力的作用线相交于一点,则称为 共点力,如图1所示。 作用在刚体上的力可沿作用线前、后滑移而不改变其力 学效应。当刚体受共点力作用时,可把这些力沿各自的作用 线滑移,使都交于一点,于是刚体在共点力作用下处于平衡 状态的条件是:合力为零。 (1) 用分量式表示: (2) [例1]半径为R的刚性球固定在水 平桌面上,有一质量为M的圆环状均匀 弹性细绳圈,原长为,绳 圈的弹性系数为k。将圈从球的正上方 轻放到球上,并用手扶着绳圈使其保持 水平,最后停留在平衡位置。考虑重力, 不计摩擦。①设平衡时绳圈长 ,求k值。②若 ,求绳圈的平衡位置。

分析:设平衡时绳圈位于球面上相应于θ角的纬线上。在绳圈上任取一小元段, 长为,质量为,今将这元段作为隔离体,侧视图和俯视图分别由图示(a)和(b)表示。 元段受到三个力作用:重力方向竖直向下;球面的支力N方向沿半径R 指向球外;两端张力,张力的合力为 位于绳圈平面内,指向绳圈中心。这三个力都在经 线所在平面内,如图示(c)所示。将它们沿经线的切向和法向分 解,则切向力决定绳圈沿球面的运动。 解:(1)由力图(c)知:合张力沿经线切向分力为: 重力沿径线切向分力为: (2-2) 当绳圈在球面上平衡时,即切向合力为零。 (2-3) 由以上三式得 (2-4) 式中

由题设:。把这些数据代入(2-4)式得。于是。 (2)若时,C=2,而。此时(2-4)式变成 tgθ=2sinθ-1, 即 sinθ+cosθ=sin2θ, 平方后得。 在的范围内,上式无解,即此时在球面上不存在平衡位置。这时由于k值太小,绳圈在重力作用下,套过球体落在桌面上。 [例2]四个相同的球静止在光滑的球形碗内,它们的中心同在一水平面内,今以另一相同的球放以四球之上。若碗的半径大于球的半径k倍时,则四球将互相分离。试求k值。 分析:设每个球的质量为m,半径为r ,下面四个球的相互作用力为N,如图示(a)所示。 又设球形碗的半径为R,O' 为球形碗的球心,过下面四球的 球心联成的正方形的一条对角线 AB作铅直剖面。如图3(b)所示。 当系统平衡时,每个球所受的合 力为零。由于所有的接触都是光 滑的,所以作用在每一个球上的 力必通过该球球心。 上面的一个球在平衡时,其 重力与下面四个球对它的支力相平衡。由于分布是对称的,它们之间的相互作用力N, 大小相等以表示,方向均与铅垂线成角。

高中物理竞赛辅导讲义-7.1简谐振动

7.1简谐振动 一、简谐运动的定义 1、平衡位置:物体受合力为0的位置 2、回复力F :物体受到的合力,由于其总是指向平衡位置,所以叫回复力 3、简谐运动:回复力大小与相对于平衡位置的位移成正比,方向相反 F k x =- 二、简谐运动的性质 F kx =- ''mx kx =- 取试探解(解微分方程的一种重要方法) cos()x A t ω?=+ 代回微分方程得: 2m x kx ω-=- 解得: 22T π ω== 对位移函数对时间求导,可得速度和加速度的函数 cos()x A t ω?=+ sin()v A t ωω?=-+ 2cos()a A t ωω?=-+ 由以上三个方程还可推导出: 222()v x A ω += 2a x ω=- 三、简谐运动的几何表述 一个做匀速圆周运动的物体在一条直径 上的投影所做的运动即为简谐运动。 因此ω叫做振动的角频率或圆频率, ωt +φ为t 时刻质点位置对应的圆心角,也叫 做相位,φ为初始时刻质点位置对应的圆心 角,也叫做初相位。

四、常见的简谐运动 1、弹簧振子 (1)水平弹簧振子 (2)竖直弹簧振子 2、单摆(摆角很小) sin F mg mg θθ=-≈- x l θ≈ 因此: F k x =- 其中: mg k l = 周期为:222T π ω=== 例1、北京和南京的重力加速度分别为g 1=9.801m/s 2和g 2=9.795m/s 2,把在北京走时准确的摆钟拿到南京,它是快了还是慢了?一昼夜差多少秒?怎样调整? 例2、三根长度均为l=2.00m 、质量均匀的直杆,构成一正三角彤框架 ABC .C 点悬挂在一光滑水平转轴上,整个框架可绕转轴转动.杆AB 是一导轨,一电动玩具松鼠可在导轨运动,如图所示.现观察到松鼠正在导轨上运动,而框架却静止不动,试论证松鼠的运动是一种什么样的运动?

湖南大学工程热力学第4章理想气体热力过程(复习题)

第4章 理想气体热力过程及气体压缩 4.1 本章基本要求 熟练掌握定容、定压、定温、绝热、多变过程中状态参数p 、v 、T 、?u 、 ?h 、?s 的计算,过程量Q 、W 的计算,以及上述过程在p -v 、T -s 图上的表示。 4.2 本章重点 结合热力学第一定律,计算四个基本热力过程、多变过程中的状态参数和过程参数及在p -v 、T -s 图上表示。本章的学习应以多做练习题为主,并一定注意要在求出结果后,在p -v 、T -s 图上进行检验。 4.3 例 题 例1.2kg 空气分别经过定温膨胀和绝热膨胀的可逆过程,如图4.1,从初态1p =9.807bar,1t =300C ο膨胀到终态容积为初态容积的5倍,试计算不同过程中空气的终态参数,对外所做的功和交换的热量以及过程中内能、焓、熵的变化量。 图4.1 解:将空气取作闭口系 对可逆定温过程1-2,由过程中的参数关系,得 bar v v p p 961.15 1 807.9211 2=?==

按理想气体状态方程,得1 1 1p RT v = =0.1677kg m /3 125v v ==0.8385kg m /3 12T T ==573K 2t =300C ο 气体对外作的膨胀功及交换的热量为 1 2 11ln V V V p Q W T T ===529.4kJ 过程中内能、焓、熵的变化量为 12U ?=0 12H ?=0 12S ?= 1 T Q T =0.9239kJ /K 或12S ?=mRln 1 2 V V =0.9238kJ /K 对可逆绝热过程1-2′, 由可逆绝热过程参数间关系可得 k v v p p )( 2 11'2= 其中22'v v ==0.8385kg m /3 故 4.12)5 1 (807.9'=p =1.03bar R v p T ' ''222= =301K '2t =28C ο 气体对外所做的功及交换的热量为 )(1 1)(11'212211T T mR k V p V p k W s --=--= =390.3kJ 0'=s Q 过程中内能、焓、熵的变化量为 kJ T T mc U v 1.390)(1212''-=-=? 或kJ W U 3.390212'-=-=? kJ T T mc H p 2.546)(1212''-=-=? '12S ?=0

新版高一物理竞赛讲义

高中物理《竞赛辅导》力学部分 目录 :力学中的三种力 【知识要点】 (一)重力 重力大小G=mg,方向竖直向下。一般来说,重力是万有引力的一个分力,静止在地球表面的物体,其万有引力的另一个分力充当物体随地球自转的向心力,但向心力极小。 (二)弹力 1.弹力产生在直接接触又发生非永久性形变的物体之间(或发生非永久性形变的物体一部分和另一部分之间),两物体间的弹力的方向和接触面的法线方向平行,作用点在两物体的接触面上.2.弹力的方向确定要根据实际情况而定. 3.弹力的大小一般情况下不能计算,只能根据平衡法或动力学方法求得.但弹簧弹力的大小可用.f=kx(k 为弹簧劲度系数,x为弹簧的拉伸或压缩量)来计算. 在高考中,弹簧弹力的计算往往是一根弹簧,而竞赛中经常扩展到弹簧组.例如:当劲度系数分别为k1,k2,…的若干个弹簧串联使用时.等效弹簧的劲度系数的倒数为:,即弹簧变软;反之.若

以上弹簧并联使用时,弹簧的劲度系数为:k=k 1+…k n ,即弹簧变硬.(k=k 1+…k n 适用于所有并联弹簧的原长相等;弹簧原长不相等时,应具体考虑) 长为 的弹簧的劲度系数为k ,则剪去一半后,剩余 的弹簧的劲度系数为2k (三)摩擦力 1.摩擦力 一个物体在另一物体表面有相对运动或相对运动趋势时,产生的阻碍物体相对运动或相对运动趋势的力叫摩擦力。方向沿接触面的切线且阻碍物体间相对运动或相对运动趋势。 2.滑动摩擦力的大小由公式f=μN 计算。 3.静摩擦力的大小是可变化的,无特定计算式,一般根据物体运动性质和受力情况分析求解。其大小范围在0<f≤f m 之间,式中f m 为最大静摩擦力,其值为f m =μs N ,这里μs 为最大静摩擦因数,一般情况下μs 略大于μ,在没有特别指明的情况下可以认为μs =μ。 4.摩擦角 将摩擦力f 和接触面对物体的正压力N 合成一个力F ,合力F 称为全反力。在滑动摩擦情况下定义tgφ=μ=f/N ,则角φ为滑动摩擦角;在静摩擦力达到临界状态时,定义tgφ0=μs =f m /N ,则称φ0为静摩擦角。由于静摩擦力f 0属于范围0<f≤f m ,故接触面作用于物体的全反力同接触面法线 的夹角≤φ0,这就是判断物体不发生滑动的条件。换句话说,只要全反力的作用线落在(0,φ0)范围时,无穷大的力也不能推动木块,这种现象称为自锁。 本节主要内容是力学中常见三种力的性质。在竞赛中以弹力和摩擦力尤为重要,且易出错。弹力和摩擦力都是被动力,其大小和方向是不确定的,总是随物体运动性质变化而变化。弹力中特别注意轻绳、轻杆及胡克弹力特点;摩擦力方向总是与物体发生相对运动或相对运动趋势方向相反。另外很重要的一点是关于摩擦角的概念,及由摩擦角表述的物体平衡条件在竞赛中应用很多,充分利用摩擦角及几何知识的关系是处理有摩擦力存在平衡问题的一种典型方法。 【典型例题】 【例题1】如图所示,一质量为m 的小木块静止在滑动摩擦因数为μ=的水平面上,用一个与水平方 向成θ角度的力F 拉着小木块做匀速直线运动,当θ角为多大时力F 最小? 【例题2】如图所示,有四块相同的滑块叠放起来置于水平桌面上,通过细绳和定滑轮相互联接起来.如果所有的接触面间的摩擦系数均为μ,每一滑块的质量均为 m ,不计滑轮的摩擦.那么要拉动最上面一块滑块至少需要多大的水平拉力?如果有n 块这样的滑块叠放起 来,那么要拉动最上面的滑块,至少需多大的拉力? 【例题3】如图所示,一质量为m=1㎏的小物块P 静止在倾角为θ=30°的斜面 上,用平行于斜面底边的力F=5N 推小物块,使小物块恰好在斜面上匀速运动,试求小物块与斜面间的滑 动摩擦因数(g 取10m/s 2 )。 【练习】 1、如图所示,C 是水平地面,A 、B 是两个长方形物块,F 是作用在物块B 上沿水平方向的力,物块A 和B 以相同的速度作匀速直线运动,由此可知, A 、 B 间的滑动 θ F P θ F A B F C N F f m f 0 α φ

高中物理竞赛辅导讲义 第 篇 运动学

高中物理竞赛辅导讲义 第2篇 运动学 【知识梳理】 一、匀变速直线运动 二、运动的合成与分解 运动的合成包括位移、速度和加速度的合成,遵从矢量合成法则(平行四边形法则或三角形法则)。 我们一般把质点对地或对地面上静止物体的运动称为绝对运动,质点对运动参考照系的运动称为相对运动,而运动参照系对地的运动称为牵连运动。以速度为例,这三种速度分别称为绝对速度、相对速度、牵连速度,则 v 绝对 = v 相对 + v 牵连 或 v 甲对乙 = v 甲对丙 + v 丙对乙 位移、加速度之间也存在类似关系。 三、物系相关速度 正确分析物体(质点)的运动,除可以用运动的合成知识外,还可充分利用物系相关速度之间的关系简捷求解。以下三个结论在实际解题中十分有用。 1.刚性杆、绳上各点在同一时刻具有相同的沿杆、绳的分速度(速度投影定理)。 2.接触物系在接触面法线方向的分速度相同,切向分速度在无相对滑动时亦相同。 3.线状交叉物系交叉点的速度,是相交物系双方运动速度沿双方切向分解后,在对方切向运动分速度的矢量和。 四、抛体运动: 1.平抛运动。 2.斜抛运动。 五、圆周运动: 1.匀速圆周运动。 2.变速圆周运动: 线速度的大小在不断改变的圆周运动叫变速圆周运动,它的角速度方向不变,大小在不断改变,它的加速度为a = a n + a τ,其中a n 为法向加速度,大小为2 n v a r =,方向指向圆心;a τ为切向加速度,大小为0lim t v a t τ?→?=?,方向指向切线方向。 六、一般的曲线运动 一般的曲线运动可以分为很多小段,每小段都可以看做圆 周运动的一部分。在分析质点经过曲线上某位置的运动时,可 以采用圆周运动的分析方法来处理。对于一般的曲线运动,向心加速度为2n v a ρ =,ρ为点所在曲线处的曲率半径。 七、刚体的平动和绕定轴的转动 1.刚体 所谓刚体指在外力作用下,大小、形状等都保持不变的物体或组成物体的所有质点之间的距离始终保持不变。刚体的基本运动包括刚体的平动和刚体绕定轴的转动。刚体的任

高中物理竞赛辅导讲义 静力学

高中物理竞赛辅导讲义 第1篇 静力学 【知识梳理】 一、力和力矩 1.力与力系 (1)力:物体间的的相互作用 (2)力系:作用在物体上的一群力 ①共点力系 ②平行力系 ③力偶 2.重力和重心 (1)重力:地球对物体的引力(物体各部分所受引力的合力) (2)重心:重力的等效作用点(在地面附近重心与质心重合) 3.力矩 (1)力的作用线:力的方向所在的直线 (2)力臂:转动轴到力的作用线的距离 (3)力矩 ①大小:力矩=力×力臂,M =FL ②方向:右手螺旋法则确定。 右手握住转动轴,四指指向转动方向,母指指向就是力矩的方向。 ③矢量表达形式:M r F =? (矢量的叉乘),||||||sin M r F θ=? 。 4.力偶矩 (1)力偶:一对大小相等、方向相反但不共线的力。 (2)力偶臂:两力作用线间的距离。 (3)力偶矩:力和力偶臂的乘积。 二、物体平衡条件 1.共点力系作用下物体平衡条件: 合外力为零。 (1)直角坐标下的分量表示 ΣF ix = 0,ΣF iy = 0,ΣF iz = 0 (2)矢量表示 各个力矢量首尾相接必形成封闭折线。 (3)三力平衡特性 ①三力必共面、共点;②三个力矢量构成封闭三角形。 2.有固定转动轴物体的平衡条件:

3.一般物体的平衡条件: (1)合外力为零。 (2)合力矩为零。 4.摩擦角及其应用 (1)摩擦力 ①滑动摩擦力:f k = μk N(μk-动摩擦因数) ②静摩擦力:f s ≤μs N(μs-静摩擦因数) ③滑动摩擦力方向:与相对运动方向相反 (2)摩擦角:正压力与正压力和摩擦力的合力之间夹角。 ①滑动摩擦角:tanθk=μ ②最大静摩擦角:tanθsm=μ ③静摩擦角:θs≤θsm (3)自锁现象 三、平衡的种类 1.稳定平衡: 当物体稍稍偏离平衡位置时,有一个力或力矩使之回到平衡位置,这样的平衡叫稳定平衡。2.不稳定平衡: 当物体稍稍偏离平衡位置时,有一个力或力矩使它的偏离继续增大,这样的平衡叫不稳定平衡。 3.随遇平衡: 当物体稍稍偏离平衡位置时,它所受的力或力矩不发生变化,它能在新的位置上再次平衡,这样的平衡叫随遇平衡。 【例题选讲】 1.如图所示,两相同的光滑球分别用等长绳子悬于同一点,此两球同时又支撑着一个等重、等大的光滑球而处于平衡状态,求图中α(悬线与竖直线的夹角)与β(球心连线与竖直线的夹角)的关系。 面圆柱体不致分开,则圆弧曲面的半径R最大是多少?(所有摩擦均不计) R

高中物理竞赛辅导讲义:原子物理

原 子 物 理 自1897年发现电子并确认电子是原子的组成粒子以后,物理学的中心问题就是探索原子内部的奥秘,经过众多科学家的努力,逐步弄清了原子结构及其运动变化的规律并建立了描述分子、原子等微观系统运动规律的理论体系——量子力学。本章简单介绍一些关于原子和原子核的基本知识。 §1.1 原子 1.1.1、原子的核式结构 1897年,汤姆生通过对阴极射线的分析研究发现了电子,由此认识到原子也应该具有内部结构,而不是不可分的。1909年,卢瑟福和他的同事以α粒子轰击重金属箔,即α粒子的散射实验,发现绝大多数α粒子穿过金箔后仍沿原来的方向前进,但有少数发生偏转,并且有极少数偏转角超过了90°,有的甚至被弹回,偏转几乎达到180°。 1911年,卢瑟福为解释上述实验结果而提出了原子的核式结构学说,这个学说的内容是:在原子的中心有一个很小的核,叫原子核,原子的全部正电荷和几乎全部质量都集中在原子核里,带负电的电子在核外的空间里软核旋转,根据α粒子散射的实验数据可估计出原子核的大小应在10-14nm 以下。 1、1. 2、氢原子的玻尔理论 1、核式结论模型的局限性 通过实验建立起来的卢瑟福原子模型无疑是正确的,但它与经典论发生了严重的分歧。电子与核运动会产生与轨道旋转频率相同的电磁辐射,运动不停,辐射不止,原子能量单调减少,轨道半径缩短,旋转频率加快。由此可得两点结论: ①电子最终将落入核内,这表明原子是一个不稳定的系统; ②电子落入核内辐射频率连续变化的电磁波。原子是一个不稳定的系统显然与事实不符,实验所得原子光谱又为波长不连续分布的离散光谱。如此尖锐的矛盾,揭示着原子的运动不服从经典理论所表述的规律。 为解释原子的稳定性和原子光谱的离经叛道的离散性,玻尔于1913年以氢原子为研究对象提出了他的原子理论,虽然这是一个过渡性的理论,但为建立近代量子理论迈出了意义重大的一步。 2、玻尔理论的内容: 一、原子只能处于一条列不连续的能量状态中,在这些状态中原子是稳定的,电子虽做加速运动,但并不向外辐射能量,这些状态叫定态。 二、原子从一种定态(设能量为E 2)跃迁到另一种定态(设能量为E 1)时,它辐射或吸收一定频率的光子,光子的能量由这种定态的能量差决定,即 γh =E 2-E 1 三、氢原子中电子轨道量子优化条件:氢原子中,电子运动轨道的圆半径r 和运动初速率v 需满足下述关系: π2h n rmv =,n=1、2…… 其中m 为电子质量,h 为普朗克常量,这一条件表明,电子绕核的轨道半径是不连

高中物理竞赛辅导讲义_微积分初步

微积分初步 一、微积分的基本概念 1、极限 极限指无限趋近于一个固定的数值 两个常见的极限公式 0sin lim 1x x x →= *1lim 11x x x →∞??+= ??? 2、导数 当自变量的增量趋于零时,因变量的增量与自变量的增量之商的极限叫做导数。 0'lim x dy y y dx x ?→?==? 导数含义,简单来说就是y 随x 变化的变化率。 导数的几何意义是该点切线的斜率。 3、原函数和导函数 对原函数上每点都求出导数,作为新函数的函数值,这个新的函数就是导函数。 00()()'()lim lim x x y y x x y x y x x x ?→?→?+?-==?? 4、微分和积分 由原函数求导函数:微分 由导函数求原函数:积分 微分和积分互为逆运算。 例1、根据导函数的定义,推导下列函数的导函数 (1)2y x = (2) (0)n y x n =≠ (3)sin y x = 二、微分 1、基本的求导公式 (1)()'0 ()C C =为常数 (2)()1' (0)n n x nx n -=≠ (3)()'x x e e = *(4)()'ln x x a a a = (5)()1ln 'x x = *(6)()1log 'ln a x x a =

(7)()sin 'cos x x = (8)()cos 'sin x x =- (9)()21tan 'cos x x = (10)()21cot 'sin x x = **(11)() arcsin 'x = **(12)()arccos 'x = **(13)()21arctan '1x x =+ **(14)()2 1arccot '1x x =-+ 2、函数四则运算的求导法则 设u =u (x ),v =v (x ) (1)()'''u v u v ±=± (2)()'''uv u v uv =+ (3)2'''u u v uv v v -??= ??? 例2、求y=tan x 的导数 3、复合函数求导 对于函数y =f (x ),可以用复合函数的观点看成y =f [g (x)],即y=f (u ),u =g (x ) 'dy dy du y dx du dx == 即:'''u x y y u = 例3、求28(12)y x =+的导数 例4、求ln tan y x =的导数 三、积分 1、基本的不定积分公式 下列各式中C 为积分常数 (1) ()kdx kx C k =+?为常数 (2)1 (1)1n n x x dx C n n +=+≠-+?

物理竞赛讲义(三)力矩、定轴转动物体的平衡条件、重心

郑梁梅高级中学高一物理竞赛辅导讲义 第三讲:力矩、定轴转动物体的平衡条件、重心 【知识要点】 (一)力臂:从转动轴到力的作用线的垂直距离叫力臂。 (二)力矩:力和力臂的乘积叫力对转动轴的力矩。记为M=FL ,单位“牛·米”。一般规定逆时针方向转动为正方向,顺时针方向转动为负方向。 (三)有固定转轴物体的平衡条件 作用在物体上各力对转轴的力矩的代数和为零或逆时针方向力矩总是与顺时针方向力矩相等。即ΣM=0,或ΣM 逆=ΣM 顺。 (四)重心:物体所受重力的作用点叫重心。 计算重心位置的方法: 1、同向平行力的合成法:各分力对合力作用点合力矩为零,则合力作用点为重心。 2、割补法:把几何形状不规则的质量分布均匀的物体分割或填补成形状规则的物体,再由同向(或反向)平行力合成法求重心位置。 3、公式法:如图所示,在平面直角坐标系中,质量为m 1和m 2的A 、B 两质点坐标分别为A (x 1,y 1),B (x 2,y 2)则由两物体共同组成的整体的重心坐标为: 212211m m x m x m x C ++= 212211m m y m y m y C ++= 一般情况下,较复杂集合体,可看成由多个质点组成的质点系, 其重心C 位置由如下公式求得: i i i C m x m x ∑∑= i i i C m y m y ∑∑= i i i C m z m z ∑∑= 本节内容常用方法有:①巧选转轴简化方程:选择未知量多,又不需求解结果的力线交点为轴,这些力的力矩为零,式子简化得多;②复杂的物体系平衡问题有时巧选对象:选整体分析,常常转化为力矩平衡问题求解;③无规则形状的物体重心位置计算常用方法是通过割补思想,结合平行力合成与分解的原则处理,或者助物体重心公式计算。 【典型例题】 【例题1】如图所示,光滑圆弧形环上套有两个质量不同的小球A 和B 两球之间连有弹簧,平衡时圆心O 与球所在位置的连线与竖直方向的夹角分别为α和β,求两球质量之比。 y y y 12C α β A B O

高中物理竞赛辅导讲义-第8篇-稳恒电流

高中物理竞赛辅导讲义 第8篇 稳恒电流 【知识梳理】 一、基尔霍夫定律(适用于任何复杂电路) 1. 基尔霍夫第一定律(节点电流定律) 流入电路任一节点(三条以上支路汇合点)的电流强度之和等于流出该节点的电流强度之和。即∑I =0。 若某复杂电路有n 个节点,但只有(n ?1)个独立的方程式。 2. 基尔霍夫第二定律(回路电压定律) 对于电路中任一回路,沿回路环绕一周,电势降落的代数和为零。即∑U =0。 若某复杂电路有m 个独立回路,就可写出m 个独立方程式。 二、等效电源定理 1. 等效电压源定理(戴维宁定理) 两端有源网络可以等效于一个电压源,其电动势等于网络的开路端电压,其内阻等于从网络两端看除源(将电动势短路,内阻仍保留在网络中)网络的电阻。 2. 等效电流源定理(诺尔顿定理) 两端有源网络可等效于一个电流源,电流源的电流I 0等于网络两端短路时流经两端点的电流,内阻等于从网络两端看除源网络的电阻。 三、叠加原理 若电路中有多个电源,则通过电路中任一支路的电流等于各个电动势单独存在时,在该支路产生的电流之和(代数和)。 四、Y?△电路的等效代换 如图所示的(a )(b )分别为Y 网络和△网络,两个网络中的6个电阻满足一定关系 时完全等效。 1. Y 网络变换为△网络 12 2331 123 R R R R R R R R ++=, 122331 231R R R R R R R R ++= 122331 312 R R R R R R R R ++= 2. △网络变换为Y 网络 12311122331R R R R R R = ++,23122122331R R R R R R =++,3123 3122331 R R R R R R =++

重点高中物理竞赛精品讲义之—程稼夫篇

精心整理 电磁学 静电学 1、 静电场的性质 静电场是一个保守场,也是一个有源场。 F dl o ?=?高斯定理 静电力环路积分等于零i q E ds E ?= ∑?? E ∑过程x E =2、 (1,空解:(1)在空腔中任选一点p , p E 可以看成两个均匀带电球体产生的电场强度之差, 即()121 2 333p o o o E r r r r E E E ρ ρ ρ = - = - 令12a o o = 这个与p 在空腔中位置无关,所以空腔中心处23o o E a E ρ =

(2)求空腔中心处的电势 电势也满足叠加原理 p U 可以看成两个均匀带电球体产生电势之差 即()()()22222 2212123303666o o o o U R a R R R a E E E ρ ρ ρ??= -- -= --? ? 假设上面球面上,有两个无限小面原i j s s ,计算i s ,受到除了i s 上电荷之处,球 面上其它电荷对i s 的静电力,这个静电力包含了j s 上电荷对i s 上电荷的作用力. 同样j s 受到除了i s 上电荷以外, 这个力同样包含了i s 对j s 的作用力. 如果把这里的i j s s ,i j s s 之间的相互作用力相抵消。 出于这个想法,现在把上半球面分成无限小的面元,把每个面元上所受的静电力(除 去各自小面元)相加,其和就是下半球面上的电荷对上半球面上电荷的作用力。 求法2 2 222 2=f 224o o o R Q F R R E E R σππππ??=?== ??? 再观察下,静电力?o f = 例:()R R R +≤ : 2o E E σ σ = 表面 而且可以推广到一般的面电荷()σ 在此面上电场强度()121 2 E E E = +表面 例:一个半径为R,带电量为Q 的均匀带电球面,求上下两半球之间的静电力? 解:原则上,这个作用力是上半球面上的电荷受到来自下半球面的电荷产生的电场强 度的空间分布,对上半球面上各电荷作用力之和,由于下半球面上电荷所产生的电场强度分布,所以这样计较有困难. 例:求半径为R,带电量为Q 的均匀带电球面,外侧的静电场能量密度. 解:静电场(真空)能量密度21 2 o E E ω=

第四章理想气体的热力过程

第四章理想气体的热力过程 一、目的及要求: 掌握四种基本热力过程的初终态状态参数的计算,掌握当理想气体经历某一热力过程后系统与外界所交换的热量及功量的计算。掌握多变过程的相关量的计算。会利用给定的已知条件在坐标图上定性的画出相应的过程曲线。 二、内容: 4.1研究理想气体的目的及一般方法 4.2定容过程、定压过程、定温过程、绝热过程及多变过程 4.3过程曲线在相应的坐标图上的表示。 三、重点及难点: 熟练掌握5种基本过程(定容过程、定压过程、定温过程、绝热过程及多变过程)的初 终态基本状态参数p、v、T之间的关系。 4.2熟练掌握当工质经历了4种基本过程以及多变过程过程系统与外界交换的热量、功量的 计算。 能将各过程表示在p-v图和T-s图上,并能正确地应用p-v图和T-s图判断过程的 特点,即△u,△h,q及w等的正负值。 四、主要外语词汇: thermodynamic Process, isometric process, isobaric process, isothermal process, adiabatic process, isentropic process, polytropic process 五、本章节采用多媒体课件 六、复习思考题及作业: 思考题: 1、在定容过程和定压过程中,气体的热量可根据过程中气体的比热容乘以温差来计算。定温过程气体的温度不变,在定温膨胀过程中是否需对气体加入热量?如果加入的话应如何计算? 2、任何定温过程都有?u=0, ?h=0?对于理想气体如何? 3、绝热过程,工质的温度都不变?反之温度一定变? 4、从同一初态,分别经历等温过程、等熵过程及n=1.2过程,能否到达同一终态? 5、一封闭系经某可逆吸热对外作功,问能否用一可逆绝热过程使系统回到初态 6、在p-v及T-s图上如何判断过程中的q、w、?u、?h的正负? 作业:

高中物理竞赛辅导讲义 动量

高中物理竞赛辅导讲义 第4篇 动量 【知识梳理】 一、动量p (1)定义:物体的质量m 与速度v 的乘积叫做物体的动量。即p =mv 。 (2)意义:描述物体的运动状态。 (3)性质:①矢量性:方向与速度方向相同。遵守平行四边形定则。 ②瞬时性:是状态量,与时刻相对应。 ③相对性:中学以地面为参考系。 (4)单位:kg ·m/s 。(导出单位) 二、冲量 (1)定义:力和力的作用时间的乘积叫冲量。即I =Ft 。 (2)意义:力对时间的积累效果。 (3)性质:①矢量性:方向与力的方向相同。遵守平行四边形定则。 ②时间性:是过程量,与一段“时间”相对应。 ③绝对性:与参考系无关。 (4)单位:Ns 。(导出单位) 三、动量定理 (1)内容:物体所受合外力的冲量等于物体动量的变化。Ft =Δp 。 (2)推导:F ma =,21v v at -= (3)注意:①Ft 是合外力的冲量或总冲量。 ②等式两边都是矢量,等式反映“冲量和动量变化大小相等,方向相同”。 ③适用于低速运动的宏观物体与高速运动的微观粒子。 (4)用动量表示牛顿第二定律:物体动量的变化率等于它受到的合外力。p F t ?= ?。 四、动量守恒定律 1.内容:如果一个系统不受外力,或者所受外力的矢量和为0,这个系统的总动量保持不变。这就是动量守恒定律。 2.推导:用动量定理和牛顿第三定律推导 1111v m v m t F -'=?;2222v m v m t F -'='?;F F -=';22112211v m v m v m v m +='+'。 3.理解: (1)守恒条件:系统不受外力或所受外力的合力为零。要区分内力和外力。 (2)守恒含义:任一时刻系统总动量相同,不只是初末状态相同。 (3)系统性:指系统的总动量守恒,不是系统内每个物体的动量守恒。每个物体的动量可以发生很大的变化。 (4)相对性:各物体的动量,都是同一惯性参考系(一般以地面为参考系)。

高中物理竞赛辅导讲义-1.4运动学综合题

1.4运动学综合题 例1、如图所示,绳的一端固定,另一端缠在圆筒上,圆筒半径为R,放在与水平面成α角的光滑斜面上,当绳变为竖直方向时,圆 筒转动角速度为ω,(此时绳未松弛),试求此刻圆筒与绳分离处A 的速度以及圆筒与斜面切点C的速度 例2、如图所示,湖中有一小岛A,A与直湖岸的距离为d,湖岸边有一点B,B沿湖岸方向与A点的距离为l.一人自B点出发,要到达A 点.已知他在岸上行走的速度为v1,在水中游泳的速度为v2,且v1>v2,要求他由B至A所用的时问最短,问此人应当如何选择其运动路线?

例3、一根不可伸长的细轻绳,穿上一粒质量为m的珠 子(视为质点),绳的下端固定在A点,上端系在轻质 小环上,小环可沿固定的水平细杆滑动(小环的质量及 与细杆摩擦皆可忽略不计),细杆与A在同一竖直平面 内.开始时,珠子紧靠小环,绳被拉直,如图所示,已 知,绳长为l,A点到杆的距离为h,绳能承受的最大 T,珠子下滑过程中到达最低点前绳子被拉断, 张力为 d 求细绳被拉断时珠子的位置和速度的大小(珠子与绳子 之间无摩擦) 例4、在某铅垂面上有一光滑的直角三角形细管轨道,光滑小球从顶点A沿斜边轨道自静止出发自由滑到端点C所需时间恰好等于小球从A由静止出发自由地经B滑到C所需时间,如图所示.设AB为铅直轨道,转弯处速度大小不变,转弯时间忽略不计,在此直角三角形范围内可构建一系列如图中虚线所示的光滑轨道,每一轨道由若干铅直和水平的部分连接而成,各转弯处性质都和B点相同,各轨道均从A点出发到C点终止,且不越出△ABC的边界.试求小球在各条轨道中,从静止出发自由地由A到C所需时间的上限与下限之比值.

高中物理竞赛辅导教材讲义(高一适用)

第五讲:运动的基本概念、运动的合成与分解 5、如图所示,有一河面宽L=1km ,河水由北向南流动,流速v=2m/s ,一人相对于河水以u=1m/s 的速率将船从西岸划向东岸。 (1)若船头与正北方向成α=30°角,船到达对岸要用多少时间?到达对岸时,船在下游何处? (2)若要使船到达对岸的时间最短,船头应与岸成多大的角度?最短时间等于多少?到达对岸时,船在下游何处? (3)若要使船相对于岸划行的路程最短,船头应与岸成多大的角度?到达对岸时,船在下游何处?要用多少时间? (1)船头与正北方向成15°角,船到对岸花多少时间?何处? (2 已知水流速度 V =2m/s ,船在静水中的速度是 V`=S =1千米=1000米 (1)当船头与正北方向成15°角时,把静水中的航速V`正交分解在平行河岸与垂直河岸方向, 垂直河岸方向的速度分量是 V`1=V`*sin15°=1.5*sin15°=1.5*根号[(1-cos30°) / 2 ]=0.388m/s 平行河岸方向的速度分量是 V`2=V`*cos15°=1.5*cos15°=1.5*根号[(1+cos30°) / 2 ]=1.45m/s 船过河所用时间是 t1=S / V`1=1000 / 0.388=2575.8秒=42.93分钟 在沿河岸方向的总速度是 V 岸=V -V`2=2-1.45=0.55 m/s 在这段时间内,船向下游运动距离是L1=V 岸* t1=0.55*2575.8=1416.7米=1.42千米 即船到达对岸的位置是在出发点的下游1.42千米远的对岸处。 (2)要求时间最短,船头的指向必须与河对岸垂直,即船头与河岸应90度。 最短时间是 t 短=S / V`=1000 / 1.5=666.67秒=11.11分钟 在这段时间内,船向下游运动的距离是 L =V* t 短=2*666.67=1333.33米=1.33千米 即船到达对岸的位置是在出发点的下游1.33千米远的对岸处。 北 东

高中物理竞赛辅导讲义原子物理

原子物理 自1897年发现电子并确认电子是原子的组成粒子以后,物理学的中心问题就是探索原子内部的奥秘,经过众多科学家的努力,逐步弄清了原子结构及其运动变化的规律并建立了描述分子、原子等微观系统运动规律的理论体系——量子力学。本章简单介绍一些关于原子和原子核的基本知识。 §1.1 原子 1.1.1、原子的核式结构 1897年,汤姆生通过对阴极射线的分析研究发现了电子,由此认识到原子也应该具有内部结构,而不是不可分的。1909年,卢瑟福和他的同事以α粒子轰击重金属箔,即α粒子的散射实验,发现绝大多数α粒子穿过金箔后仍沿原来的方向前进,但有少数发生偏转,并且有极少数偏转角超过了90°,有的甚至被弹回,偏转几乎达到180°。 1911年,卢瑟福为解释上述实验结果而提出了原子的核式结构学说,这个学说的内容是:在原子的中心有一个很小的核,叫原子核,原子的全部正电荷和几乎全部质量都集中在原子核里,带负电的电子在核外的空间里软核旋转,根据α粒子散射的实验数据可估计出原子核的大小应在10-14nm 以下。 1、1. 2、氢原子的玻尔理论 1、核式结论模型的局限性 通过实验建立起来的卢瑟福原子模型无疑是正确的,但它与经典论发生了严重的分歧。电子与核运动会产生与轨道旋转频率相同的电磁辐射,运动不停,辐射不止,原子能量单调减少,轨道半径缩短,旋转频率加快。由此可得两点结论: ①电子最终将落入核内,这表明原子是一个不稳定的系统; ②电子落入核内辐射频率连续变化的电磁波。原子是一个不稳定的系统显然与事实不符,实验所得原子光谱又为波长不连续分布的离散光谱。如此尖锐的矛盾,揭示着原子的运动不服从经典理论所表述的规律。 为解释原子的稳定性和原子光谱的离经叛道的离散性,玻尔于1913年以氢原子为研究对象提出了他的原子理论,虽然这是一个过渡性的理论,但为建立近代量子理论迈出了意义重大的一步。 2、玻尔理论的内容: 一、原子只能处于一条列不连续的能量状态中,在这些状态中原子是稳定的,电子虽做加速运动,但并不向外辐射能量,这些状态叫定态。 二、原子从一种定态(设能量为E 2)跃迁到另一种定态(设能量为E 1)时,它辐射或吸收一定频率的光子,光子的能量由这种定态的能量差决定,即 γh =E 2-E 1 三、氢原子中电子轨道量子优化条件:氢原子中,电子运动轨道的圆半径r 和运动初速率v 需满足下述关系: π2h n rmv =,n=1、2…… 其中m 为电子质量,h 为普朗克常量,这一条件表明,电子绕核的轨道半径是不连

高中物理竞赛讲义动量和能量专题

高中物理竞赛讲义动量和能量专题 一、冲量 1.冲量的定义:力F和力的作用时间t的乘积Ft叫做力的冲量,通常用符号I表示冲量。 2.定义式:I=Ft 3.单位:冲量的国际单位是牛·秒(N·s)4.冲量是矢量,它的方向是由力的方向决定的。 如果力的方向在作用时间内不变,冲量的方向就跟力的方向相同。如果力的方向在不断变化,如绳子拉物体做圆周运动,则绳的拉力在时间t内的冲量,就不能说是力的方向就是冲量的方向。对于方向不断变化的力的冲量,其方向可以通过动量变化的方向间接得出。 5、冲量的计算:冲量是表示物体在力的作用下经历一段时间的累积的物理量。 因此,力对物体有冲量作用必须具备力F和该力作用下的时间t两个条件。换句话说:只要有力并有作用一段时间,那么该力对物体就有冲量作用,可见,冲量是个过程量。 例:以初速度竖直向上抛出一物体,空气阻力不可忽略。关于物体受到的冲量,以下说法正确的是:() A、物体上升阶段和下落阶段受到的重力的冲量方向相反; B、物体上升阶段和下落阶段受到空气阻力冲量的方向相反; C、物体在下落阶段受到重力的冲量大于上升阶段受到重力的冲量; D、物体从抛出到返回抛出点,所受各力冲量的总和方向向下。 二、动量 1.定义:质量m和速度v的乘积mv. 2.公式:p=mv 3.单位:千克?米/秒(kg?m/s),1N?m=1kg?m/s2?m=1kg?m/s 4.动量也是矢量:动量的方向与速度方向相同。 三、动量的变化 1.动量变化就是在某过程中的末动量与初动量的矢量差。即△P=P’-P。 例1:一个质量是0.2kg的钢球,以2m/s的速度水平向右运动,碰到一块竖硬的大理石后被弹回,沿着同一直线以2m/s的速度水平向左运动,碰撞前后钢球的动量有没有变化?变化了多少? 例2:一个质量是0.2kg的钢球,以2m/s的速度斜射到坚硬的大理石板上,入射的角度是45o,碰撞后被斜着弹出,弹出的角度也是45o,速度大小仍为2m/s,用作图法求出钢球动量变化大小和方向? 2.动量是矢量,求其变化量可以用平行四边形定则 四、动量定理 1.物理意义:物体所受合外力的冲量等于物体的动量变化 2.公式:Ft=p’一p=mv'-mv 3.动量定理的适用范围:恒力或变力(变力时,F为平均力) 例:质量2kg的木块与水平面间的动摩擦因数μ=0.2,木块在F=5N的水平恒力作用下由静止开始运动。g=10m/s2,求恒力作用木块上10s末物体的速度。 例:鸡蛋从某一高度下落,分别碰到石头和海绵垫,哪个更容易破,用动量有关知识解释? 例:一个人慢行和跑步时,不小心与迎面的一棵树相撞,其感觉有什么不同?请解释. 五、动量守恒定律 1.内容:相互作用的物体所组成的系统,如果不受外力作用,或它们所受外力之和为零。则系统的总动量保持不变。 2.动量守恒的条件:系统不受外力或合外力为零 六、动量守恒定律的应用 例1.在列车编组站里,一辆m1=1.8×104kg的货车在平直轨道上以v1=2m/s的速度运动,

高一物理竞赛讲义第9讲.教师版

今天,我们除了要复习一下之前的内容之外,还需要学习一点关于流体的简单知识,算是对于初中物理的致敬吧~ 1.静止流体内的压强 在重力场中相互连通的静止流体内的压强与位置的关系十分简单。此关系可归结为两点: ⑴ 等高点,压强相等 ⑵ 高度差为h 的两点,压强差为gh ρ,越深处压强越大。 2.浮力,浮心 由阿基米德原理可知,浮力和排开体积的流体的受重力大小相等,方向相反。 浮力的作用点称为浮心,和物体同形状,同体积那部分流体的重心,但定不等同于物体的重心,只有在物体密度均匀时,它才与浸没在流体中的物体部分的重心重合。 3.浮体平衡的稳定性 浮在流体表面的浮体,所受浮力与重力大小相等,方向相反,处于平衡状态。 浮体对铅垂方向(即垂直于水面)的扰动,显然平衡是稳定的。 浮体对水平方向(即水平方向)的扰动,其平衡是随遇的。 浮体对于过质心的水平对称轴的旋转扰动,平衡稳定性与浮心和物体的重心的相对位置有关。向右扰动后,如果重心G 的位置比浮心B 更右侧,则为不稳定平衡;如果重心G 的位置右移等于浮心B ,则为随遇平衡;如果重心G 右移小于浮心B ,则为稳定平衡。 【例1】 用手捏住悬挂着细木棒的细绳的一端,让木棒缓慢地逐渐浸入水中,讨论在此过程中木棒和绳的 倾斜情况。 【解析】 木棒入水受重力浮力和绳张力,三力平衡由于重力浮力均竖直,则绳张力亦竖直。 当重力比浮力大时,棒受一扰动倾斜,则重力矩和浮力矩(相对于绳交点O )相比,重力矩较大,所以会回复平衡(这和一般的浮体平衡不同)当浮力变大,浮力矩也变大,则会变成不稳平衡。 设O 离水面为d 时,变为不稳平衡,开始倾斜,绕动一个小角θ如图。 设棒横截面为s ?。 重力矩()0cos cos 22l l d l sg l d g s d ρθρθ-??=??=-??+ ??? ∴( )22222001122l l d d l d ρρρρ??=-?=-?= ?? ? 再深入水,只会更斜倾,将来斜倾角度为cos x d θ== 【例2】 一个下窄上宽的杯中盛有密度为ρ的均匀混合液体,经一段时间后,变为两层液体,密度分别为 1ρ和2ρ(21ρρ>)则会分层并且总体积不变,问杯底压强是否改变,变大或变小 设1ρ处的体积为111V h S =,2ρ处的体积为222V h S = ∴1122111222211122 V V S h S h V V S h S h ρρρρρ++==++ 显然,12ρρ<,12S S >,∴ρρ<混分。 例题精讲 知识点睛 温馨寄语 第9讲 一点浮力和总复习

相关主题
文本预览
相关文档 最新文档