当前位置:文档之家› (完整版)人教版八年级数学分式知识点和典型例题.doc

(完整版)人教版八年级数学分式知识点和典型例题.doc

(完整版)人教版八年级数学分式知识点和典型例题.doc
(完整版)人教版八年级数学分式知识点和典型例题.doc

第十六章分式知识点和典型例习题

【知识网络】

【思想方法】

1.转化思想

转化是一种重要的数学思想方法,

应用非常广泛, 运用转化思想能把复杂的问题转化为

简单问题, 把生疏的问题转化为熟悉问题, 本章很多地方都体现了转化思想, 如,分式除法、

分式乘法; 分式加减运算的基本思想:异分母的分式加减法、

同分母的分式加减法;解分式

方程的基本思想:把分式方程转化为整式方程,从而得到分式方程的解等.

2.建模思想

本章常用的数学方法有:分解因式、通分、约分、去分母等,在运用数学知识解决实际

问题时,首先要构建一个简单的数学模型,通过数学模型去解决实际问题,经历

“实际问题

——— 分式方程模型 ——— 求解 ——— 解释解的合理性 ”的数学化过程,体会分式方程的模型思想,对培养通过数学建模思想解决实际问题具有重要意义.

3.类比法

本章突出了类比的方法, 从分数的基本性质、 约分、通分及分数的运算法则类比引出了分式的基本性质、 约分、 通分及分式的运算法则, 从分数的一些运算技巧类比引出了分式的一些运算技巧, 无一不体现了类比思想的重要性, 分式方程解法及应用也可以类比一元一次方程.

第一讲 分式的运算

【知识要点】 1. 分式的概念以及基本性质

;

2. 与分式运算有关的运算法则

3. 分式的化简求值 ( 通分与约分 )

4. 幂的运算法则

【主要公式】 1. 同分母加减法则 : b c

b c a 0

a a a

2. 异分母加减法则 : b

d bc da bc da a 0, c 0 ;

a c

ac ac

ac

3. 分式的乘法与除法 :

b ? d

bd , b c b ? d bd

a c

ac a d

a c ac

4. 同底数幂的加减运算法则 : 实际是合并同类项

5. 同底数幂的乘法与除法 m

a nm+n

mnm -n

; a ● =a ; a

÷

a =a

6. 积的乘方与幂的乘方 :(ab) m = a m b n , (a

m )

n

=

a

mn

负指数幂 : a -p

= 1

p

7. a =1

8. 乘法公式与因式分解: 平方差与完全平方式

(a+b)(a-b)= a 2- b 2 ;(a ±b) 2= a 2±2ab+b2

(一)、分式定义及有关题型

题型一:考查分式的定义

b , x2 y2 1

【例 1】下列代数式中:x

,

1

x y, a ,

x y ,是分式的有:

.

2 a b

x

y x y

题型二:考查分式有意义的条件

【例 2】当x有何值时,下列分式有意义

( 1)x

4 (2)3x ( 3) 2 (4) 6 x ( 5) 1 x 4 x 2 2 x 2 1 | x | 3 x 1

x

题型三:考查分式的值为0 的条件

【例 3】当x取何值时,下列分式的值为0.

( 1)x 1

(2) | x | 2 (3) x 2 2x 3 x 3 x2 4 x 2 5 x 6

题型四:考查分式的值为正、负的条件

【例 4】( 1)当x为何值时,分式

4

为正;

8 x

( 2)当x为何值时,分式

5 x

3 (x 1)2

为负;

( 3)当x为何值时,分式x 2

为非负数 .

x 3 练习:

1.当x取何值时,下列分式有意义:

( 1)

1

(2)

3 x

( 3)

1

6 | x | 3 ( x 1)2 1 1

1

x

2.当x为何值时,下列分式的值为零:

(1) 5 | x 1 |

(2)25 x2

x 4 x2 6x 5

3.解下列不等式

( 1)| x | 2 0 (2)x 5 0

x 1 x2 2 x 3

(二)分式的基本性质及有关题型1.分式的基本性质:

A A M A M

B B M B M

2.分式的变号法则:

a a a a

b b b

b

题型一:化分数系数、小数系数为整数系数

【例 1】不改变分式的值,把分子、分母的系数化为整数.

1 x

2

( 1)

2 y

(2) 0.2a

0.03b

3

1

x

1

0.04a b

3 y

4

题型二:分数的系数变号

【例 2】不改变分式的值,把下列分式的分子、分母的首项的符号变为正号

.

( 1)

x y

( 2)

a

( 3)

a

x y

a b

b

题型三:化简求值题

【例 3】已知:

1

1 5 ,求 2x

3xy 2 y

的值 .

x

y

x 2 xy y

提示:整体代入,① x y

3xy ,②转化出

1

1 .

x y

【例 4】已知: x

1 2 ,求 x 2 1

的值 .

x

x 2

【例 5】若 | x y

1 | (

2 x 3)

2

0 ,求 1 的值 .

4 x 2 y

练习:

1.不改变分式的值,把下列分式的分子、分母的系数化为整数 .

( 1) 0.03x 0.2 y

0.4a 3 b

(2) 1

5

0.08x

0.5 y

1

a

b

4

10 2.已知: x

1 3 ,求

x 2

的值 .

x

4

x 2

x

1

3.已知:

1

1 3,求

2a

3ab

2b

的值 .

a b

b ab a

4.若 a

2

2a b

2

6b 10 0 ,求 2a b

的值 .

3a 5b

5.如果 1 x

2 ,试化简

| x

2 | x 1 | x | .

2 x | x 1 | x

(三)分式的运算

1.确定最简公分母的方法:

①最简公分母的系数,取各分母系数的最小公倍数; ①最简公分母的字母因式取各分母所有字母的最高次幂 .

2.确定最大公因式的方法:

①最大公因式的系数取分子、分母系数的最大公约数;

①取分子、分母相同的字母因式的最低次幂

.

题型一:通分

【例 1】将下列各式分别通分 .

( 1)

c b a

( 2)

a

,

b

2ab , 3a 2 c , 5b 2c

a b 2b 2a

( 3)

1

x

2

( 4) a 1

x

2

x

,

1 2x x

2 ,

x 2

x 2

2,

2 a

题型二:约分

【例 2】约分:

( 1) 16 x 2

y ;( 3) n

2

m 2 ;(3) x

2

x 2 .

20xy 3

m n

x 2

x

6

题型三:分式的混合运算

【例 3】计算:

( 1) ( a

2b

)3

( c 2 ) 2

(

bc

)4

( 2) ( 3a 3

) 3 (x

2

y 2

) (

y x

) 2 ;

c ab

a

x y y x

( 3)

m 2n

n 2m ; ( 4) a

2

1 a 1 ;

n m

m n

n m

a

( 5) 1

1

2 x

4 x 3 8 x 7

1 x 1 x

1 x 2

1 x 4

1 x 8

( 6)

1

1

1

(x 1)( x 1) ( x 1)( x 3) ( x 3)( x

5)

( 7) (

x 2

4 4 x 1 ) (

x 2

2x )

x 2

4x

2

x 1

题型四:化简求值题

【例 4】先化简后求值

( 1)已知: x

1 ,求分子 1

x 2 8

4

[( x

2

4

1) (

1 1

)] 的值;

4x 2 x

( 2)已知:

x

y

z ,求 xy 2yz

3xz 的值;

2 3

4

x 2 y 2

z 2

( 3)已知:

2

3

1 0

2

1

1

a

,试求 (a

a

2

)( a

a ) 的值 .

a

题型五:求待定字母的值

【例 5】若

1

3x M

N ,试求 M , N 的值 .

x 2 1

x 1 x 1

练习:

1.计算

( 1)

2a 5

a 1 2a 3 ; ( 2) a 2

b 2 2ab ;

2( a 1)

2(a 1)

2(a 1)

a b b a

( 3) a b c a 2b 3c b 2c

; ( 4) a b

2b 2 ;

a b c

b c a c a b a b

( 5) (a 4ab

4ab ) ;

( 6) 1

1

2 ;

b

)(a b a b

1 x 2

a b

1 x 1 x ( 7)

1

2

1

.

(x 2)( x 3) (x 1)( x 3)

(x 1)( x

2)

2.先化简后求值

( 1)

a

1

a 2

4 1

1 ,其中 a 满足 a 2

a 0 .

a

2 a 2 2a 1 a 2

( 2)已知 x : y

2 :

3 ,求 ( x 2 y 2 ) [( x y) ( x

y )3 ]

x 的值 .

xy

x

y 2

3.已知:

5x 4 A

B ,试求 A 、 B 的值 .

(x 1)( 2x 1)

x

1

2x

1

4.当 a 为何整数时,代数式

399a

805

的值是整数,并求出这个整数值.

a 2

(四)、整数指数幂与科学记数法

题型一:运用整数指数幂计算

【例 1】计算:(1) (a

2

) 3 (bc 1 ) 3 ( 2) (3x 3 y 2 z 1 ) 2 (5xy 2 z 3 ) 2

( 3) [

(a b) 3

( a b)5 ] 2 ( 4) [( x y)3 ( x y) 2 ] 2 (x

y) 6

(a b) 2 ( a b)4

题型二:化简求值题

【例 2】已知 x x 1

5 ,求( 1) x 2

x 2 的值;( 2)求 x 4 x 4 的值 .

题型三:科学记数法的计算

【例 3】计算:(1) (3 10 3 ) (8.2 10 2 )2 ;( 2) (4 10 3 ) 2 (2 10 2 ) 3 .

练习 :

1.计算:( 1) ( 1 1 ) ( 1 ) 2

| 1

| (1 3)0 ( 0.25) 2007 4 2008

3 5 5 3

( 2) (3 1 m 3 n 2 ) 2 ( m 2 n) 3

2

2

2

2

( 3) (2ab )

(a b)

(3a 3b 2 ) (ab 3 ) 2

( 4) [4(x

y) 2 ( x y) 2 ] 2 [2(x

y)

1

(x y)] 2

2.已知 x 2

5x

1 0 ,求( 1) x x 1 ,( 2) x

2 x 2

的值 .

第二讲

分式方程

【知识要点】 1. 分式方程的概念以及解法

;

2. 分式方程产生增根的原因

3. 分式方程的应用题

【主要方法】 1. 分式方程主要是看分母是否有外未知数

;

2.

解分式方程的关健是化分式方程为整式方程

; 方程两边同乘以最简公分

母 .

3.

解分式方程的应用题关健是准确地找出等量关系, 恰当地设末知数 .

(一)分式方程题型分析

题型一:用常规方法解分式方程

【例 1】解下列分式方程

( 1)

13

;(

2)

21 0 ;( 3) x

1 x 2

4

1 ;(4)

5

x x 5

x 1 x

x 3 x

x 1 1

x 3 4

x

提示易出错的几个问题: ①分子不添括号;②漏乘整数项;③约去相同因式至使漏根; ④忘

记验根 .

题型二:特殊方法解分式方程

【例 2】解下列方程

( 1) x

4 x 4

4 ;

( 2)

x 7

x 9

x 10

x 6

x 1 x

x 6 x 8

x 9 x 5

提示:( 1)换元法,设

x y ;( 2)裂项法,

x

7 1 1 .

x 1

x 6 x 6

【例 3】解下列方程组

1 1 1 (1)

x y 2

1 1 1 (2)

y z 3

1 1 1 (3)

z

x

4

题型三:求待定字母的值

【例 4】若关于 x 的分式方程

x 2 1

m

有增根,求 m 的值 .

3 x 3

【例 5】若分式方程

2 x a 1的解是正数,求 a 的取值范围 .

x

2

提示: x

2

a

0 且 x 2 , a 2 且 a 4 .

3

题型四:解含有字母系数的方程

【例 6】解关于 x 的方程

x a c b x

d

(c d 0)

提示:( 1) a, b,c, d 是已知数;( 2) c d

0 .

题型五:列分式方程解应用题

练习:

1.解下列方程:

( 1)

x 1

2x

0 ; (2) x

2

4 ;

x 1

1 2x

x 3 x 3

( 3)

2x

3

2 ;

(4) 7

3

1 7 x

2

x 2 x 2

x 2

x x x 2

x 2

1

( 5) 5x 4 2x 5 1

(6) 1 1 1

1

2x 4 3x 2 2

x 1 x 5 x 2 x 4 ( 7)

x x 9 x 1 x 8

x 2 x 7

x 1 x 6

2.解关于 x 的方程:

( 1)

1

1 2 (b 2a) ;( 2) 1 a 1 b

(a b) .

a x b

a x

b x 3.如果解关于 x 的方程 k 2

x 会产生增根,求 k 的值 . x

2

x 2

4.当 k 为何值时,关于 x 的方程

x

3 (x k

2) 1 的解为非负数 .

x 2 1)( x

5.已知关于 x 的分式方程

2a

1 a 无解,试求 a 的值 .

x 1

(二)分式方程的特殊解法

解分式方程,主要是把分式方程转化为整式方程,通常的方法是去分母,并且要检验,

但对一些特殊的分式方程,可根据其特征,采取灵活的方法求解,现举例如下:

一、交叉相乘法

例 1.解方程:

1

x 3 x

2

二、化归法

例 2.解方程:

1 2 0

1 x

2 x

1

三、左边通分法

例 3:解方程:

x

8 1 8 x

7 7 x

四、分子对等法

例 4.解方程:

1

a 1

b (a b)

a x

b

x

五、观察比较法

例 5.解方程:

4 x 5x 2

17

5x 2 4x

4

六、分离常数法

例 6.解方程:

x 1 x 8 x 2 x 7 x 2

x

9 x

3 x 8

七、分组通分法

例 7.解方程:

1 1

1

1 x 2

x 5

x

3 x

4

(三)分式方程求待定字母值的方法

例 1.若分式方程 x

1 2 m 无解,求 m 的值。

x 2 x

例 2.若关于 x 的方程

x k 2 x

不会产生增根,求 k 的值。

x 1

x 2

1 x 1

例 3.若关于 x 分式方程

1

k

3

有增根,求 k 的值。 x 2 x 2 x 2

4

例 4.若关于 x 的方程

x 1 1

x k 5 k

1

有增根 x 1 ,求 k 的值。

x 2

x x 2

1

《分式》典型例题分析

《分式》典型例题分析

《分式》复习提纲 考点1. 分式的概念 1、下列各有理式 π y y x y x y x x y xy y x x x ,31),(23,,53,81,4, 23,822++-+---中,分式的个数是( ) A. 3个 B. 4个 C. 5个 D. 6个 考点2. 分式的意义 分式: B A (A ,B 都是整式,且B 中含有字母,B ≠0) ① 分式有意义? ;② 分式无意义? ;③ 分式值为零? 1、若分式 3 2 -x 有意义,则x__________ 2、 要使分式 ) 5)(32(23-+-x x x 有意义,则( ) A. x ≠2 3 - B. x ≠5 C. x ≠23-且x ≠5 D. x ≠2 3 -或x ≠5 3、 当a 为任意有理数时,下列分式一定有意义的是( ) A . 112++a a B. 12+a a C. 112++a a D. 21 a a + 4、分式 3 24 x x +-当x 时有意义;当x 时分式没有意义;当x 时分式的值为零。 5、当x 时,分式2 5 2++x x 的值是零;当x 时,分式242--x x 的值是零; 当x 时,分式 x x -+22 的值是零 考点3、最简公分母、最简分式 1、分式 ac b bc a ab c 3,2,2 --的最简公分母是 ;分式1 3x ,11x x +-,225(1)xy x -的最简公分母为________ 2、下列分式中是最简分式的是( ) A. 122+x x B. x 24 C. 1 12 --x x D. 11--x x

3、下列分式中是最简分式的是( ) A. 2 2 2) (y x y x -- B. 2x xy - C. xy x y x ++2 D. 22-+x x 考点4、分式的基本性质 1. 不改变分式的值,把下列各式的分子与分母中各项的系数都化为整数。 (1)y x y x 3 22132 21-+; (2)b a b a -+2.05.03.0 2、把分式xy y x +中的分子、分母的x 、y 同时扩大2倍,那么分式的值( ) A. 扩大2倍 B. 缩小为原来的2 1 C. 不变 D. 缩小为原来的4 1 3、约分(1)4 3 22016xy y x -= ;(2)4 4422+--x x x = 4、通分(1)b a 21,2 1ab ; (2)y x -1,y x +1; (3)221y x -,xy x +21. 考点5、计算 1、(1)222222x b yz a z b xy a ÷= ;(2)49 3222--?+-x x x x = ;(3)43222)1.().()( ab a b b a --= (4) x x x x x x 36299622 2+-÷-+- (5)ab a b a a b a b a --+-2224. (6) 22212(1)441x x x x x x x -+÷+?++-

分式知识点总结和练习题讲义

分式知识点总结和题型归纳 (一)分式定义及有关题型 题型一:考查分式的定义: 一般地,如果A ,B 表示两个整数,并且B 中含有字母,那么式子 B A 叫做分式,A 为分子,B 为分母。 【例1】下列代数式中:y x y x y x y x b a b a y x x -++-+--1 , ,,21,22π,是分式的有: . 题型二:考查分式有意义的条件 分式有意义:分母不为0(0B ≠) 分式无意义:分母为0(0B =) 【例1】当x 有何值时,下列分式有意义 (1) 44+-x x (2)232+x x (3)1 2 2-x (4) 3||6--x x (5)x x 11- 题型三:考查分式的值为0的条件 分式值为0:分子为0且分母不为0(?? ?≠=0 B A ) 【例1】当x 取何值时,下列分式的值为0. (1)3 1 +-x x (2)4 2||2--x x (3)6 53222----x x x x 【例2】当x 为何值时,下列分式的值为零: (1)4 |1|5+--x x (2) 5 6252 2+--x x x 题型四:考查分式的值为正、负的条件 分式值为正或大于0:分子分母同号(???>>00B A 或???<<00B A ) 分式值为负或小于0:分子分母异号(???<>00B A 或???><0 B A ) (1)当x 为何值时,分式x -84 为正; (2)当x 为何值时,分式2 )1(35-+-x x 为负; (2)当x 为何值时,分式32 +-x x 为非负数.

题型五:考查分式的值为1,-1的条件 分式值为1:分子分母值相等(A=B ) 分式值为-1:分子分母值互为相反数(A+B=0) 【例1】若 2 2 ||+-x x 的值为1,-1,则x 的取值分别为 (二)分式的基本性质及有关题型 1.分式的基本性质: M B M A M B M A B A ÷÷= ??= 2.分式的变号法则:b a b a b a b a =--=+--=-- 题型一:化分数系数、小数系数为整数系数 【例1】不改变分式的值,把分子、分母的系数化为整数. (1)y x y x 4 1313221+- (2) b a b a +-04.003.02.0 题型二:分数的系数变号 【例1】不改变分式的值,把下列分式的分子、分母的首项的符号变为正号. (1)y x y x --+- (2)b a a --- (3)b a --- 题型三:化简求值题 【例1】 已知:511=+y x ,求y xy x y xy x +++-2232的值 【例2】 已知:21=-x x ,求2 21 x x +的值. 【例3】 若0)32(|1|2=-++-x y x ,求y x 241 -的值. 【例4】 已知:311=-b a ,求a ab b b ab a ---+232的值.

新人教版八年级数学分式典型例题(供参考)

分式的知识点及典型例题分析 1、分式的定义: 例:下列式子中,y x +15、8a 2 b 、-239a 、y x b a --25、4322b a -、2-a 2、m 1、65xy x 1、21、212+x 、πxy 3、 y x +3、m a 1 +中分式的个数为( ) (A ) 2 (B ) 3 (C ) 4 (D) 5 练习题:(1)下列式子中,是分式的有 . ⑴275x x -+; ⑵ 123 x -;⑶25a a -;⑷22x x π--;⑸22b b -;⑹22 2xy x y +. (2)下列式子,哪些是分式? 5a -; 234x +;3 y y ; 78x π+;2x xy x y +-;145b -+. 2、分式有,无意义,总有意义: 例1:当x 时,分式 51 -x 有意义; 例2:分式x x -+212中,当____=x 时,分式没有意义 例3:当x 时,分式112-x 有意义。 例4:当x 时,分式1 2+x x 有意义 例5:x ,y 满足关系 时,分式 x y x y -+无意义; 例6:无论x 取什么数时,总是有意义的分式是( ) A . 122+x x B.12+x x C.133+x x D.2 5 x x - 例7:使分式2 +x x 有意义的x 的取值范围为( )A .2≠x B .2-≠x C .2->x D .2

分式的乘除法典型例题

《分式的乘除法》典型例题 例1 下列分式中是最简分式的是() A .264a b B .b a a b --2)(2 C .y x y x ++22 D .y x y x --2 2 例2 约分 (1)36)(12)(3a b a b a ab -- (2)44422 -+-x x x (3)b b 2213432-+ 例3 计算(分式的乘除) (1)22563ab cd c b a -?- (2)42 2 643mn n m ÷- (3)2 33344222++-?+--a a a a a a (4)2 22 22222b ab a b ab b ab b ab a +-+÷-++ 例4 计算 (1))()()(432 2xy x y y x -÷-?- (2)x x x x x x x --+?+÷+--36)3(446222 例5 化简求值 22232232b ab b a b b a ab a b a b +-÷-+?-,其中3 2=a ,3-=b . 例6 约分 (1)3286b ab ; (2)2 22322xy y x y x x --

例7 判断下列分式,哪些是最简分式?不是最简分式的,化成最简分式或整式. (1)44422-+-x x x ; (2)36 ) (4)(3a b b a a --; (3)22 2y y x -; (4)882122++++x x x x 例8 通分: (1)223c a b , ab c 2-,cb a 5 (2)a 392 -, a a a 2312---,652+-a a a

参考答案 例1 分析:(用排除法)4和6有公因式2,排除A .2)(a b -与)(b a -有公因式)(b a -,排除B ,22y x -分解因式为))((y x y x -+与)(y x -有公因式)(y x -,排除D. 故选择C. 解 C 例2 分析(1)中分子、分母都是单项式可直接约分.(2)中分子、分母是多项式,应该先分解因式,再约分.(3)中应该先把分子、分母的各项系数都化为整数,把分子、分母中的最高次项系数化为正整数,再约分. 解:(1)36)(12)(3a b a b a ab --)4()(3)()(3333-?--?-=b a a b b a b a a 3)(4 1b a b --= (2)4 4422-+-x x x )2)(2()2(2-+-=x x x 22+-=x x (3)原式2123486)22 1(6)3432(b b b b -+=?-?+=312482-+-=b b b b b b 634)12)(12(3)12(4-=-++-= 例3 分析(1)可以根据分式乘法法则直接相乘,但要注意符号.(2)中的除式是整式,可以把它看成1 64 mn .然后再颠倒相乘,(3)(4)两题都需要先分解因式,再计算. 解:(1)22563ab cd c b a -?-2253)6(ab c cd b a ?--=b ad 52= (2)422643mn n m ÷-7 43286143n m mn n m -=?-= (3)原式)2)(1)(3)(1()3)(2)(2(++----+=a a a a a a a 1 22--=a a (4)原式)()()()(2b a b a b b a b b a -+÷-+=2 2 22))((b b a b b a b a -=-+= 说明:(1)运算的结果一定要化成最简分式;(2)乘除法混合运算,可将除

八年级数学经典练习题(分式及分式方程)汇总

一、选择题 1. (广东珠海)若分式 b a a +2的a 、b 的值同时扩大到原来的10倍,则此分式的值 ( ) A .是原来的20倍 B .是原来的10倍 C . 是原来的10 1 倍 D .不变 2. 计算-22+(-2)2-(- 12)-1的正确结果是( ) A 、2 B 、-2 C 、6 D 、10 3. (四川遂宁)下列分式是最简分式的( ) A. a 22 B . a 2 C . 2 2b a + D . 2 22ab a - 5.(丽江)计算10 ()(12 -+= . 6. (江苏徐州)0132--= . 7. (江苏镇江常州)计算:-(- 12)= ;︱-12︱= ; 01()2-= ;11 ()2 --= . 8. (云南保山)计算101 ()(12 -+= . 9. (北京)计算:?-++?--)2(2730cos 2)2 1(1π. 10. 计算:|-3|+20110×2-1. 11. (重庆江津区)下列式子是分式的是( ) A 、 2 x B 、 1x x + C 、2x y + D 、x π 12. (四川眉山)化简m m n m n -÷-2)(的结果是( ) A .﹣m ﹣1 B .﹣m+1 C .﹣mn+m D .﹣mn ﹣n 13.(南充)若分式1 2 x x -+的值为零,则x 的值是( ) A 、0 B 、1 C 、﹣1 D 、﹣2

14. (四川遂宁)下列分式是最简分式的( ) A. b a a 232 B . a a a 32- C . 2 2b a b a ++ D . 2 22b a ab a -- 15. (浙江丽水)计算111 a a a - --的结果为( ) A 、 1 1 a a +- B 、1 a a - C 、﹣1 D 、2 17. (天津)若分式21 1 x x -+的值为0,则x 的值等于 . 18. (郴州)当x= 时,分式 的值为0. 20. (北京)若分式 x 的值为0,则x 的值等于 . 21. (福建省漳州市)分式方程 2 11 x =+的解是( ) A 、﹣1 B 、0 C 、1 D 、3 2 22. (黑龙江省黑河)分式方程 11x x --= ()() 12m x x -+有增根,则m 的值为( ) A 、0和3 B 、1 C 、1和﹣2 D 、3 23. (新疆建设兵团)方程2x +1 1-x =4的解为 . 24. (天水)如图,点A 、B 在数轴上,它们所对应的数分别是﹣4与 22 35 x x +-,且点A 、B 到原点的距离相等.则x = . 25. (海南)方程 2 +x x =3的解是 . (2)解分式方程一定注意要验根. 26. (湖北潜江、天门、仙桃、江汉油田)化简)2()24 2( 2+÷-+-m m m m 的结果是 A .0 B .1 C .—1 D .(m +2)2

人教版初中数学专题复习---分式知识点和典型例习题

第十六章分式知识点和典型例习题 【知识网络】 第一讲 分式的运算 【知识要点】1.分式的概念以及基本性质; 2.与分式运算有关的运算法则 3.分式的化简求值(通分与约分) 4.幂的运算法则 【主要公式】1.同分母加减法则:()0b c b c a a a a ±±=≠ 2.异分母加减法则:()0,0b d bc da bc da a c a c ac ac ac ±±=±=≠≠; 3.分式的乘法与除法:b d bd a c ac ?=,b c b d bd a d a c ac ÷=?= 4.同底数幂的加减运算法则:实际是合并同类项 5.同底数幂的乘法与除法;a m ● a n =a m+n; am ÷ a n =am -n 6.积的乘方与幂的乘方:(ab)m = am b n , (a m ) n = a mn 7.负指数幂: a -p = 1p a a 0 =1 8.乘法公式与因式分解:平方差与完全平方式 (a+b )(a-b )= a 2 - b 2 ;(a±b )2= a 2±2a b+b2 (一)、分式定义及有关题型 题型一:考查分式的定义 【例1】下列代数式中:y x y x y x y x b a b a y x x -++-+--1 , ,,21,2 2 π,是分式的有: . 题型二:考查分式有意义的条件 【例2】当x 有何值时,下列分式有意义 (1) 44+-x x ?(2)2 32+x x (3) 1 22-x (4) 3||6--x x (5)x x 11- 题型三:考查分式的值为0的条件

【例3】当x 取何值时,下列分式的值为0. (1)3 1+-x x (2) 4 2 ||2--x x ?(3)653 222----x x x x 题型四:考查分式的值为正、负的条件 【例4】(1)当x 为何值时,分式 x -84 为正; (2)当x 为何值时,分式2 )1(35-+-x x 为负; (3)当x 为何值时,分式 3 2 +-x x 为非负数. 练习: 1.当x 取何值时,下列分式有意义: (1) 3 ||61 -x (2) 1 )1(32++-x x ??(3) x 111+ 2.当x 为何值时,下列分式的值为零: (1)4 |1|5+--x x (2) 5 6252 2+--x x x 3.解下列不等式 (1) 01 2 ||≤+-x x (2) 03 252 >+++x x x (二)分式的基本性质及有关题型 1.分式的基本性质: M B M A M B M A B A ÷÷=??= 2.分式的变号法则: b a b a b a b a =--=+--=-- 题型一:化分数系数、小数系数为整数系数 【例1】不改变分式的值,把分子、分母的系数化为整数. (1)y x y x 4 1313221+- (2) b a b a +-04.003.02.0 题型二:分数的系数变号 【例2】不改变分式的值,把下列分式的分子、分母的首项的符号变为正号. (1)y x y x --+-? (2)b a a --- ?(3)b a --- 题型三:化简求值题 【例3】已知: 511=+y x ,求 y xy x y xy x +++-2232的值. 提示:整体代入,①xy y x 3=+,②转化出 y x 1 1+.

初二数学分式典型例题复习和考点总结

第十六章分式知识点和典型例习题 【知识网络】 【思想方法】 1.转化思想 转化是一种重要的数学思想方法,应用非常广泛,运用转化思想能把复杂的问题转化为简单问题,把生疏的问题转化为熟悉问题,本章很多地方都体现了转化思想,如,分式除法、分式乘法;分式加减运算的基本思想:异分母的分式加减法、同分母的分式加减法;解分式方程的基本思想:把分式方程转化为整式方程,从而得到分式方程的解等. 2.建模思想 本章常用的数学方法有:分解因式、通分、约分、去分母等,在运用数学知识解决实际问题时,首先要构建一个简单的数学模型,通过数学模型去解决实际问题,经历“实际问题———分式方程模型———求解———解释解的合理性”的数学化过程,体会分式方程的模型思想,对培养通过数学建模思想解决实际问题具有重要意义. 3.类比法 本章突出了类比的方法,从分数的基本性质、约分、通分及分数的运算法则类比引出了分式的基本性质、约分、通分及分式的运算法则,从分数的一些运算技巧类比引出了分式的一些运算技巧,无一不体现了类比思想的重要性,分式方程解法及应用也可以类比一元一次方程. 第一讲 分式的运算 【知识要点】1.分式的概念以及基本性质; 2.与分式运算有关的运算法则 3.分式的化简求值(通分与约分) 4.幂的运算法则 【主要公式】1.同分母加减法则:()0b c b c a a a a ±±=≠ 2.异分母加减法则:()0,0b d bc da bc da a c a c ac ac ac ±±=±=≠≠; 3.分式的乘法与除法: b d bd a c ac ?= ,b c b d bd a d a c ac ÷=?= 4.同底数幂的加减运算法则:实际是合并同类项 5.同底数幂的乘法与除法;a m ● a n =a m+n ; a m ÷ a n =a m -n 6.积的乘方与幂的乘方:(ab)m = a m b n , (a m ) n = a mn 7.负指数幂: a -p = 1p a a 0 =1 8.乘法公式与因式分解:平方差与完全平方式 (a+b)(a-b)= a 2 - b 2 ;(a ±b)2= a 2±2ab+b 2 (一)、分式定义及有关题型 题型一:考查分式的定义(一)分式的概念: 形如 A B (A 、B 是整式,且B 中含有字母,B ≠0)的式子,叫做分式.其中 A 叫做分式的分子,B 叫做分式的分母. 【例1】下列代数式中:y x y x y x y x b a b a y x x -++-+--1 , ,,21,22π,是分式的有: . 题型二:考查分式有意义的条件:在分式中,分母的值不能是零.如果分母的值是零,则分式没 有意义. 【例2】当x 有何值时,下列分式有意义 (1) 44+-x x (2)232+x x (3)122-x (4)3||6--x x (5)x x 11- 题型三:考查分式的值为0的条件: 1、分母中字母的取值不能使分母值为零,否则分式无意义 2、当分子为零且分母不为零时,分式值为零。 【例3】当x 取何值时,下列分式的值为0. (1)31+-x x (2)4 2||2--x x

《分式》典型例题分析

《分式》复习提纲 考点1. 分式的概念 1、下列各有理式 π y y x y x y x x y xy y x x x ,31),(23,,53,81,4,23,822++-+---中,分式的个数是( ) A. 3个 B. 4个 C. 5个 D. 6个 考点2. 分式的意义 分式:B A (A , B 都是整式,且B 中含有字母,B ≠0) ① 分式有意义? ;② 分式无意义? ;③ 分式值为零? 1、若分式3 2-x 有意义,则x__________ 2、 要使分式) 5)(32(23-+-x x x 有意义,则( ) A. x ≠23- B. x ≠5 C. x ≠23-且x ≠5 D. x ≠2 3-或x ≠5 ? 3、 当a 为任意有理数时,下列分式一定有意义的是( ) A . 112++a a B. 12+a a C. 112++a a D. 21a a + 4、分式324 x x +-当x 时有意义;当x 时分式没有意义;当x 时分式的值为零。 5、当x 时,分式2 52++x x 的值是零;当x 时,分式242--x x 的值是零; 当x 时,分式x x -+22 的值是零 考点3、最简公分母、最简分式 1、分式ac b b c a ab c 3,2,2--的最简公分母是 ;分式13x ,11x x +-,225(1)xy x -的最简公分母为________ 2、下列分式中是最简分式的是( ) A. 122+x x B. x 24 C. 1 12--x x D. 11--x x 3、下列分式中是最简分式的是( ) { A. 2 2 2)(y x y x -- B. 2x xy - C. xy x y x ++2 D. 22-+x x 考点4、分式的基本性质 1. 不改变分式的值,把下列各式的分子与分母中各项的系数都化为整数。

分式知识点及例题

分式 知识点一:分式的定义 一般地,如果A ,B 表示两个整数,并且B 中含有字母,那么式子 B A 叫做分式,A 为分子, B 为分母。 知识点二:与分式有关的条件 1、分式有意义:分母不为0(0B ≠) 2、分式值为0:分子为0且分母不为0(???≠=0 0B A ) 3、分式无意义:分母为0(0B =) 4、分式值为正或大于0:分子分母同号(?? ?>>00 B A 或? ??<<00B A ) 5、分式值为负或小于0:分子分母异号(?? ?<>00B A 或???><00B A ) 知识点三:分式的基本性质 分式的分子和分母同乘(或除以)一个不等于0的整式,分式的值不变。 字母表示:C B C ??=A B A ,C B C ÷÷=A B A ,其中A 、B 、C 是整式,C ≠0。 拓展:分式的符号法则:分式的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变,即 B B A B B --=--=--=A A A 注意:在应用分式的基本性质时,要注意 C ≠0这个限制条件和隐含条件B ≠0。 知识点四:分式的约分 定义:根据分式的基本性质,把一个分式的分子与分母的公因式约去,叫做分式的约分。 步骤:把分式分子分母因式分解,然后约去分子与分母的公因。 注意:①分式的分子与分母为单项式时可直接约分,约去分子、分母系数的最大公约数,然

后约去分子分母相同因式的最低次幂。 ②分子分母若为多项式,约分时先对分子分母进行因式分解,再约分。 知识点四:最简分式的定义 一个分式的分子与分母没有公因式时,叫做最简分式。 知识点五:分式的通分 ① 分式的通分:根据分式的基本性质,把几个异分母的分式分别化成与原来的分式相等的 同分母分式,叫做分式的通分。 ② 分式的通分最主要的步骤是最简公分母的确定。 最简公分母的定义:取各分母所有因式的最高次幂的积作公分母,这样的公分母叫做最简公分母。 确定最简公分母的一般步骤: Ⅰ 取各分母系数的最小公倍数; Ⅱ 单独出现的字母(或含有字母的式子)的幂的因式连同它的指数作为一个因式; Ⅲ 相同字母(或含有字母的式子)的幂的因式取指数最大的。 Ⅳ 保证凡出现的字母(或含有字母的式子)为底的幂的因式都要取。 注意:分式的分母为多项式时,一般应先因式分解。 知识点六:分式的四则运算与分式的乘方 1、分式的乘除法法则: 分式乘分式,用分子的积作为积的分子,分母的积作为积的分母。式子表示为:d b c a d c b a ??=? 分式除以分式:式子表示为 c c ??=?=÷b d a d b a d c b a 2、分式的乘方:把分子、分母分别乘方。式子n n n b a b a =?? ? ?? 3、 分式的加减法则:

分式考点及典型例题分析(最全面)

分式考点及典型例题分析 1、分式的定义: 例:下列式子中,y x +15、8a 2b 、-239a 、y x b a --25、4322b a -、2-a 2、m 1、65xy x 1、21、212+x 、π xy 3、y x +3、m a 1+中分式的个数为( ) (A ) 2 (B ) 3 (C ) 4 (D) 5 练习题:(1)下列式子中,是分式的有 . ⑴275x x -+; ⑵ 123 x -;⑶25a a -;⑷22x x π--;⑸22b b -;⑹222xy x y +. (2)下列式子,哪些是分式? 5a -; 234x +;3y y ; 78x π+;2x xy x y +-;145 b -+. 2、分式有,无意义,总有意义: (1)使分式有意义:令分母≠0按解方程的方法去求解; (2)使分式无意义:令分母=0按解方程的方法去求解; 注意:(12 +x ≠0) 例1:当x 时,分式 51-x 有意义; 例2:分式x x -+212中,当____=x 时,分式没有意义 例3:当x 时,分式112-x 有意义。 例4:当x 时,分式12+x x 有意义 例5:x ,y 满足关系 时,分式x y x y -+无意义; 例6:无论x 取什么数时,总是有意义的分式是( ) A . 122+x x B.12+x x C.133+x x D.2 5x x - 例7:使分式2+x x 有意义的x 的取值围为( )A .2≠x B .2-≠x C .2->x D .2

分式知识点总结和题型归纳

分式知识点总结和题型归纳 (一)分式定义及有关题型 题型一:考查分式的定义: 一般地,如果A ,B 表示两个整数,并且B 中含有字母,那么式子 B A 叫做分式,A 为分子,B 为分母。【例1】下列代数式中:y x y x y x y x b a b a y x x -++-+--1 , ,,21,2 2 π,是分式的有: . 题型二:考查分式有意义的条件 分式有意义:分母不为0(0B ≠) 分式无意义:分母为0(0B =) 【例1】当x 有何值时,下列分式有意义 (1) 44+-x x (2)232+x x (3)122-x (4)3||6--x x (5)x x 11- (2)使分式 53-+x x ÷79 -+x x 有意义的x 应满足 . (3)若分式3 21 +-x x 无意义,则x= . 题型三:考查分式的值为0的条件 分式值为0:分子为0且分母不为0(? ??≠=00 B A ) 【例1】当x 取何值时,下列分式的值为0. (1)3 1 +-x x (2) 4 2 ||2 --x x (3) 6 5322 2----x x x x 【例2】当x 为何值时,下列分式的值为零: (1)4 |1|5+--x x (2) 5 62522+--x x x 题型四:考查分式的值为正、负的条件 分式值为正或大于0:分子分母同号(?? ?>>00B A 或???<<00 B A ) 分式值为负或小于0:分子分母异号(???<>00B A 或? ??><00 B A ) (1)当x 为何值时,分式x -84为正; (2)当x 为何值时,分式2 )1(35-+-x x 为负;

分式的基本性质-经典例题及答案

讲义编号: ______________ 副校长/组长签字:签字日期: 【考纲说明】 掌握分式的基本性质,灵活运用分式的基本性质进行约分和通分,本部分在中考中通常会以选择题的形式出现,占3--4分。 【趣味链接】 甲、乙两人分别从A、B两地同时出发相向而行,3小时后相遇. 尔后两人都用原来速度继续前进,结果甲达到B地比乙达到A地早1小时21分.已知甲每小时比乙多走1千米,求甲、乙两人的速度。 【知识梳理】 分式 1.分式的概念:形如(A、B是整式,且B中含有字母,B≠0)的式子叫做分式.其中,A叫分式的分子,B叫分式的分母. 2.分式有意义的条件:因为两式相除的除式不能为零,即分式的分母不能为零,所以,分式有意义的条件是:分式的分母必须不等于零,即B≠0,分式有意义.

3.分式的值为零的条件:分子等于0,分母不等于0,二者缺一不可. 有理式 有理式的分类:有理式 分式的基本性质 分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变. 用式子表示为:(其中M≠0) 约分和通分 1.分式的约分:把一个分式的分子与分母中的公因式约去叫约分. 2.分式的通分:把几个异分母的分式化成与原来的分式相等的同分母的分式叫通分. 最简分式与最简公分母: 约分后,分式的分子与分母不再有公因式,我们称这样的分式为最简分式.取各分母所有因式的最高次幂的积作为公分母,这样的公分母称为最简公分母. 【经典例题】 【例1】不改变分式的值,使分式的各项系数化为整数,分子、分母应乘以(? ) A.10 B.9 C.45 D.90 【例2】下列等式:①=-;②=;③=-; ④=-中,成立的是() A.①② B.③④ C.①③ D.②④ 【例3】不改变分式的值,使分子、分母最高次项的系数为正数,正确的是(? ) A. B. C. D. 【例4】分式,,,中是最简分式的有() A.1个 B.2个 C.3个 D.4个

分式方程学习知识点及典型例题.doc

第二讲分式方程 【知识要点】 1.分式方程的概念以及解法 ; 2.分式方程产生增根的原因 3.分式方程的应用题 【主要方法】 1. 分式方程主要是看分母是否有外未知数; 2.解分式方程的关健是化分式方程为整式方程; 方程两边同乘以最简公分母 3.解分式方程的应用题关健是准确地找出等量关系, 恰当地设末知数 . 题型一:用常规方法解分式方程 解下列分式方程 ( 1) 1 3 ( 2) 2 1 x 1 x x 3 x ( 3)x 1 4 1 ( 4) 5 x x 5 x 1 x2 1 x 3 4 x 题型二:特殊方法解分式方程解下列方程 (1)x4x 4 4 ;(2)x 7 x 9 x 10 x 6 x 1 x x 6 x 8 x 9 x 5 (3) 1 1 1 1 x 2 x 5 x 3 x 4 1

题型三:求待定字母的值 ( 1)若关于 x 的分式方程 2 1 m 有增根,求 m 的值 . x 3 x 3 ( 2)若分式方程 2 x a 1 的解是正数,求 a 的取值范围 . x 2 ( 3)若分式方程 x 1 m 无解,求 m 的值。 x 2 2 x ( 4)若关于 x 的方程 x k 2 x 不会产生增根,求 k 的值。 x 1 x 2 1 x 1 ( 5)若关于 x 分式方程 1 k x 2 3 有增根,求 k 的值。 x 2 x 2 4 题型四:解含有字母系数的方程 解关于 x 的方程 (1 ) x a c (c d 0) (2) 1 1 2 (b 2a) ; b x d a x b 2

1a1 b ( 3)(a b) . 题型五:列分式方程解应用题 一、工程类应用性问题 1、一项工程,甲、乙、丙三队合做 4 天可以完成,甲队单独做 15 天可以完成,乙队单独做 12 天可以完成,丙队单独做几天可以完成? 2、某市为治理污水,需要铺设一段全长3000 米的污水输送管道,为了尽量减少施工对城 市交通造成的影响,实际施工时每天的工效比原计划增加25%,结果提前30 天完成了任务,实际每天铺设多长管道? 二、行程中的应用性问题 2、甲、乙两地相距828km,一列普通快车与一列直达快车都由甲地开往乙地,直达快车 的平均速度是普通快车平均速度的 1.5 倍.直达快车比普通快车晚出发2h,比普通快车早 4h 到达乙地,求两车的平均速度. 3

南通市初中数学分式经典测试题

南通市初中数学分式经典测试题 一、选择题 1.化简22 a b b a +-的结果是( ) A .1a b - B .1b a - C .a ﹣b D .b ﹣a 【答案】B 【解析】 【分析】 原式分子分母提取公因式变形后,约分即可得到结果. 【详解】 原式= a+b )()b a b a +-(= 1b a - 故答案选B. 【点睛】 本题考查的知识点是约分,解题的关键是熟练的掌握约分. 2.下列运算中,正确的是( ) A .2+= B .632x x x ÷= C .122-=- D .325a a a ?= 【答案】D 【解析】 【分析】 根据实数的加法对A 进行判断;根据同底数幂的乘法对B 进行判断;根据负整数指数幂的意义对C 进行判断;根据同底数幂的除法对D 进行判断. 【详解】 解:A 、2不能合并,所以A 选项错误; B 、x 6÷x 3=x 3,所以B 选项错误; C 、2-1=12 ,所以C 选项错误; D 、a 3?a 2=a 5,所以D 选项正确. 故选:D . 【点睛】 此题考查实数的运算,负整数指数幂,同底数幂的乘法与除法,解题关键在于掌握先算乘方,再算乘除,然后进行加减运算;有括号先算括号. 3.关于分式 25x x -,下列说法不正确的是( ) A .当x=0时,分式没有意义

B .当x >5时,分式的值为正数 C .当x <5时,分式的值为负数 D .当x=5时,分式的值为0 【答案】C 【解析】 【分析】 此题可化转化为分别求当分式等于0、大于0、小于0、无意义时的x 的取值范围,分别计算即可求得解. 【详解】 A .当x=0时,分母为0,分式没有意义;正确,但不符合题意. B .当x>5时,分式的值为正数;正确,但不符合题意 C .当0<x <5时,分式的值为负数;当x=0是分式没有意义,当x <0时,分式的值为负数,原说法错误,符合题意. D .当x=5时,分式的值为0;正确,但不符合题意. 故选:C . 【点睛】 本题主要考查分式的性质的运用,注意分式中分母不为0的隐性条件. 4.要使分式 81x -有意义,x 应满足的条件是( ) A .1x ≠- B .0x ≠ C .1x ≠ D .2x ≠ 【答案】C 【解析】 【分析】 直接利用分式有意义的条件得出答案. 【详解】 要使分式81 x -有意义, 则x-1≠0, 解得:x≠1. 故选:C . 【点睛】 此题考查分式有意义的条件,正确把握分式的定义是解题关键. 5.若分式 12x x +-在实数范围内有意义,则x 的取值范围是( ) A .2x > B .2x < C .1x ≠- D .2x ≠ 【答案】D 【解析】

分式经典应用题以及答案

分式应用题专题 例1、一队学生去校外参观.他们出发30分钟时,学校要把一个紧急通知传给带队老师,派一名学生骑车从学校出发,按原路追赶队伍.若骑车的速度是队伍行进速度的2倍,这名学生追上队伍时离学校的距离是15千米,问这名学生从学校出发到追上队伍用了多少时间 例2、甲、乙两个车站相距96千米,快车和慢车同时从甲站开出,1小时后快车在慢车前12千米,快车比慢车早40分钟到达乙站,快车和慢车的速度各是多少 例3、甲乙两个工程队合作一项工程,两队合作2天后,由乙队单独做1天就完成了全部工 程。已知乙队单独做所需天数是甲队单独做所需天数的3 2 倍,问甲乙单独做各需多少天 例4、轮船在顺水中航行30千米的时间与在逆水中航行20千米所用的时间相等,已知水流速度为2千米/时,求船在静水中的速度。 例5、A、B两位采购员同去一家饲料公司购买同一种饲料两次,两次饲料的价格有变化,但两位采购员的购货方式不同.其中,采购员A每次购买1000千克,采购员B每次用去800元,而不管购买饲料多少,问选用谁的购货方式合算 例6、要在15%的盐水40千克中加入多少盐才能使盐水的浓度变为20%

专项练习: 1、甲、乙两个清洁队共同参与了城中垃圾场的清运工作.甲队单独工作2天完成总量的三分之一,这时增加了乙队,两队又共同工作了1天,总量全部完成.那么乙队单独完成总量需要() A.6天B.4天C.3天D.2天 2、炎炎夏日,甲安装队为A小区安装66台空调,乙安装队为B小区安装60台空调,两队同时开工且恰好同时完工,甲队比乙队每天多安装2台.设乙队每天安装x台,根据题意,下面所列方程中正确的是() A.6660 2 x x = - B. 6660 2 x x = - C. 6660 2 x x = + D. 6660 2 x x = + 3、有两块面积相同的试验田,分别收获蔬菜900kg和1500kg,已知第一块试验田每亩收获蔬菜比第二块少300kg,求第一块试验田每亩收获蔬菜多少千克.设第一块试验田每亩收获蔬菜x kg,根据题意,可得方程() A. 9001500 300 x x = + B. 9001500 300 x x = - C.9001500 300 x x = + D. 9001500 300 x x = - 4、甲、乙两地相距828km,一列普通快车与一列直达快车都由甲地开往乙地,直达快车的平均速度是普通快车平均速度的倍.直达快车比普通快车晚出发2h,比普通快车早4h到达乙地,求两车的平均速度。 5、我国“八纵八横”铁路骨干网的第八纵通道——温(州)福(州)铁路全长298千米.将于2009年6月通车,通车后,预计从福州直达温州的火车行驶时间比目前高速公路上汽车的行驶时间缩短2小时.已知福州至温州的高速公路长331千米,火车的设计时速是现行高速公路上汽车行驶时速的2倍.求通车后火车从福州直达温州所用的时间(结果精确到小时).

分式方程典型例题

三人行教育陈老师教案——分式方程典型例题 题型一:解分式方程, 解分式方程时去分母后所得整式方程的解有可能使原分式方程的分母为0,所以解分式方程必须检验. 例1.解方程(1) 2223-=---x x x (2) 11 4 112=---+x x x 专练一、解分式方程 (1)14-x =1; (2)3 5 13+=+x x ; (3) 30120021200=--x x (4)255 522-++x x x =1 (5) 2124111x x x +=+--. (6) 222746 1x x x x x +=+-- (7)11322x x x -+=--- (8)512552x x x =--- 题型二:关于增根:将分式方程变形为整式方程,方程两边同时乘以一个含有未知数的整式,并越去分母,有时可能产生不适合原分式方程的根,这种根通常称为增根. 例2、 若方程x x x --=+-34 731有增根,则增根为 . 例3.若关于x 的方程3 1 3292-=++-x x x m 有增根, 则增根是多少?产生增根的m 值又是多少? 专练习二: 1.若方程 33 23-+=-x x x 有增根,则增根为 . 2.当m 为何值时,解方程115122-=-++x m x x 会产生增根?

题型三:分式方程无解①转化成整式方程来解,产生了增根;②转化的整式方程无解. 例4、 若方程x m x x -=--223无解,求m 的值. 思考:已知关于x 的方程 m x m x =-+3 无解,求m 的值. 题型四:解含有字母的分式方程时,注意字母的限制. 例5、.若关于x 的方程 81=+x ax 的解为41 =x ,则a = 例6、.关于x 的方程 12 -=-+x m x 的解大于零, 求m 的取值范围. 注:解的正负情况:先化为整式方程,求整式方程的解 ①若解为正???>去掉增根正的解0x ;②若解为负? ??<去掉增根负的解0 x 解: 专练三: 1.若分式方程 5 2 )1()(2-=--x a a x 的解为3=x ,则a = . 3.已知关于x 的方程3 23-=--x m x x 解为正数,求m 的取值范围. 4.若方程k x x +=+233有负数根,求k 的取值范围. .

人教版八年级数学分式知识点和典型例题(最新整理)

a ● ÷ 第十六章分式知识点和典型例习题 【知识网络】 【思想方法】 1. 转化思想 转化是一种重要的数学思想方法,应用非常广泛,运用转化思想能把复杂的问题转化为简单问题,把生疏的问题转化为熟悉问题,本章很多地方都体现了转化思想,如,分式除法、分式乘法;分式加减运算的基本思想:异分母的分式加减法、同分母的分式加减法;解分式方程的基本思想:把分式方程转化为整式方程,从而得到分式方程的解等. 2. 建模思想 本章常用的数学方法有:分解因式、通分、约分、去分母等,在运用数学知识解决实际问题时,首先要构建一个简单的数学模型,通过数学模型去解决实际问题,经历“实际问题— ——分式方程模型———求解———解释解的合理性”的数学化过程,体会分式方程的模型思想,对培养通过数学建模思想解决实际问题具有重要意义. 3. 类比法 本章突出了类比的方法,从分数的基本性质、约分、通分及分数的运算法则类比引出了分式的基本性质、约分、通分及分式的运算法则,从分数的一些运算技巧类比引出了分式的一些运算技巧,无一不体现了类比思想的重要性,分式方程解法及应用也可以类比一元一次方程. 第一讲 分式的运算 【知识要点】1.分式的概念以及基本性质; 2. 与分式运算有关的运算法则 3. 分式的化简求值(通分与约分) 4. 幂的运算法则 【主要公式】1.同分母加减法则: b ± c = b ± c (a ≠ 0) a a a b d bc da bc ± da 2. 异分母加减法则: ± = ± = a c ac ac ac (a ≠ 0, c ≠ 0) ; 3. 分式的乘法与除法: b ? d = bd a c ac , b ÷ c = b ? d = bd a d a c ac 4. 同底数幂的加减运算法则:实际是合并同类项 5. 同底数幂的乘法与除法;a m a n =a m+n ; a m a n =a m -n 6. 积的乘方与幂的乘方:(ab)m = a m b n , (a m ) n = mn 7. 负指数幂: a -p = 1 a p a 0=1

相关主题
文本预览
相关文档 最新文档