当前位置:文档之家› 直线与圆锥曲线的综合问题

直线与圆锥曲线的综合问题

直线与圆锥曲线的综合问题
直线与圆锥曲线的综合问题

第32练 直线与圆锥曲线得综合问题

[题型分析·高考展望] 本部分重点考查直线与圆锥曲线得综合性问题,从近几年得高考试题来瞧,除了在解答题中必然有直线与圆锥曲线得联立外,在填空题中出现得圆锥曲线问题也经常与直线结合起来.本部分得主要特点就是运算量大、思维难度较高,但有时灵活地借助几何性质来分析问题可能会收到事半功倍得效果。预测在今后高考中,主要围绕着直线与椭圆得位置关系进行命题,有时会与向量得共线、模与数量积等联系起来;对于方程得求解,不要忽视轨迹得求解形式,后面得设问将就是对最值、定值、定点、参数范围得考查,探索类与存在性问题考查得概率也很高.

常考题型精析

题型一 直线与圆锥曲线位置关系得判断及应用

例1 (1)(2015·福建改编)已知椭圆E :x 2a 2+y 2

b 2=1(a >b >0)得右焦点为F ,短轴得一个端点为M ,直线l :3x—4y =0交椭圆E于A ,B两点。若AF +BF =4,点M 到直线l 得距离不小于\f(4,5),则椭圆E 得离心率得取值范围就是________________。

(2)设焦点在x 轴上得椭圆M 得方程为错误!+错误!=1 (b >0),其离心率为错误!. ①求椭圆M得方程;

②若直线l 过点P(0,4),则直线l 何时与椭圆M 相交?

点评 对于求过定点得直线与圆锥曲线得位置关系问题,一就是利用方程得根得判别式来确定,但一定要注意,利用判别式得前提就是二次项系数不为零;二就是利用图形来处理与理解;三就是直线过定点位置不同,导致直线与圆锥曲线得位置关系也不同. 变式训练1 已知椭圆C :x2a2+y 2

b 2=1(a>b >0)得焦距为4,且过点P (2,\r(3))。 (1)求椭圆C得方程;

(2)设Q (x 0,y0)(x 0y 0≠0)为椭圆C 上一点,过点Q 作x 轴得垂线,垂足为E 、取点A (0,2\r(2)),连结AE ,过点A 作AE 得垂线交x 轴于点D 。点G 就是点D 关于y轴得对称点,作直线Q G,问这样作出得直线QG就是否与椭圆C一定有唯一得公共点?并说明理由、 题型二 直线与圆锥曲线得弦得问题

例2 设椭圆C :x 2

a 2+错误!=1 (a>b>0)得左,右焦点分别为F1,F 2,且焦距为6,点P就是椭圆短

轴得一个端点,△PF 1F 2得周长为16。

(1)求椭圆C得方程;

(2)求过点(3,0)且斜率为45

得直线l被椭圆C 所截得得线段中点得坐标。 点评 直线与圆锥曲线弦得问题包括求弦得方程,弦长,弦得位置确定,弦中点坐标轨迹等问题,解决这些问题得总体思路就是设相关量,找等量关系,利用几何性质列方程(组),不等式(组)或利用一元二次方程根与系数得关系,使问题解决、

变式训练2 在平面直角坐标系x Oy 中,已知椭圆C得中心在原点O,焦点在x轴上,短轴长为2,离心率为22

。 (1)求椭圆C 得方程;

(2)A,B 为椭圆C 上满足△A OB得面积为64

得任意两点,E为线段AB 得中点,射线OE 交椭圆C 于点P .设错误!=t 错误!,求实数t 得值、

高考题型精练

1、(2015·北京)已知椭圆C :x 2

+3y 2=3,过点D(1,0)且不过点E(2,1)得直线与椭圆C 交于A,B 两点,直线AE 与直线x =3交于点M 。

(1)求椭圆C 得离心率;

(2)若A B垂直于x 轴,求直线BM 得斜率;

(3)试判断直线BM 与直线DE 得位置关系,并说明理由。

2。如图,已知抛物线C得顶点为O (0,0),焦点为F (0,1)、

(1)求抛物线C 得方程;

(2)过点F 作直线交抛物线C于A,B 两点、若直线AO 、BO 分别交直线l :y =x-2于M、N两点,求M N得最小值。

3、(2015·南京模拟)已知抛物线C 得顶点为原点,其焦点F (0,c)(c >0)到直线l :x —y —2=0得距离为错误!.设P为直线l 上得点,过点P 作抛物线C 得两条切线P A ,PB,其中A ,B 为切点. (1)求抛物线C 得方程;

(2)当点P (x 0,y0)为直线l上得定点时,求直线AB 得方程;

(3)当点P 在直线l 上移动时,求A F·BF 得最小值。

4.已知点A ,B 就是抛物线C :y 2=2p x (p >0)上不同得两点,点D 在抛物线C 得准线l 上,且焦

点F 到直线x—y+2=0得距离为3\r(2)2

. (1)求抛物线C 得方程;

(2)现给出以下三个论断:①直线AB 过焦点F ;②直线AD 过原点O ;③直线BD 平行于x轴、 请您以其中得两个论断作为条件,余下得一个论断作为结论,写出一个正确得命题,并加以证明。

答案精析

第32练 直线与圆锥曲线得综合问题

常考题型典例剖析

例1 (1)错误!

解析 设左焦点为F 0,连结F0A ,F 0B ,则四边形AFBF 0为平行四边形.

∵AF +BF =4,

∴AF +AF 0=4,

∴a =2、

设M (0,b),则错误!=错误!≥错误!,∴1≤b 〈2。

离心率e =\f(c,a )=c 2a 2=a 2—b 2a 2

= 错误!∈错误!、 (2)解 ①因为椭圆M 得离心率为

22, 所以4-b2

4

=错误!2,得b2=2. 所以椭圆M 得方程为\f(x 2,4)+y 22

=1. ②(ⅰ)过点P (0,4)得直线l 垂直于x 轴时,直线l 与椭圆M 相交。

(ⅱ)过点P (0,4)得直线l与x轴不垂直时,可设直线l 得方程为y =kx +4。由错误! 消去y ,得(1+2k 2)x2+16kx +28=0.

因为直线l 与椭圆M 相交,

所以Δ=(16k )2-4(1+2k 2)×28=16(2k2-7)>0,

解得k<-\f(14,2)或k >

142。 综上,当直线l 垂直于x 轴或直线l 得斜率得取值范围为错误!∪错误!时,直线l 与椭圆M 相交. 变式训练1 解 (1)由已知条件得椭圆C 得焦点为

F 1(-2,0),F2(2,0),

PF 1=错误!=错误!=2错误!+1,

PF 2=错误!=错误!=2错误!-1,

2a=PF 1+PF 2=4\r(2),则a=2错误!、

b 2=a 2-

c 2=4,因此椭圆

C 得方程为x 28+y 24

=1。 (2)设D (x1,0),

错误!=(-x 1,2错误!),

错误!=(-x 0,2错误!);

由错误!⊥错误!,得错误!·错误!=0,

则G (-x 1,0)

x 1x 0+8=0,则x1=-8x 0, kQG =y0

x 0+x1=错误!=错误!, 直线QG 得方程为y =错误!错误!=错误!(x 0x-8),

又错误!+错误!=1,y 错误!=4错误!=错误!(8—x 错误!),

可得y =±错误!(x 0x-8),①

将①代入x 28

+\f(y2,4)=1整理得8x 2-16x 0x +8x \o \al(2,0)=0, Δ=(-16x0)2-4×64x 错误!=0,

∴直线QG 与椭圆C 一定有唯一得公共点。

例2 解 (1)设椭圆得半焦距为c ,则由题意,

可得错误! 解得错误!

所以b 2=a 2-c 2=52-32=16.

故所求椭圆C得方程为x 225+y 216

=1、 (2)方法一 过点(3,0)且斜率为\f(4,5)得直线l 得方程为y=45(x -3),将之代入C 得方程,得x 225

+\f((x -3)2,25)=1,

即x 2—3x -8=0.

因为点(3,0)在椭圆内,设直线l与椭圆C 得交点为A (x 1,y 1),B (x 2,y 2),

因为x 1+x 2=3,所以线段AB 中点得横坐标为x 1+x 22

=32,纵坐标为\f(4,5)×(32-3)=-65. 故所求线段得中点坐标为错误!、

方法二 过点(3,0)且斜率为\f(4,5)得直线l得方程为y =45

(x —3),因为(3,0)在椭圆内,所以直线l与椭圆有两个交点,设两交点得坐标分别为(x 1,y 1),(x 2,y 2),中点M 得坐标为(x 0,y 0), 则有错误!

由①-②,得

\f((x 1-x 2)(x 1+x2),25)=—(y 1-y 2)(y 1+y 2)16

, 即16x 025y 0=-45

。又y 0=\f(4,5)(x 0-3), 所以错误!

故所求线段得中点坐标为错误!.

变式训练2 解 (1)设椭圆C得方程为\f(x 2,a 2)+\f(y 2,b 2)=1(a >b >0),

则错误!解得a =错误!,b =1,

故椭圆C 得方程为\f(x2,2)+y 2=1、

(2)①当A ,B 两点关于x 轴对称时,设直线AB 得方程为x =m,由题意得-2〈m <0或0〈m<2、

将x =m 代入椭圆方程得|y |= 2-m 2

2, 所以S△AOB =|m | 2-m 2

2

=错误!。 解得m2=32或m 2=12

。(ⅰ) 又错误!=t 错误!=错误!t (错误!+错误!)=错误!t (2m,0)=(mt,0),

又点P 在椭圆上,所以(mt )22

=1.(ⅱ) 由(ⅰ)(ⅱ)得t 2=4或t 2=43

。 又因为t>0,所以t =2或t =2\r(3)3

。 ②当A ,B 两点关于x轴不对称时,设直线AB得方程为y =kx +n,

由错误!得(1+2k2)x 2+4knx +2n 2-2=0.

设A (x1,y 1),B (x 2,y 2),

由Δ=16k2n 2-4(1+2k 2)(2n 2—2)〉0得1+2k 2>n 2、

此时x 1+x 2=—4kn 1+2k 2,x 1x 2=2n 2-21+2k2

, y 1+y2=k (x 1+x 2)+2n =\f(2n,1+2k 2).

所以A B=\r(1+k2)(x 1+x 2)2-4x 1x 2 =2 2 1+k 2 1+2k 2—n 2(1+2k 2)2。

又点O到直线AB 得距离d =|n |\r(1+k 2)

所以S△AOB =\f(1,2)d ·A B

=12

×2\r(2) 错误! 错误!错误!、 =\r(2)·1+2k 2-n2(1+2k 2)2

·|n |=64. 令r =1+2k 2代入上式得:3r2—16n2r+16n 4=0、

解得r =4n 2或r =错误!n2,

即1+2k 2=4n2或1+2k 2=错误!n 2。

又错误!=t 错误!=错误!t (错误!+错误!)=错误!t (x1+x 2,y 1+y 2)

=错误!。

又点P 为椭圆C上一点,

所以t 2错误!=1,

即n 21+2k 2

t 2=1。 由错误!得t2=4或t 2=错误!、

又t >0,故t =2或t =错误!。

经检验,适合题意、

综合①②得t =2或t =错误!、

常考题型精练

1、解 (1)椭圆C 得标准方程为x 23

+y 2=1, 所以a =3,b=1,c =错误!。

所以椭圆C得离心率e =错误!=错误!、

(2)因为AB 过点D (1,0)且垂直于x 轴,

所以可设A(1,y 1),B(1,-y1),

直线A E得方程为y -1=(1-y 1)(x-2),

令x =3,得M (3,2—y 1),

所以直线BM得斜率k BM =\f(2-y 1+y 1,3-1)=1.

(3)直线BM 与直线D E平行,证明如下:

当直线AB 得斜率不存在时,由(2)可知k BM =1、

又因为直线DE 得斜率k DE =错误!=1,所以BM ∥D E,

当直线AB 得斜率存在时,设其方程为y =k (x -1)(k ≠1),设A (x1,y1),B(x2,y 2),则直线AE 得方程为y -1=y 1-1x1-2

(x —2)、令x=3,得点M错误!, 由错误!得(1+3k 2)x 2-6k2x +3k 2-3=0,

所以x 1+x2=\f(6k2,1+3k 2),x 1x2=3k 2—31+3k 2, 直线BM 得斜率k BM =错误!,

因为k BM—1=

k(x 1-1)+x 1—3-k (x 2-1)(x 1-2)-(3-x 2)(x 1-2)

(3-x2)(x 1—2)

=(k —1)[-x 1x 2+2(x 1+x 2)-3](3-x 2)(x 1-2)

=错误!=0

所以kBM =1=k DE 。

所以BM ∥DE ,

综上可知,直线BM 与直线DE 平行、 2。解 (1)由题意可设抛物线C得方程为x 2=2py(p >0),则\f(p,2)=1,所以抛物线C 得方程为x 2=4y 、

(2)设A (x 1,y1),B (x2,y 2),直线A B得方程为y =k x+1、

由错误!消去y ,整理得x 2-4kx -4=0,

所以x 1+x 2=4k,x1x2=-4、

从而|x 1-x 2|=4

k 2+1。

由错误!

解得点M 得横坐标x M =\f(2x 1,x 1-y1)=错误!=错误!、

同理点N 得横坐标xN =\f(8,4—x 2)。

所以MN =错误!|x M -x N | =2错误!

=8错误!错误! =8\r(2)k2+1|4k -3|

。 令4k —3=t,t ≠0,则k =t +34

。 当t >0时,M N=22 错误!>2错误!。 当t <0时,MN =22 错误!≥错误!错误!.

综上所述,当t =-253,即k=-43

时, MN 得最小值就是85

\r(2)、 3。解 (1)依题意知\f(|c +2|,\r(2))=3\r(2)2

,c 〉0,解得c =1、 所以抛物线C 得方程为x 2=4y 、 (2)由y =\f(1,4)x 2得y ′=12

x , 设A (x 1,y 1),B (x 2,y2),则切线P A ,PB 得斜率分别为12

x 1,\f(1,2)x 2,所以切线P A 得方程为y—y 1=x 12(x -x 1),即y =x12

x -错误!+y 1,即x 1x -2y-2y 1=0、 同理可得切线PB 得方程为x 2x-2y—2y 2=0,

又点P (x 0,y 0)在切线P A 与P B上,

所以x 1x0-2y 0-2y1=0,x 2x 0-2y 0-2y 2=0,

所以(x 1,y 1),(x2,y 2)为方程x 0x-2y0-2y =0 得两组解,所以直线AB 得方程为x 0x -2y -2y 0=0。

(3)由抛物线定义知A F=y 1+1,BF =y 2+1,

所以AF ·B F=(y1+1)(y 2+1)=y 1y 2+(y 1+y 2)+1,

联立方程错误!

消去x 整理得y2+(2y 0-x 20

)y+y错误!=0, 所以y1+y 2=x20-2y 0,y 1y2=y 错误!,

所以A F·B F=y1y 2+(y 1+y 2)+1

=y 错误!+x 错误!-2y 0+1

=y 错误!+(y 0+2)2-2y 0+1=2y 错误!+2y 0+5

=2错误!2+错误!,

所以当y 0=-错误!时,AF ·BF 取得最小值,且最小值为错误!.

4、解 (1)∵抛物线C :y 2=2px (p 〉0)得焦点为F错误!,依题意得d=错误!=错误!, 解得p =2,∴抛物线C得方程为y 2=4x 。

(2)①命题、若直线AB 过焦点F ,且直线A D过原点O,则直线BD平行于x 轴. 设直线AB 得方程为x =ty +1,A (x1,y 1),B (x 2,y 2),

由错误! 得y 2—4t y-4=0,

∴y 1y2=-4.直线AD 得方程为y =y 1x 1

x , ∴点D 得坐标为错误!。

∴-y 1x 1

=—错误!=—错误!=y 2、∴直线BD 平行于x 轴、 ②命题:若直线AB 过焦点F ,且直线BD 平行于x 轴,则直线AD 过原点O 、 设直线AB 得方程为x =ty +1,A (x 1,y 1),B (x 2,y 2),

由错误!得y 2-4t y-4=0,∴y 1y 2=-4,

即点B得坐标为错误!,

∵直线BD 平行于x 轴,∴D 点得坐标为错误!。

∴OA→=(x 1,y 1),错误!=错误!.

由于x 1错误!-y 1(-1)=-y 1+y1=0,

∴\o(O A,→)∥O D→

,即A ,O ,D三点共线、

∴直线AD过原点O.

③命题:若直线AD 过原点O ,且直线BD 平行于x 轴,则直线AB 过焦点F 。 设直线A D得方程为y =kx (k ≠0),

则点D 得坐标为(-1,-k ),

∵直线BD 平行于x轴,∴y B =-k 。

∴x B =k24,即点B 得坐标为错误!,

由错误! 得k 2x 2=4x ,

∴x A =4k 2

,yA =4k ,即点A 得坐标为错误!、 ∴错误!=错误!,错误!=错误!, ∵错误!(-k)-错误!·错误!

=-\f(4,k )+k -k +4k

=0. ∴F A→∥错误!,即A ,F ,B三点共线。∴直线AB 过焦点F 。

圆锥曲线解题技巧和方法综合(方法讲解+题型归纳,经典)

圆锥曲线解题方法技巧归纳 第一、知识储备: 1. 直线方程的形式 (1)直线方程的形式有五件:点斜式、两点式、斜截式、截距式、一般式。 (2)与直线相关的重要内容 ①倾斜角与斜率tan ,[0,)k ααπ=∈ ②点到直线的距离d = ③夹角公式:2121 tan 1k k k k α-= + (3)弦长公式 直线 y kx b =+上两点1122(,),(,)A x y B x y 间的距离:12AB x =- = 或12AB y y =- (4)两条直线的位置关系 ①1212l l k k ⊥?=-1 ② 212121//b b k k l l ≠=?且 2、圆锥曲线方程及性质 (1)、椭圆的方程的形式有几种?(三种形式) 标准方程:22 1(0,0)x y m n m n m n +=>>≠且 2a = 参数方程:cos ,sin x a y b θθ== (2)、双曲线的方程的形式有两种 标准方程:22 1(0)x y m n m n +=?< 距离式方程: 2a = (3)、三种圆锥曲线的通径你记得吗?

22 222b b p a a 椭圆:;双曲线:;抛物线: (4)、圆锥曲线的定义你记清楚了吗? 如:已知21F F 、是椭圆13 42 2=+y x 的两个焦点,平面内一个动点M 满足221=-MF MF 则 动点M 的轨迹是( ) A 、双曲线; B 、双曲线的一支; C 、两条射线; D 、一条射线 (5)、焦点三角形面积公式:1 2 2tan 2 F PF P b θ ?=在椭圆上时,S 1 2 2cot 2 F PF P b θ ?=在双曲线上时,S (其中222 1212121212||||4,cos ,||||cos |||| PF PF c F PF PF PF PF PF PF PF θθθ+-∠==?=?) (6)、记住焦半径公式:(1)00;x a ex a ey ±±椭圆焦点在轴上时为焦点在y 轴上时为,可简记为 “左加右减,上加下减”。 (2)0||x e x a ±双曲线焦点在轴上时为 (3)11||,||22 p p x x y ++抛物线焦点在轴上时为焦点在y 轴上时为 (6)、椭圆和双曲线的基本量三角形你清楚吗? 第二、方法储备 1、点差法(中点弦问题) 设() 11,y x A 、()22,y x B ,()b a M ,为椭圆13 42 2=+y x 的弦AB 中点则有 1342 12 1=+y x ,1342 22 2=+y x ;两式相减得( )()03 4 2 2 2 1 2 2 21=-+-y y x x ? ()() ()() 3 4 21212121y y y y x x x x +-- =+-?AB k =b a 43- 2、联立消元法:你会解直线与圆锥曲线的位置关系一类的问题吗?经典套路是什 么?如果有两个参数怎么办? 设直线的方程,并且与曲线的方程联立,消去一个未知数,得到一个二次方程,

高三数学 圆锥曲线的应用

第六节 圆锥曲线的应用 一、基本知识概要: 解析几何在日常生活中应用广泛,如何把实际问题转化为数学问题是解决应用题的关键,而建立数学模型是实现应用问题向数学问题转化的常用常用方法。本节主要通过圆锥曲线在实际问题中的应用,说明数学建模的方法,理解函数与方程、等价转化、分类讨论等数学思想。 二、例题: 例1、 设有一颗慧星沿一椭圆轨道绕地球运行,地球恰好位于椭圆轨 道的焦点处,当此慧星离地球相距m 万千米和m 34万千米时,经过地球和慧星的直线与椭圆的长轴夹角分别为32π π和,求该慧星与地球的最近距离。 解:建立如下图所示直角坐标系,设地球位于焦点)0,(c F -处,椭圆的方程为12222=+b y a x (图见教材P132页例1)。 当过地球和彗星的直线与椭圆的长轴夹角为3 π 时,由椭圆的几何意义可知,彗星A 只能满足)3 (3/ππ=∠=∠xFA xFA 或。作m FA FB Ox AB 3 221B ==⊥,则于 故由椭圆第二定义可知得???????+-=-=)32(3 4)(22 m c c a a c m c c a a c m 两式相减得,2 3)4(21.2,3 2 31c c c m c a m a c m =-==∴?=代入第一式得 .32.32m c c a m c ==-∴=∴

答:彗星与地球的最近距离为m 3 2万千米。 说明:(1)在天体运行中,彗星绕恒星运行的轨道一般都是椭圆,而恒星正是它的一个焦点,该椭圆的两个焦点,一个是近地点,另一个则是远地点,这两点到恒星的距离一个是c a -,另一个是.c a + (2)以上给出的解答是建立在椭圆的概念和几何意义之上的,以数学概念为根基充分体现了数形结合的思想。另外,数学应用问题的解决在数学化的过程中也要时刻不忘审题,善于挖掘隐含条件,有意识地训练数学思维的品质。 思考讨论:椭圆上任一点到焦点的距离的最大值和最小值是多少?怎样证明? 例2:A ,B ,C 是我方三个炮兵阵地,A 在B 正东6Km ,C 在B 正北偏西ο30,相距4Km ,P 为敌炮阵地,某时刻A 处发现敌炮阵地的某种信号,由于B ,C 两地比A 距P 地远,因此4s 后,B ,C 才同时发现这一信号,此信号的传播速度为1s Km /,A 若炮击P 地,求炮击的方位角。(图见优化设计教师用书P249例2) 解:如图,以直线BA 为x 轴,线段BA 的中垂线为y 轴建立坐标系,则)32,5(),0,3(),0,3(--C A B ,因为PC PB =,所以点P 在线段BC 的垂直平分线上。 因为3-=BC k ,BC 中点)3,4(-D ,所以直线PD 的方程为)4(31 3+=-x y (1) 又,4=-PA PB 故P 在以A ,B 为焦点的双曲线右支上。设),(y x P ,则

圆锥曲线的综合问题-教案

第三讲圆锥曲线的综合问题 1.直线与圆锥曲线的位置关系 (1)直线与椭圆的位置关系的判定方法: 将直线方程与椭圆方程联立,消去一个未知数,得到一个一元二次方程.若Δ>0,则直线与椭圆相交;若Δ=0,则直线与椭圆相切;若Δ<0,则直线与椭圆相离. (2)直线与双曲线的位置关系的判定方法: 将直线方程与双曲线方程联立,消去y(或x),得到一个一元方程ax2+bx+c=0(或ay2+by+c=0). ①若a≠0,当Δ>0时,直线与双曲线相交;当Δ=0时,直线与双曲线相切;当Δ<0 时,直线与双曲线相离. ②若a=0时,直线与渐近线平行,与双曲线有一个交点. (3)直线与抛物线的位置关系的判定方法: 将直线方程与抛物线方程联立,消去y(或x),得到一个一元方程ax2+bx+c=0(或ay2+by+c=0). ①当a≠0时,用Δ判定,方法同上. ②当a=0时,直线与抛物线的对称轴平行,只有一个交点. 2.有关弦的问题 (1)有关弦长问题,应注意运用弦长公式及根与系数的关系,“设而不求”;有关焦点 弦长问题,要重视圆锥曲线定义的运用,以简化运算. ①斜率为k的直线与圆锥曲线交于两点P1(x1,y1),P2(x2,y2),则所得弦长|P1P2|=1+k2 |x2-x1|或|P1P2|=1+1 k2|y2-y1|,其中求|x2-x1|与|y2-y1|时通常使用根与系数的关系,即作如下变形: |x2-x1|=(x1+x2)2-4x1x2, |y2-y1|=(y1+y2)2-4y1y2. ②当斜率k不存在时,可求出交点坐标,直接运算(利用两点间距离公式). (2)弦的中点问题 有关弦的中点问题,应灵活运用“点差法”,“设而不求法”来简化运算. 3.圆锥曲线中的最值 (1)椭圆中的最值 F1、F2为椭圆x2 a2+y2 b2=1(a>b>0)的左、右焦点,P为椭圆的任意一点,B为短轴的一个端点,O为坐标原点,则有

高考数学(精讲+精练+精析)专题10_4 圆锥曲线的综合应用试题 文(含解析)

专题10.4 圆锥曲线的综合应用试题 文 【三年高考】 1. 【2016高考四川文科】在平面直角坐标系中,当P (x ,y )不是原点时,定义P 的“伴随点”为 '2222 ( ,)y x P x y x y -++;当P 是原点时,定义P 的“伴随点”为它自身,现有下列命题: 若点A 的“伴随点”是点'A ,则点'A 的“伴随点”是点A. 单元圆上的“伴随点”还在单位圆上. 若两点关于x 轴对称,则他们的“伴随点”关于y 轴对称 ④若三点在同一条直线上,则他们的“伴随点”一定共线. 其中的真命题是 . 【答案】②③ 线分别为2222( ,)0y x f x y x y -=++与 2222 (,)0y x f x y x y --=++的图象关于y 轴对称,所以②正确;③令单位圆上点的坐标为(cos ,sin )P x x 其伴随点为(sin ,cos )P x x '-仍在单位圆上,故③正确;对于④,直线 y kx b =+上取点后得其伴随点2222 ( ,)y x x y x y -++消参后轨迹是圆,故④错误.所以正确的为序号为②③. 2.【2016高考山东文数】已知椭圆C :(a >b >0)的长轴长为4,焦距为2 . (I )求椭圆C 的方程;

(Ⅱ)过动点M (0,m )(m >0)的直线交x 轴与点N ,交C 于点A ,P (P 在第一象限),且M 是线段PN 的中点.过点P 作x 轴的垂线交C 于另一点Q ,延长线QM 交C 于点B . (i)设直线PM 、QM 的斜率分别为k 、k',证明为定值. (ii)求直线AB 的斜率的最小值. (Ⅱ)(i)设()()0000,0,0P x y x y >>,由()0,M m ,可得()()00,2,,2.P x m Q x m - 所以 直线PM 的斜率 002m m m k x x -= = ,直线QM 的斜率0023'm m m k x x --==-.此时'3k k =-,所以' k k 为定值3-. (ii)设()()1122,,,A x y B x y ,直线PA 的方程为y kx m =+,直线QB 的方程为3y kx m =-+.联立 22142 y kx m x y =+???+ =?? ,整理得()222214240k x mkx m +++-=.由20122421m x x k -=+可得()()212 02221m x k x -=+ ,所以() ()2112 02221k m y kx m m k x -=+= ++,同理() ()() ()22222 2 2262,181181m k m x y m k x k x ---= = +++.所以 () ()() ()() ()()2222212 2 2 2 00 22223221812118121m m k m x x k x k x k k x -----= - = ++++, ()()()()()()()() 2 2 2 2 21 2 2 2 2 622286121812118121k m m k k m y y m m k x k x k k x ----+--=+--=++++ ,所以2212161116.44AB y y k k k x x k k -+??===+ ?-?? 由00,0m x >>,可知0k >,所以1626k k +≥,等号当且仅

直线与圆锥曲线的综合问题专题二

专题二 直线与圆锥曲线的综合问题 第一课时 一.知识体系小结 22 2222222222 222222 cos 1(0)()sin 11(0)1(00)1(00)2(0)2(0213x a x y x a b y b a b y x y a b a b x y y x x a b y a b a b a b y px p y px p 圆锥曲线的标准方程 椭圆:焦点在轴上时参数方程,其中为参数; 焦点在轴上时. 双曲线:焦点在轴上:,;焦点在轴上:,. 抛物线:开口向右时,,开口向左时,.22)2(0)2(0)x py p x py p ,开口向上时,开口向下时. 2222 2222 2222 222222 222222 221111 1(0)123142x y x y a b a b x y x y a b a b x y x y a b a b mx ny 常用曲线方程设法技巧 共焦点的设法:与椭圆有公共焦点的椭圆方程为;与双曲线有公共焦点的双曲线方程为;与双曲线共渐近线的双曲线方程为;中心在原点,对称轴为坐标轴的椭圆、双曲线方程可设为;不清楚开口方向的抛.物线设法:焦22(0)(0)x y mx m y x my m 点在轴上,; 焦点在轴上,. 3.解决直线与圆锥曲线问题的通法: (1)设方程及点的坐标; (2)联立直线方程与曲线方程得方程组,消元得方程; (3)应用韦达定理及判别式; (4)结合已知、中点坐标公式、斜率公式及弦长公式求解. 1212|||| |.AB AB x x y y (5)直线与圆锥曲线相交的弦长公式或 222 0002220 222 0002220 2000 1()1()2(0)(). b x x y P x y k a b a y b x x y P x y k a b a y p y px p P x y k y 圆锥曲线中点弦斜率公式 在椭圆中,以,为中点的弦所在直线的斜率; 在双曲线中,以,为中点的弦所在直线的斜率; 在抛物线中,以,为中点的弦所在直线的斜率以上公式均可由点4.差法可得.

高考圆锥曲线解题技巧和方法综合

圆锥曲线的解题技巧 一、常规七大题型: (1)中点弦问题 具有斜率的弦中点问题,常用设而不求法(点差法):设曲线上两点为 , ,代入方程,然 后两方程相减,再应用中点关系及斜率公式(当然在这里也要注意斜率不存在的请款讨论),消去四个参数。 如:(1))0(12222>>=+b a b y a x 与直线相交于A 、B ,设弦AB 中点为M(x 0,y 0),则有02 020=+k b y a x 。 (2))0,0(122 22>>=-b a b y a x 与直线l 相交于A 、B ,设弦AB 中点为M(x 0,y 0)则有02 020=-k b y a x (3)y 2=2px (p>0)与直线l 相交于A 、B 设弦AB 中点为M(x 0,y 0),则有2y 0k=2p,即y 0k=p. 典型例题 给定双曲线。过A (2,1)的直线与双曲线交于两点 及 ,求线段 的中点 P 的轨迹方程。 (2 构成的三角形问题,常用正、余弦定理搭桥。 ,为焦点,,。 (1 (2)求 的最值。 (3)直线与圆锥曲线位置关系问题 直线与圆锥曲线的位置关系的基本方法是解方程组,进而转化为一元二次方程后利用判别式、根与系数的关系、求根公式等来处理,应特别注意数形结合的思想,通过图形的直观性帮助分析解决问题,如果直线过椭圆的焦点,结合三大曲线的定义去解。 典型例题 (1)求证:直线与抛物线总有两个不同交点 (2)设直线与抛物线的交点为A 、B ,且OA ⊥OB ,求p 关于t 的函数f(t)的表达式。 (4)圆锥曲线的相关最值(范围)问题 圆锥曲线中的有关最值(范围)问题,常用代数法和几何法解决。 <1>若命题的条件和结论具有明显的几何意义,一般可用图形性质来解决。

(全国通用版)201X版高考数学一轮复习 高考达标检测(三十八)圆锥曲线的综合问题——直线与圆锥曲线

高考达标检测(三十八) 圆锥曲线的综合问题——直线与圆锥曲线 的位置关系 一、选择题 1.已知过抛物线y 2=4x 的焦点F 的直线l 交抛物线于A ,B 两点,且点A 在第一象限,若|AF |=3,则直线l 的斜率为( ) A .1 B.2 C. 3 D .22 解析:选D 由题意可知焦点F (1,0),设A (x A ,y A ), 由|AF |=3=x A +1,得x A =2,又点A 在第一象限, 故A (2,22),故直线l 的斜率为2 2. 2.若直线y =kx +2与抛物线y 2=x 有一个公共点,则实数k 的值为( ) A. 1 8 B .0 C. 1 8 或0 D .8或0 解析:选C 由??? y =kx +2, y 2=x , 得ky 2-y +2=0, 若k =0,直线与抛物线有一个交点,则y =2, 若k ≠0,则Δ=1-8k =0,∴k =1 8, 综上可知k =0或 1 8 . 3.已知双曲线C :x 2a 2-y 2 b 2=1(a >0,b >0),过点P (3,6)的直线l 与C 相交于A ,B 两点, 且AB 的中点为N (12,15),则双曲线C 的离心率为( ) A .2 B.32 C.355 D.52 解析:选B 设A (x 1,y 1),B (x 2,y 2), 由AB 的中点为N (12,15),得x 1+x 2=24,y 1+y 2=30,

由????? x 21a 2-y 21 b 2=1,x 2 2 a 2 -y 22b 2 =1, 两式相减得: x 1+x 2 x 1-x 2 a 2 = y 1+y 2 y 1-y 2 b 2 , 则y 1-y 2x 1-x 2=b 2x 1+x 2a 2y 1+y 2=4b 2 5a 2.

圆锥曲线的综合问题-教案

第三讲圆锥曲线的综合问题 考点整合 1. 直线与圆锥曲线的位置关系 (1) 直线与椭圆的位置关系的判定法: 将直线程与椭圆程联立,消去一个未知数,得到一个一元二次程?若少0,则直线与椭圆相交;若A= 0,则直线与椭圆相切;若A<0,则直线与椭圆相离. (2) 直线与双曲线的位置关系的判定法: 将直线程与双曲线程联立,消去y或x),得到一个一元程ax2+ bx+ c= 0(或ay2+ by+ c =0) ? ①若a工0,当A>0时,直线与双曲线相交;当A= 0时,直线与双曲线相切;当A<0 时,直线与双曲线相离. ②若a= 0时,直线与渐近线平行,与双曲线有一个交点. (3) 直线与抛物线的位置关系的判定法: 将直线程与抛物线程联立,消去y(或x),得到一个一元程ax2+ bx+ c= 0(或ay2+ by+ c =0) ? ①当a z 0时,用△判定,法同上. ②当a= 0时,直线与抛物线的对称轴平行,只有一个交点. 2. 有关弦的问题 (1) 有关弦长问题,应注意运用弦长公式及根与系数的关系,“设而不求”;有关焦点弦长问题,要重视圆锥曲线定义的运用,以简化运算. ①斜率为k的直线与圆锥曲线交于两点P i(x i,y i), P2(x2, y2),则所得弦长|P i P2|=』1 + k2 |x2- X1或|P1P2= - , 1 +胡2—y1|,其中求|x2- X1|与|y2- y11时通常使用根与系数的关系, 即作如下变形: |x2 —X1 = \/ X1 + X2 2—4X1x2 , ②当斜率k不存在时,可求出交点坐标,直接运算(利用两点间距离公式). (2) 弦的中点问题 有关弦的中点问题,应灵活运用“点差法”,“设而不求法”来简化运算. 3. 圆锥曲线中的最值 (1)椭圆中的最值

圆锥曲线解题技巧和方法综合(经典)

圆锥曲线解题方法技巧归纳 第一、知识储备: 1. 直线方程的形式 (1)直线方程的形式有五件:点斜式、两点式、斜截式、截距式、一般式。 (2)与直线相关的重要内容 ①倾斜角与斜率tan ,[0,)k ααπ=∈ ②点到直线的距离d = ③夹角公式: 2121 tan 1k k k k α-= + (3)弦长公式 直线 y kx b =+上两点1122(,),(,)A x y B x y 间的距离:12AB x =- = 或12AB y =- (4)两条直线的位置关系 ①1212l l k k ⊥?=-1 ② 212121//b b k k l l ≠=?且 2、圆锥曲线方程及性质 (1)、椭圆的方程的形式有几种?(三种形式) 标准方程:22 1(0,0)x y m n m n m n +=>>≠且 距离式方程2a = 参数方程:cos ,sin x a y b θθ== (2)、双曲线的方程的形式有两种

标准方程:22 1(0)x y m n m n +=?< 距离式方程 :|2a = (3)、三种圆锥曲线的通径你记得吗? 22 222b b p a a 椭圆:;双曲线:;抛物线: (4)、圆锥曲线的定义你记清楚了吗? 如:已知21F F 、是椭圆13 42 2=+y x 的两个焦点,平面内一个动点M 满足 221=-MF MF 则动点M的轨迹是( ) A、双曲线;B 、双曲线的一支;C 、两条射线;D 、一条射线 (5)、焦点三角形面积公式:1 2 2tan 2 F PF P b θ ?=在椭圆上时,S 1 2 2cot 2 F PF P b θ ?=在双曲线上时,S (其中222 1212121212||||4,cos ,||||cos |||| PF PF c F PF PF PF PF PF PF PF θθθ+-∠==?=?) (6)、记住焦半径公式:(1) 00 ;x a ex a ey ±±椭圆焦点在轴上时为焦点在y 轴上时为,可简记为“左加右减,上加下减”。 (2)0||x e x a ±双曲线焦点在轴上时为 (3)11||,||22 p p x x y ++抛物线焦点在轴上时为焦点在y 轴上时为 (6)、椭圆和双曲线的基本量三角形你清楚吗? 第二、方法储备 1、点差法(中点弦问题) 设() 11,y x A 、()22,y x B ,()b a M ,为椭圆13 42 2=+y x 的弦AB 中点则有

直线与圆锥曲线的综合问题

教学过程 一、复习预习 圆锥曲线的综合问题包括:解析法的应用,与圆锥曲线有关的定值问题、最值问题、参数问题、应用题和探索性问题,圆锥曲线知识的纵向联系,圆锥曲线知识和三角、复数等代数知识的横向联系,解答这部分试题,需要较强的代数运算能力和图形认识能力,要能准确地进行数与形的语言转换和运算,推理转换,并在运算过程中注意思维的严密性,以保证结果的完整. 二、知识讲解 考点1范围问题 求范围和最值的方法: 几何方法:充分利用图形的几何特征及意义,考虑几何性质解决问题 代数方法:建立目标函数,再求目标函数的最值. 考点2对称问题 要抓住对称包含的三个条件: (1)中点在对称轴上 (2)两个对称点的连线与轴垂直

(3)两点连线与曲线有两个交点(0>?),通过该不等式求范围 考点/易错点3定点、定值、最值等问题 定点与定值问题的处理一般有两种方法: (1)从特殊入手,求出定点和定值,再证明这个点(值)与变量无关; (2)直接推理、计算,并在计算过程中消去变量,从而得到定点(定值). 三、例题精析 【例题1】 【题干】已知椭圆1:22221=+b y a x C (0>>b a )与直线01=-+y x 相交于两点A 、B .当 椭圆的离心率e 满足2 223≤≤e ,且0=?OB OA (O 为坐标原点)时,求椭圆长轴长的取值范围. 【答案】 []6,5 【解析】由???=-+=+0 12 22222y x b a y a x b ,得()()012222222=-+-+b a x a x b a 由( ) 0122222>-+=?b a b a ,得12 2 >+b a 此时222212b a a x x +=+,() 2 22 2211b a b a x x +-= 由0=?OB OA ,得02121=+y y x x ,∴()0122121=++-x x x x 即022 2 2 2 =-+b a b a ,故1 222 2 -=a a b 由2 22222 a b a a c e -==,得2 222e a a b -= ∴2 2 11 12e a -+ = 由 2 223≤≤e 得23452 ≤≤a ,∴625≤≤a 所以椭圆长轴长的取值范围为 []6,5 【例题2】

圆锥曲线在生活中的应用(高2012级43班 叶容杉)

圆锥曲线在生活中的应用 班级:高2012级43班 姓名:叶容杉 指导老师:何志开

圆锥曲线在生活中的应用 高2012级43班 叶容杉 指导老师:何志开 摘要:在初等数学中,圆锥曲线主要指:椭圆、双曲线、抛物线,它是平面解析几何的核心内容,又是高中数学的重点和难点,因而成为高考中必不可少的考查内容。本文总结了三类圆锥曲线的基本概念,并将它在日常生活中的应用进行了简要说明。 关键词:圆锥曲线;基本概念;生活应用 正文: 一、基本概念 圆锥曲线是用一个不垂直于圆锥的轴的平面截圆锥,当截面与圆锥的轴夹角不同时,可得到的不同的截口的曲线,分别是: ①椭圆: 定义1:平面内与两定点F 1、F 2的距离的和等于常数|)|2(221F F a a >的动点P 的轨迹叫做椭圆。即a PF PF 2||||21=+ 定义2:动点M 到定点)0,(c F 的距离和它到直线l :c a x 2=的距离的比是常数a c ,)0(>>c a 时,M 点的轨迹即为椭圆。即到定点距离与到定直线的距离的比等于定值)10(<

等于常数2a |)|2(21F F a <的点的轨迹叫做双曲线,即a PF PF 2||||21=- 定义2:动点M 到定点)0,(c F 的距离和它到直线l :c a x 2=的距离的比是常数a c ,)0(>>a c 时,M 点的轨迹即为椭圆。即到定点距离与到定直线的距离的比等于定值)1(>e e 的点的轨迹叫椭圆。我们把定值a c e =)1(>e ,叫做椭圆的离心率。 ③抛物线: 定义1:平面内与一个定点和一条直线(定点不在定直线上)的距离相等的点的轨迹,叫做抛物线。 定义2:与椭圆、双曲线第2定义相似,仅比值e 不同,当1=e 时为抛物线。 二、在生活中的应用 随着新课程理念的深入,一些以圆锥曲线在生活和生产实际中的应用为背景的应用问题已经进入了我们的教材,并且越来越受到重视.利用椭圆、双曲线、抛物线可以有效地解决数学、物理及生活实际中的许多问题.下面举例说明圆锥曲线在实际生活中的应用 1、生活中的椭圆:油罐车的横截面。 圆柱形的容器在同样容器的要求下,它的表面积最小也就是容器所用的材料最少,在装入物品后尤其是液体,对罐内壁各部分的受力大小情况也比较平均,而在高度和宽度(即车的允许高度和车的宽度)都有限制的情况下,其横截面作成椭圆形就可以达到既节省了罐体材料,也保证了容积,由利用了有限的“空间”和保证了罐体的稳定性。 2、双曲线的应用:火电厂及核电站的冷却塔

圆锥曲线的综合问题(含答案)

课题:圆锥曲线的综合问题 【要点回顾】 1.直线与圆锥曲线的位置关系 判定直线与圆锥曲线的位置关系时,通常是将直线方程与曲线方程联立,消去变量y (或x )得关于变量 x (或y )的方程:ax 2+bx +c =0(或ay 2+by +c =0). 若a ≠0,可考虑一元二次方程的判别式Δ,有: Δ>0?直线与圆锥曲线相交; Δ=0?直线与圆锥曲线相切; Δ<0?直线与圆锥曲线相离. 若a =0且b ≠0,则直线与圆锥曲线相交,且有一个交点. 2.圆锥曲线的弦长问题 设直线l 与圆锥曲线C 相交于A 、B 两点,A (x 1,y 1),B (x 2,y 2), 则弦长|AB |= 1+k 2|x 1-x 2|或 1+1 k 2|y 1-y 2|. 【热身练习】 1.(教材习题改编)与椭圆 x 212+y 2 16=1焦点相同,离心率互为倒数的双曲线方程是( ) A .y 2- x 2 3 =1 B. y 2 3 -x 2=1 C.34x 2-38 y 2=1 D. 34 y 2- 38 x 2=1 解析:选A 设双曲线方程为y 2a 2- x 2 b 2 =1(a >0,b >0), 则????? a 2+ b 2= c 2, c a =2, c =2, 得a =1,b = 3.故双曲线方程为y 2- x 2 3 =1. 2.(教材习题改编)直线y =kx -k +1与椭圆x 29+y 2 4 =1的位置关系是( )

A .相交 B .相切 C .相离 D .不确定 解析:选A 由于直线y =kx -k +1=k (x -1)+1过定点(1,1),而(1,1)在椭圆内,故直线与椭圆必相交. 3.过点(0,1)作直线,使它与抛物线y 2=4x 仅有一个公共点,这样的直线有( ) A .1条 B .2条 C .3条 D .4条 解析:选C 结合图形分析可知,满足题意的直线共有3条:直线x =0,过点(0,1)且平行于x 轴的直线以及过点(0,1)且与抛物线相切的直线(非直线x =0). 4.过椭圆x 2a 2+ y 2 b 2 =1(a >b >0)的左顶点A 且斜率为1的直线与椭圆的另一个交点为M ,与y 轴的交 点为B ,若|AM |=|MB |,则该椭圆的离心率为________. 解析:由题意知A 点的坐标为(-a,0),l 的方程为y =x +a ,所以B 点的坐标为(0,a ),故M 点的坐 标为? ?? ??-a 2,a 2,代入椭圆方程得a 2=3b 2,则c 2=2b 2,则c 2a 2=23,故e =6 3. 5.已知双曲线方程是x 2-y 2 2=1,过定点P (2,1)作直线交双曲线于P 1,P 2两点,并使P (2,1)为P 1P 2 的中点,则此直线方程是________________. 解析:设点P 1(x 1,y 1),P 2(x 2,y 2),则由 x 21- y 21 2 =1,x 22- y 22 2 =1,得k = y 2-y 1x 2-x 1 = 2x 2+x 1y 2+y 1 = 2×4 2 =4,从而所求方程为4x -y -7=0.将此直线方程与双曲线方程联立得14x 2-56x +51=0,Δ>0,故此直线满足条件.答案:4x -y -7=0 【方法指导】 1.直线与圆锥曲线的位置关系,主要涉及弦长、弦中点、对称、参数的取值范围、求曲线方程等问题.解题中要充分重视根与系数的关系和判别式的应用. 2.当直线与圆锥曲线相交时:涉及弦长问题,常用“根与系数的关系”设而不求计算弦长(即应用弦长公式);涉及弦的中点问题,常用“点差法”设而不求,将弦所在直线的斜率、弦的中点坐标联系起来,相互转化.同时还应充分挖掘题目中的隐含条件,寻找量与量间的关系灵活转化,往往就能事半功倍.解题的主要规律可以概括为“联立方程求交点,韦达定理求弦长,根的分布找范围,曲线定义不能忘”. 【直线与圆锥曲线的位置关系】

圆锥曲线的综合应用及其求解策略

圆锥曲线的综合应用及其求解策略 有关圆锥曲线的综合应用的常见题型有:①、定点与定值问题;②、最值问题;③、求参数的取值范围问题;④、对称问题;⑤、实际应用问题。 解答圆锥曲线的综合问题,应根据曲线的几何特征,熟练运用圆锥曲线的相关知识,将曲线的几何特征转化为数量关系(如方程、不等式、函数等),再结合代数知识去解答。解答过程中要重视函数思想、方程与不等式思想、分类讨论思想和数形结合思想的灵活应用。 一、定点、定值问题: 这类问题通常有两种处理方法:①、第一种方法:是从特殊入手,先求出定点(或定值),再证明这个点(值)与变量无关;②、第二种方法:是直接推理、计算;并在计算的过程中消去变量,从而得到定点(定值)。 ★【例题1】(2007年高考〃湖南文科〃19题〃13分)已知双曲线222x y -=的右焦点为F ,过点F 的 动直线与双曲线相交于A 、B 两点,又已知点C 的坐标是(10),.(I )证明CA 〃CB 为常数;(II )若动 点M 满足CM CA CB CO =++(其中O 为坐标原点),求点M 的轨迹方程. ◆解:由条件知(20)F , ,设11()A x y ,,22()B x y ,. (I )当AB 与x 轴垂直时,可求得点A 、B 的坐标分别为(2 ,(2, ,此时则有 (12)(11CA CB =?=-,. 当AB 不与x 轴垂直时,设直线AB 的方程是(2)(1)y k x k =-≠±.代入222x y -=,则有 2222(1)4(42)0k x k x k -+-+=.则12x x ,是上述方程的两个实根, 所以212241k x x k +=-,2122421 k x x k +=-,于是 212121212(1)(1)(1)(1)(2)(2) CA CB x x y y x x k x x =--+=--+--2 2 2 1212(1)(21)()41k x x k x x k =+-++++22222 22 (1)(42)4(21)4111 k k k k k k k +++=-++--22(42)411k k =--++=-. ∴ 综上所述,CA CB 为常数1-. (II )设()M x y ,,则(1)CM x y =-,,11(1)CA x y =-,,22(1)CB x y =-,,(10)CO =-,,由 CM CA CB CO =++得:121213x x x y y y -=+-??=+?,即1212 2x x x y y y +=+??+=?,于是AB 的中点坐标为222x y +?? ???,.

第9节 圆锥曲线的综合问题(轻巧夺冠)

第9节 圆锥曲线的综合问题 课标要求 运用代数方法进一步认识圆锥曲线的性质以及它们的位置关系;运用平面解析几何方法解决简单的数学问题和实际问题(尤其是椭圆与抛物线的简单应用),感悟平面解析几何中蕴含的数学思想. 知识衍化体验 知识梳理 1.直线与圆锥曲线的位置关系 判断直线l 与圆锥曲线C 的位置关系,通常是联立直线l 与圆锥曲线C 的方程,判断其方程组解的个数.设直线:l y kx b =+(注:需讨论斜率k 不存在的情况;若设直线:l x my n =+,也需讨论y h =这种情况) ,圆锥曲线:(,)0C F x y =,即 (,)0 y kx b F x y =+?? =?,消去y ,得2 0ax bx c ++=, (1)当0a ≠时,设一元二次方程2 0ax bx c ++=的判别式为?,则: 0?>?直线l 与圆锥曲线C _______; 0?=?直线l 与圆锥曲线C _______; 0?

圆锥曲线的综合应用

圆锥曲线的综合 【复习目标】 1、在理解和掌握圆锥曲线的定义和简单几何性质的基础上,把握有关圆锥曲线的知识的内在联系,灵活运用解析几何的常用方法解决问题,培养运用各种知识解决问题的能力; 2、通过问题的解决,理解函数与方程、等价转化、数形结合、分类讨论等数学思想。 【教学重点、难点】 1.灵活运用圆锥曲线的几何性质解决问题; 2.理解函数与方程、等价转化、数形结合、分类讨论等数学思想,通过问题解决的过程中,提高分析问题、解决问题的能力,同时培养运算能力。 【教学过程】 一、圆锥曲线的几何性质在高考中的地位 圆锥曲线的几何性质是在每年的高考中必考的一个知识点,这一类问题的考查大多数出现在填空题中,属于中低档题,有时也会出现在解答题的第一、第二问中,分值大约在4至8分。 【相关知识链接】 1.椭圆、双曲线第一、第二定义各是什么? 2.圆锥曲线的标准方程形式反应了其怎样的特点? 3.椭圆、双曲线中c b a ,,存在什么样的等量关系? 4.性质中的不等关系: 对于圆锥曲线标准方程中变量y x ,的范围、离心率的范围等,在求与圆锥曲线有关的一些量的范围,或者求这些量的最大值,最小值时,经常用到这些不等关系。 5.求椭圆、双曲线的离心率问题的一般思路: 求椭圆、双曲线的离心率时,一般是依据题设得出一个关于c b a ,,的等式(或不等式),利用c b a ,,之间的等量关系消去b ,即可求得离心率(或离心率的范围)。 题型一 活用圆锥曲线的几何性质 1.若椭圆122 22=+b y a x 的左右焦点分别为)0,(),0,21c F c F -(, 以点2F 为圆心,半径为c 画圆,圆2F 交椭圆于点M ,直线1MF 与圆2F 相切,则该椭圆离心率为

直线与圆锥曲线的位置关系一教学设计

北京市北纬路中学徐学军 《直线与圆锥曲线的位置关系(一)》教学设计 一、教材分析及学生情况分析 本节课是平面解析几何的核心内容之一。在此之前,学生已学习了直线的基本知识,圆锥曲线的定义、标准方程和简单的几何性质,直线与圆的位置关系及判定,这为本节课的学习起着铺垫作用。本节内容是《直线与圆锥曲线的位置关系》的第一节课,着重是教会学生如何判断直线与椭圆的位置关系,体会运用方程思想、数形结合、分类讨论、类比归纳等数学思想方法,优化学生的解题思维,提高学生解题能力。这为后面解决直线与圆锥曲线的综合问题打下良好的基础。所以是承上启下的一节课。这节课还是培养学生数学能力的良好题材,所以说是解析几何的核心内容之一。 数学思想方法分析:作为一名数学老师,不仅要传授给学生数学知识,更重要的是传授给学生数学思想、数学意识。因此本节课在教学中力图让学生动手操作,自主探究、发现共性、类比归纳、总结解题规律。 学生情况分析:对于直线和圆,学生已经非常熟悉,并且知道直线与圆有三种位置关系:相离,相切和相交,会从代数、几何两个方面进行判断。本节课,学生将类比挖掘直线与椭圆圆的位置关系,学会从不同角度分析思考问题,为后续学习打下基础。本班为理科班,学生整体思维能力较强,勤于动脑,喜欢想问题,但不愿动手实践,特别是进行相关计算,另外学生在探究问题的能力,合作交流的意识及反思总结等方面有待加强。 二、教学目标 根据上述教材结构与内容分析,考虑到学生已有的认知心理特征和实际,制定如下教学目标: 知识与技能:①理解直线与椭圆的位置关系; ②会进行位置关系的判断,计算弦长。 过程与方法:根据本节课的内容和学生的实际水平,通过回忆画图让学生理解直线与椭圆的位置关系;观察类比直线与圆的位置关系的判定,归纳总结出直线与椭圆的位置关系的判定,掌握代数方法, 学会解决相关的问题。 情感、态度、价值观:使得学生在学习知识的同时,培养学生自主探究和数形结合解决问题的能力。 三、教学重点、难点、关键 本着课程标准,在吃透教材基础上,我觉得这节课是解决直线与圆锥曲线综合问题的基础。对解决综合问题,我觉得只有先定性分析画出图形并观察图形,以形助数,才能定量分析解决综合问题。如:解决圆锥

圆锥曲线的光学性质

圆锥曲线光学性质的证明及应用初探 一、 圆锥曲线的光学性质 1.1 椭圆的光学性质: 从椭圆一个焦点发出的光,经过椭圆反射后,反射光线都汇聚到椭圆的另 一个焦点上; (见图1.1) 椭圆的这种光学特性,常被用来设计一些照明设备或聚热装置.例如在1F 处放置一个热源,那么红外线也能聚焦于2F 处,对2F 处的物体加热。电影放映机的反光镜也是这个原理。 证明:由导数可得切线l 的斜率0 20 20x x b x k y a y =-' ==, 而1PF 的斜率010 y k x c =+,2PF 的斜率020y k x c =- ∴l 到1PF 所成的角α'满足()()200 2 2222 2000001222 2 001000 2 00 tan 11y b x x c a y a y b x b cx k k b x y kk a b x y a cy x c a y α++++-'===+-+-+, ()00,P x y 在椭圆上,∴20tan b cy α'=,同理,2PF 到l 所成的角β'满足2 220 tan 1k k b kk cy β-'==+, ∴tan tan αβ''=,而,0, 2παβ?? ''∈ ?? ? ,∴αβ''= 1.2双曲线的光学性质 :从双曲线一个焦点发出的光,经过双曲线反射后,反射光线的反向延长线都汇聚到双曲线的另一个焦点上;(见图1.2). 双曲线这种反向虚聚焦性质,在天文望远镜的设计等方面,也能找到实际应用. 1.3 抛物线的光学性质 : 从抛物线的焦点发出的光,经过抛物线反射后,反射光线都平行于抛物线的轴(如图1.3) 抛物线这种聚焦特性,成为聚能装置或定向发射装置的最佳选择.例如探照灯、汽车大灯等反射镜面的纵剖线是抛物线,把光源置于它的焦点处,经镜面反射后能成为平行光束,使照射距离加大,并可通过转动抛物线的对称轴方向,控制照射方向.卫星通讯像碗一样接收或发射天线,一般也是以抛物线绕对称轴旋转得到的,把接收器置于其焦点,抛物线的对称轴跟踪对准卫星,这样可以把卫星发射的微弱电磁波讯号射线,最大限度地集中到接收器上,保证接收效果;反之,把发射装置安装在焦点,把对称轴跟踪对准卫星,则可以使发射的电磁波讯号射线能平行地到达卫星的接收装置,同样保证接收效果.最常见的太阳能热水器,它也是以抛物线镜面聚集太阳光,以加热焦点处的贮水器的. 图1.3 图1.2 图1.1

圆锥曲线的综合问题(答案版)讲课教案

圆锥曲线的综合问题 【考纲要求】 1.考查圆锥曲线中的弦长问题、直线与圆锥曲线方程的联立、根与系数的关系、整体代入 和设而不求的思想. 2.高考对圆锥曲线的综合考查主要是在解答题中进行,考查函数、方程、不等式、平面向 量等在解决问题中的综合运用. 【复习指导】 本讲复习时,应从“数”与“形”两个方面把握直线与圆锥曲线的位置关系.会判断已知直线与曲线的位置关系(或交点个数),会求直线与曲线相交的弦长、中点、最值、定值、点的轨迹、参数问题及相关的不等式与等式的证明问题. 【基础梳理】 1.直线与圆锥曲线的位置关系 判断直线l 与圆锥曲线C 的位置关系时,通常将直线l 的方程Ax +By +C =0(A 、B 不同时 为0)代入圆锥曲线C 的方程F (x ,y )=0,消去y (也可以消去x )得到一个关于变量x (或 变量y )的一元方程. 即?? ?==++0 ),(0y x F c By Ax ,消去y 后得02 =++c bx ax (1)当0≠a 时,设方程02 =++c bx ax 的判别式为Δ,则Δ>0?直线与圆锥曲线C 相交;Δ=0?直线与圆锥曲线C 相切;Δ<0?直线与圆锥曲线C 无公共点. (2)当0=a ,0≠b 时,即得一个一次方程,则直线l 与圆锥曲线C 相交,且只有一个交点, 此时,若C 为双曲线,则直线l 与双曲线的渐近线的位置关系是平行;若C 为抛物线, 则直线l 与抛物线的对称轴的位置关系是平行. 2.圆锥曲线的弦长 (1)定义:直线与圆锥曲线相交有两个交点时,这条直线上以这两个交点为端点的线段叫做 圆锥曲线的弦(就是连接圆锥曲线上任意两点所得的线段),线段的长就是弦长. (2)圆锥曲线的弦长的计算 设斜率为k (k ≠0)的直线l 与圆锥曲线C 相交于A ,B 两点,A (x 1,y 1),B (x 2,y 2),则|AB | =1+k 2 |x 1-x 2|=]4))[(1(212212x x x x k -++=a k ? ? +2 1=1+1 k 2·|y 1-y 2|. (抛物线的焦点弦长|AB |=x 1+x 2+p =2p sin 2 θ ,θ为弦AB 所在直线的倾斜角). 3、一种方法 点差法:在求解圆锥曲线并且题目中交代直线与圆锥曲线相交和被截的线段的中点坐标时,设出直线和圆锥曲线的两个交点坐标,代入圆锥曲线的方程并作差,从而求出直线的斜率,

相关主题
文本预览
相关文档 最新文档