当前位置:文档之家› 圆锥曲线与向量综合性问题

圆锥曲线与向量综合性问题

圆锥曲线与向量综合性问题
圆锥曲线与向量综合性问题

圆锥曲线与向量的综合性问题

一、常见基本题型:

在向量与圆锥曲线相结合的题目中,主要是利用向量的相等、平行、垂直去寻找坐标之间

的数量关系,往往要和根与系数的关系结合运用。

(1)问题的条件以向量的形式呈现,间接的考查向量几何性质、运算性质,

例1、设(1,0)F ,M 点在x 轴的负半轴上,点

P 在y 轴上,且,MP PN PM PF u u u r u u u r u u u u r u uu r .当点P 在y 轴上运动时,求点N 的轨迹C 的方程;

例2、已知椭圆的方程为22221(0)x

y a b a b ,它的一个焦点与抛物线28y x 的焦点重合,

离心率25

5e ,过椭圆的右焦点F 作与坐标轴不垂直的直线l ,交椭圆于A 、B 两点.

(1)求椭圆的标准方程;

(2)设点(1,0)M ,且()MA MB AB u uu r u u u r u u u r ,求直线l 的方程;

例3、如图,已知直线)0(1:1:22

22b a b y a x C my x L 过椭圆的右焦点F ,且交椭

圆C 于A ,B 两点,点A ,F ,B 在直线2:a x G 上的射影依次为点

D ,K ,

E ,已知抛物线y x 342的焦点为椭圆C 的上顶点。①求

椭圆C 的方程;②若直线L 交y 轴于点M ,且

BF MB AF MA 21,,当m 变化时,求21的值;

(2)所求问题以向量的形式呈现

例4、已知椭圆E 的长轴的一个端点是抛物线245y x 的焦点,离心率是6

3

(1)求椭圆E 的方程;

(2)过点(1,0)C ,斜率为k 的动直线与椭圆E 相交于A 、B 两点,请问x 轴上是否存在点M ,使为常数?若存在,求出点M 的坐标;若不存在,请说明理由。

例5、线段AB 过y 轴上一点0,N m ,AB 所在直线的斜率为

0k k ,两端点A 、B 到y 轴的距离之差为4k .

(Ⅰ)求出以y 轴为对称轴,过

A 、O 、

B 三点的抛物线方程;(Ⅱ)过该抛物线的焦点F 作动弦CD ,过

C 、

D 两点分别作抛物线的切线,设

其交点为M ,求点M 的轨迹方程,并求出

2FC FD FM u uu r uu u r u uu uu r 的值. 例6、椭圆22221(0)x

y a b a b 的左、教育博客右焦点分别为教育12,F F ,教育博客

过1F 的直线l 与椭圆交于A 、B 两点.(1)若点A 在圆

222c y x (c 为椭圆的半焦距)教育博客上,且1F A c ,求椭圆的离心率;(2)若函数)10(log 2m m x y

m 且的图象,无论m 为何值时恒过定点),(a b ,求B F A F 22的取值范围。教育博客

圆锥曲线与向量小题

圆锥曲线小题专项训练 1.已知抛物线x y 82 =的准线与双曲线A,B 两点,双曲线的一条渐近线 F 是抛物线的焦点,,且△FAB 是直角三角形,则双曲线的标准方程是( ) 2所对应的图形变成方程221x y +=所对应的图形,需经过伸缩变换?为( ) C.43x x y y '=??'=? 3的左、右焦点,A 是椭圆上位于第一象限内的一点,点B 也在椭圆 上,且满足0=+OB OA (O 为坐标原点),0212=?F F AF ,若椭圆的离心率等于则直线AB 的方程是 ( ) . A . 4.双曲线具有光学性质:“从双曲线的一个焦点发出的光线经过双曲线反射 后,反射光线的反向延长线都汇聚到双曲线的另一个焦点。”由此可得如下结论:如右图,过双曲线C :右支上的点P 的切线l 平分12F PF ∠。现过原点作l 的平行线交1PF 于M ,则||MP 等于( ) A .a B .b C D .与点P 的位置有关 5 e 右焦点为F (c ,0),方程ax 2+bx -c =0的两个实根分别为x 1和x 2,则点P (x 1,x 2) ( ) A .必在圆x 2+y 2=2内 B .必在圆x 2+y 2=2上 C .必在圆x 2+y 2=2外 D .以上三种情形都有可能 6.如图,在ΔABC C ,以A 、H 为焦点的双曲线的离心率为 ( ) A .2 B .3 C D

7 F 1是左焦点,O 是坐标原点,若双曲线上存在点P ,使1||||PO PF =,则此双曲线的离心率的取值范围是( ) A .(]1,2 B .(1,)+∞ C .(1,3) D .[)2,+∞ 8.已知双曲线)0,0(122 22>>=-b a b y a x 的左、右焦点分别为F 1、F 2,点P 在双曲线的右支上,且|PF 1|=4|PF 2|,则此双曲线的离心率e 的最大值为( )A.34 B. 35 C.2 D. 3 7 9. M ,N ,P 为椭圆上任意一点,且直线PM 则直线PN 的斜率的取值范围是( ) A . B . C . ]2,8[-- D . ]8,2[ 10.设221a b +=,()0b ≠,若直线2ax by +=和椭圆 ( ) A 、 B 、[]1,1-; C 、(][),11,-∞-+∞ ; D 、[]2,2-. 11.已知实系数方程2(1)10x a x a b +++++=的两根分别为一个椭圆和一个双曲线的离心率, 值范围是( ) A .(2,1)-- B 12.如图,已知点B x 轴下方的端点,过B 作斜率为1的直线交椭圆于点M ,点P 在y 轴上,且 PM//x 轴,9=?BM BP ,若点P 的坐标为(0,t ) ,则t 的取值范围 是( )A .0

高中数学竞赛_直线 圆锥曲线 平面向量

专题五 直线 圆锥曲线 平面向量 一 能力培养 1,函数与方程思想 2,数形结合思想 3,分类讨论思想 4,转化能力 5,运算能力 二 问题探讨 问题1设坐标原点为O,抛物线2 2y x =与过焦点的直线交于A,B 两点,求OA OB ? 的值. 问题2已知直线L 与椭圆22 221x y a b +=交于P,Q 不同两点,记OP,OQ 的斜率分别为 OP k ,OQ k ,如果22OP OQ b k k a ?=-,求PQ 连线的中点M 的轨迹方程. 问题3给定抛物线C:24y x =,F 是C 的焦点,过点F 的直线l 与C 相交于A,B 两点. (I)设l 的斜率为1,求OA 与OB 夹角的大小; (II)设FB AF λ= ,若[4,9]λ∈,求l 在y 轴上截距的变化范围. 问题4求同时满足下列三个条件的曲线C 的方程: ①是椭圆或双曲线; ②原点O 和直线1x =分别为焦点及相应准线; ③被直线0x y +=垂直平分的弦AB 的长为

三 习题探 选择题 1已知椭圆2215x y k +=的离心率e =,则实数k 的值为 A,3 B,3或 253 3 2一动圆与两圆221x y +=和228120x y x +++=都外切,则动圆圆心的轨迹为 A,圆 B,椭圆 C,双曲线的一支 D,抛物线 3已知双曲线的顶点为(2,1)-与(2,5),它的一条渐近线与直线340x y -=平行,则双曲 线的准线方程是 A,925y =± B,925x =± C,1225y =± D,1225x =± 4抛物线22y x =上的点P 到直线4y x =+有最短的距离,则P 的坐标是 A,(0,0) B,1(1,)2 C,1(,1)2 D,11(,)22 5已知点F 1 (,0)4,直线l :14 x =-,点B 是l 上的动点.若过B 垂直于y 轴的直线与线段 BF 的垂直平分线交于点M,则点M 的轨迹是 A,双曲线 B,椭圆 C,圆 D,抛物线 填空题 6椭圆22 221x y a b +=(0)a b >>上的一点到左焦点的最大距离为8,到右准线的最小距离 为103 ,则此椭圆的方程为 . 7与方程3x y =的图形关于y x =-对称的图形的方程是 . 8设P 是抛物线2 440y y x --=上的动点,点A 的坐标为(0,1)-,点M 在直线PA 上, 且分PA 所成的比为2:1,则点M 的轨迹方程是 . 9设椭圆与双曲线有共同的焦点12(1,0),(1,0)F F -,且椭圆长轴是双曲线实轴的2倍, 则椭圆与双曲线的交点轨迹是 . 解答题 10已知点H (3,0)-,点P 在y 轴上,点Q 在x 轴的正半轴上,点M 在直线PQ 上, 且满足0HP PM ?= ,32 PM MQ =- .

平面向量与圆锥曲线的综合问题

平面向量与圆锥曲线的综合问题 例1 已知F 1、F 2分别是椭圆2 214 x y +=的左、右焦点. (Ⅰ)若P 是第一象限内该数轴上的一点,125 4 PF PF ?=- ,求点P 的作标; (Ⅱ)设过定点M (0,2)的直线l 与椭圆交于同的两点A 、B ,且∠ADB 为锐角(其中O 为作标原点),求直线l 的斜率k 的取值范围. 解析:本题主要考查直线、椭圆、平面向量的数量积等基础知识,以及综合运用数学知识解决问题及推理计算能力. (Ⅰ)易知2a =,1b = ,c = ∴1(F ,2F .设(,)P x y (0,0)x y >>.则 2 2 125 (,,)34PF PF x y x y x y ?=--=+-=-,又2214 x y +=, 联立22 227414 x y x y ?+=????+=?? ,解得221134x x y y =??=?????== ???? ,P . (Ⅱ)显然0x =不满足题设条件.可设l 的方程为2y kx =+,设11(,)A x y ,22(,)B x y . 联立2 2222214(2)4(14)1612042x y x kx k x kx y kx ?+=??++=?+++=??=+? ∴1221214x x k = +,122 1614k x x k +=-+由22 (16)4(14)120k k ?=-?+?> 22163(14)0k k -+>,2430k ->,得23 4 k >.①又AOB ∠为锐角 c o s 00A O B O A O B ?∠>??>,∴12120OA OB x x y y ?=+> 又212121212(2)(2)2()4y y kx kx k x x k x x =++=+++ ∴ 1212x x y y +21212(1)2()4k x x k x x =++++222 1216(1)2()41414k k k k k =+? +?-+++ 222 12(1)21641414k k k k k +?=-+++224(4)014k k -=>+∴2144k -<<.②

专题12向量与圆锥曲线教师版

专题12 向量与圆锥曲线 ★★★高考在考什么 【考题回放】 1.点P(-3,1)在椭圆22 221(0)x y a b a b +=>>的左准线上.过点P 且方向为a =(2,-5)的 光线,经直线y =-2反射后通过椭圆的左焦点,则这个椭圆的离心率为(A ) ( A ) 33 ( B ) 31 ( C ) 22 ( D ) 2 1 2.已知双曲线22 12 y x -=的焦点为F 1、F 2,点M 在双曲线上且120,MF MF ?=则点M 到x 轴的距离为(C ) (A ) 43 (B )5 3 (C 23 (D 3 3.设过点P (x ,y )的直线分别与x 轴的正半轴和y 轴的正半轴交于A,B 两点,点Q 与点P 关于y 轴对称,O 为坐标原点,若2BP PA =且1OQ AB =,则点P 的轨迹方程 是( D ) A .22331(0,0)2x y x y + =>> B .223 31(0,0)2x y x y -=>> C .22331(0,0)2x y x y -=>> D .223 31(0,0)2 x y x y +=>> 4.已知两点M (-2,0)、N (2,0),点P 为坐标平面内的动点,满足 0=?+?MP MN ,则动点P (x ,y )的轨迹方程为( B ) (A )x y 82= (B )x y 82-= (C )x y 42= (D )x y 42-= 5.若曲线y 2=|x |+1与直线y =kx +b 没有公共点,则k 、b 分别应满足的条件是 .0,(1,1)k b =∈- 6.已知两定点()( ) 12 2,0,2,0F F -,满足条件212PF PF -=的点P 的轨迹 是曲线E ,直线y=kx-1与曲线E 交于A,B 两点。如果63AB =,且曲线E 上存在点C ,使OA OB mOC +=,求m 的值和?ABC 的面积S 。 【专家解答】由双曲线的定义可知,曲线E 是以 ()) 122,0,2,0F F -为焦点的双曲线的左支, 且2,1c a ==,易知1b =, 故曲线E 的方程为()2 2 10x y x -=< 设()()1122,,,A x y B x y ,由方程组22 1 1 y kx x y =-?? -=?

高中数学 考前归纳总结 圆锥曲线与向量的综合性问题

圆锥曲线与向量的综合性问题 一、常见基本题型: 在向量与圆锥曲线相结合的题目中,主要是利用向量的相等、平行、垂直去寻找坐 标之间的数量关系,往往要和根与系数的关系结合运用。 (1) 问题的条件以向量的形式呈现,间接的考查向量几何性质、运算性质, 例1、设(1,0)F ,M 点在x 轴的负半轴上,点P 在y 轴上,且,MP PN PM PF =⊥. 当点P 在y 轴上运动时,求点N 的轨迹C 的方程; 解:(解法一)MP PN =,故P 为MN 的中点. 设(,)N x y ,由M 点在x 轴的负半轴上,则(,0),(0,),(0)2 y M x P x -> 又(1,0)F ,(,),(1,)22 y y PM x PF ∴=--=- 又PM PF ⊥,2 04 y PM PF x ∴?=-+= 所以,点N 的轨迹C 的方程为24(0)y x x => (解法二)MP PN =,故P 为MN 的中点. 设(,)N x y ,由M 点在x 轴的负半轴上,则(,0),(0,),(0)2 y M x P x -> - 又由,MP PN PM PF =⊥,故FN FM =,可得22FN FM = 由(1,0)F ,则有222(1)(1)x y x -+=--,化简得:24(0)y x x => 所以,点N 的轨迹C 的方程为24(0)y x x => 例2、已知椭圆的方程为22221(0)x y a b a b +=>>,它的一个焦点与抛物线28y x =的焦点 重合,离心率e =,过椭圆的右焦点F 作与坐标轴不垂直的直线l ,交椭圆 于A 、B 两点. (1)求椭圆的标准方程; (2)设点(1,0)M ,且()MA MB AB +⊥,求直线l 的方程; 解:(Ⅰ)设椭圆的右焦点为(,0)c ,因为2 8y x =的焦点坐标为(2,0),所以2c = 因为c e a ==25a =,21b =

直线圆锥曲线有关向量的问题

直线圆锥曲线有关向量的问题 咼考考什么 知识要点: 1直线与圆锥曲线的公共点的情况 直线:ax by c 0 曲线:f (x, y) 0 2?连结圆锥曲线上两个点的线段称为圆锥曲线的弦,要能熟练地利用方程的根与系数关系 3?以平面向量作为工具,综合处理有关长度、角度、共线、平行、垂直、射影等问题 4. 几何与向量综合时可能出现的向量内容 (3)给出,等于已知是的中点; (5) 给出以下情形之一:①;② 存在实数;③若存在实数 ,等于已知三点共线 (6) 给出,等于已知是的定比分点,为定比,即 (7) 给出,等于已知,即是直角,给出,等于已知是钝角,给出,等于已知是锐角。 (9) 在平行四边形中,给出,等于已知是菱形 ; (10) 在平行四边形中,给出,等于已知是矩 形 ; (11) 在中,给出,等于已知是的外心(三角形外接圆的圆心,三角形的外心是三角 形三边垂直平分线的交点); (1)没有公共点 方程组无解 (2) 一个公共点 i) 相交 A 0 ii) 相切 A 0, (3)两个公共点 A 0, 0 2 (或A'y 2 B'y C' 0) Ax Bx C 0 来计算弦长,常用的弦长公式: AB 41 ―k 2 x 1 x 2

(12) 在中,给出,等于已知是的重心(三角形的重心是三角形三条中线的交点);

(13) 在中,给出,等于已知是的垂心(三角形的垂心是三角形三条高的交点); (16)在中,给出,等于已知是中边的中线 高考怎么考 主要题型: 1 ?三点共线问题; 2 ?公共点个数问题; 3 ?弦长问题; 4.中点问题;5 .定比分点问题;6.对称问题;7.平行与垂直问题;8.角的问题。 近几年平面向量与解析几何交汇试题考查方向为 (1) 考查学生对平面向量知识的简单运用,如向量共线、垂直、定比分点。 (2) 考查学生把向量作为工具的运用能力,如求轨迹方程,圆锥曲线的定义,标准方 程和几何性质,直线与圆锥曲线的位置关系。 特别提醒: 法和韦达定理是解决直线和圆锥曲线位置关系的重要工具。 关于y 轴对称,0 (1) 求椭圆C 2的方程; (2) 设O 为坐标原点,点 A, B 分别在椭圆G 和C 2上,O B= 2OA 求直线AB 的方程. 2 2 y x 解:(1)由已知可设椭圆C 2的方程为—+ = 1(a >2), a 4 其离心率为 ,故 —-= ,贝U a = 4,故椭圆C2的方程为鲁+x = 1. 2 a 2 16 4 (2)解法一:A , B 两点的坐标分别记为(X A , y A ) , (X B , y s ), 由O B= 2了及(1)知,0 A B 三点共线且点 A , B 不在y 轴上,因此可设直线 AB 的方程 为 y = kx . x 2 4 将 y = kx 代入匚 + y 2 = 1 中,得(1 + 4k 2)x 2 = 4,所以 x A = 2, 4 1 + 4k 2 2 例1.过点P (x , y )的直线分别与x 轴的正半轴和 y 轴的正半轴交于 A,B 两点,点Q 与点P 为坐标原点,若 uu r BP uuu 且 UULT UUU 2PA OQ ? AB 则点P 的轨迹方程是(D ) A. 3x 2 1(x 0,y 0) 3x 2 3 y 2 1(x 0,y 0) 2 c. 3y 2 1(x 0,y 0) -x 2 3y 2 1(x 0, y 0) 2 例2. 已知椭圆C : 椭圆 C 2以C 的长轴为短轴,且与 C 有相同的离心率.

圆锥曲线空间向量和试题

圆锥曲线与方程同步测试 一、选择题(本小题共12小题,每小题5分,共60分) 1.准线方程为x=1的抛物线的标准方程是( ) A. 2 2y x =- B. 2 4y x =- C. 2 2y x =- D. 2 4y x = 2.曲线 221(6)106x y m m m +=<--与曲线22 1(59)59x y m m m +=<<--的( ) A.焦距相等 B.离心率相等 C.焦点相同 D.准线相同 3已知两定点1(1,0)F -、2(1,0)F 且12F F 是1PF 与2PF 的等差中项,则动点P 的轨迹方程是( ) A. 221169x y += B.2211612x y += C. 22143x y += D. 22134 x y += 4.已知双曲线2221(2x y a a -=>的两条渐近线的夹角为3π ,则双曲线的离心率为 ( ) (A )3 (B )3 (C (D )2 5. 双曲线 221(0)x y mn m n -=≠的离心率为2, 有一个焦点与抛物线24y x =的焦点重合,则mn 的值为( ) A. 316 B.38 C.163 D.83 6. 设双曲线以椭圆22 1259 x y +=长轴的两个端点为焦点,其准线过椭圆的焦点,则双曲线的渐近线的斜率为( ) A.2± B.43± C.12± D.34 ± 7. 抛物线2 4y x =上的一点M 到焦点的距离为1,则点M 的纵坐标是( ) A. 1716 B. 1516 C. 7 8 D. 0 8.直线y=x+3与曲线9 y 2-4x x ?=1交点的个数为 ( ) A. 0 B. 1 C. 2 D. 3 9过抛物线2 4y x =的焦点作一条直线与抛物线相交于A 、B 两点,它们的横坐标之和等于5,则这样的直线( ) A. 不存在 B. 有无穷多条 C. 有且仅有一条 D. 有且仅有两条

圆锥曲线综合练习试题(有答案)

圆锥曲线综合练习 一、 选择题: 1.已知椭圆221102 x y m m +=--的长轴在y 轴上,若焦距为4,则m 等于( ) A .4 B .5 C .7 D .8 2.直线220x y -+=经过椭圆22 221(0)x y a b a b +=>>的一个焦点和一个顶点,则该椭圆的离心率为( ) A B .12 C .2 3 3.设双曲线22 219 x y a -=(0)a >的渐近线方程为320x y ±=,则a 的值为( ) A .4 B .3 C .2 D .1 4.若m 是2和8的等比中项,则圆锥曲线2 2 1y x m +=的离心率是( ) A B C D 5.已知双曲线22 221(00)x y a b a b -=>>,,过其右焦点且垂直于实轴的直线与双曲线交于M N , 两点,O 为坐标原点.若OM ON ⊥,则双曲线的离心率为( ) A B 6.已知点12F F ,是椭圆2 2 22x y +=的两个焦点,点P 是该椭圆上的一个动点,那么12||PF PF +u u u r u u u u r 的最小值是( ) A .0 B .1 C .2 D .7.双曲线221259 x y -=上的点到一个焦点的距离为12,则到另一个焦点的距离为( ) A .22或2 B .7 C .22 D .2 8.P 为双曲线22 1916 x y -=的右支上一点,M N ,分别是圆22(5)4x y ++=和22(5)1x y -+= 上的点, 则||||PM PN -的最大值为( ) A .6 B .7 C .8 D .9 9.已知点(8)P a ,在抛物线24y px =上,且P 到焦点的距离为10,则焦点到准线的距离为( ) A .2 B .4 C .8 D .16 10.在正ABC △中,D AB E AC ∈∈,,向量12DE BC =u u u r u u u r ,则以B C ,为焦点,且过D E ,的双曲线离心率为( ) A B 1 C 1 D 1 11.两个正数a b ,的等差中项是92,一个等比中项是a b >,则抛物线2b y x a =-的焦点坐标是( ) A .5(0)16- , B .2(0)5-, C .1(0)5-, D .1 (0)5 , 12.已知12A A ,分别为椭圆22 22:1(0)x y C a b a b +=>>的左右顶点,椭圆C 上异于12A A ,的点P

专题12向量与圆锥曲线教师版

专题12向量与圆锥曲线 ★★★高考在考什么 【考题回 放】 2 占 1(a b 0)的左准线上?过点P 且方向为a=(2,-5)的 b 光线,经直线y =-2反射后通过椭圆的左焦点,则这个椭圆的离心率为 (C) 3 2 x i .点P(-3,i)在椭圆弋 a (A ) 占 八、、 2.已知双曲线X 2 M 到x 轴的距离为( 2 y 2 C ) 1的焦点为 F i 、 F 2, 点M 在双曲线上且 uuu ur MF i 1 (D )- 2 UUULT MF 2 0,则 (A ) 4 3 3.设过点P(x,y)的直线分别与 (B ) 5 3 x 轴的正半轴和y 轴的正半轴交于 UUU UUU UULT UUU (D ) .3 点P 关于y 轴对称, O 为坐标原点,若 BP 2PA 且 OQgAB 1,则点 是 (D ) A . 3x 2 3 2 2y 1(x 0,y 0) B . 3x 2 3 2 尹 1(x 0,y 0) 3 2 C . - x 2 3y 2 1(x 0,y 0) D . 3 2 x 3y 2 1(x 0,y 0) uu r 为坐标平面内的动点,满足 (-2 , 0)、 N 0),点 P 4 .已知两点 M A,B 两点,点Q 与 P 的轨迹方程 (2, MN MP (A ) y 2 5.若曲线 MN NP 0,则动点 P (x , y )的轨迹方程为(B ) 2 2 2 8x (B ) y 8x (C ) y 4x (D ) y 4x y 2 = |x|+ 1与直线y = kx + b 没有公共点,则k 、b 分别应满足的条件是 _ .k 0,b ( 1,1) 2的点P 的轨迹 6 ?已知两定点F i 12,0 ,F 2 .2,0 ,满足条件 UU UU PF 2 PF i 是曲线E ,直线y=kx-1与曲线E 交于A,B 两点。如果 AB UUU uuu UULT C ,使OA OB mOC ,求m 的值和 ABC 的面积 S 。 E 是以 【专家解答】由双曲线的定义可知,曲线 F 1 .2,0 ,F 2 . 2,0为焦点的双曲线的左支, 且c -、2, a 1,易知 故曲线E 的方程为x 2 b 1, y 2 1 x 设 A x i ,y i ,B X 2,y 2 ,由方程组 kx 1 y 2 i 6、, 3,且曲线E 上存在点

圆锥曲线三大难点解读

圆锥曲线三大难点解读 山东 王中华 李燕 2006年高考数学试题圆锥曲线部分全面考查曲线定义、简单性质等基础知识,还对最值与定值(定点)、求参数范围(或值)、存在与对称等问题加大了考查力度.本文对各地考题归类整理,并探讨这三大难点的求解策略. 难点一、最值与定值(定点)问题 圆锥曲线的最值与定值(定点)问题一直是高考的一大难点. 最值问题求解策略是:几何法与代数法,前者用于条件与结论有明显几何意义,利用图形性质来解决的类型;后者则将结论转化为目标函数,结合配方法、判别式法、基本不等式及函数的单调性等知识求解. 定值(定点)问题求解策略是:从特殊入手,求出定点或定值,再证明这个点(值)与变量无关.也可以在推理、计算过程中消去变量,直接得到定点(或定值). 例1 (江西卷理21)如图1,椭圆2222:1(0) x y Q a b a b +=>>的右焦点(0)F c ,,过点F 的一动直线m 绕点F 转动,并且交椭圆于A B ,两点,P 是线段AB 的中点. (1)求点P 的轨迹H 的方程; (2)在Q 的方程中,令2 1cos sin a θθ=++, 2sin 0b θθπ? ?=< ?2??≤,确定θ的值,使原点距椭圆Q 的右准线l 最远,此时,设l 与 x 轴交点为D .当直线m 绕点F 转动到什么位置时,ABD △的面积最大? 分析:求轨迹方程可用“设而不求”法,考虑AB 的斜率是否存在,注意到AB 与PF 共线,得方程为2 2 2 2 2 0b x a y b cx +-=;在第(2)问中,由2 a 、 2b 不难得到满足要求的1c =,为避免讨论直线m 的斜率是否存在,可设m 的方程为1x ky =+,再利用三角函数求出θ, ABD △的面积用A B ,纵坐标可表示为121 2 S y y =-, 当直线m 垂直于x 轴时,ABD △的面积最大. 点评:本题集轨迹方程、最值问题、动态几何于一身,运用了点差法、分类讨论思想、二次方程根与系数的关系、三角函数的有界性、分离变量法、均值不等式法等,对各种能力的综合要求非常高. 注:与最值相关的试题,还有江西卷理科第9题、北京卷理科第19题、全国卷I 理科第20题、文科第21题、山东卷文科第21题等. 例2 (全国卷Ⅱ理21文22)已知抛物线2 4x y =的焦点为F ,A B ,是抛物线上的两动点,且(0)AF FB λλ=>u u u r u u u r .过A B ,两点分别作抛物线的切线,设其交点为M . (1)证明FM u u u u r ·AB u u u r 为定值;

圆锥曲线练习试题与详细答案

圆锥曲线归纳总结 ——for Yuri 第22sin cos θθ+部分:知识储备 1. 直线方程的形式 (1)直线方程的形式有五件:点斜式、两点式、斜截式、截距式、一般式。 (2)与直线相关的重要内容 ①倾斜角与斜率tan ,[0,)k ααπ=∈ ②点到直线的距离d = ③夹角公式:2121 tan 1k k k k α-=+ (3)弦长公式 直线y kx b =+上两点1122(,),(,)A x y B x y 间的距离: 12AB x =-=或12AB y y =- (4)两条直线的位置关系 ①1212l l k k ⊥?=-1 ② 212121//b b k k l l ≠=?且 2、圆锥曲线方程及性质 (1) 椭圆的方程的形式有几种?(三种形式) 标准方程:22 1(0,0)x y m n m n m n + =>>≠且 距离式方程2a = 参数方程:cos ,sin x a y b θθ== (2) 双曲线的方程的形式有两种

标准方程:22 1(0)x y m n m n + =?< 距离式方程 :2a = (3) 三种圆锥曲线的通径 椭圆:22b a ;双曲线:2 2b a ;抛物线:2p (4) 圆锥曲线的定义 黄楚雅,分别回忆第一定义和第二定义! (5) 焦点三角形面积公式: P 在椭圆上时,122tan 2F PF b θ?=S P 在双曲线上时,122cot 2 F PF b θ ?=S (其中222 1212121212||||4,cos ,||||cos ||||PF PF c F PF PF PF PF PF PF PF θθθ+-∠===?) (6) 记住焦半径公式: ①椭圆焦点在时为0a ex ±,焦点在y 轴上时为0a ey ± ②双曲线焦点在x 轴上时为0||e x a ± ③抛物线焦点在x 轴上时为0||2p x + ,焦点在y 轴上时0||2 p y + 3333333333333333333333333333333333333333333333333华丽的分割线3333333333333333333333333333333333333333333333333333333 第0sin xdx π ?部分:三道核心例题 例1.椭圆长轴端点为,A B ,O 为椭圆中心,F 为椭圆的右焦点,且1AF FB ?=, 1OF =。 (1)求椭圆的标准方程; (2)记椭圆的上顶点为M ,直线交椭圆于,P Q 两点,问:是否存在直线 l

高二数学圆锥曲线练习题及答案超经典习题

京翰提示:圆锥曲线的考题一般是两个选择、一个填空、一个解答题,客观题的难度为中等,解答题目相对较难,同时平面向量的介入,增加了本专题高考命题的广度圆锥曲线高考热点题型归纳。正圆锥曲线的考题一般是两个选择、一个填空、一个解答题,客观题的难度为中等。 高二数学—圆锥曲线综合练习 一、选择题(本大题共12小题,每小题5分,共60分) 1.已知|→ a |=|→ b |,→ a ⊥→ b ,且(→a +→b )⊥(k → a -→ b ) ,则k 的值是( ) A .1 B .-1 C .0 D .-2 2、已知3a =r ,23b =r ,3a b ?=-r r ,则a r 与b r 的夹角是( ) A 、150? B 、120? C 、60? D 、30? 3、若)()(),1,2(),4,3(b a b x a b a -⊥+-==且,则实数x=( ) A 、23 B 、223 C 、323 D 、4 23 4、已知(1,2)a =r ,(2,3)b x =-r 且a r ∥b r ,则x =( ) A 、-3 B 、34 - C 、0 D 、 34 5.椭圆12222=+b y a x (a >b>0)离心率为23,则双曲线12222=-b y a x 的离心率为 ( ) A . 45 B .2 5 C .32 D .4 5 6.抛物线顶点在原点,焦点在y 轴上,其上一点P(m ,1)到焦点距离为5,则抛物线方程为( ) A .y x 82 -= B .y x 82 = C . y x 162 -= D .y x 162 = 7.若过原点的直线与圆2 x +2 y +x 4+3=0相切,切点在第三象限,直线的方程是( ) A .x y 3= B .x y 3-= C .x y 3 3 = D .x y 3 3- =

高考数学圆锥曲线及解题技巧

椭圆与双曲线的性质 椭 圆 1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角. 2. PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长 轴的两个端点. 3. 以焦点弦PQ 为直径的圆必与对应准线相离. 4. 以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切. 5. 若000(,)P x y 在椭圆22221x y a b +=上,则过0P 的椭圆的切线方程是00221x x y y a b +=. 6. 若000(,)P x y 在椭圆22 221x y a b +=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线 方程是00221x x y y a b +=. 7. 椭圆22 221x y a b += (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点12F PF γ∠=,则椭圆 的焦点角形的面积为122 tan 2 F PF S b γ ?=. 8. 椭圆22 221x y a b +=(a >b >0)的焦半径公式: 10||MF a ex =+,20||MF a ex =-(1(,0)F c - , 2(,0)F c 00(,)M x y ). 9. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和AQ 分别交相应 于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF. 10. 过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF. 11. AB 是椭圆22221x y a b +=的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则2 2OM AB b k k a ?=-, 即020 2y a x b K AB -=。 12. 若000(,)P x y 在椭圆22 221x y a b +=内,则被Po 所平分的中点弦的方程是2200002222x x y y x y a b a b +=+. 13. 若000(,)P x y 在椭圆22221x y a b +=内,则过Po 的弦中点的轨迹方程是22002222x x y y x y a b a b +=+. 双曲线 1. 点P 处的切线PT 平分△PF 1F 2在点P 处的内角. 2. PT 平分△PF 1F 2在点P 处的内角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除 去长轴的两个端点. 3. 以焦点弦PQ 为直径的圆必与对应准线相交. 4. 以焦点半径PF 1为直径的圆必与以实轴为直径的圆相切.(内切:P 在右支;外切:P 在左支)

向量与圆锥曲线教学文案

圆锥曲线 一.向量与圆锥曲线: .OA OM ;,;21型型型OB PQ PB PQ PA PB AP μλλλλ+==== 例1.已知B A ,是椭圆1222=+y x 上的两点,并且点)0,2(-N 满足λ=,当?? ? ???∈31,51λ时,求直线AB 斜率的取值范围. 例 2.已知抛物线x y C 4:2 =,过抛物线的焦点F 的直线交C 于B A ,两点,交准线l 于点M ,已知 21,λλ==,求21λλ+. 例3.已知椭圆2 2233b y x =+,斜率为1且过右焦点F 的直线交椭圆于B A ,两点,M 为椭圆上任一点,且μλ+=, 求2 2 μλ+. 方法总结: (1)若能得到21x x λ=, 则构造出两根之和与两根之积得???=+=+2 2 212 21)1(x x x x x x λλ消去得λ λ2 21221)1()(+= +x x x x ,再利用韦达定理应用; (2)若21,λλ==,则可以用B A ,的横坐标21,x x 或纵坐标21,y y 来表示1λ和2λ,当 1λ和2λ满足一定的关系时,进一步用韦达定理作整体代换; (3)直线与圆锥曲线相交于B A ,两点,若点M 满足OB μλ+=OA OM ,用B A ,两点的坐标来表示M ,如果M 在曲线上,则将M 的坐标表达式代入曲线方程,如果M 没有在曲线上,则必须把M 的坐标表达式构造成曲线方程的形式进行处理.

课后练习: 1.已知定点)0,2(M ,若过点M 的直线l (斜率不为零)与椭圆13 22 =+y x 交于不同的两点F E ,(E 在点F M ,之间),记OMF OME S S ??=λ, 求实数λ的取值范围. 2.椭圆12322 22=+c y c x 的两个焦点分别为)0,(1c F -和)0,(2c F ,过点)0,3(c E 的直线与椭圆交于B A ,两点, 且||2||,//2121 B F A F B F A F =, 求直线AB 的斜率. 3.已知抛物线x y C 4:2 =,过点)2,0(M 的直线l 与抛物线交于B A ,两点,且直线l 与x 轴交于点C ,设βα==,,试问βα+是否为定值, 若是, 求出此定值; 若不是, 请说明理由. 4.椭圆12 3:2 2=+y x C ,过右焦点F 的直线l 与C 交于B A ,两点,C 上是否存在点P ,使得当l 绕F 转到某一位置时,有OB OA OP +=成立?若存在,求出所有P 的坐标与l 的方程;若不存在, 请说明 理由.

圆锥曲线-共线向量问题(原题+答案)

直线与圆锥曲线的位置关系 专题四:共线向量问题 1、设过点D(0,3)的直线交曲线M :22 194 x y +=于P 、Q 两点,且DP DQ l =uuu r uuu r ,求实数l 的取值范围。 分析:由DP DQ l =uuu r uuu r 可以得到121 23(3)x x y y l l ì?=?í?=+-??,将P(x 1,y 1),Q(x 2,y 2),代人曲线方程,解出点的坐标,用l 表示出来。 解:设P(x 1,y 1),Q(x 2,y 2), Q DP DQ l =uuu r uuu r \(x 1,y 1-3)=l (x 2,y 2-3) 即121 23(3)x x y y l l ì=??í?=+-??? 方法一:方程组消元法 又Q P 、Q 是椭圆29x +24y =1上的点\22222222194()(33)19 4x y x y l l l ì??+=???í?+-?+=???? 消去x 2,可得222222(33)14 y y l l l l +--=- 即y 2=1356l l - 又Q -2£y 2£2,\-2£1356l l -£2 解之得:155 λ≤≤ 则实数l 的取值范围是1,55?? ????。 方法二:判别式法、韦达定理法、配凑法 设直线PQ 的方程为:3,0y kx k =+≠, 由2234936 y kx x y =+??+=?消y 整理后,得22(49)54450k x kx +++= P 、Q 是曲线M 上的两点 22(54)445(49)k k ∴?=-?+=2144800k ->即295k > ① 由韦达定理得:1212225445,4949k x x x x k k +=-=++ 212121221 ()2x x x x x x x x +=++ 222254(1)45(49)k k λλ+∴=+即22223694415(1)99k k k λλ+==++ ②

高考圆锥曲线解题技巧总结

第五篇 高考解析几何万能解题套路 解析几何——把代数的演绎方法引入几何学,用代数方法来解决几何问题。 与圆锥曲线有关的几种典型题,如圆锥曲线的弦长求法、与圆锥曲线有关的最值(极值)问题、与圆锥曲线有关的证明问题以及圆锥曲线与圆锥曲线有关的证明问题等,在圆锥曲线的综合应用中经常见到。 第一部分:基础知识 1.概念 特别提醒:(1)在求解椭圆、双曲线问题时,首先要判断焦点位置,焦点F 1,F 2的位置,是椭圆、双曲线的定位条件,它决定椭圆、双曲线标准方程的类型,而方程中的两个参数,a b ,确定椭圆、双曲线的形状和大小,是椭圆、双曲线的定形条件;在求解抛物线问题时,首先要判断开口方向; (2)在椭圆中,a 最大,222 a b c =+,在双曲线中,c 最大,222c a b =+。 2.圆锥曲线的几何性质: (1)椭圆(以122 22=+b y a x (0a b >>)为例):①范围:,a x a b y b -≤≤-≤≤;②焦点:两个焦点(,0)c ±;③对称性:两条对称轴0,0x y ==,一个对称中心(0,0), 四个顶点(,0),(0,)a b ±±,其中长轴长为2a ,短轴长为2b ;④准线:两条准线2 a x c =±; ⑤离心率:c e a =,椭圆?01e <<,e 越小,椭圆越圆;e 越大,椭圆越扁。 (2)双曲线(以22221x y a b -=(0,0a b >>)为例):①范围:x a ≤-或,x a y R ≥∈;②焦点:两个焦点(,0)c ±;③对称性:两条对称轴0,0x y ==,一个对称中心(0,0),两个顶点(,0)a ±,其中实轴长为2a ,虚轴长为2b ,特别地,当实轴和虚轴的长相等时, 称为等轴双曲线,其方程可设为22,0x y k k -=≠;④准线:两条准线2a x c =±; ⑤离 心率:c e a =,双曲线?1e >,等轴双曲线?e =e 越小,开口越小,e 越大,开口越大;⑥两条渐近线:b y x a =±。 (3)抛物线(以22(0)y px p =>为例):①范围:0,x y R ≥∈;②焦点:一个焦 点(,0)2 p ,其中p 的几何意义是:焦点到准线的距离;③对称性:一条对称轴0y =,没有对称中心,只有一个顶点(0,0);④准线:一条准线2p x =-; ⑤离心率:c e a =,抛物线?1e =。

直线圆锥曲线与向量的综合问题

直线圆锥曲线与向量的综合问题 高考考什么 知识要点: 1.直线与圆锥曲线的公共点的情况 00 ),(0 2=++??? ?==++C Bx Ax y x f c by ax 曲线:直线:)0'''(2=++C y B y A 或 (1)没有公共点 → 方程组无解 (2)一个公共点 → 0 ,0)0)=?≠→=→A ii A i 相切相交 (3)两个公共点 → 0,0>?≠A 2.连结圆锥曲线上两个点的线段称为圆锥曲线的弦,要能熟练地利用方程的根与系数关系来计算弦长,常 用的弦长公式:1212AB x y y =-=- 3.以平面向量作为工具,综合处理有关长度、角度、共线、平行、垂直、射影等问题 4.几何与向量综合时可能出现的向量容 (1) 给出直线的方向向量或; (2)给出与相交,等于已知过的中点; (3)给出,等于已知是的中点; (4)给出,等于已知A 、B 与PQ 的中点三点共线; (5) 给出以下情形之一:①;②存在实数;③若存在实数,等于已知三点共线. (6) 给出,等于已知是的定比分点,为定比,即 (7) 给出,等于已知,即是直角,给出,等于已知是钝角, 给出,等于已知是锐角。 (8)给出,等于已知是的平分线。 (9)在平行四边形中,给出,等于已知是菱形;

(10)在平行四边形中,给出,等于已知是矩形; (11)在中,给出,等于已知是的外心(三角形外接圆的圆心,三角形的外心是三角形三边垂直平分线的交点); (12)在中,给出,等于已知是的重心(三角形的重心是三角形三条中线的交点);(13)在中,给出,等于已知是的垂心(三角形的垂心是三角形三条高的交点); (14)在中,给出等于已知通过的心; (15)在中,给出等于已知是的心(三角形切圆的圆心,三角形的心是三角形三条角平分线的交点); (16)在中,给出,等于已知是中边的中线; 高考怎么考 主要题型: 1.三点共线问题;2.公共点个数问题;3.弦长问题; 4.中点问题;5.定比分点问题;6.对称问题;7.平行与垂直问题;8.角的问题。 近几年平面向量与解析几何交汇试题考查方向为 (1)考查学生对平面向量知识的简单运用,如向量共线、垂直、定比分点。 (2)考查学生把向量作为工具的运用能力,如求轨迹方程,圆锥曲线的定义,标准方程和几何性质,直线与圆锥曲线的位置关系。 特别提醒:法和韦达定理是解决直线和圆锥曲线位置关系的重要工具。 高考真题 1.[2012·卷] 若n=(-2,1)是直线l的一个法向量,则l的倾斜角的大小为________(结果用反三角函数值表示)..arctan2 [解析] 考查直线的法向量和倾斜角,关键是求出直线的斜率. 由已知可得直线的斜率k× 1 -2 =-1,∴k=2,k=tanα,所以直线的倾斜角α=arctan2. 2.[2012·卷] 如图1-3,设椭圆的中心为原点O,长轴在x轴上,上顶点为A,左、右焦点分别为F1,F2,线段OF1,OF2的中点分别为B1,B2,且△AB1B2是面积为4的直角三角形. 图1-3

平面向量的解题技巧

第四讲平面向量的解题技巧 【命题趋向】由2007年高考题分析可知: 1.这部分内容高考中所占分数一般在10分左右. 2.题目类型为一个选择或填空题,一个与其他知识综合的解答题. 3.考查内容以向量的概念、运算、数量积和模的运算为主. 【考点透视】“平面向量”是高中新课程新增加的内容之一,高考每年都考,题型主要有选择题、填空题,也可以与其他知识相结合在解答题中出现,试题多以低、中档题为主. 透析高考试题,知命题热点为: 1.向量的概念,几何表示,向量的加法、减法,实数与向量的积. 2.平面向量的坐标运算,平面向量的数量积及其几何意义. 3.两非零向量平行、垂直的充要条件. 4.图形平移、线段的定比分点坐标公式. 5.由于向量具有“数”与“形”双重身份,加之向量的工具性作用,向量经常与数列、三角、解析几何、立体几何等知识相结合,综合解决三角函数的化简、求值及三角形中的有关问题,处理有关长度、夹角、垂直与平行等问题以及圆锥曲线中的典型问题等. 6.利用化归思想处理共线、平行、垂直问题向向量的坐标运算方面转化,向量模的运算转化为向量的运算等;利用数形结合思想将几何问题代数化,通过代数运算解决几何问题. 【例题解析】 1. 向量的概念,向量的基本运算 (1)理解向量的概念,掌握向量的几何意义,了解共线向量的概念. (2)掌握向量的加法和减法. (3)掌握实数与向量的积,理解两个向量共线的充要条件. (4)了解平面向量的基本定理,理解平面向量的坐标的概念,掌握平面向量的坐标运算. (5)掌握平面向量的数量积及其几何意义,了解用平面向量的数量积可以处理有关长度、角度和垂直的问题, 掌握向量垂直的条件. (6)掌握平面两点间的距离公式. 例1(2007年北京卷理)已知O是ABC △所在平面内一点,D为BC边中点,且2OA OB OC ++=0,那么()A.AO OD =D.2AO OD AO OD = AO OD =B.2 =C.3

相关主题
文本预览
相关文档 最新文档