当前位置:文档之家› 胶体化学大汇总 (1)

胶体化学大汇总 (1)

胶体化学大汇总 (1)
胶体化学大汇总 (1)

1.分散体系的分类?

根据被分散物质分散的程度可将分散体系分为粗分散体系、胶体分散体系和分子分散体系。

2.什么是胶体?

颗粒大小在1~1000nm范围内的分散相粒子称为胶体

3.胶体制备一般需具备什么条件?常用的制备方法有哪些,举例说明?

条件:a。固体分散相粒子要足够小,使其有一定的动力学稳定性;b。分散相在分散介质中的溶解度要足够小,形成分散相的反应物浓度低;c。为了使分散相粒子具有抗凝结而保持稳定的性质,体系中必须有第三种物质存在

方法:分散法——机械粉碎法、超声分散法、电分散法、胶溶法

凝聚法——化学凝聚、物理凝聚

胶溶法——吸附溶胶、洗涤沉淀胶溶、表面解离溶胶

例子:洗涤沉淀胶溶法制备普鲁士蓝溶胶、改换介质法制备硫溶胶。

4.什么是单分散溶胶?单分散溶胶制备的原理?

在特定条件下制备的粒子大小、形状、组成均相同的溶胶称为单分散溶胶。

原理:在溶液中产物浓度超过其饱和浓度,并略高于成核浓度时,在短时间内形成全部晶核。晶核形成后,溶液浓度迅速减小,低于成核浓度(仍高于饱和浓度),不再形成新晶核。已形成的晶核在此浓度下以相同速度长大,从而得到单分散胶体粒子。

5.什么是胶体晶体?胶体晶体制备中采用模板剂的作用是什么?

由一种或多种单分散的胶体粒子组装并规整排列的二维或三维有序结构称为胶体晶体,又称合成蛋白石。

作用:引导,组装胶体粒子

6.什么是反渗透?

若在渗透平衡后在浓相一侧施加外压p(p>Π),则浓相的溶剂分子将向稀相迁移,故称反渗透。

7.纳米粒子的特性是什么?产生电动现象的根本原因是什么?

特性:①表面与界面效应②小尺寸效应③量子尺寸效应④宏观量子隧道效应

根本原因:胶体粒子常带有一定符号和数量的电荷。

8.为什么分散相质点在分散介质中表面常会带某种电荷?

当分散相与分散介质接触时,因为分散相质点表面解离或者吸附溶液中某些离子从而使表面带有电荷。

9.界面移动电泳和显微电泳各适用何种体系?

界面移动电泳主要用于蛋白质系统等生物大分子体系,显微电泳主要用于显微镜下可见胶体粒子的体系。

10.什么是临界聚沉浓度,它由哪些参数决定?

临界聚沉浓度是在一定时间内引起疏液体系胶体有明显变化所需要加入惰性电解质的最小浓度。临界聚沉浓度主要由体系中反离子大小和价数、胶体粒子浓度、电解质加入方式和时间等因素决定。

11.江河出口处为什么形成三角洲?

江河携带的泥沙在到达入海口与海水接触时,因海水中大量电解质的作用,使其携带的泥沙上

的电荷被中和,悬浊液的性质被破坏,这样泥沙就不能继续稳定地悬停在水中了,只好沉淀下来,加上海水的流速小于江河水的,于是就在入海口处沉积了下来,年深月久,就形成了三角洲。12.为什么不同型号的墨水不宜混用?

墨水属于胶体,一些品牌的墨水中胶粒带正电荷,一些品牌的墨水中胶粒带负电荷,两电性不同的胶粒混合会发生聚沉而使钢笔堵塞

13.试举例说明胶体的电动现象及其在环境治理方面的应用。

电动现象是悬浮于分散介质中带某种电荷的胶体在外电场的作用下产生与液体介质的相对运动,或是带点固体与介质因相对运动而产生电势差,统称电动现象。电动现象有四种:电泳,电渗,流动电势和沉降电势。

电动现象在治理环境方面的应用:1、污水处理,向污水中加入NaHCO3和Al2(SO4)3,生成聚合水合氧化铝无定形沉淀物,在其生成和沉淀过程中同时将废水中悬浮物裹挟下来从而除去。

2、可以用电渗法将污染物从渗透性不良的土壤中带到土壤表面。

14.什么是纸上电泳?试举一两例其应用实例

纸上电泳是根据电泳现象在渗透了缓冲液的滤纸加上电场使物质移动的电泳法。也就是把样品以带状加在作为支持体的滤纸内来检测其移动和分离的方法。常用以分离性质相似的物质,如各种氨基酸的分离和稀土元素的分离等。

15.面粉厂为什么要防火?面粉厂、棉纺厂、亚麻厂中的粉尘为什么也能引起爆炸?

面粉是是碳水化和物,因此是可燃物(前提条件);(2)面粉颗粒微小,成悬浮状态悬浮在空气中,与氧的接触面积很大;(3)悬浮的面粉颗粒达到了一定浓度(临界值)(4)温度达到着火点的火源,当满足以上几个条件时,面粉厂就可能发生爆炸,因此要注意防火。

根据可燃粉尘爆炸具备的三个条件,即粉尘本身具有爆炸性;粉尘必须悬浮在空气中并与空气混合到爆炸浓度;有足以引起粉尘爆炸的热能源。面粉厂,棉纺厂,亚麻厂中的粉尘夹杂着面粉,棉纺或亚麻形成可燃性物质悬浮在空中,与空气充分混合,一遇到明火就迅速燃烧,且接触面积越大燃烧越快越剧烈,此时空气迅速膨胀,最终引起爆炸。

16.晴朗的天空为什么是蓝色?为什么只有早上和晚上才看到霞光?

根据瑞利散射定律,太阳光谱中的波长较短的紫、蓝、青等颜色的光最容易散射出来,而波长较长的红、橙、黄等颜色的光透射能力很强。因此,我们看到晴朗的天空总是呈蔚蓝色

霞是由于日出和日落前后,阳光通过厚厚的大气层,被大量的空气分子散射的结果。当空中的尘埃、水汽等杂质愈多时,其色彩愈显著。如果有云层,云块也会染上橙红艳丽的颜色。

17.一把小麦,用火柴点燃不易着火,若磨成极细的面粉,并分散于容器中,易着火甚至爆炸。因为细小晶体颗粒比大颗粒具有更高的表面能,在较低的温度下即可达到面粉着火点所需的能量,故细的面粉容易着火甚至爆炸。

18.什么是单分散溶胶?其优点是什么?

单分散溶胶:或称均匀分散溶胶,它是指在特定条件下制备的粒子大小,形状,组成均相同的溶胶。

优点:粒径细、比表面大,晶粒均匀。

19.为什么自然界中液滴、气泡总是圆形的?为什么气泡比液滴更容易破裂?

同样体积的水,以球形的表面积为最小,亦即在同样条件下,球形水滴其表面吉布斯自由能相对

为最小。气泡同理。

半径极小的气泡内的饱和蒸气压远小于外压,因此在外压的挤压下,小气泡更容易破裂。

20.说出几种常见的测定液体表(界)面张力的方法和主要利用的原理。

方法:液体表面张力的测定方法分静力学法和动力学法。静力学法有毛细管上升法、du Noüy 环法、Wilhelmy 盘法、旋滴法、悬滴法、滴体积法、最大气泡压力法; 动力学法有震荡射流法、毛细管波法

原理:毛细管上升法: γ=1 /2(ρl-ρg)ghr cosθ ,式中γ为表面张力, r 为毛细管的半径, h 为毛细管中液面上升的高度,ρl为测量液体的密度,ρg为气体的密度( 空气和蒸气) , g 为当地的重力加速度, θ为液体与管壁的接触角。若毛细管管径很小, 而且θ=0 时, 则上式可简化为γ=1/2ρghr Wilhelmy 盘法: W总-W片=2γlcosφ,式中,W 总为薄片与液面拉脱时的最大拉力,W片为薄片的重力, l 为薄片的宽度, 薄片与液体的接触的周长近似为2l, φ为薄片与液体的接触角。

悬滴法: 由Laplace 公式, 描述在任意的一点P曲面内外压差为

γ( 1R1+ 1R2)=p0+(ρl-ρg)gz,式中R1, R2 为液滴的主曲率半径; z 为以液滴顶点O 为原点, 液滴表面上P 的垂直坐标; P0 为顶点O 处的静压力。

滴体积法: 当一滴液体从毛细管滴头滴下时, 液滴的重力与液滴的表面张力以及滴头的大小有关。简单关系式:mg=2πrγ. 实验结果表明, 实际体积比按式( 7) 式计算

的体积小得多。因此Harkins 就引入了校正因子

f(r/V1/3), 则更精确的表面张力可以表示为:γ= mg2πrf(r/v1/3),其中m为液滴的质量, V 为液滴体积, f 为校正因子, 可查表得到.

最大气泡压力法: 若在密度为ρ的液体中, 插入一个半径为r

的毛细管, 深度为t, 经毛细管吹入一极小的气泡, 其半径恰好与毛细管半径相等。此刻, 气泡内压力最大。根据拉普拉斯公式, 气泡最大压力为pm=ρgt+ 2γr即γ=1/2r(pm- ρgt).

差分最大气泡压力法:γ={1/2Δp+(ρl-ρg)g((r2-r1)/3-1/2Δt)+g2(r23- r13)(ρl-ρg)2/(24γ)} (1/r1-1/r2)式中Δp 为两毛细管的压差, Δt 为两管插入液面的高度差。

21.毛细现象为什么会产生?临床上用毛细管采血样的原理

根据Kelvin公式,RTln(p r/po)=2Vγ/r, 曲率半径极小的凹液面蒸气压降低,低于正常饱和蒸气压,即可以在孔性固体毛细孔中的凹液面上凝结。因毛细管曲率半径极小,所以会产生毛细凝结现象。

原理:真空采血管在生产过程中预置了一定量的负压,当采血针穿刺进入血管后,由于采血管内的负压作用,血液自动流入采血管内.

22.农民锄地保墒原理。

“墒”,指的是土壤水分。近代土壤学揭示,土壤在过水后会形成通往地表的毛细管,还会在缩水过程中开裂;“松土”,就是切断毛细管,堵塞裂缝;从而“保墒”---抑制水分沿毛细管上行至地表蒸发和直接经裂缝蒸发。

23.露珠、汗珠、洒落在地上的汞自动成球形的原因。

表面张力促使露珠、汗珠、洒落在地上的汞以最小的表面积的状态存在。而体积相等的物体中,只有球体的表面积最小,所以露珠大多呈球形的。

24.天空为什么会下雨?人工降雨依据什么原理?向高空抛撒粉剂为什么能人工降雨?

天上的雨来自空中的云,空中的云其实就是水的凝结物,它来自地面的水汽蒸发。当云中的水滴达到一定程度,也就是不能被上升的气流顶托住的时候,水滴(也可能是冰滴、雪花)就会落到地面上,即是我们所见的雨(雹、雪)。

一般来说,云中的水汽胶性状态比较稳定,不易产生降水,而人工增雨就是要破坏这种胶性稳定状态。通常的人工降雨就是通过一定的手段在云雾厚度比较大的中低云系中播散催化剂(碘化银)从而达到降雨目的。一是增加云中的凝结核数量,有利水汽粒子的碰并增大;二是改变云中的温度,有利扰动并产生对流。而云中的扰动及对流的产生,将更加有利于水汽的碰并增大,当空气中的上升气流承受不住水汽粒子的飘浮时,便产生了降雨。

25.为什么会产生液体过热现象?加入沸石为什么能消除过热现象?进行有机物蒸馏时为什么通常加入素瓷片或毛细管?

久经煮沸的液体,溶于其中的空气全部跑掉后,因缺乏气泡,即缺乏汽化核,可以加热到沸点以上仍不沸腾。这样的液体称为过热液体,它处于亚稳态。

沸石作用:由于沸石的多孔性硅酸盐性质,小孔中存有一定量的空气,常被用于防暴沸。在加热时,小孔内的空气逸出,起到了气化核的作用,小气泡很容易在其边角上形成。

进行有机物蒸馏时加入素瓷片或毛细管相当于加了沸石,可防止暴沸。

26.什么是牛顿流体、胀流体、塑性体?他们的主要区别是什么?

牛顿流体是指在受力后极易变形,且切应力与变形速率成正比的低粘性流体。凡不同于牛顿流体的都称为非牛顿流体。

胀流体和塑流体都是非牛顿流体。表观粘度随剪切速率增加而增加,称为胀流体;观粘度非常之高,直至外力达到某一临界值后,粘度陡然下降,此类型谓塑性体。

主要区别:牛顿流体的流变特性是一条过原点的直线,牛顿流体各点的粘度值均相同,所以粘度点能表现出牛顿流体的特性;而非牛顿流体的流变特性则是曲线或不过原点的线。在线上某点的正切值即为粘度。

27.水在玻璃上能铺展,水银在玻璃上却形成液滴?为什么?

由Young方程γsg-γsl=γlgcosΘ,Θ由γsg、γsl和γlg决定,对于指定的固体,液体表面张力越小,其在该固体上的Θ也越小。因为水与玻璃的亲和作用比水银与玻璃的亲和作用大,所以水更易在玻璃上展开,而水银却形成液滴。

28.活性碳为什么可以做防毒面具?冰箱除臭剂?

活性炭是由含炭为主的物质作原料,经高温炭化和活化制得的疏水性吸附剂。活性炭含有大量微孔,具有巨大的比表面积,能有效地去除色度、臭味,可去除二级出水中大多数有机污染物和某些无机物,包含某些有毒的重金属。

29.测定多孔物质的孔结构的主要方法有哪些?试举几例说明

主要方法有气体吸附法和压汞泵法。

银压汞法是基于汞对固体表面的不可润湿性, 即接触角大于90°的液体, 不能自然进入小孔,, 必须施加外力克服阻力,才能把它压入孔中。因此,充满一定孔隙所需要的压力可以作为测量孔径大小的一种尺度,。

30.什么是表面活性剂?其主要的分类有哪些?

在很低的浓度就能显著降低溶剂(主要是水)的表面张力,且有实用价值的天然或合成的两亲

性有机物质称为表面活性剂。其主要的分类有非离子型、阴离子型、阳离子型、两性型等。31.洗衣粉为什么有去污作用? 肥皂为什么能去污?为什么有些洗涤剂不能与肥皂、洗衣粉混用?

洗衣粉、肥皂的去污功能来自一些具有表面活性的化学物质。它们能够减小了水的表面张力、提高水的浸透能力,同时利用分子间存在电斥力的机理,清除污垢微粒。

因为肥皂、洗衣粉一般为负电荷的表面活性物质,但是有些洗涤剂是阳离子的表面活性剂,混用会使阴阳离子中和而降低洗涤效果。

32.明矾为什么能净水

明矾的化学式为KAl(SO4)2·12H2O,它的净水原理是明矾在水中可以电离出钾离子和铝离子,而Al3+很容易水解,生成胶状的氢氧化铝Al(OH)3,氢氧化铝胶体的吸附能力很强,可以吸附水里悬浮的杂质,并形成沉淀,使水澄清。所以,明矾是一种较好的净水剂。

33.采油时,在生产油井附近常钻一些注水井,注入“活性水”,其主要成分是什么?为什么要注入活性水?

活性水的主要成分是表面活性剂。注入活性水可以提高采收率,其原因有:1、降低油水界面张力,降低粘附功;活性剂使亲油的地层表面润湿反转为亲水表面,提高洗油效率;3、使油乳化成水包油型乳状液,提高洗油效率;4、提高波及系数。

34.选择性的加入一些表面活性剂,为什么起到净化水质的作用?

加入一些表面活性剂,可使小粒子的Zeta电位减小,相互聚集成大颗粒,从而除去杂质,净化水质。

35.为什么利用矿物浮选可得到高品位的矿?说明其主要原理和流程

矿物浮选:在工业上应用是泡沫浮选。基原理是:在矿浆(矿石粉体在水中的不稳定悬浮体)中加入起泡剂、捕集剂等助剂,通入空气,形成泡沫,由于水对矿石粉不同组成的润湿性质(接触角)不同,有用矿粒附着富集于气泡上,并上浮被分离出,无用矿粉沉于底部。

泡沫浮选的过程主要包括:使粉碎的矿粒处于湍流和悬浮状态;悬浮矿粒与浮选药剂作用而使其表面疏水化,增大水在其上的接触角;有一定疏水性的矿粒与弥散状态的气泡接触,并附着于气泡上,形成矿化气泡;矿化气泡上浮,形成精选泡沫层;排出精选泡沫层,回收精选矿。

36、溶液的各种性质为什么对应表面活性剂的浓度出现一个转折点?该转折点对应的浓度是什么?

表面活性剂在界面富集吸附一般的单分子层,当表面吸附达到饱和时,表面活性剂分子不能在表面继续富集,而憎水基的疏水作用仍竭力促使基分子逃离水环境,于是表面活性剂分子则在浓液内部自聚,即疏水基在一起形成内核,亲水基朝外与水接触,形成最简单的胶团。以上结果导致表面活性剂溶液的性质与纯水不同,许多性质在一个这个转折点附近出现变化,这个转折点称为临界胶束浓度CMC。

37、各种物质水溶液表面张力随浓度的变化规律有何特点?为什么?

A线为无机盐和多羟基有机物等的结果,随溶质浓度增大,表面张力略有增大,显然,该类物质在溶剂表面吸附为负吸附。B线溶液表面张力随溶液浓度增加而逐渐降低。C线这种类型的特点是:当浓度增加时,γ迅速下降并很快达最低点,此后溶液表面张力随浓度变化很小。

以上结果根据Gibbs吸附公式导出:

若溶质能够使溶剂的表面张力降低,dσ/dc < 0,则Г> 0,即表面层的浓度大于溶液中的浓度,说明该溶质在溶液表面层发生正吸附;

如果溶质能使溶剂表面张力增加,即dσ/dc >0,则Г< 0,那么表面层浓度低于溶液内部的浓度。说明该溶液是负吸附

38、讨论各种物质水溶液表面层结构与浓度的关系。

在两相接触形成的界面层区域中,不同组分的浓度变化规律可能不同。如在含有单一溶质的水溶液表面层中,溶质的浓度可能高于或低于体相溶液中之浓度,但肯定高于气相中之浓度。

39、表面活性物质分子结构有何特点?表面活性物质与表面活性剂有何异同?

(1)表面活性剂的分子结构具有两亲性:一端为亲水基团,另一端为憎水基团

(2)能降低溶剂表面张力的物质称为表面活性物质;而表面活性剂是指具有固定的亲水亲油基团,在溶液的表面能定向排列,并能使表面张力显著下降的物质。

40、试论Gibbs吸附公式在固气和固液界面的应用。

应用:在固气和固液吸附研究中易测定其吸附量,从而根据Gibbs吸附公式了解吸附前后表面张力的变化,并且还可以以此式为基础导出其他有应用价值的吸附等温式。

41、举出几例增溶作用的实际应用。

加溶作用的应用极为广泛,最初的加溶作用主要用于染料工业,从而促进了染料工业的发展。洗涤与去污过程是表面活性剂多种作用(如润湿、吸附、增溶、渗透和分散等)的综合作用,但胶束对油污的增溶具有重要作用。

高分子乳液聚合是增溶作用应用的典型实例。高分子单体少量溶于水相,大部分被乳化剂作用形成O/W型乳状液珠,另一部分增溶于胶束中。反应在水相引发,产生的单体自由基进入胶束,并使胶体内的单体发生聚合。当胶束内单体因聚合而减少时,由乳状液液珠中单体补充。

在药剂学中常利用Tween、SDS、胆盐等表面活性剂胶束的增溶作用控制难溶药物的溶解或释放。如难溶的中草药有效成分在胶束存在下能增加主药浓度,改善中药液体制剂的澄明度和稳定性。42、临界胶束浓度的测定方法。

1.表面张力法

2. 电导法

3.增溶法

4.光散射法

43.干洗过程中的表面活性剂的主要作用。

1表面活性剂极性基团吸附于固体污垢和基底物表面,阻碍污垢的再沉积;2利用反胶束内核保持的水,增溶极性污垢。

44.什么是Krafft点?什么是浊点?

Krafft点温度是离子型表面活性剂形成胶束的下限温度,Krafft点是离子型表面活性剂在水中溶解度急剧增大时的温度。

对于非离子型表面活性剂,加热到达某一温度时,溶液会突然变浑,有大的聚集体沉淀物析出,这一温度被称为“浊点”。

45.什么是表面活性剂的HLB值?

亲水亲油平衡值,用来表示表面活性剂亲水或亲油能力大小的值。HLB=亲水基的亲水性/亲油基的亲油性

46.胶束催化有时会显著地加快反应的速率,其主要的作用有哪些?

在胶束催化反应中胶束的作用主要有浓集效应、介质效应、降低反应活化能。

47.在实际应用表面活性剂作乳化剂、起泡剂时其浓度都要超过临界胶团浓度。为什么?

当溶液浓度在CMC以下时,溶液中基本上是单个表面活性剂分子(或离子).表面吸附量随浓度而逐渐增加,直至表面上再也挤不下更多的分子,此时表面张力不再下降。也就是说,‘σ-c 曲线上‘不再下降时的浓度可能正是开始形成胶束的浓度。浓度继续增加并超过CMC后,单个的表面活性剂离子的浓度基本上不再增加,而胶束浓度或胶束数目增加。因胶束表面是由许多亲水基覆盖的,故胶束本身不是表面活性的,因而不被溶液表面吸附。而胶束内部皆为碳氢链所组成的亲油基团,有溶解不溶于水的有机物的能力。

48.决定和影响乳状液类型的因素主要有些什么理论?

(1)能量因素说;(2)几何因素(或定向楔);(3)液滴聚结速度;(4)相体积说;(5)乳化剂的浓度49.为什么得到相对稳定的乳状液必须有乳化液的存在?二互不相容的纯液体为什么制不成乳状液?

因为乳状液是热力学不稳定体系。乳状液是高度分散的体系,为使分散相分散,就要对它作功,所作功即以表面能形式贮存在油-水界面上,使体系的总能量增加,故到相对稳定的乳状液必须有乳化液的存在。

50.絮凝和聚沉

分散相粒子相互聚集形成聚集体。一般认为如聚集体较紧密,易于与分散介质分离,称为聚沉;如聚集体较松散,常可搅动后再分散,为絮凝。

51.乳化剂选择的一般性原则

有良好的表面活性,能降低表面张力2、乳化剂在油水界面能形成稳定和紧密的凝聚膜3、水溶和油溶性乳化剂混合使用效果更好4、乳化剂应能适当增加外相黏度5、满足乳化体系的特殊要求6、要用最小的浓度和最低的成本达到乳化效果。

52.为何在实际应用时,常常将HLB值小的乳化剂与HLB值大的乳化剂一起混合使用?

一个理想的乳化剂,不仅要与油相亲和力强,而且也要与水相有较强的亲和力.把HLB值小的乳化剂与HLB值大的乳化剂混合使用,形成的混合膜与油相和水相都有强的亲和力,可以同时兼顾这两方面的要求.所以,使用混合乳化剂比使用单一乳化剂效果更好。

53说出一些生活中常见的乳状液的应用

化妆品乳状液:乳状液化妆品又称乳化体化妆品,通常将常温下呈半固态的称为膏霜;流体状

态的称为奶液或乳液。乳化体膏霜的主要组成是油相原料、水相原料及乳化剂。

食品乳状液:牛奶中脂肪含量高,长期放置容易出现稀奶油层,可因震动形成颗粒,均质处理后,脂肪球变小,表面积增加,可防止脂肪颗粒聚结,使脂肪球比重增大,上浮能力变小,可保证其品质。

药用乳状液:天然维生素E是一种脂溶性的维生素,具有很高药用价值,但不易分散于水,难以被吸收。将其转化为水分散性的乳状液,可提高维生素E的利用率。

沥青乳状液:沥青的粘度很大.不便于在室温下直接用于铺路面。若用阳离子型乳化剂将其制成O/W型乳状液,则表观粘度大大降低,并改善了对砂石的润湿性.操作简便,效果好。比较有效的是阳离子型表面活性剂。这主要是因为砂石表面荷负电,易于吸引荷正电的沥青乳状液液滴.并使其破乳,水分蒸发后沥青将砂石粘连在一起。

54什么是单分子层的不溶性薄膜?

亲水性较差的两亲物质,如长链醇、酸等化合物,因其不溶于水,只能在水面上展开,形成单分子层的不溶性薄膜。这些不溶性物质的亲水基团向水,而憎水基团排列于水面,此种不溶性的单分子膜,不能用Gibbs吸附公式来讨论其物理化学性质。

不溶性单分子膜的分子在足够大的水面上能自由移动,在室温下它的移动速率为20cm.s-1,与普通气体的速率相仿,而且还有许多性质与三维空间气体的物理性质相似,常称单分子层的分子性质为二维空间性质。

55.单分子层的不溶性薄膜随表面压的增大,主要会经历几种表面膜的状态变化(P182~186 184图)

气态膜气液平衡膜液态扩张膜转变膜液态凝聚膜固态膜

56. 举例说明单层膜的应用。

抑制底液蒸发:在液体上形成单层膜后可以降低底液的蒸发速度。铺有单层膜的的体系,底液分子逃离液相受到阻力有三:液相分子的阻滞力(多种作用力),气相分子的碰撞阻滞力,单层膜分子的阻滞力。

单层膜中的化学反应:单层膜中的化学反应包括成膜物分子间的化学反应(如表面聚合反应),也包括成膜分子与底液中物质及气相中物质的反应(如酯水解反应,不饱和有机物的氧化反应等)在单层膜中化学反应之重要意义不仅在于探索在准二维环境进行化学反应的各种特殊因素,实现有别于单位空间反应的特殊反应,而且有助于模拟和研究许多在膜中进行的生物过程。

复杂分子结构的推测:这是不溶物单层膜的早期应用,现今各种现代科学仪器的开发和应用对物质结构的测定已经不需要这种简易、间接推测的方法。但这种方法给人启迪,有时用简单的实验方法也能解决大问题。早期成功的例子是确定胆固醇分子的结构。

长链酯的水解反应:在碱性底液上的长链酯的水解反应对于研究生物体系的脂肪在界面上发生的自然分解和再合成反应很有意义。例:甘油月桂酸三脂在0.2 mol.l-1NaOH表面水解,结论:1若单层膜在液态扩张膜状态,酯水解反应速率和活化能与在体相溶液中进行时的接近;2表面压增加,活化能也增加,空间指数也增加,但速率常数无明显变化;3长链酯水解时,不溶于水的产物留在膜中,将明显将低反应速率;4在一定表面压时,速率常数与OH-的浓度有直线关系。

57. 什么是LB膜?其应用的例子

LB膜是Langmuir和Blodgett首先制备的一种超薄有序膜。这种膜是用特殊的方法将在水面形成的两亲不溶有机物的单层膜按一定的排列顺序转移沉积到固体基底上的。

将固体基片在恒定表面压的条件下插入和抽出有凝聚态单层膜的底液表面可将成膜物以一定取向方式转移到基片上。在基片上转移的各单层间成膜分子定向方式不同可使LB膜有不同的结构:X、Y和Z型。

应用的例子:

光电化学研究:将天然生物分子、有机染料分子等组装成LB膜,可以进行光电研究。黄春

辉等研究不同结构方酸衍生物的LB膜在SnO2电极上的光电转换性质。

气敏传感膜:酞菁LB膜可以用于气敏传感膜。不对称取代的酞菁及其锌配合物的气敏性质与中心离子有关。若无金属离子,酞菁对NO2的响应很强,对NH3响应很弱;9层锌酞菁对NH3的响应很强,对NO2响应很弱。

离子传感膜:将冠醚类有离子选择性的有机基团与发色基团结合制成LB膜,通过冠醚与不同金属离子作用或离子浓度不同,可改变膜的光谱,从而检测离子。

58. Langmuir吸附等温式的基本假设是什么?

课本:吸附是单分子层的,吸附是一种动态平衡。体相溶液和吸附曾均视为理想溶液。溶质和溶剂分子体积相同或有相同的吸附位。

59. 什么是比表面积?什么是孔体积?什么是孔分布?

单位质量固体的表面积称为比表面(specific surface area)。比表面是吸附剂、催化剂的重要物化参数。常直接与吸附能力和催化性能的优劣有关。测定比表面的方法有很多,其中以气体吸附法应用最为广泛。

孔体积也叫孔容是吸附剂内所有细孔体积的加和。平均孔半径

孔径分布是孔体积与孔半径的关系,利用Kelvin公式计算不同p/p0相应的孔半径,然后再加上吸附层膜的厚度。

60. BET多分子层吸附模型的基本假设是什么?

1、每一层吸附均服从Langmuir模型而导出,它保留了Langmuir模型的一些假设;

2、吸附可以是多分子层的,并且不一定铺满一层再铺上一层,即在不同吸附位置上可以有不同层次的吸附发生;

3、吸附剂的范德华力的作用仅涉及吸附层第一层;

4、只有相邻两层的吸附分子处于动态平衡。

61. 有些吸附剂的吸附-脱附等温线上会出现“滞后环”,其原因是什么?请说出一两种可能的模型

细颈瓶模型

接触角滞后模型,液固相(A)静止时的平衡接触角;(B)位移时的前进接触角和后退接触角

柱面与球面模型

空气吸附模型,在吸附水份之前,硅胶中的毛细管壁中吸附有空气分子,对于水蒸气的润湿有一个阻止作用,因此当水分在毛细管壁吸附时其润湿角大于其在蒸发过程中的接触角,因此便对应了更大的压力值,即pa>pd。实验表明,当吸附开始前将空气完全从吸附剂内孔中排除,通常能极大地减少吸附滞后现象,从而证实了滞后现象确实与空气在毛细管壁吸附有关。

62、物理吸附和化学吸附最本质的区别是什么?

P211:物理吸附和化学吸附的本质区别是吸附在分子与固体表面作用力的性质。物理吸附的作用力是物理性的(如范德华力的色散力和氢键等),而化学吸附的作用力是化学键的形成,即吸附分子与表面原子间有电子的转移、交换或共有。

63. 举例说明吸附法在气体分离中的应用。

沸石分子筛的选择性气体分离:天然的和合成的沸石分子筛有严格的晶体结构,窗口尺寸均

匀,孔腔大小一致。因而可以将吸附质分子按其大小进行分离。例如:3A分子筛孔径约0.3nm,只能有效地吸附水,5A分子筛直径为0.5 nm,而正戊烷和异戊烷的临界直径为0.49 nm和0.56nm,因此5A分子筛可将二者分开。

硅胶的选择性吸附:硅胶表面羟基的存在,使其在中性水中带负电。硅胶对气体的吸附除色散力外,也有因固体表面带电而引起的极性作用。与沸石分子筛类似,硅胶对不饱和烃有更大的吸附能力。

变温吸附TSA:基本原理在温度较低时进行吸附,混合气体因吸附能力不同吸附有先后;吸附平衡后,升温开始时吸附弱的先脱附,吸附强的后脱附,从而使混合物分离。

变压吸附PSA :基本原理恒定温度条件下周期性地改变压力,增大压力时吸附,减压时脱附,混合气体各组分在吸附剂上能力和分离系数不同而使其在脱附时完成分离。

64、什么是变温吸附和变压吸附?

变温吸附基本原理是:在温度较低时进行吸附(低温吸附量大),混合气体中固吸附能力不同吸附有先后,吸附平衡后,升高温度开始时吸附弱的先脱附,吸附强的后脱附,从而使混合物分离。变压吸附原理是在恒定的温度下周期性改变体系压力,增大压力时吸附,减压时脱附,混合气各组分在吸附剂上吸附能力和分离系数不同而使其在脱附时完成分离。

65、为什么说自溶液中吸附比固气界面吸附更复杂?

原因是1,溶液成分复杂。液相吸附至少涉及溶质-吸附剂、溶剂-吸附剂、溶质-溶剂间的相互作用。2,液体中杂质的浓度可能与溶质浓度同数量级,从而极大影响吸附结果。3,液相吸附的吸附量要根据吸附前后体相溶液浓度的变化计算,计算公式复杂。

66、在自稀溶液吸附研究中溶剂和吸附剂杂质的存在对吸附结果有很大影响。为什么?

这些杂质的浓度可能与溶质浓度同数量级,从而极大影响吸附结果。

67、影响稀溶液吸附的一些主要因素是什么?

1,吸附质的影响:吸附质与吸附剂表面的性质越接近越易被吸附,即“相似相吸”。吸附质与溶剂性质越接近越易在液相;2,溶剂的影响:溶剂的性质直接与吸附质的溶解度和与吸附剂表面的亲和性有关;3,吸附剂的影响:吸附剂的表面性质在吸附中起重要作用,此外,比表面越大越有利于提高吸附量,孔的大小和结构也对吸附质分子的扩散有影响;4,温度和吸附质溶解度的影响:吸附是放热过程,温度升高,吸附量降低,而温度升高,溶解度升高,也将导致吸附量减小;5,外加物质的影响:有时加入强电解质能增大吸附量。

68、温度对于液相中吸附的影响为什么比气固相吸附复杂的多?其主要的区别在哪?

一般的物理吸附是放热过程,对于两种吸附形式都一样,但对于化学吸附,如氢在玻璃、铜、银、金表面的解离化学吸附是吸热过程,其中涉及化学键的破坏与形成,类似于化学反应,故可以是吸热的。而液相吸附更为复杂。溶质吸附时伴随溶剂的脱附,而且可能不是一对一的,熵变不一定是正值,并且还可能有溶解热、冲淡热等效应,因而液相吸附更为复杂。

69、举例说明吸附在水处理中的应用。

工业废水和生活污水经絮凝剂(含吸附过程)处理后必须经活性炭(吸附剂)深度处理,去除水中的残留含芳环的有机物、部分带色有机物。净水处理大多用活性炭,用以出去霉臭和水中的其他臭气。

70、空气净化器的净化原理,葡萄酒和食用油以及红糖的脱色。

空气净化器工作原理如下:机器内的微风扇(又称通风机)使室内空气循环流动,污染的空气通过机内的空气过滤器(两次过滤)后将各种污染物清除或吸附,然后经过装在出风口的负离子发生器(工作时负离子发生器中的高压产生直流负高压),将空气不断电离,产生大量负离子,被微风扇送出,形成负离子气流,达到清洁、净化空气的目的。

后面几个物质的脱色原理都是采用活性炭的物理吸附脱色。

71.为什么防毒面具能将毒气滤掉而氧气却可以自由通过?

毒性气体大多属于化合物(除氯气外),自身静电就不均衡,所以容易被活性炭吸附。氧气、氮气这类气体本身静电均衡,同时分子不大,这样吸附就困难。

72.为什么干洗过的衣服应在通风处凉一段时间后再穿?

因为干洗最普通的溶剂是四氯乙烯,在于洗的过程中,这种化学品被衣物纤维吸附,待衣物干燥时又从衣物内释放到空气中,从而影响近处的人体。

73.为什么熟蛋壳比生蛋壳与盐酸反应产生CO2的速率快?

鸡蛋壳的表面积增大,与盐酸接触更充分,从而加速了反应。

74.为什么在普通墨水中滴加洗涤灵就能在塑料纸上书写?

滴加了洗涤灵墨水带粘性,能有足够的粘力沾在接触面上克服水的张力,使水不至于接触纸面又因水的张力而被收回.

75.为什么在塑料纸上涂上蛋清就能用普通墨水在上面书写?

涂上使墨水不至于接触纸面又因水的张力而被收回(做到这一步可在纸面留下墨水珠)以及克服留在纸面的水的张力不致凝团(做到这一步才能有清楚的连贯笔画)。

76. 制冰糕和冰淇淋时通常加入司盘和吐温的作用是什么?

乳化剂的加入降低了符种原料的表面张力,水和油都能相互混合,形成完全的乳浊液,使空气泡变小,使胶体变成完全的分散态,并使之均一化。

刊名-胶体界面化学期刊汇总

【刊名】Advances in Colloid and Interface Science 【简介】《胶体与界面科学进展》, 创刊于1967年,是由荷兰(Elsevier Science)出版的英文刊,期数:16,国际标准刊号:ISSN:0001-8686, 该刊被世图2003版《国外科学技术核心期刊总览》收录,该刊被SCI收录,2006年影响因子为3.79。 【征稿内容】刊载界面与胶体现象以及相关的化学、物理、工艺和生物学等方面的实验与理论研究论文,多用英文发表,间用德、法文。 【投稿信息】 地址:PO Box 211,Amesterdam,Netherlands,1000 AE 网址: https://www.doczj.com/doc/3510980247.html,/science/journal/00018686 【刊名】Current Opinion in Colloid & Interface Science 【简介】《胶体与界面科学新见》, 创刊于1996年,是由英国(Elsevier Science)出版的英文双月刊,国际标准刊号:ISSN:1359-0294,该刊被SCI收录,2006年影响因子为4.63。本馆有电子馆藏。 【征稿内容】胶体、界面和聚合物科学。 【投稿信息】 地址:84 Theobalds RD London,England, WC1X 8RR 网址: https://www.doczj.com/doc/3510980247.html,/wps/find/journaldescription.cws_home/620053/description #description 【刊名】Journal of Colloid and Interface Science 【简介】《胶体与界面科学杂志》,创刊于1946年,是由美国(Elsevier Science,Academic Press Inc.)出版的英文半月刊,国际标准刊号:ISSN:0021-9797,该刊被世图2003版《国外科学技术核心期刊总览》收录,该刊被SCI收录,2006年影响因子为2.233。本馆有纸版收藏。 【征稿内容】刊载胶体与界面科学基础原理和应用方面的论文和书评。 【投稿信息】 地址:525 B ST, STE 1900, SAN DIEGO, USA, CA, 92101-4495 网址: https://www.doczj.com/doc/3510980247.html,/wps/find/journaldescription.cws_home/622861/description #description 【刊名】Langmuir 【简介】《兰格缪尔》,创刊于1985年,是由美国(American Chemical Society)出版的英文刊,期数:26,国际标准刊号:ISSN:0743-7463,该刊被SCI收录,2006年影响因子为3.902。本馆有纸版收藏。 【征稿内容】注重以新的物理学观点研究表面与胶态化学,刊载论文、评论、技术札记和简讯。涉及学科极广。 【投稿信息】 地址:1155 Sixteenth St., NW Washington, DC 20036

胶体与表面化学教学大纲

课程代码:0303181 课程英文名称:Colloid and Surface Chemistry 课程类别:专业选修课 课程负责人:王英滨 胶体与表面化学教学大纲 (总学时:40讲课:40) 一、课程教学目的 本课程是为材料化学专业开设的专业选修课,同时也可作为材料学、环境工程等专业的选修课。通过本课程的学习,学生在大学物理化学的基础上,进一步了解胶体与表面的基本理论问题,并能在以后的研究工作中加以应用。 二、课程教学基本内容、要求及学时分配 第一章绪论 2学时,了解胶体的定义与特点,胶体化学发展简史,胶体化学的研究对象和意义,胶体与表面化学的发展。 第二章胶体的制备和性质 6学时,掌握溶胶的制备和净化,溶胶的动力学性质,溶胶的光学性质,溶胶的电学性质和胶团结构,溶胶的稳定性和聚沉,流变性质。 第三章凝胶 6学时,掌握凝胶通性及分类,凝胶的形成与结构,胶凝作用及其影响因素,凝胶的性质,几种重要的凝胶。 第四章界面现象和吸附 8学时,掌握表面张力和表面能,弯曲界面的一些现象,润湿和铺展,固体表面的吸附作用,吸附等温方程式,固体-溶液界面吸附 第五章常用吸附剂的结构、性能和改性 6学时,掌握多孔性物质物理结构的测定方法,常用吸附剂的结构和性能,固体的表面改性第六章表面活性剂 6学时,掌握表面活性剂的分类和结构特点,表面活性剂在界面上的吸附,表面活性剂的体相性质,胶束理论,表面活性剂的亲水亲油平衡(HLB)问题,表面活性剂的作用 第七章乳状液 6学时,掌握乳状液的制备和物理性质,影响乳状液类型的因素和乳状液类型的鉴别,影响乳状液稳定性的因素,乳化剂的选择,乳状液的变形和破乳,乳状液的应用 三、本课程与其它课程的联系与分工 学习本课程需无机化学、有机化学、物理化学等课程基础。 四、教学方式 主要以课堂讲授方式进行,使用多媒体教学。 五、成绩评定方法 本课程的考核以课堂提问情况、完成作业等平时成绩和期末撰写读书报告成绩综合评

界面与胶体化学

系 专业 班 学 姓 ┉┉┉┉┉┉┉┉┉┉┉密┉┉┉┉┉┉┉┉┉┉封┉┉┉┉┉┉┉┉┉┉线┉┉┉┉┉┉┉┉┉┉

纳米材料的研究进展 摘要: 在充满生机的21世纪,信息、生物技术、能源、环境、先进制造技术和国防的高速发展必然对材料提出新的需求,组件的小型化、智能化、高集成、高密度存储和超快传输等对材料的尺寸要求越来越小;航空航天、新型军事装备及先进制造技术等对材料性能要求越来越高。新材料的创新,以及在此基础上诱发的新技术。本文介绍了纳米材料和纳米技术的概念及其研究进展,并且着重介绍了纳米材料的应用及纳米材料的发展前景预测。 关键词:纳米材料纳米技术研究进展应用发展趋势。 引言: 新产品的创新是未来10年对社会发展、经济振兴、国力增强最有影响力的 战略研究领域,纳米材料将是起重要作用的关键材料之一。纳米材料和纳米结构是当今新材料研究领域中最富有活力、对未来经济和社会发展有着十分重要影响的研究对象,也是纳米科技中最为活跃、最接近应用的重要组成部分。 指由纳米单元构成的任何类型的材料,如金属、陶瓷、聚合物、半导体、玻璃和复合材料等。这些纳米级的结构单元,如纳米粒子(0维)、碳纳米管(1维)和纳米层(2维)等又是由原子和分子组成的。通过改变纳米结构单元的大小,控制内部和表面的化学性质及它们的组合,就能设计材料的特性和功能。 1、纳米材料和纳米技术 1991年,碳纳米管被人类发现,它的质量是相同体积钢的六分之一,强度却是钢的10倍,成为纳米技术研究的热点。诺贝尔化学奖得主斯莫利教授认为,纳米碳管将是未来最佳纤维的首选材料,也将被广泛用于超微导线、超微开关以及纳米级电子线路等。 2、纳米材料的研究进展 纳米材料的研究最初源于十九世纪六十年代对胶体微粒的研究,二十世纪六十年代后,研究人员开始有意识得通过对金属纳米微粒的制备和研究来探索纳米体系的奥秘。1984年,德国萨尔布吕肯的格莱特(Gleiter)教授[3] 把粒径为6nm的金属铁粉原位加压制成世界上第一块纳米材料,开创纳米材料学之先河。1990年7月,在美国巴尔的摩召开了第一届国际纳 米科学技术学术会议(Nano-ST),标志着纳米材料学作为一个相对独立学科的诞生。 中科院沈阳金属所的卢柯小组[6]在纳米材料及相关亚稳材料领域取得了突出的成绩。他发展的利用非晶完全晶化制备致密纳米合金的方法已与惰性气体蒸发后原位加压法、高能球磨法成为当前制备金属纳米块材的三种主要方法之一。他们发现的纳米铜的室温超塑延展性,被评为2000年中国十大科技新

胶体与表面化学1-5

胶体与表面化学 第一章 绪论 化学:无机化学、有机化学、物理化学、分析化学 无机化学:(元素化学,研究无机物的制备、合成与性能) 如:H 2O 有机化学:(生命化学,研究C 、O 、P 、S 等少量元素形成的 种类极多的化合物 ,就简单元素的复杂化学。) 小分子:甲烷 如: 大分子:淀粉 杀虫剂: 医药: 液晶: 物理化学:(用物理模型、数学概念化的手段研究化学) 物理:量子间的相互作用 化学:是量子间结合与排列。 热力学:状态——状态:能量转化的过程, 几千种状态方程。 动力学:物质间反应速度的问题(有时热力学 分支极多: 能进行但动力学不能进行) 电化学:电池:Fe+HCl ——FeCl 2+H 2 电子转移 形成电池(Li +) 高能电池 Fe 2+,Fe 3+(提纯难99.99%~99.9999%) 胶体与表面化学:气液固按不同形式混合, 泥土在水中分层,纳米材料, 牙膏,原油,化妆品。 理论化学:(非实验的推算来解释或预测化合物的各种现 象。) 如:用计算机模拟模型推算是否可以达到预期目的,在校 正 合成。

分析化学:(研究物质的组成、含量、结构和形态等化 学信息的分析方法一门科学) 如:三聚氰胺事件分析手段差蛋白质含量(N)一、基本概念 相:体系中物理化学性质完全相同的均匀部分 界面:相与相的交接面 表面:一相为气相的界面 比表面:单位体积或重量物体的表面积。 S0=S/V 对于立方体:S0=6L2/L3=6/L 对于球体:S0=3/R 胶体化学:是研究胶体体系的科学。它是物理化学的一个重要分支。随着胶体化学的发展,它已经成为一门独立的学科。 表面化学:研究发生在表面或界面上的物理和化学现象的一门科学。是胶体化学的分支。 (原油催化裂化) 二、胶体体系 小实验:泥土置于水中沉降。1、分类及定义:分散相粒子半径在1 ~100 nm 的分散体系。 2、特点 (1)特有的分散程度——多相项多分散体 粒子的大小在10-9~10-7m之间,扩散较慢,不能透过半透膜。 (2)多相不均匀性 由许多离子或分子聚结而成,结构复杂,有的保持了该难溶盐的原有晶体结构,而且粒子大小不一,与介质之间有明显的相界面,比表面很大。 (3)热力学不稳定性 因为粒子小,比表面大,表面自由能高,是热力学不稳定体系,有自发降低表面自由能的趋势,即小粒子会自动聚结成大粒子。

上海大学胶体与表面化学考试知识点

1、胶体的基本特性 特有的分散程度;粒子大小在1nm~100nm之间 多相不均匀性:在超级显微镜下可观察到分散相与分散介质间存在界面。 热力学不稳定性;粒子小,比表面大,表面自由能高,是热力学不稳定体系,有自发降低表面自由能的趋势,即小粒子会自动聚结成大粒子。 2、胶体制备的条件: 分散相在介质中的溶解度须极小 必须有稳定剂存在 3、胶体分散相粒子大小分类 分子分散系统 胶体分散系统 粗分散系统 二、 1、动力学性质布朗运动、扩散、沉降 光学性质是其高度分散性与不均匀性的反映 电学性质主要指胶体系统的电动现象 丁达尔实质:胶体中分散质微粒散射出来的光 超显微镜下得到的信息 (1)可以测定球状胶粒的平均半径。 (2)间接推测胶粒的形状和不对称性。例如,球状粒子不闪光,不对称的粒子在向光面变化时有闪光现象。 (3)判断粒子分散均匀的程度。粒子大小不同,散射光的强度也不同。 (4)观察胶粒的布朗运动、电泳、沉降和凝聚等现象 观察到胶粒发出的散射光,可观察布朗运动电泳沉降凝聚,只能确定质点存在和位置(光亮点),只能推测不能看到大小和形状 2、胶体制备的条件 溶解度稳定剂 3、溶胶的净化 渗析法、超过滤法 4、纳米颗粒粒径在1-100之间纳米颗粒的特性与粒子尺寸紧密相关,许多特性 可表现在表面效应和体积效应两方面。 5、布朗运动使胶粒克服重力的影响, 6、I反比于波长λ的四次方 7、溶胶产生各种颜色的原因;溶胶中的质点对可见光产生选择性吸收。溶胶对光吸收显示特定波长的补色不吸收显示散射光的颜色 agcl&agbr光透过浅红垂直淡蓝雾里黄灯减散,入射白光散射光中蓝紫色光散射最强天蓝是太阳散射光,早傍晚红色是透射光有宇散射作用 8、 9、胶粒带电原因:吸附、电离、同晶置换(晶格取代)、摩擦带电。 10、胶团结构:一定量难溶物分子聚结成中心称为胶核、然后胶核选择性的吸附稳定剂中的一种离子,形成紧密吸附层;由于正、负电荷相吸,在紧密层外形成反号离子的包围圈,从而形成了带与紧密层相同电荷的胶粒;胶粒与扩散层中的反号离子,形成一个电中性的胶团。 11、热力学电势和电动电势的区别: 发生在不同的部位、一般情况电动电势是热力学电势一部分绝对值小于热力学电势、热力学

界面与胶体化学试卷A

系 专业 班 学号 姓 名 ┉┉ ┉┉ ┉┉┉┉ ┉ ┉密┉ ┉ ┉┉┉┉┉┉┉ ┉封┉┉ ┉┉ ┉┉┉┉┉┉ 线 ┉┉┉┉ ┉┉┉┉ ┉ ┉

乳化液的研究进展 摘要针对目前国内外乳化液在食品、化妆品、医药等各类生活用品的应用及发展论述。本文通过世界乳化液发展史,各类乳化液的作用延伸到现实生活中的应用,通过不同性质的物质经过实验加工合成各种各样对人们生产活动息息相关的乳化液。乳化液的应用主要体现在食品添加剂、化妆品的乳化理论与乳化技术上,都是通过人民生产生活对其的要求日益提高,乳化液相关工作人员不断改进乳化液的原料、生产合成工艺逐步完善乳化液的功能。得出了根据各种乳化液的HLB值不同、乳化液与分散相的亲和性、乳化液的配伍作用可以细分各类乳化液的相应及相对作用推广乳化液在各领域的使用。 关键字:乳化液,食品添加剂,化妆品,乳化液的HLB值 引言乳化液广泛应用于化工、食品、造纸、涂料、印染、纺织、环保、石油、医药、金属加工、石油产品、废水处理等各个领域。本文主要介绍乳化液的发展、制备、性质及应用,反映了乳化最新研究与应用成果,对乳化液的研究、开发和应用提供参考。 1.乳化液的乳化原理 乳化液作为一类食品添加剂,在食品工业中扮演着重要的角色,它是现代食品工业的重要组成部分,在食品工业中的需求量约占添加剂的50%[1]。基于其表面活性性质和与食品组分的相互作用,乳化液不仅在各种原料混合、融合等一系列加工过程中起乳化、分散、润滑和稳定等作用,而且还可以改进和提高食品的品质和稳定性。比如,它可以使食品舌感润滑、保持质感,还被用作蛋糕的起泡剂、豆腐的消泡剂等。在面包生产中,乳化液可以保护淀粉粒,防止老化,从而使面包食感得到改良,并在防氧化、抗菌和品质等方面得到改善。 乳化液是一种表面活性剂,既有亲水基团,又有亲油基团,两者分别处于两端,形成不对称的分子结构。可将两种不溶物质“吸附”在一起。乳化液是乳液的一种稳定剂,也是表面活性剂的一种。 乳化液可以分散在分散质的表面,形成薄膜或者是双电层,可以是分散相带有电荷,这样就可以阻止分散相的小液滴互相凝结,使形成的乳浊液比较稳定。例如,在农药的原药(固态)或原油(液态)中加入一定量的乳化液,再把它们溶解在有机溶剂里,混合均匀后可制成透明液体,叫乳油。常用的乳化液有肥皂、阿拉伯胶、烷基苯磺酸钠、硬脂酸钠盐、羧酸盐、硫酸盐等。 1.1液体物料中的乳化原理 在两种不相混合的液体中(如油和水),乳化液分子能吸附于液体界面上,并定向排列,亲水基团指向水相,疏水基团指向油相,通过乳化液的“架桥”作用,使水和油两相紧密地融 合在一起。 1.2 固体物料中的乳化原理乳化液与食品中的蛋白质、淀粉、脂类作用,改善食品结构。碳

专题讲解-界面现象-胶体化学

表面吉布斯自由能和表面张力 1、界面: 密切接触的两相之间的过渡区(约几个分子的厚度)称为界面(interface),通常有液-气、液-固、液-液、固-气、固-液等界面,如果其中一相为气体,这种界面称为表面(surface)。 2、界面现 象: 由于界面两侧的环境不同,因此表面层的分子与液体内的分子受力不同: 1.液体内部分子的吸引力是对称的,各个方向的引力彼此抵销,总的受力效果是合力为零; 2.处在表面层的分子受周围分子的引力是不均匀的,不对称的。 由于气相分子对表面层分子的引力小于液体内部分子对表面层分子的引力,所以液体表面层分子受到一个指向液体内部的拉力,力图把表面层分子拉入内部,因此液体表面有自动收缩的趋势;同时,由于界面上有不对称力场的存在,使表面层分子有自发与外来分子发生化学或物理结合的趋势,借以补偿力场的不对称性。由于有上述两种趋势的存在,在表面会发生许多现象,如毛细现象、润湿作用、液体过热、蒸气过饱和、吸附作用等,统界面现象。 3、比表面(Ao) 表示多相分散体系的分散程度,定义为:单位体积(也有用单位质量的)的物质所具有的表面积。用数学表达式,即为: =A/V A 高分散体系具有巨大的表面积。下表是把一立方厘米的立方体逐渐分割成小立方体时,比表面的增长情况。高度分散体系具有巨大表面积的物质系统,往往产生明显的界面效应,因此必须充分考虑界面效应对系统性质的影响。

4、表面功 在温度、压力和组成恒定时,可逆地使表面积增加dA所需要对体系做的功,称为表面功(ω’)。 -δω’=γdA (γ:表面吉布斯自由能,单位:J.m-2) 5、表面张力 观察界面现象,特别是气-液界面的一些现象,可以觉察到界面上处处存在着一种张力,称为界面张力(interface tension)或表面张力(surface tension)。它作用在表面的边界面上,垂直于边界面向着表面的中心并与表面相切,或者是作用在液体表面上任一条线两侧,垂直于该线沿着液面拉向两侧。如下面的例子所示: 计算公式: -δω'= γdA (1) 式中γ是比例常数,在数值上等于当T、p及组成恒定的条件下,增加单位表面积时所必须对体系作的非膨胀功。 我们从另一个角度来理解公式(1)。先请看下面的例子。 从上面的动画可知:肥皂膜将金属丝向上拉的力就等于向下的重力(W 1+W 2 ),即 为

胶体与表面化学 试题

一、是非题 1.表面超量的英文具体描述: The surface excess of solute is that the number of moles of solute in the sample from the surface minus the number of moles of solute in the sample from the bulk under a condition of the same quantity of solvent or the surface excess of solvent has been chosen to be zero. 2.囊泡的形成途径: The final surfactant structures we consider as models for biological membranes are vesicles. These are spherical or ellipsoidal particles formed by enclosing a volume of aqueous solution in a surfactant bilayer. Vesicles may be formed from synthetic surfactants as well. 3.絮凝与聚焦之间的区别: Coalescence :the process that many small particles take together to form a new big particle,total surface area of the dispersion system decreases. Aggregation:the process by which small particles clump together like a bunch of grapes (an aggregate), but do not fuse into a new particle,total surface area of the dispersion system do not decrease as well. 4.胶束micelle :A monophasic, fluid, transparent, isotropic and thermodynamically stable system composed by surfactant and water, the particle has some linear dimension between 10-9-10-6m. 5.乳液emulsion :A multiphasic, no-transparent and thermodynamically unstable system composed by surfactant, cosurfactant, oil and water. 6.微乳液microemulsion :A monophasic, fluid, transparent, isotropic and thermodynamically stable system composed by surfactant, cosurfactant, oil and water. 7.囊泡vesicle :能不能直接从双联续制备转换过来?(√) 8.憎水溶胶 亲水溶胶 连续相与分散相有没有明显界限?(没有) 9.胶束体系的稳定性与哪些因素有关?与哪些因素无关? 10.瑞利散射:条件 粒子大小 11.表面吸附超量γ:物理意义 溶剂的量是不是都为零?(×) 12.TEM 、SEM 都需要把样品放入真空中,最后结果都可以表明原来分散度。(×) 13.在Langmuir 膜、LB 膜 单层 理想气体方程式 能否用理想气体关系式描述?(能) 二、多项选择题 1.表面吉布斯自由能: The Gibbs equation:multicomponent systems γμAd dn SdT V G i i ++ =∑-dp From Gibbs-Duhen equation:∑μi dn i =0 注:S G G G G ++=β α ; ∑+-+=i i i n TS pV E G μ; ∑+-+=i i i s s s n TS A E G μγ; dA Ad d n dn SdT TdS Vdp pdV dE dG i i i s i i i γγμμβ α++++-++=∑∑∑)-(,,; dA Ad w d n dn dG pV nom s i i i i i i γγδμμβ α++++=∑∑∑)-SdT -(Vdp -,,; γμμβ αAd d n dn SdT Vdp dG i i i s i i i +++= ∑∑∑)-(,,; ∑+=i i i dn SdT Vdp dG μ-

界面与胶体化学复习题及答案

习题1 1. 一定体积的水,当聚成一个大水球或分散成许多水滴时,同温度下,两种状 态相比,以下性质保持不变的有: (A)表面能 (B)表面张力 (C)比表面 (D)液面下的附加压力 2.在下图的毛细管内装入普通不润湿性液体,当将毛细管右端用冰块冷却时,管 内液体将: (A)向左移动 (B)向右移动 (C)不移动 (D)左右来回移动 3.在298 K下,将液体水分散成小液滴,其热力学能: (A) 增加 (B)降低 (C) 不变 (D)无法判定 4.在相同温度下,固体冰和液体水的表面张力哪个大? (A)冰的大 (B)水的大 (C)一样大 (D)无法比较 5.在临界温度时,纯液体的表面张力 (A) 大于零 (B)小于零 (C)等于零 (D)无法确定 6.在 298 K时,已知 A液的表面张力是 B液的一半,其密度是 B液的两倍。如 果A液在毛细管中上升1.0×10-2m,若用相同的毛细管来测 B液,设接触角相等, B液将会升高: (A) 2×10-2m (B) 1/2×10-2m (C) 1/4×10-2m (D) 4.0×10-2m 7.下列说法中不正确的是: (A)生成的新鲜液面都有表面张力 (B)平面液体没有附加压力 (C)弯曲液面的表面张力的方向指向曲率中心 (D)弯曲液面的附加压力指向曲率中心 8.微小晶体与普通晶体相比较,哪一种性质不正确? (A)微小晶体的饱和蒸气压大

(B)微小晶体的溶解度大 (C)微小晶体的熔点较低 (D)微小晶体的溶解度较小 9.在空间轨道上运行的宇宙飞船中,漂浮着一个足够大的水滴,当用一根内壁干净、外壁油污的玻璃毛细管接触水滴时,将会出现: (A)水并不进入毛细管 (B)水进入毛细管并达到管内一定高度 (C)水进入毛细管并达到管的另一端 (D)水进入毛细管并从另一端滴出 10.同外压恒温下,微小液滴的蒸气压比平面液体的蒸气压: (A) 大 (B) 一样 (C) 小 (D) 不定 11.用同一支滴管滴下水的滴数和滴相同体积苯的滴数哪个多? (A)水的多 (B)苯的多 (C)一样多 (D)随温度而改变 12. 25℃时,一稀的肥皂液的表面张力为0.0232 N·m-1,一个长短半轴分别为0.8 cm和0.3 cm的肥皂泡的附加压力为: (A) 5.8 Pa (B) 15.5 Pa (C) 18.4 Pa (D) 36.7 Pa 13.已知 293 K时,水-辛醇的界面张力为 0.009 N·m-1,水-汞的界面张力为 0.375 N·m-1,汞-辛醇的界面张力为 0.348 N·m-1,故可以断定: (A)辛醇不能在水-汞界面上铺展开 (B)辛醇可以在水-汞界面上铺展开 (C)辛醇可以溶在汞里面 (D)辛醇浮在水面上 14.在农药中通常都要加入一定量的表面活性物质,如烷基苯磺酸盐,其主要目的是: (A) 增加农药的杀虫药性 (B) 提高农药对植物表面的润湿能力 (C) 防止农药挥发 (D) 消除药液的泡沫 15.将半径相同的三根玻璃毛细管分别插入水、乙醇水溶液和NaCl水溶液中,三根毛细管中液面上升高度分别为h1,h2,h3,则: (A) h1>h2>h3 (B) h1>h3>h2 (C) h3>h1>h2 (D) h2>h1>h3

胶体与表面化学知识点整理

第一章 1.胶体体系的重要特点之一是具有很大的表面积。 通常规定胶体颗粒的大小为1-100nm(直径) 2.胶体是物质存在的一种特殊状态,而不是一种特殊物质,不是物质的本性。 胶体化学研究对象是溶胶(也称憎液溶胶)和高分子溶液(也称亲液溶胶)。 气溶胶:云雾,青烟、高空灰尘 液溶胶:泡沫,乳状液,金溶胶、墨汁、牙膏 固溶胶:泡沫塑料、沸石、冰淇淋,珍珠、水凝胶、红宝石、合金 第二章 一.溶胶的制备与净化 1.溶胶制备的一般条件:(1)分散相在介质中的溶解度必须极小(2)必须有稳定剂存在 2.胶体的制备方法:(1)凝聚法(2)分散法 二.溶胶的运动性质 1.扩散:过程为自发过程 ,此为Fick第一扩散定律,式中dm/dt表示单位时间通过截面A扩散的物质数量,D为扩散系数,单位为m2/s,D越大,质点的扩散能力越大 扩散系数与质点在介质中运动时阻力系数之间的关系为:(为阿伏加德罗常数;R为气体常数) 若颗粒为球形,阻力系数=6(式中,为介质的黏度,为质点的半径)故,此式即为Einstein第一扩散公式 浓度梯度越大,质点扩散越快;就质点而言,半径越小,扩散能力越强,扩散速度越快。 2.布朗运动:本质是分子的热运动 现象:分子处于不停的无规则运动中 由于布朗运动是无规则的,因此就单个粒子而言,它们向各方向运动的几率是相等的。在浓度高的区域,单位体积的粒子较周围多,造成该区域“出多进少”,使浓度降低,这就表现为扩散。扩散是布朗运动的宏观表现,而布朗运动是扩散的微观基础 Einstein认为,粒子的平均位移与粒子半径、介质黏度、温度和位移时间t之间的关系:,此式常称为Einstein-Brown位移方程。式中是在观察时间t内粒子沿x轴方向的平均位移;r为胶粒的半径;为介质的粘度;为阿伏加德罗常数。 3.沉降

胶体与表面化学的简答题

1.什么是气凝胶?有哪些主要特点和用途?当凝胶脱去大部分溶剂,使凝胶中液体含量比固体含量少得多,或凝胶的空间网状结构中充满的介质是气体,外表呈固体状,这即为干凝胶,也称为气凝胶。气凝胶是一种固体物质形态,世界上密度最小的固体。气凝胶貌似“弱不禁风”,其实非常坚固耐用。它可以承受相当于自身质量几千倍的压力,在温度达到1200摄氏度时才会熔化。此外它的导热性和折射率也很低,绝缘能力比最好的玻璃纤维还要强39倍。 用途:(1)制作火星探险宇航服(2)防弹不怕被炸 (3)过滤与催化(4)隔音材料(5)日常生活用品 2.试述凝胶形成的基本条件? ①降低溶解度,使被分散的物质从溶液中以“胶体分散状态”析出。②析出 的质点即不沉降,也不能自由行动,而是构成骨架,在整个溶液中形成连续的网状结构。2.简述光学白度法测定去污力的过程。 将人工制备的污布放在盛有洗涤剂硬水的玻璃瓶中,瓶内还放有橡皮弹子,在机械转动下,人工污布受到擦洗。在规定温度下洗涤一定时间后,用白度计在一定波长下测定污染棉布试片洗涤前后的光谱反射率,并与空白对照。 4.试述洗涤剂的发展趋势。 液体洗涤剂近几年的新的发展趋势: (1)浓缩化 (2)温和化、安全化(3)专业化 (4)功能化(5)生态化: ①无磷化②表面活性剂生物降解③以氧代氯 5.简述干洗的原理 干洗是在有机溶剂中进行洗涤的方法,是利用溶剂的溶解力和表面活性剂的加溶能力去除织物表面的污垢。 3. 脂肪酶在洗涤剂中的主要作用是什么? 脂肪酶,人的皮脂污垢如衣领污垢中因含有甘油三脂肪酸酯而很难去除,在食品污垢中也含有甘油三脂肪酸酯类的憎水物质,脂肪酶能将这些污垢分解成甘油和脂肪酸。 4.在洗涤剂中作为柔和剂的SAA主要是什么物质?用作柔和剂的表面活性剂主要是两性表面活性剂 8.用防水剂处理过的纤维为什么能防水?织物防水原理:将纤维织物用防水剂进行处理,可使处理后的纤维不表面变为疏水性,防水织物由于表面的疏水性使织物与水之间的接触角θ>90°,在纤维与纤维间形成的“毛细管”中的液面成凸液面,凸液面的表面张力的合力产生的附加压力△P的方向指向液体内部因此有阻止水通过毛细管渗透下来的作用。 5.请举出几个润湿剂的应用实例。 (1)润温剂在农药中的应用。加入润湿剂后,药液在蜡质层上的润湿状况得到改善甚至可以在其上铺展。 (2)润湿剂在原油开采中的应用。溶有表面活性剂的水,称之为活性水,活性水中添加的表面活性剂主要是润湿剂。它具有较强的降低油—水界面张力和使润湿反转的能力 (3)润湿剂在原油集输中的应用。在稠油开采和输送中,加入含有润湿剂的水溶液,即能在油管、抽油杆和输油管道的内表面形成—层亲水表面,从而使器壁对稠油的流动阻力降低,以利于稠油的开采和辅送。这种含润湿剂的水溶液 即为润湿降阻

胶体化学论文

胶体化学与表面化学 14无机非 杜君 学号:1403031008 胶体化学是胶体体系的科学,随着胶体化学的迅速发展,它已成为一门独 立的学科。这是因为有一方面由于胶体现象很复杂,有它自己独特的规律性; 它在科学研究方面发挥着巨大的作用;不仅如此,它与无机化学、材料化学等 相关学科也有着密切关系,如利用微乳技术制取纳米颗粒、利用溶胶—凝胶法 制压电陶瓷等。 胶体体系的重要特点之一,是具有很大的表面积。任何表面,在通常情况 下实际上都是界面,如水面即液体与气体的界面、桌面即固体与气体的界面等,在任何两相界面上都可以发生复杂的物理或化学现象,总称为表面现象,也就 是界面现象。胶体化学中所说的界面现象,不仅包括物体表面上发生的物理化 学现象以及物体表面分子(或原子)和内部的有什么不同,而且还包括一定量 的物体经高度分散后(这时表面积将强烈增大)给体系的性质带来怎样的影响,例如粉尘为什么会爆炸、小液珠为什么能成球、汞的小液滴在洁净玻璃上成球 而水的小液滴铺展、活性炭为什么能脱色等等,这些问题都与界面现象有关。 界面现象涉及的范围很广,研究界面现象具有十分重要的意义。 表面化学就是研究表面现象的一门学科,从历史角度看,表面化学是胶体 化学的一个重要分支,也是其中最重要的一个部门,二者密切相关。胶体化学 与表面化学内容包括胶体的制备和性质、凝胶、界面现象和吸附、乳状液的基 本知识及其应用,如丁达尔现象、电泳及电渗、双电层结构和相应电位分布、 双电层理论、DLVO理论、表面张力产生原因及肥皂去污等原理。 胶体的制备与性质和表面现象是胶体化学最核心的内容。胶体的制备与 性质包括胶体的运动性质、光学性质、电学性质、流变性质、制备及净化方法 及胶团的结构和与其相关的双电层理论及模型等相关内容:由于胶粒对光的散 射作用产生了丁达尔现象;由于不同溶胶中胶粒的大小不同,使之对透过其中 的光的散射、反射作用不同,故使溶胶产生各种颜色;由于胶粒带电的性质使 之产生了电泳及电渗现象;由于它带电的性质又产生了双电层理论;又由于它 带电的性质引出了DLVO理论及对其聚沉性的研究。

研究生胶体与表面化学题

研究生胶体与表面化学题 1、下列物系中哪一种为非胶体? ①牛奶②烟雾③人造红宝石④空气 2、溶胶的基本特性之一是 ①热力学上和动力学上皆属稳定的物系 ②热力学上和动力学上皆为不稳定的物系 ③热力学上稳定而动力学上不稳定的物系 ④热力学上不稳定而动力学上稳定的物系 3、溶胶有三个最基本的特性,下列哪点不在其中? ①分散性②聚结不稳定性③多相性④动力稳定性 4、丁铎尔(Tyndall)现象是光射到粒子上发生下列哪种现象的结果? ①散射②反射③透射④折射 5、在外加电场作用下,胶体粒子在分散介质中移动的现象称为 ①电渗②电泳③流动电势④沉降 6、下列各性质中哪个不属于溶胶的动力学性质? ①布朗运动②扩散 ③电泳④沉降平衡 7、对于AgI的水溶胶,当以KI为稳定剂时其结构可以写成 [(AgI)m nI-(n-x)K+]x-x K+ 则被称为胶粒的是指: 8、在AS2S3溶胶中加入等体积,等当量浓度的下列不同电解质溶液,则使溶胶 聚沉最快的是 ①LiC1 ②NaC1 ③CaCI2 ④A1C13 9、在Al2O3溶胶中加入等体积,等当量浓度的下列不同电解质溶液,则使溶胶 聚沉得最快的是 ①KC1 ②KNO3 ③K3[Fe(CN)6] ④K2C2O4 10、在一定量的AgI溶胶中加入下列不同电解质溶液,则使溶胶在一定时间内完 全聚沉所需电解质的量最少者为

①La(NO3)3 ②Mg(NO3)2 ③NaNO3 ④KNO3 11、下列各点哪一点不属于电动现象? ①电导②电泳 ③电渗④沉降电位 12、对于电动电位即ξ电位的描述,哪一点是不正确的? ①ξ电位表示了胶粒溶剂化层界面到均匀液相内的电位 ②ξ电位的绝对值总是大于热力学电位? ③ξ电位的值易为少量外加电解质而变化 ④当双电层被压缩到溶剂化层相合时,ξ电位为零。 13、为测定大分子溶液中大分子化合物的平均分子量,下列各方法中哪一种是不 宜采用的? ①渗透压法②光散射法 ③冰点降低法④粘度法 14、乳状液、泡沫、悬浮液等作为胶体化学研究的内容,一般地说是因为它们 ①具备胶体所特有的分散性、不均匀性和聚结不稳定性 ②充分具备胶体的分散性及不均匀性 ③充分具备胶体的分散性及聚结不稳定性 ④充分具备胶体的不均匀性及聚结不稳定性 15、大分子溶液与溶胶在性质上的最根本区别是 ①前者粘度大,后者粘度小 ②前者是热力学稳定物系,后者是热力学不稳定物系 ③前者是均相的而后者是不均匀的多相物系 ④前者对电解质稳定性大后者加入微量电解质即能引起聚沉 16、在大分子溶液中加入多量的电解质,使大分子溶液发生聚沉的现象被称为盐 析。它主要是因为 ①大量电解质的离子发生强烈水化作用而使大分子去水化 ②降低了动电位 ③电解质加入使大分子溶液处于等电点

界面与胶体化学复习题及答案

应化124班 1. 一定体积的水,当聚成一个大水球或分散成许多水滴时,同温度下,两种状 态相比,以下性质保持不变的有: (A)表面能 (B)表面张力 (C)比表面 (D)液面下的附加压力 2.在下图的毛细管内装入普通不润湿性液体,当将毛细管右端用冰块冷却时,管 内液体将: (A)向左移动 (B)向右移动 (C)不移动 (D)左右来回移动 3.在298 K下,将液体水分散成小液滴,其热力学能: (A) 增加 (B)降低 (C) 不变 (D)无法判定 4.在相同温度下,固体冰和液体水的表面张力哪个大? (A)冰的大 (B)水的大 (C)一样大 (D)无法比较 5.在临界温度时,纯液体的表面张力 (A) 大于零 (B)小于零 (C)等于零 (D)无法确定 6.在 298 K时,已知 A液的表面张力是 B液的一半,其密度是 B液的两倍。如 果A液在毛细管中上升1.0×10-2m,若用相同的毛细管来测 B液,设接触角相等, B液将会升高: (A) 2×10-2m (B) 1/2×10-2m (C) 1/4×10-2m (D) 4.0×10-2m 7.下列说法中不正确的是: (A)生成的新鲜液面都有表面张力 (B)平面液体没有附加压力 (C)弯曲液面的表面张力的方向指向曲率中心 (D)弯曲液面的附加压力指向曲率中心 8.微小晶体与普通晶体相比较,哪一种性质不正确?

(A)微小晶体的饱和蒸气压大 (B)微小晶体的溶解度大 (C)微小晶体的熔点较低 (D)微小晶体的溶解度较小 9.在空间轨道上运行的宇宙飞船中,漂浮着一个足够大的水滴,当用一根内壁干净、外壁油污的玻璃毛细管接触水滴时,将会出现: (A)水并不进入毛细管 (B)水进入毛细管并达到管内一定高度 (C)水进入毛细管并达到管的另一端 (D)水进入毛细管并从另一端滴出 以下说法中正确的是( C )。 (A) 溶胶在热力学和动力学上都是稳定系统; (B) 溶胶与真溶液一样是均相系统; (C) 能产生丁达尔效应的分散系统是溶胶; (D) 通过超显微镜能看到胶体粒子的形状和大小 二、判断题 1、溶胶是均相系统,在热力学上是稳定的。(√) 2、长时间渗析,有利于溶胶的净化与稳定。(×) 3、有无丁达尔(Tyndall)效应是溶胶和分子分散系统的主要区别之一。(√) 4、亲液溶胶的丁达尔(Tyndall)效应比憎液胶体强。(×) 5、在外加直流电场中,碘化银正溶胶向负电极移动,而其扩散层向正电极移动。(√) 6、新生成的Fe(OH)3沉淀中加入少量稀FeCl3溶液,会溶解,再加入一定量的硫酸盐溶 液则又会沉淀。(√) 7、丁达尔效应是溶胶粒子对入射光的折射作用引起的。(×) 8、胶束溶液是高度分散的均相的热力学稳定系统。(√) 9、胶体粒子的扩散过程和布朗运动本质上都是粒子的热运动而发生的宏观上的定向迁移现 象。(√) 10、在溶胶中加入电解质对电泳没有影响。(×) 二、填空题 1.界面吉布斯自由能和界面张力的相同点是 不同点是。 2.液态汞的表面张力 g= 0.4636 N·m-1+ 8.32×10-3N·m-1·K-1·T - 3.13×10-7N·m-1·K-2·T2 在 400 K时,汞的(?U/?A)T, V = 。 3.液滴越小,饱和蒸气压越 __________;而液体中的气泡越小,气泡内液体的饱和蒸气压越 __________。 4. 300 K时,水的表面张力g= 0.0728 N·m-1,密度r为 0.9965×103kg·m-3。

胶体与表面化学第四版重点

胶体与表面化学(第四版) 1.绪论 分散系统:一种物质以细分散状态分散在另一种物质中构成的系统。 分散相:分散系统中被分散的不连续相。 分散介质:分散系统中的连续相。 比表面:单位质量分散相物质所具有的面积。 缔合胶体:多个分子的缔合体构成胶体分散相。 胶体体系:分散相粒子至少在一个尺度上的大小处在1-100nm 范围内的分散系统。 溶胶:把分散介质是液体的胶体系统称为液溶胶,介质是水为水溶胶;介质是固体为固溶胶。 2.胶体与纳米粒子的制备 胶体制备:分散法(机械、电分散、超声波、胶溶)、凝聚法(还原、氧化、水解、复分解)晶核-晶体成长 条件:1)分散相在介质中的溶解度必须极小;2)必须有稳定剂的存在 净化:1)渗析:利用羊皮纸或火棉胶制成的半透膜,将溶胶与纯分散介质隔开。 2)超过滤:利用半透膜代替普通滤纸在压差下过滤溶胶的方法。 3)渗透:借半透膜将溶液和溶剂隔开,此膜只允许溶剂分子通过,胶粒和溶质不能通过。 反渗透:渗透平衡时在浓相一侧施加外压,则浓相中的溶剂分子向稀相迁移。 单分散溶胶:特定条件下制取的胶粒尺寸、形状和组成皆相同的溶胶。 胶体晶体:由一种或多种单分散胶体粒子组装并规整排列的二维或三维类似于晶体的有序结构。 光子晶体:在各个方向能阻止一定频率范围的光传播。 纳米粒子特性:比表面积大;易形成聚团;熔点低;磁性强;光吸收强;热导性能好 制备:气相、液相、固相 纳米气泡:在液体中或固液界面上存在的纳米尺度的气泡。 3.胶体系统的基本性质(N A =6.5*1023mol -1,R=8.314,T=273K) 运动 扩散:扩散系数:爱因斯坦第一扩散公式:r 61πη?=A N RT D 爱因斯坦布朗运动:r 3t t 2πη?==A N RT D X 沉降:大气压随高度分布:RT M gh -p p ln 0h = 光学 散射现象:当质点大小在胶体范围内时。反射:质点直径远大于入射光波长。 丁道尔现象:以一束强烈的光线射入溶胶后,在入射光的垂直方向可以看到一道明亮的光带。 Rayleigh 散射:022 1222122423)2(c 24I n n n n v I ?+-?=λπ 电学 电动现象:电泳:带负电的胶粒向正极移动,带正电的胶粒向负极移动。 电渗析:水在外加电场作用下,通过黏土颗粒间的毛细通道向负极移动的现象。 沉降电势:在无外加电场作用下,使分散相粒子在分散介质中快速沉降,则在沉降管两端产生电势差。 流动电势:用压力将液体挤过毛细管网或由粉末压成的多孔塞,在毛细管网两端产生电势差。 质点荷电原因:电离;离子吸附;晶格取代 双电层结构:胶粒表面带电时,在液相中必有与表面电荷数量相等且符号相反的离子存在,这些离子称为反离子。反离子一方面受静电引力作用向胶体表面靠近,另一方面受分子热运动及扩散作用有在整个液体中均匀分布的趋势。结果使反离子在胶粒表面区域的液相中形成平衡,越靠近界面反离子浓度越高,越远离界面反离子浓度越低。胶粒表面电荷与周围介质中的反离子构成双电层。胶粒表面与液体内部的电势差

胶体与表面化学试卷

胶体与表面化学 考试题型 一,选择题(15Χ2‘,共30分) 二,判断题(15Χ1‘,共15分) 三, 简答题(共6道题目,共30分) 四, 计算题(共5道题目,共25分) 例题------选择题 1.雾属于分散体系,其分散介质是 A 固体 B 气体 C 液体 D 气体或固体 2.区别溶胶与真溶液和悬浮液最简单灵敏的方法是: A 乳光计测定粒子浓度 C 超显微镜测定粒子大小 B 观察丁铎尔效应 D 观察ζ电位 3.固体物质与极性介质(如水溶液)接触后,在相之间出现双电层,所产生的电势是指 A 滑动液与本体液之间的电势差 C 紧密层与扩散层之间的电势差 B 固体表面与本体溶液间的电势差 D 小于热力学电位φ 4.下列性质中既不属于溶胶动力学性质又不属于电动性质的是: A 沉降平衡 B 布朗运动 C 沉降电势 D 电导 5.当溶胶中加入大分子化合物时: A 一定使溶胶更稳定 C 对溶胶稳定性影响视加入量而定 B 一定使溶胶更容易为电解质所聚沉 D 对溶胶稳定性没有影响 6. 同一体系,比表面自由能和表面张力都用σ表示,它们 A 物理意义相同,数值相同 C 物理意义相同,单位不同 B 量纲和单位完全相同 D 前者是标量,后者是矢量 7.对处于平衡状态的液体,下列叙述不正确的是 A 凸液面内部分子所受压力大于外部压力 B 凹液面内部分子所受压力小于外部压力 C 水平液面内部分子所受压力大于外部压力 D 水平液面内部分子所受压力等于外部压力 8.胶束的出现标志着表面活性剂的: A 降低表面张力的作用下降 C分子远未排满溶液表面 B 溶解已达到饱和 D分子间作用超过它与溶剂的作用 9.有机液体与水形成W/O型还是O/W型乳状液与乳化剂的HLB值有关,一般是: A HLB值大,易形成W/O型 C HLB值大,易形成O/W型 B HLB值小,易形成O/W型 D HLB值小,不易形成W/O型 10. 将分散系统按离子大小分类时,胶体离子的大小范围是: A 直径大于10-9m; B 直径介于10-7~10-5m; C 直径介于10-9~10-7m; D 直径小于10-5m。 11. 通常称为表面活性剂的物质是指将其加入液体中后: ( ) (A)能降低液体的表面张力; (B)能增大液体的表面张力; (C)能显著增大腋体的表面张力; (D)能显著降低液体的表面张力。 12. 下述现象中与表面活性物质无关的是: ( ) (A)乳化; (B)润湿; (C)起泡; (D)溶解。 13. 插在液体中的玻璃毛细管里面液面上升或下降决定于该液体的: ( )

相关主题
文本预览
相关文档 最新文档