当前位置:文档之家› 湖泊_河网耦合水动力水质模型研究_赵琰鑫

湖泊_河网耦合水动力水质模型研究_赵琰鑫

湖泊_河网耦合水动力水质模型研究_赵琰鑫
湖泊_河网耦合水动力水质模型研究_赵琰鑫

浅论湖泊富营养化预测及评价的模型的研究

目录 摘要 1 引言…………………………………………………… 2 绪论………………………………………… 2.1 湖泊富营养化的概念及分类………………………… 2.2 国内外水体富营养化污染概况…………………… 3 湖泊富营养化的研究内容……………………………… 3.1 富营养化预测………………………… 3.1.1 预测的目的及内容……………… 3.1.2 预测模型进展概况……………… 3.2 富营养化评价…………………… 3.2.1 评价的目的及意义……………………… 3.2.2 评价的基本步骤………………………… 3.2.3 评价模型进展概况…………………… 3.3 湖泊富营养化模型………………………… 3.3.1 评分模型………… 3.3.2 营养状态指数模型………… 3.3.3 改进的营养状态指数模型……………… 3.3.4 生物多样性评价………… 3.3.5 灰色理论评价模型…………………… 3.3.6 浮游植物与营养盐相关模型………………………… 3.3.7 生态动力学模型……………… 4 结论及展望…………………………………… 4.1 结论………………………… 4.2 展望……………………………… 参考文献…………………………

摘要 本文主要讲述了湖泊富营养化的几种模型,分别有:评分模型、营养状态指数模型、改进的营养状态指数模型、生物多样性评价、灰色理论评价模型、浮游植物与营养盐相关模型、生态动力学模型,针对不同模型分别进行相应介绍,并且对国内外水体富营养化污染做出一定概况,对未来湖泊水体进行了一定程度的展望。 1 引言 水资源是人类赖以生存的基础物质,随着人口增长和社会经济飞速发展,水的需求量急剧增加,而水资源污染也日益严重。我国自20世纪80年代以来,由于经济的急速发展和环保的相对滞后,许多湖泊、水库已经进入富营养化,甚至严重富营养化状态,如滇池、太湖、西湖、东湖、南湖、玄武湖、渤海湾、莱州湾、九龙江、黄浦江等。2000年对我国18个主要湖泊调查研究表明,其中14个已经进入富营养化状态。 2 绪论 2.1 湖泊富营养化的概念及分类 通常,湖泊水库等水体的富营养化[1]是指湖泊水库等水体接纳过量的氮、磷等营养物质,使藻类和其它水生生物大量繁殖,水体透明度和溶解氧发生变化,造成水体水质恶化,加速湖泊水库等水体的老化,从而使水体的生态系统和水功能受到损害。严重的会发生水华和赤潮,给水资源的利用如:饮用,工农业供水,水产养殖、旅游等带来巨大的压力。另一种定义方法[2](Cooke等提出)是由于过量的营养物质、有机物质和淤泥的进入,导致的湖泊水库生物产量增加而体积缩小的过程。该定义除了营养盐以外,还强调了有机物质和底泥的输入。因为有机物质也可以导致水体体积缩小,溶解氧消耗,并通过矿化作用从沉积物中释放营养物质;淤泥的输入也可使水体面积缩小,深度降低,并能吸附营养盐和有机物质沉积到水底部,成为潜在污染源。释放后必然会促进水体生物的大量繁殖,当水体内大量的植物(沉水植物和漂浮植物)以及大量藻类死亡后,释放的有机物和营养物会进一步加剧水体的营养程度。 根据水体营养物质的污染程度,通常分成贫营养、中营养和富营养三种水平。实际上,湖泊水库等水体的富营养化自然条件下也是存在的,不过进程非常缓慢,这就是地理学意义上的富营养化。然而一旦水体接受人类活动的影响,这种转变的速度会大大加快,特别是在平原区域,人口密集,工农业发达,大量污水进入水体,带入大量的营养物质,极大的加速水体富营养化进程。人们通常所说的富营养化是指这种在人为条件的影响下,大量营养盐输入湖泊水库,出现水体有生产能力低的贫营养状态向生产能力高的富营养状态转变的现象。这种富营养化通常称为人为富营养化。 水体富营养化的发生也是逐步进行的。水体在营养盐浓度较低,藻类和其它浮游植物的生物量随着营养盐浓度的增加而相应增加的时期,称为响应阶段,这

最新湖水污染分析模型

摘要 在两种情况下分析湖水中的污染物,分别建立模型即理论模型和实际模 型。理论模型是根据伊利湖和安大略湖各自的污染物流入流出的关系建立污染 物量关于时间的差分方程:伊利湖的污染物总量n+1n a 0.62a =,安大略湖的污染 物总量n n n b 6129.03230.627020.33600.87192.3077=-?+?+,n b 在n →∞时趋于 一个定值192.3077,这个定值就是安大略湖系统的平衡值;当35n =时 245.95n b =安大略湖的污染程度减少到目前水平的10%;当31n ≥≥是系统的污 染物的量是一直增加的,当203n ≥≥系统的污染物量急剧减少,大约从40 n ≥开始系统的污染物量几乎保持不变。实际模型中首先根据湖水的实际更新情况 重新确定湖水流入和流出占湖水总量的百分数,又由于湖水中污染物的浓度时 刻变化,所以用时间微元的方法对实际污染物流出的比例进行修正。分析铝厂 排放的污染物时,铝厂排放的污染物是赤泥,根据赤泥的物化性质利用重力沉 降原理求得赤泥颗粒从湖面沉降到湖底的时间t ,把一年分成多份t ,同时将铝 厂每年向湖水中排放的污染物量25单位按t 分成多份,每一个单位时间铝厂排 放到湖里的污染物量是0.3q ?=单位,则安大略湖的湖水中将始终保持有0.3单 位的赤泥,其余的赤泥都将在湖底沉积。综合安大略湖中赤泥和伊利湖流入的 污染物的情况预测了未来十年内的情况。模型中重力沉降原理指出颗粒的直径 影响沉降速度间接影响赤泥的排出量直径越小排出量越大,同时直径是最可能 实现改进的因素。在直径小于20um 时赤泥的排出量急剧增加。为减少安大略 湖的污染尽量把颗粒直径做小。 二、问题分析

一维水量水质模型

第七章 一维非恒定河流和河网水量水质模型 对于中小型河流,通常其宽度及水深相对于长度数量较小,扩散质(污染物质、热量)很容易在垂向及横向上达到均匀混合,即扩散质浓度在断面上基本达到均匀状态。这种情况下,我们只需要知道扩散质在断面内的平均分配状况,就可以把握整个河道的扩散质空间分布特征,这是我们可以采用一维圣维南方程描述河流水动力特征或水量特征(水位、流量、槽蓄量等);用一维纵向分散方程描述扩散质在时间及河流纵向上的变化状况。特别地,对于稳态水流,可以采用常规水动力学方法推算水位、断面平均流速的沿程变化;采用分段解析解法计算扩散质浓度沿纵向的变化特征。但是,在非稳态情况下(水流随时间变化或扩散质源强随时间变化)解析解法将无能为力(水流非恒定)或十分繁琐(水流稳态、源强非恒定),这时通常采用数值解法求解河道水量、水质的时间、空间分布。在模拟方法上,无论是单一河道还是由众多单一河道构成的河网,若采用空间一维手段求解,描述水流、水质空间分布规律的控制方程是相同的,只不过在具体求解方法上有所差异而已。 7.1 单一河道的控制方程 7.1.1 水量控制方程 采用一维圣维南方程组描述水流的运动,基本控制方程为: (1) 023/42 2=+-++R Q u n g x A u x Z gA x Q u t Q ???????? (2)

式中t 为时间坐标,x 为空间坐标,Q 为断面流量,Z 为断面平均水位,u 为断面平均流速,n 为河段的糙率,A 为过流断面面积,B W 为水面宽度(包括主流宽度及仅起调蓄作用的附加宽度),R 为水力半径,q 为旁侧入流流量(单位河长上旁侧入流场)。此方程组属于二元一阶双曲型拟线性方程组,对于非恒定问题,现阶段尚无法直接求出其解析解,通常用有限差分法或其它数学离散方法求其数值解。在水流稳态、棱柱形河道条件下,上述控制方程组退化为水力学的谢才公式,可采用相应的方法求解水流特征。 7.1.2 扩散质输运控制方程 描述河道扩散物质运动及浓度变化规律的控制方程为:带源的一维对流分散(弥散)方程,形式如下: S S h A KAC x c AE x x QC t AC r x ++-???? ??=+????????)()( (3) 式中,C 为污染物质的断面平均浓度,Q 为流量, 为纵向分散系数,S 为单 位时间内、单位河长上的污染物质排放量,K 为污染物降解系数,S r 为河床底泥释放污染物的速率。 此方程属于一元二阶偏微分方程,对于非恒定水流问题,微分方程位变系数的偏微分方程,现阶段尚无法直接求出其解析解,通常用有限差分法或其它数学离散方法求其数值解。在水流稳态、污染源源强恒定条件下,可按水动力特征将河道分为若干子段,在每个分段上,上述控制方程简化为常系数的常微分方程,可采用解析方法秋初起理论解。 7.2 单一河道一维水量水质模型

水质水动力学耦合问题研究报告

天津大学2013~2014学年研究报告 课程名称:水库优化调度 (编号:S205E046) 研究题目:水流与水质耦合模拟 学院名称:建筑工程学院 专业名称:水利水电工程 学号:1013205068 2013205138 姓名:许红师孟庆林 2013 年12 月

目录 1 基本资料概述 (1) 1.1 研究对象 (1) 1.2 研究目标 (1) 1.3 研究要求: (1) 1.4 研究信息和约束 (2) 2 研究思路 (2) 3 技术路线 (3) 4 研究内容 (3) 4.1 模型建立 (3) 4.2 方案制定 (4) 4.3 数值模拟 (4) 4.3.1 初始条件下数值模拟结果 (4) 4.3.2 方案一系列数值模拟结果 (5) 4.3.3 方案二系列数值模拟结果 (9) 4.4 结果分析 (13) 5 总结 (13)

1 基本资料概述 1.1 研究对象 本课题研究对象为一方形湖泊,长:1000.0m、宽:500.0m。湖底为平面,底高程为0.0m,四周岸堤高程均为5.0m。上方中间位置有一排污口。左右两侧中间位置各有一节制闸,最大过闸流量20m3/s,两节制闸均可汇入和汇出流量。平面结构如下图1所示: 500m 1000m 图1 研究对象平面结构示意图 1.2 研究目标 给定湖泊初始的水质条件和水位,计算在确定排污口排入污染过程下,10天时间内的湖泊水质变化过程。判定湖泊水体水质是否满足景观四类水体水质要求、何时不满足和哪些区域不达标。如果不达标,提出合理的补水方案(补水方式、补水时间等),即如何通过左右两侧节制闸的调控,控制进入和汇出湖泊的水流过程,使得污染物稀释同时水体水质满足景观四类水体水质要求。 1.3 研究要求: (1)采取MIKE21软件模拟,hydrodynamic module+ transport module。模拟所需参数可采取软件推荐值或自行调研信息值。 (2)不考虑风对水流作用;考虑降雨和蒸发。 (3)不考虑污染物的生化反应,不考虑降解。

河流、湖泊、水库、湿地水环境容量计算模型

水环境容量计算模型 1)河流水环境容量模型 水环境容量是在水资源利用水域内,在给定的水质目标、设计流量和水质条件的情况下,水体所能容纳污染物的最大数量。按照污染物降解机理,水环境容量W 可划分为稀释容量W 稀释和自净容量W 自净两部分,即: W W W =+稀释自净 稀释容量是指在给定水域的来水污染物浓度低于出水水质目标时,依靠稀释作用达到水质目标所能承纳的污染物量。自净容量是指由于沉降、生化、吸附等物理、化学和生物作用,给定水域达到水质目标所能自净的污染物量。 河段污染物混合概化图如图。根据水环境容量定义,可以给出该河段水环境容量的计算公式: 图 完全混合型河段概化图 0()i si i i W Q C C =-稀释 i i si i W K V C =??自净 即:0()i i si i i i si W Q C C K V C =-+?? 考虑量纲时,上式整理成: 086.4()0.001i i si i i i si W Q C C K V C =-+?? 其中: 当上方河段水质目标要求低于本河段时:0i si C C = 当上方河段水质目标要求高于或等于本河段时:00i i C C =

式中:i W —第i 河段水环境容量(kg/d ); i Q —第i 河段设计流量(m 3/s ); i V —第i 河段设计水体体积(m 3); i K —第i 河段污染物降解系数(d -1); si C —第i 河段所在水功能区水质目标值(mg/L ); 0i C —第i 河段上方河段所在水功能区水质背景值 (mg/L ),取上游来水浓度。 若所研究水功能区被划分为n 个河段,则该水功能区的水环境容量是n 个河段水环境容量的叠加,即: 1n i i W W ==∑ 01131.536()0.000365n n i si i i i i i i W Q C C K V C ===-+??∑∑ 式中:W —水功能区水环境容量(t/a ); 其他符合意义和量纲同上。 2)湖泊、水库水环境容量计算模型 有机物COD 、氨氮的水环境容量模型: 在目前国内外的研究中,多采用完全均匀混合箱体水质模型来预测水库水体长期的动态变化,即将水库视为一个完全混合反应器时,有机物的容量计算模型可以用水体质量平衡基本方程计算。水库中有机物容量模型如下: C t kV S t C t Q t C t Q dt dc c out in in )()()()()(V(t)++?-?= 假设条件:水量为稳态,出流水质混合均匀。 式中:V(t)——箱体在t 时刻的水量,m 3; dt dc ——箱体水质参数COD 、氨氮的变化率; )(t Q in ——t 时刻水库的入流水量,m 3/a ; )(t Q out ——t 时刻水库的出流水量,m 3/a ;

湖泊水库水质监测系统

随着社会的发展和人们对生活健康的关注,加上水资源的日益短缺和恶化,水质监测系统的运用备受关注。随着水质监测技术的逐步完善和成熟,水质监测技术已经成为环保管理部门对辖区水体水质、水体状况进行实时监测的主要手段。常规的实验室取样检测技术已经无法在第一时间获取水污染状况的准确信息。而且分析速度慢、操作复杂、稳定性差,特别是对附加药品一来使其存在二次污染。此外,随着水资源污染的日益加剧,水样的成分越来越复杂,而且检测的水质项目越来越多,从而对水质分析仪器的性能有了更高的要求。以往采用的水质监测方法已经远不能满足环保工作发展的需求。因此,发展水质在线监测系统势在必行。水质在线监测系统克服了常规水质分析仪器的缺点,使用无线数传设备(4G DTU)能够实时、连续、稳定、可靠得提供准备、快速的监测传输数据。 水质在线监测系统用于实时监测湖泊、水库、饮用水源地、地下水观测点等水质变化状况,系统融合了环境监测、集成和预警等技术,采用一体化、集成联动运行方式,加强了水质污染、异常事故的预防和污染排放的监管能力。同时,通过湖泊水质信息网络的建设,可分析区域内水质动态趋势,有效加强区域管理,为污染动态研究、湖泊富营养化预测、湖泊水库水污染治理提供科学依据,为水环境管理与决策提供科学有效的技术支撑。 系统构成 系统由监控中心、传输单元、智能站点、站房等组成,具备系统运行状态监控、视频监控、站房状态监控、远程控制、远程操作等功能。 根据客户需求的不同,可选择集成固定站、集装箱站、浮标站等形式。监测因子可涵盖常规五参数、叶绿素、蓝绿藻、氨氮、高锰酸盐指数、TOC、总磷、总氮、磷酸盐、硝酸盐

氮、亚硝酸盐氮、硅酸盐、重金属(Fe、Mn、Pb、Cd、Cr6+)、水位、流速、流量、流向、风速、风向、气温、气压、温度、光照度及雨量等。 方案特点 ?智能化站点控制,具备设备运行状况实时监控、远程监控、动态显示及数据管理功能;?采水方案、数据传输多样化,根据实际需求可选; ?准确、稳定可靠的分析技术,独特的高度定量设计; ?系统集成度高、故障率低,维护量小,有效数据率大大提高; ?扩展性强,并兼容市场主流的各家仪表; ?以第三方运营为保障手段,确保系统和设备的有效运行。

水动力_水质耦合模型污染源识别的贝叶斯方法

第41卷第5期四川大学学报(工程科学版)V o.l41No.5 2009年9月J O URNAL OF S I CHUAN UNI VERS I TY(ENGI NEER I NG SC I ENCE ED I TI ON)S ept.2009文章编号:1009-3087(2009)05-0030-06 水动力–水质耦合模型污染源识别的贝叶斯方法朱嵩1,刘国华1*,王立忠1,毛根海1,程伟平1,黄跃飞2 (1.浙江大学建筑工程学院,浙江杭州310027;2.清华大学水利水电工程系,北京100084) 摘要:环境水力学系统存在诸多不确定性,如测量数据的不确定性等,这导致水体中污染源识别这一类反问题具有不适定性,尤其表现为反演结果的非唯一性。经典的正则化方法和最优化方法由于只能获得参数的/点估计0,因而在求解不确定性较强的问题时存在较大的困难。此外水质模型和流场控制方程(N av ier-Stokes方程)耦合,使得正问题的解具有较强的非线性特征。为解决上述问题,针对水动力-水质耦合模型,建立了基于贝叶斯推理的污染物点源识别的数学模型,通过马尔科夫链蒙特卡罗(M arkov cha i n M onte Carlo,M C M C)后验抽样获得了污染源位置和强度的后验概率分布和估计量,较好地处理了模型的不确定性和非线性。算例结果表明,结合M C M C抽样的贝叶斯推理方法能很好地描述及求解水动力-水质耦合场条件下的污染源识别反问题。 关键词:环境水力学;反问题;贝叶斯推理;污染源识别 中图分类号:TV13;X192文献标识码:A A Bayesian Approach for the Identificati on of Poll uti on Source i n W ater QualityM odel Coupled w ith H ydrodyna m ics Z H U Song1,LI U Guo-hua1,WANG Li-zhong1,MAO G en-hai1,C HE NG W ei-p ing1,H UANG Yue-fei2 (1.College ofC i vil Eng.and A rch itect u re,Zhejiang Un i v.,H angz hou310027,Ch i na; 2.Dep t.ofH yd rau lic Eng.,Ts i nghua Un i v.,Beiji ng100084,Ch i na) Abst ract:M uch uncertai n ty lies i n t h e env ironm ental hydraulics syste m,such as the uncerta i n ty of the m easure m ent data,have caused the po llution source i d entification il-l posed,especia lly the non-unique.I n order to settle the proble m,for the hydr odyna m ics-w ater qua lity coup led m ode,l a polluti o n po i n t source identification m ode lw as pro-posed based on Bayesian inference.M arkov chai n M onte C arl o sa m pli n g m ethod w as used to get the posterior proba-b ility d istri b uti o n o f the source.s position and intensity,thus so l v ing the uncerta i n ty and the non li n earity w e l.l Co m putati o n resu lt sho w ed that the B ayesian i n ference w ith MC MC sa m p li n g can describe and so l v e t h e po llution source i d entificati o n i n verse prob le m for t h e hydr odyna m ics-w ater quality coupled m odel better. K ey w ords:env ironm ental hydrau li c s;i n verse prob le m;Bayesian i n ference;po ll u ti o n source i d entificati o n 环境水力学是当前水力学及河流动力学研究的 收稿日期:2008-05-03 基金项目:浙江省自然科学基金资助项目(Y506138);国家自然科学基金项目(50609024);973课题(2005CB724202) 作者简介:朱嵩(1981-),男,博士后.研究方向:环境水力学反问题.E-m ai:l m i gao@https://www.doczj.com/doc/3311538634.html, 一个主要方向,其主要研究内容是水体中的污染物迁移、扩散和转化机理以及相应的求解方法[1]。环境水力学研究自上个世纪70年代末以来得到了迅猛的发展。目前关于污染物在水体中的迁移转化规律及相关预测数学模型的研究已经较为成熟,如对流扩散方程的各种数值解法等。正问题(预测问题)研究的成熟为环境水力学反问题研究奠定了基

三峡水库水质模型

三峡水库的水质模型 随着大型水利水电工程的建设,人类能够对水资源进行更加有效的管理和充分的利用,取得了巨大的防洪、发电、航运等效益。但是工程建成后,不可避免的带来了一些生态环境问题随着时间的发展,在水库的调度过程中将生态因子作为水库调度的重要目标之一。同时由于流体运动的复杂性,传统的物理模型试验己很难满足研究的需要,数值模拟成为研究流体力学方便和强有力的手段。三峡水库建成后,非汛期,三峡水库蓄水至175m,电站采取调峰运行模式。由于库水位提高和调峰运行,改变了天然河道的流态,引起水库各种环境问题。另一方面来讲,近年来随着计算机网络和信息技术的发展,环境信息系统的各方面性能取得了很大进步,其中数据传输、资料查询、统计分析等功能都有了明显提高。与此同时,人们研究了各种环境模型,针对当前的不同环境问题进行了深入的分析和预测,并取得了显著的成果。所以,使用信息技术与环境模型的方法,来解决三峡水库的各种环境问题也是一个较好的选择。利用水质模型的知识,对于三峡水库进行一个大致研究。 经过调查可知,三峡水库与一般的湖泊有着显著区别。首先,其流速分布不均,干流流速与支流流速,干流中心的流速与岸边流速,一般情况下的流速与弯道、回流沱之间的流速之间都有很大差别;其次,流场不同位置间存在巨大的水深差异;另外,不同季节的气温对藻类生长影响也有很大差别。在对水库的水质模型进行建立的时候,应根据上述建立的水深、流速、温度以及营养盐与富营养化的初步映射关系,在GIS系统的支持下,建立整个水库干流、支流的水体总体富营养化程度的实时监测体系,来相应更好的建立模型。由于三峡水库水环境管理信息系统针对库区区域水环境问题涉及因素多、信息量大,变化复杂等特点,采用GIS和数据库技术,实现了水库水污染资料的管理和相关数据的统计、查询。另外,三峡水库蓄水后,库区江段水位抬高,水面变宽,流速减小,水库的污染状况将发生新的变化。为了预测水库水质的变化,提前作出预警预报,可以选择建立了多个水流水质模型,对水库的水流水质状况进行模拟,然后在三峡水库水环境管理信息系统中集成某些合适的水质模型,提高系统的水质预测能力,对于三峡水库的水质管理和污染事故的预警预报,防治水库水质进一步恶化,具有重要的实用价值。 总体来说,三峡水库蓄水后可能面临的主要水污染问题是近岸水体质量的恶化以及可能出现的库首水体温度分层和意外水污染事故。所以在此我们设想并大致计算了5个不同的水质模型,实现它们与三峡水库水环境管理信息系统的有效连接,用于预测和分析三峡水库各种的水污染问题。下面分别对这些模型的功能和应用范围进行简单介绍: (1)库区一维模型。三峡水库是一个河道型水库,具有典型的河道特性。采用一维水质模型模拟600多km整个库区水流及污染物的输移扩散,便于人们把握三峡水库的水质整体状况,制定水库水污染控制的整体规划。另外,一维水质模型还可以为二维、三维水质模型提供必要的边界条件。 (2)岸边二维模型。三峡水库当前的污染主要表现为岸边污水排放,在一维水质模拟的基础上,采用深度平均的二维水质模型计算岸边排放的污水口附近的水流及污染分布,有利于人们预测三峡水库的岸边污染情况和发展趋势,及时地提出相应控制措施。 (3)(分层三维模型。三峡水库正常蓄水位达175 m,很大水域的水深将超过100 m,深度平均二维模型难以正确反映污染物浓度的垂向分布,采用分层三维水质模型,可以大大提高水深较大区域岸边污染混合区范围的预测精度。 (4)垂向水温模型。根据经验判断,三峡水库蓄水后将成为弱分层水库,可能在夏季出现水温分层,水库分层对水库水质以及下游生态的影响很大。垂向水温模型将用来预测水库水温分层结构和下泄水温过程。 (5)污染事故预警模型。污染事故预警模型采用简单的解析解,实现对三峡水库库首污染事故的快速预警预报,以便采取紧急的必要措施,防止污染事故的进一步扩散。而污染事故的精确

MIKE21水动力学模型应用研究进展

Advances in Environmental Protection 环境保护前沿, 2020, 10(4), 510-515 Published Online August 2020 in Hans. https://www.doczj.com/doc/3311538634.html,/journal/aep https://https://www.doczj.com/doc/3311538634.html,/10.12677/aep.2020.104061 Research Progress on Application of MIKE21 Hydrodynamic Model Qing Luo, Lihong Liu, Yumeng Wang Department of Earth and Environment, Anhui University of Science & Technology, Huainan Anhui Received: Jul. 15th, 2020; accepted: Aug. 4th, 2020; published: Aug. 11th, 2020 Abstract MIKE21 model is a reliable means and an important basis for studying the movement of surface water flow. The model simulation of planar two-dimensional water flow is of great significance for the actual water condition verification, hydrological change calculation and future trend predic-tion. At present, many experts and scholars have carried out practical application of multi-angle, multi-level and different fields, and have repeatedly verified the accuracy and fit of the MIKE21 model. This paper mainly reviews the application of MIKE21 hydrodynamic model in river flood analysis, flood evolution in flood storage area, analysis of urban waterlogging risk and impact of water conservancy construction. The hydrological changes, general conclusions and application limitations, which are obtained, are discussed by the model under different simulation conditions. On this basis, it elaborates and summarizes, and forecasts the application and development trend of MIKE21 hydrodynamic model. Keywords MIKE21 Hydrodynamic Model, River Flood, Flood Evolution in Flood Storage Area, Urban Waterlogging, Water Conservancy Construction MIKE21水动力学模型应用研究进展 罗庆,刘丽红,王雨蒙 安徽理工大学地球与环境学院,安徽淮南 收稿日期:2020年7月15日;录用日期:2020年8月4日;发布日期:2020年8月11日 摘要 MIKE21水动力学模型是研究地表水流运动的可靠手段和重要依据,模型关于平面二维水流的模拟,对

水质数学模型分类

水质数学模型分类 按上游来水和排污随时间的变化情况: 动态模式、稳态模式 按水质分布状况: 零维、一维、二维和三维 按模拟预测的水质组分: 单一组分、多组分耦合模式 水质数学模式的求解方法及方程形式 解析解模式、数值解模式 河流水质模型 ? 河流完全混合模式、一维稳态模式、S-P 模式(适用于河流的充分混合段) ? 托马斯模式(适用于沉降作用明显河流的充分混合段) ? 二维稳态混合模式与二维稳态混合衰减模式(适用于平直河流的混合过程段) ? 弗罗模式与弗-罗衰减模式(适用于河流混合过程段以内断面的平均水质) ? 二维稳态累积流量模式与二维稳态混合衰减累积流量模式(适用于弯曲河流的混合过程段) ? 河流pH 模式与一维日均水温模式 河流完全混合模式 C -废水与河水完全混合后污染物的浓度,mg/L Qh -排污口上游来水流量,m3/s ) /()(h p h h p p Q Q Q c Q c c ++=

C h-上游来水的水质浓度,mg/L Qp-污水流量,m3/s Cp-污水中污染物的浓度, mg/L 适用条件:(1)废水与河水迅速完全混合后的污染物浓度计算;(2)污染物是持久性污染物,废水与河水经一定的时间(距离)完全混合后的污染物浓度预测。河流为恒定流动;废水连续稳定排放 一维稳态模式 C 为污染物的浓度;Dx 为纵向弥散系数, ux 断面平均流速;K 为污染物衰减系数 模型的适用对象:污染物浓度在各断面上分布均匀的中小型河流的水质预测BOD-DO耦合模型(S-P模型) 适用条件:河流充分混合段,污染物为耗氧有机物,需要预测河流溶解氧状态;河流为恒定流动,污染物连续稳定排放 氧垂曲线与临界点(最大氧亏值处) S-P模式的适用条件: ①河流充分混合段; ②污染物为耗氧性有机污染物; ③需要预测河流溶解氧状态; ④河流恒定流动;

数学模型在水环境中的应用

江西理工大学题目 学模型在水环境中的应用 姓名:XXX 专业班级:XXX班 学号:XXXX 指导教师XXX老师 日期:XXX年XXX月 XXX 日

数学模型在水环境中的应用 摘要:水环境数学模型是十分重要的科学工具与技术手段。在水资源保护科研、评价与监测分析中应用,不但增加理论色彩,还可以提高成果水平。本文对常用各类数学模型进行了深入系统的理论解读与技术应用研究,明确指出,“模型”是十分有用的,但不是万能的,每种模型都有自己的使用范围与针对性,因此,选准模型,正确使用,至关重要。 关键词:水环境;数学模型;概述;理论解析 水环境数学模型可以描述水环境中物质混合、输移和转化的规律。它是在分析水环境中发生的物理、化学及生物现象基础上,依据质量、能量和动量守恒的基本原理,应用数学方法建立起来的模型。通过模型求解计算可以预报水文、水质在时间与空间上的变化,为水资源管理、规划、评价与控制服务。 1水环境数学模型概述 1.1水动力学模型 在1950年以前,数学模拟的基本理论已经建立,并运用这些理论解决过一些简单的工程问题。1952—1954年Isaacson和Twesch首次建立了俄亥俄河和密西西比河的部分河段数学模型,并进行了实际洪水过程的模拟。到20世纪中期,水动力学模型再次得到重视,随着计算机技术的发展,模型功能也在增加,可以对整个流域、洪泛区、已建或规划中的水利工程进行系统模拟。 1.2水质模型 Streefer和Phelps于1925年开发的,用于分析生活污水排入河流后对水中溶解氧的影响,即BOD/DO模型。O’connor在此基础上又开发了港湾的稳态BOD/DO模型及适用于河流的动态BOD/DO模型。Thomann采用有限差分法离散求解模型方程,使水质模型更好地反映河底高程及纵断面变化等水质特征。 20世纪70年代早期开发出水体富营养化模型,80年代以来,专家们又研究开发了反应毒性物质在水体中迁移转化的模型。 1.3数学模型分类 1)按解的过程可以分为确定性模型和随机模型。对一组给定的输入条件,确定性模型只给出一组确定值,这是一种使用最广泛的数学模型。随机性模型的输入是随机的,其解不具有唯一性。

二维水质模型及应用研究进展

123 二维水质模型及应用研究进展 彭 琴,牟新利,张丽莹,李 军,李仁婷 (重庆三峡学院化学与环境工程学院,重庆 万州 404100) 摘 要:本文综述了二维水质模型及其应用,以及二维水质模拟研究进展,可看出它为评价、预测和选择污染控制方案及制定水质标准提供依据,是河流规划、管理、研究过程中的重要工具。 关键词:二维;水质模型;环境 基金资助:重庆市教委科学技术研究项目(编号:KJ091106)和重庆三峡学院大学生创新实验项目(编号:2008-10) 随着社会经济的发展和人民生活水平的提高,水环境问题越来越受到人们的关注和重视,水质模拟是预测评价水环境问题的重要手段之一。近几十年来,国内外许多学者已开展了大量的研究工作,针对所研究的问题的不同,提出许多水质模型。水质数学模型(简称水质模型)是描述参加水循环的水体中各水质组分所发生的物理、化学、生物和生态学等诸多方面变化规律和相互影响关系的数学方法,是水环境污染治理规划决策分析中不可缺少的重要工具。 1 二维水质模型 1.1 FESWMS 有限元表面水模型系统,模型最初是为美国联邦高速公路管理局开发的,用来模拟流经许多人工构筑物如堤坝、桥梁的河口和河流的水动力情况。现在由国地质调查局(USGS)支持和发布。王远航等应用FESWMS 二维水动力学数值模型,对温榆河机场南线高速公路段拟建桥墩壅水情况进行了模拟,探讨了高速公路桥对河道行洪安全的影响[1]。 1.2 MIKE21 本模型由丹麦水动力研究所(DHI)开发,是MIKE11的姐模型,属于平面二维自由表面流模型。丹麦水力研究所不断采用MIKE21作为研究手段,在应用中发展和改进该软件。20多年来,MIKE21在世界范围内大量工程应用经验的基础上持续发展起来,在平面二维自由表面流数值模拟方面具有强大的功能。模型可以提供多种水质变化过程,在全世界得到了广泛应用。Patrick Poulin 等运用MIKE21-NHD 模型预测了潮汐通量,通过不同时期盐沼出口截面评估了养分通量的变化[2]。王哲等应用Mike21软件对金仓湖七种不同设计方案的湖泊流场进行了模拟计算,选择合理设计方案对调水时金仓湖的水质变化规律进行预测和分析[3]。 1.3 RMA2/RMA4/SED-2D 本模型由美国资源管理协会开发,是被美国陆军工程兵团使用的TASB 模型系统的一部分,在SMS (the Surface water Modeling System)中执行。RMA2是有限元水动力模型,RMA4是能模拟最多6个用户定义组分传输的水质模型,SED-2D 是底泥传输模型。张伟等为了将合流制排放的污水中颗粒污染物沉积在特定区域,利用RMA2模型分析排放沟渠形态改造前后的流场变化,模拟结果看出通过修整和改造后沟渠内流速降低,有利于颗粒物沉降,改造方案切实可行[4]。 1.4 CE-QUAL-W2 本模型由美国陆军工程兵团开发。与大部分二维模型不同,该模型是横向平均的,即它只模拟纵向和垂向。模型可用来模拟湖泊和水库,尤其是相对狭长的湖泊和分层水库,模型的水质模拟效果极佳,该模型同时也适合模拟一些具有湖泊特性的河流。Liu 等应用CE-QUAL-W2模型模拟了水面高程和水温以及在水体的水质状况,得出减少20%和80%的磷负荷将分别提高富营养化的营养状态和减弱富营养化的水质,从而为减少水质富营养化提供 2010年 第3期 2010年3月 化学工程与装备 Chemical Engineering & Equipment

河流、湖泊、水库、湿地 水环境容量计算模型

河流、湖泊、水库、湿地水环境容量计算模型(附国家技术指南、计算标准及模型系统下载) ▼ 水环境容量计算模型 1)河流水环境容量模型 水环境容量是在水资源利用水域内,在给定的水质目标、设计流量和水质条件的情况下,水体所能容纳污染物的最大数量。按照污染物降解机理,水环境容量可划分为稀释容量和自净容量两部分,即: 稀释容量是指在给定水域的来水污染物浓度低于出水水质目标时,依靠稀释作用达到水质目标所能承纳的污染物量。自净容量是指由于沉降、生化、吸附等物理、化学和生物作用,给定水域达到水质目标所能自净的污染物量。 河段污染物混合概化图如图1。根据水环境容量定义,可以给出该河段水环境容量的计算公式: 考虑量纲时,上式整理成: 其中: 当上方河段水质目标要求低于本河段时: 当上方河段水质目标要求高于或等于本河段时:

若所研究水功能区被划分为n个河段,则该水功能区的水环境容量是n个河段水环境容量的叠加,即: 式中:W—水功能区水环境容量(t/a); 其他符合意义和量纲同上。 2)湖泊、水库水环境容量计算模型 有机物COD、氨氮的水环境容量模型: 在目前国内外的研究中,多采用完全均匀混合箱体水质模型来预测水库水体长期的动态变化,即将水库视为一个完全混合反应器时,有机物的容量计算模型可以用水体质量平衡基本方程计算。水库中有机物容量模型如下: 假设条件:水量为稳态,出流水质混合均匀。

由此模型推导出的COD、氨氮环境容量的计算公式如下: 总氮总磷的水环境容量计算模型 水库中氮和磷等营养盐物质随时间的变化率,是输入、输出和在水库内沉积的该种污染物的量的函数,因此营养盐物质容量计算可采用沃伦威得尔模型(Vollen—welder),即可以用质量平衡方程表示。 总氮总磷的水环境容量模型可采用吉柯奈尔-迪龙(Kirchner-Dillon)水库营养物浓度预测模型,其形式如下:

水流问题数学建模

估计水塔的水流量 1问题提出 某居民区的民用自来水是由一个圆柱形的水塔提供.水塔高12.2米,直径17.4米.水塔是由水泵根据水塔内水位高低自动加水,一般每大水泵工作两次.现在需要了解该居民区用水规律与水泵的工作功率.按照设计,当水塔的水位降至最低水位,约8.2米时,水泵自动启动加水;当水位升;高到一个最高水位,约10.8米时,水泵停止工作. 可以考虑采用用水率(单位时间的用水量)来反映用水规律,并通过间隔一段时间测量水塔里的水位来估算用水率.表4.2是某一天的测量记录数据,测量了28个时刻,但是由于其中有3个时刻遇到水泵正在向水塔供水,而无水位 作功率. 2问题分析与数据处理 由问题的要求,关键在于确定用水率函数,即单位时间内用水体积,记为f(t),又称水流速度.如果能够通过测量数据,产生若干个时刻的用水率,也就是f(t)在若干个点的函数值,则f(t)的计算问题就可以转化为插值问题.1.假设 1)水塔中水流量是时间的连续光滑函数,与水泵工作与否无关,并忽略水位高度对水流速度的影响. 2)水泵工作与否完全取决于水塔内水位的高度,且每次加水的工作时间为2小时 3)水塔为标准圆柱体. 考虑到假设2)结合表4.2中具体数据,推断得出 4)水泵第一次供水时间段为[8.967,10.954],第二次供水时间段为「20.839,22.958].

2.体积计算 水塔是一个圆柱体,体积为h D V 24 π = .其中D 为底面直径,h 为水位高度。 水流速度应该是水塔中水的体积对时间的导数(微商)由于没有水的体积关于时间的函数表达式,而只有一个离散的函数值表4.3,因此考虑用差商代替微商,这也是离散反映连续的常用思想.为提高精度,采用二阶差商,即i i v t f 2)(-?= 具体地,因为所有数据被水泵两次工作分割成三组数据,对每组数据的中间数据采用中心差商,前后两个数据不能够采用中心差商,改用向前或向后差商. 中心差商公式

一维水量水质模型

第七章一维非恒定河流和河网水量水质模型 对于中小型河流,通常其宽度及水深相对于长度数量较小,扩散质(污染物质、热量)很容易在垂向及横向上达到均匀混合,即扩散质浓度在断面上基本达到均匀状态。这种情况下,我们只需要知道扩散质在断面内的平均分配状况,就可以把握整个河道的扩散质空间分布特征,这是我们可以采用一维圣维南方程描述河流水动力特征或水量特征(水位、流量、槽蓄量等);用一维纵向分散方程描述扩散质在时间及河流纵向上的变化状况。特别地,对于稳态水流,可以采用常规水动力学方法推算水位、断面平均流速的沿程变化;采用分段解析解法计算扩散质浓度沿纵向的变化特征。但是,在非稳态情况下(水流随时间变化或扩散质源强随时间变化)解析解法将无能为力(水流非恒定)或十分繁琐(水流稳态、源强非恒定),这时通常采用数值解法求解河道水量、水质的时间、空间分布。在模拟方法上,无论是单一河道还是由众多单一河道构成的河网,若采用空间一维手段求解,描述水流、水质空间分布规律的控制方程是相同的,只不过在具体求解方法上有所差异而已。 单一河道的控制方程 7.1.1 水量控制方程

采用一维圣维南方程组描述水流的运动,基本控制方程为: ????Q x B Z t q W += (1) 023/42 2=+-++R Q u n g x A u x Z gA x Q u t Q ???????? (2) 式中t 为时间坐标,x 为空间坐标,Q 为断面流量,Z 为断面平均水位,u 为断面平均流速,n 为河段的糙率,A 为过流断面面积,B W 为水面宽度(包括主流宽度及仅起调蓄作用的附加宽度),R 为水力半径, q 为旁侧入流流量(单位河长上旁侧入流场)。此方程组属于二元一 阶双曲型拟线性方程组,对于非恒定问题,现阶段尚无法直接求出其解析解,通常用有限差分法或其它数学离散方法求其数值解。在水流稳态、棱柱形河道条件下,上述控制方程组退化为水力学的谢才公式,可采用相应的方法求解水流特征。 7.1.2 扩散质输运控制方程 描述河道扩散物质运动及浓度变化规律的控制方程为:带源的一维对流分散(弥散)方程,形式如下: S S h A KAC x c AE x x QC t AC r x ++-??? ? ??=+????????)()( (3)

相关主题
文本预览
相关文档 最新文档