当前位置:文档之家› 陀螺仪的详细介绍

陀螺仪的详细介绍

陀螺仪的详细介绍
陀螺仪的详细介绍

陀螺仪

科技名词定义

中文名称:陀螺仪

英文名称:gyroscope

定义:利用高速回转体的动量矩敏感壳体相对惯性空间绕正交于自转轴的一个或二个轴的角运动检测装置。利用其他原理制成的角运动检测装置起同样功能的也称陀螺仪。

应用学科:船舶工程(一级学科);船舶通信导航(二级学科)

本内容由全国科学技术名词审定委员会审定公布

陀螺仪

用高速回转体的动量矩敏感壳体相对惯性空间绕正交于自转轴的一个或二个轴的角运动检测装置。利用其他原理制成的角运动检测装置起同样功能的也称陀螺仪。

目录

编辑本段

陀螺仪

结构

基本上陀螺仪是一种机械装置,其主要部分是一个对旋转轴以极高角速度旋转的转子,转子装在一支架内;在通过转子中心轴XX1上加一内环架,那么

陀螺仪就可环绕飞机两轴作自由运动;然后,在内环架外加上一外环架;这个陀螺仪有两个平衡环,可以环绕飞机三轴作自由运动,就是一个完整的太空陀螺仪(space gyro)。

历史

1850年法国的物理学家莱昂·傅科(J.Foucault)为了研究地球自转,首先发现高速转动中的转子(rotor),由于惯性作用它的旋转轴永远指向一固定方向,他用希腊字 gyro(旋转)和skopein(看)两字合为gyro scopei 一字来命名这种仪表。

陀螺仪是一种既古老而又很有生命力的仪器,从第一台真正实用的陀螺仪器问世以来已有大半个世纪,但直到现也,陀螺仪仍在吸引着人们对它进行研究,这是由于它本身具有的特性所决定的。陀螺仪最主要的基本特性是它的稳定性和进动性。人们从儿童玩的地陀螺中早就发现高速旋转的陀螺可以竖直不倒而保持与地面垂直,这就反映了陀螺的稳定性。研究陀螺仪运动特性的理论是绕定点运动刚体动力学的一个分支,它以物体的惯性为基础,研究旋转物体的动力学特性。

编辑本段陀螺仪原理

陀螺仪的原理就是,一个旋转物体的旋转轴所指的方向在不受外力影响时,是不会改变的。人们根据这个道理,用它来保持方向,制造出来的东西就叫陀螺仪。陀螺仪在工作时要给它一个力,使它快速旋转起来,一般能达到每分钟几十万转,可以工作很长时间。然后用多种方法读取轴所指示的方向,并自动将数据信号传给控制系统。

在现实生活中,陀螺仪发生的进给运动是在重力力矩的作用下发生的。

陀螺仪基本原理

陀螺仪介绍2013-1-28

?陀螺仪发展及应用情况 ?MEMS陀螺仪基本原理 ?陀螺仪与加速度传感器、电子罗盘的 对比以及九轴概念 ?测试讨论 2013-1-28

?陀螺仪发展及应用情况 ?MEMS陀螺仪基本原理 ?陀螺仪与加速度传感器、电子罗盘的 对比以及九轴概念 ?测试讨论 2013-1-28

2013-1-28 1850年法国的物理学家莱昂·傅科(J.Foucault )为了研究地球自转,首先发现高速转动中的转子 (rotor ),由于惯性作用它的旋转轴永远指向一固定方向,他用希腊字 gyro (旋转)和skopein (看)两字合为gyro scopei 一字来命名这种仪表。

?最初的陀螺仪主要用于航海,起稳定船体的作用,此时主要是二维陀螺仪; ?后在航空、航天领域开始广泛的应用。用于飞行体运动的自动控制系统中,作为水平、垂直、俯仰、航向和角速度传感器。指示 陀螺仪主要用于飞行状态的指示,作为驾驶和领航仪表使用。在这些应用中都是三维陀螺仪; ?另外,在军事领域,陀螺仪也发挥着重要作用,例如炮弹的旋转、导弹的惯性导航系统,以提高击中-杀伤比 ?最开始用于航海、航空、航天的陀螺仪都是机械式的,到了现代,主要可以分为压电陀螺仪、微机械陀螺仪、光纤陀螺仪、激 光陀螺仪,现代陀螺仪在结构上已不具备“陀螺”,只是在功能上 与传统的机械陀螺仪同样罢了 2013-1-28

2013-1-28 现在广泛使用的MEMS (微机械)陀螺可应用于航空、航天、航海、兵器、汽车、生物医学、环境监控等领域。并且MEMS 陀螺相比传统的陀螺有明显的优势: 1、体积小、重量轻,适合于对安装空间和重量要求苛刻的场合,例如弹载测量等; 2、低成本; 3、更高可靠性,内部无转动部件,全固

陀螺仪技术测试用题

测试用题,请勿“题字”。用后收回。谢谢! 一、 (20分)以下每题各有四个答案,选择正确的答案,每题5分。 (1) 设自由陀螺的角动量为H ,已知进动角速度ω,陀螺力矩为M ,下列表示三者 之间关系的表达式正确的是( ) (A )H M ω=? ;(B )M H ω=?; (C )H M ω=? ;(D )M H ω=? (2) 采用伺服跟踪法进行单自由度陀螺测漂,转台轴沿当地垂线方向,地球自转角速度 15/ie h ω=?,当地纬度为30?,测得转台转速为4 3.0210 -?转/分,则陀螺漂移速 度约为(传动比是1∶1)( ) (A )0.067 /h ;(B )0.55/h ;(C )1.57/h ;(D )(A )、(B)、(C)均错; (3) 干涉式光纤陀螺光纤长1500m ,成环半径4c m ,光纤环法向角速度 1.5/h Ω=?,光波长为1580nm 。则由Sagnac 效应引起的相位差近似为( ) (A )4 7.9510-?() ;(B )0.114();(C )4 3.1410-?();(D )(A)、(B)、(C) 均错; (4) 动量矩定理的向量表达式为( ) (A ) n b nb d R d R R dt dt ω=+? ;(B ) b ib d H M H dt ω=?+ ;(C ) b n nb d R d R R dt dt ω=+?;(D )i o o d H M dt = 二、(10分)说明运动地理坐标系相对惯性空间旋转的原因,给出该旋转角速度在地理 坐标系上的分量。 三、(20分)已知坐标系b b b ox y z (b 系)与n n n ox y z (n 系)初始时重合,b 系是 n 系以转动顺序x y z →→,转角分别为α、β 、γ得到的。试:(1)求方向余 弦矩阵n I C ,b n C 和n b C ;(2)写出b 系相对n 系的瞬时角速度在b 系上的投影表达式;(3)若向量ω在b 系中的表示为T b x y z ω ωωω??=?? ,求该向量在I I I ox y z 中 的表示I ω和n n n ox y z 中的表示n ω。 五、(10分)写出单自由度陀螺的技术方程,画出其传递函数方框图;求出当初始条件为零、输入角速度1()()t t ω δ=+时积分陀螺的响应。 六、(20分)已知二自由度陀螺技术方程为x x Y Y J H M J H M βααβ?+=?-=?,且x Y J J <。试证 明当陀螺仅受到沿内环轴幅值为 A 的脉冲力矩作用时,陀螺瞬态响应曲线(βα-曲 线)为椭圆,并给出椭圆中心坐标及长短半径;求出当() 1() x Y M t M t δ=??=? 时的响应 )(),(t t βα。 (初始条件为零)。

最全的陀螺仪基础知识详解

最全的陀螺仪基础知识详解 陀螺仪,又叫角速度传感器,是用高速回转体的动量矩敏感壳体相对惯性空间绕正交于自转轴的一个或二个轴的角运动检测装置,同时,利用其他原理制成的角运动检测装置起同样功能的装置也称陀螺仪。 一、陀螺仪的名字由来 陀螺仪名字的来源具有悠久的历史。据考证,1850年法国的物理学家莱昂·傅科(J.Foucault)为了研究地球自转,首先发现高速转动中地的转子(rotor),由于它具有惯性,它的旋转轴永远指向一固定方向,因此傅科用希腊字gyro(旋转)和skopein(看)两字合为“gyroscopei”一字来命名该仪器仪表。 最早的陀螺仪的简易制作方式如下:即将一个高速旋转的陀螺放到一个万向支架上,靠陀螺的方向来计算角速度。 其中,中间金色的转子即为陀螺,它因为惯性作用是不会受到影响的,周边的三个“钢圈”则会因为设备的改变姿态而跟着改变,通过这样来检测设备当前的状态,而这三个“钢圈”所在的轴,也就是三轴陀螺仪里面的“三轴”,即X轴、y轴、Z轴,三个轴围成的立体空间联合检测各种动作,然后用多种方法读取轴所指示的方向,并自动将数据信号传给控制系统。因此一开始,陀螺仪的最主要的作用在于可以测量角速度。 二、陀螺仪的基本组成 当前,从力学的观点近似的分析陀螺的运动时,可以把它看成是一个刚体,刚体上有一个万向支点,而陀螺可以绕着这个支点作三个自由度的转动,所以陀螺的运动是属于刚体绕一个定点的转动运动,更确切地说,一个绕对称轴高速旋转的飞轮转子叫陀螺。将陀螺安装在框架装置上,使陀螺的自转轴有角转动的自由度,这种装置的总体叫做陀螺仪。 陀螺仪的基本部件有:陀螺转子(常采用同步电机、磁滞电机、三相交流电机等拖动方法来使陀螺转子绕自转轴高速旋转,并见其转速近似为常值);内、外框架(或称内、外环,它是使陀螺自转轴获得所需角转动自由度的结构);附件(是指力矩马达、信号传感器等)。 三、陀螺仪的工作原理 陀螺仪侦测的是角速度。其工作原理基于科里奥利力的原理:当一个物体在坐标系中直线移动时,假设坐标系做一个旋转,那么在旋转的过程中,物体会感受到一个垂直的力和垂直方向的加速度。 台风的形成就是基于这个原理,地球转动带动大气转动,如果大气转动时受到一个切向力,便容易形成台风,而北半球和南半球台风转动的方向是不一样的。用一个形象的比喻解释了科里奥利力的原理。

陀螺仪的选择

陀螺仪的选择:其机械性能是最重要的参数 作者:ADI公司Harvey Weinberg 选择陀螺仪时,需要考虑将最大 误差源最小化。在大多数应用中,振动敏感度是最大的误差源。其它参数可以轻松地通过校准或求取多个传感器的平均值来改善。偏置稳定度是误差预算较小的分量之一。 浏览高性能陀螺仪数据手册时,多数系统设计师关注的第一个要素是偏置稳定度规格。毕竟,它描述的是陀螺仪的分辨率下限,理所当然是反映陀螺仪性能的最佳指标!然而,实际的陀螺仪会因为多种原因而出现误差,使得用户无法获得数据手册中宣称的高偏置稳定度。的确,可能只有在实验室内才能获得那么高的性能。传统方法是借助补偿来最大程度地降低这些误差源的影响。本文将讨论多种此类技术及其局限性。最后,我们将讨论另一种可选范式——根据机械性能选择陀螺仪,以及必要时如何提高其偏置稳定度。 环境误差 所有中低价位的MEMS陀螺仪都有一定的时间-零点偏置和比例因子误差,此外还会随温度而发生一定的变化。因此,对陀螺仪进行温度补偿是很常见的做法。一般而言,陀螺仪集成温度传感器的目的就在于此。温度传感器的绝对精度并不重要,重要的是可重复性以及温度传感器与陀螺仪实际温度的紧密耦合。现代陀螺仪的温度传感器几乎毫不费力就能达到这些要求。 许多技术可以用于温度补偿,如多项式曲线拟合、分段线性近似等。只要记录了足够数量的温度点,并且在校准过程中采取了充分的措施,那么具体使用何种技术是无关紧要的。例如,在每个温度的放置时间不足是一个常见的误差源。然而,无论采用何种技术,无论有多细心,温度迟滞——即通过冷却与通过加热达到某一特定温度时的输出之差——都将是限制因素。 图1所示为陀螺仪ADXRS453的温度迟滞环路。温度从+25℃变为+130℃,再变为–45℃,最后回到+25℃,与此同时记录未补偿陀螺仪的零点偏置测量结果。加热周期与冷却周期中的+25℃零点偏置输出存在细微的差异(本例中约为0.2°/s),这就是温度迟滞。此误差无法通过补偿来消除,因为无论陀螺仪上电与否,它都会出现。此外,迟滞的幅度与所施加的温度“激励”量成比例。也就是说,施加于器件的温度范围越宽,则迟滞越大。

光纤陀螺仪指标 国军标

光纤陀螺仪测试方法 1范围 本标准规定了作为姿态控制系统、角位移测量系统和角速度测量系统中敏感器使用的单轴干涉性光纤陀螺仪(以下简称光纤陀螺仪)的性能测试方法。 2规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注目期的引用文件,其随后所有的修改单(不包含勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 GB321-1980优先数和优先系数 CB998低压电器基本实验方法 GJB585A-1998惯性技术术语 GJB151军用设备和分系统电磁发射和敏感度要求 3术语、定义和符号 GJB585A-1998确立的以及下列术语、定义和符号适用于本标准。

3.1术语和定义 3.1.1干涉型光纤陀螺仪interferometric fiber optic gyroscope 仪萨格奈克(Sagnac)效应为基础,由光纤环圈构成的干涉仪型角速度测量装置。当绕其光纤环圈等效平面的垂线旋转时,在环圈中以相反方向传输出的两束相干光间产生相位差,其大小正比于该装置相对于惯性空间的旋转角速度,通过检测输出光干涉强度即反映出角速度的变化。 3.1.2陀螺输入轴input axis of gyro 垂直于光纤环圈等效平面的轴。当光纤陀螺仪绕该轴有旋转角速度输入时,产生光纤环圈相对于惯性空间输入角速度的输出信号。 3.1.3标度因数非线性度scale factor nonlinearity 在输入角速度范围内,光纤陀螺仪输出量相对于最小二乘法拟合直线的最大偏差值与最大输出量之比。 3.1.4零偏稳定性bias stability 当输入角速度为零时,衡量光纤陀螺仪输出量围绕其均值的离散程度。以规定时间内输出量的标准偏差相应的等效输入角速度表示,也可称为零漂。

陀螺仪的基本特性

3.2 陀螺仪的基本特性 双自由度陀螺的两个基本特性是:进动性和定轴性。 3.2.1 陀螺仪的进动性 简单的说陀螺的进动性是指当陀螺受到外力矩的作用时,所产生的一种复合扭摆运动,其进动角速度的方向垂直于外力矩的方向,其进动角速度的大小正比与外力矩,或者说,陀螺进动的方向为角动量以最短距离导向外力矩的方向。 为了便于理解,我们以二自由度的框架陀螺为例,其进动表现为:外力矩如沿着内框轴作用时,则陀螺仪绕外框转动;若外力矩沿外框轴作用时,则陀螺绕内框转动。 3.2.2 陀螺仪的定轴性 陀螺的定轴性是指转子绕自转轴高速旋转时,如果不受外力矩的作用,自转轴将相对于惯性空间保持方向不变。换言之,双自由度陀螺具有抵抗干扰力矩,力图保持转子轴相对惯性空间的方位稳定的特性。 在实际的陀螺仪中,由于结构和工艺的不尽完善,总是不可避免的存在干扰力矩,因此,考查陀螺仪的定轴性,更有实际意义的是考查有干扰情况下,在有限的时间内,自转轴保持方位稳定的能力。由陀螺仪的进动性可以知道,在干扰力矩的作用下,陀螺将产生进动,使得自转轴偏离原有的方位,这种方位偏差就称为漂移。

一般说来,框架陀螺仪的漂移较大,从几度每小时到几十度每小时不等,这就是为什么框架式陀螺测斜仪在测量前要求标桩对北,测量结束后还必须校北的原因。 3.3 陀螺仪的表观进动 由于陀螺仪自转轴相对于惯性空间保持方位不变(当陀螺仪的漂移足够小;同地球自转引起的地球相对惯性空间方位变化比较,可近似的认为陀螺仪相对惯性空间的方位不变),而地球以其自转角速度绕极轴相对惯性空间转动,所示观察者若以地球为参考基准,将会看到陀螺仪自转轴相对地球转动,这种相对运动称为陀螺仪的表观运动。 表观运动的实质是陀螺仪可以跟踪测量地球自转角速度。例如在地球任意纬度处,放置一个高精度的二自由度陀螺仪,并使其自转轴处于当地垂线位置,如图所示,可以看到陀螺的自转轴将逐渐偏离当地的地垂线,而相对地球作圆锥面轨迹的表观进动,每24小时进动一周。若使得自转轴处于当地子午线位置,此时将看到陀螺仪自转轴逐渐偏离当地子午线,也相对地球作圆锥面轨迹的表观进动,每24小时一周。 3.4 坐标系

三轴陀螺仪和六轴陀螺仪的区别_六轴陀螺仪和九轴陀螺仪的区别

三轴陀螺仪和六轴陀螺仪的区别_六轴陀螺仪和九轴陀螺仪的区别陀螺仪,是一种用来感测与维持方向的装置,基於角动量不灭的理论设计出来的。陀螺仪主要是由一个位於轴心可以旋转的轮子构成。陀螺仪一旦开始旋转,由於轮子的角动量,陀螺仪有抗拒方向改变的趋向。陀螺仪多用於导航、定位等系统。 1850年法国的物理学家福柯(J.Foucault)为了研究地球自转,首先发现高速转动中的转子(rotor),由于惯性作用它的旋转轴永远指向一固定方向,他用希腊字gyro(旋转)和skopein(看)两字合为gyro scopei一字来命名这种仪表。 那时常听到别人说三轴、六轴、九轴陀螺仪,那其中到底有哪些区别呢?跟小编一起来了解下。 三轴陀螺仪和六轴的区别轴陀螺仪是分别感应Roll(左右倾斜)、Pitch(前后倾斜)、Yaw (左右摇摆)的全方位动态信息。 而6轴陀螺仪是指三轴加速器和三轴陀螺仪合在一起的称呼。 三轴加速器就是感应XYZ(立体空间三个方向,前后左右上下)轴向上的加速,比如你突然把装有6轴陀螺仪的产品往前推,它就知道你是在向前加速了,从而实现类似赛车加速的操作。 简单的说,6轴具备3轴的功能,但还要高级一点。 三轴加速器是检测横向加速的,三轴陀螺仪是检测角度旋转和平衡的,合在一起称为六轴传感器。 现在支持陀螺仪的游戏也越来越多了,如纸飞机等飞行类游戏,赛车类游戏,体育竞技游戏等。 六轴的区别和九轴陀螺仪的区别所谓的六轴陀螺仪叫六轴动作感应器比较合适是三轴陀螺仪和加速计的合称如果有三轴陀螺仪也有加速计那就具有六轴动作感应 而九轴感测组件是:三轴加速度计、三轴陀螺仪、三轴磁强计,然后欧拉角加四元数数据融合。

陀螺仪的发展历程以及现状的文献综述

陀螺仪的发展历程以及现状的文献综述 摘要 概述了陀螺的发展情况,论述了光纤、静电陀螺等几种现代陀螺的基本原理、分类以及其中一些国内外的研究现状。 关键词 光纤陀螺静电陀螺激光陀螺振动陀螺

作者简介: 男,北京航空航天大学,本科生

1.陀螺的发展简史 陀螺仪器最早是用于航海导航,但随着科学技术的发展,它在航空和航天事业中也得到广泛的应用。自1910年首次用于船载指北陀螺罗经以来,陀螺已有近100年的发展史,发展过程大致分为4个阶段:第一阶段是滚珠轴承支承陀螺马达和框架的陀螺;第二阶段是20世纪40年代末到50年代初发展起来的液浮和气浮陀螺;第三阶段是20世纪60年代以后发展起来的干式动力挠性支承的转子陀螺;目前陀螺的发展已进入第四个阶段,即静电陀螺、激光陀螺、光纤陀螺和振动陀螺。[1] 2.光纤陀螺 光纤陀螺(FOG)是一种利用萨格奈克(Sagnac)效应测量旋转角速率的新型全固态惯性仪表。自从1976年Vali和Shoahil首次提出光纤陀螺的概念以来,引起了国内外人们极大的重视和强烈的兴趣,由于光纤陀螺与机电陀螺或激光陀螺相比有一系列优点,诸如体积小,质量轻,成本低等,特别引起海、陆、空三军的高度重视。在这短短的20多年里,光纤陀螺得到了很大的发展。国外中、低精度光纤陀螺已经产业化,高精度的光纤陀螺的开发和研制也正逐步走向成熟。美国Honeywell公司的保偏型光纤陀螺的零偏稳定性已经达到0.00038°/h,是目前报道的最高精度的光纤陀螺,拟用于潜艇导航或深层空间飞行器。光纤陀螺现已在航空航天、武器导航、机器人控制、石油钻井及雷达等领域获得了较为广泛的应用。国内光纤陀螺仪研制水平已接近惯性导航系统的中、低精度要求,但大多数未到工程实用阶段,也没有可靠性数据。光纤陀螺仪属于所谓“敏感技术”,在目前复杂的技术环境中,很难从他人那里得到更多的借鉴和参考,只有靠我们自力更生走符合。 [2] 光纤陀螺采用的是Sagnac干涉原理,用光纤绕成环形光路并检测出随转动而产生的反向旋转的两路激光束之间的相位差,由此计算出旋转的角速度。 光纤陀螺就原理与结构而言,可以将其分为干涉式光纤陀螺、谐振腔光纤陀螺、布里渊光纤陀螺、锁定模式光纤陀螺及Fabry2Perot光纤陀螺等5种;从检测相位的方法看,也可将其分为开环光纤陀螺和闭环光纤陀螺两类;从其构成方式,可分为相位差偏置式光纤 陀螺、光外差式光纤陀螺及延时调制式光纤陀螺等等。[1] 3.静电陀螺 在宇宙航行中,对陀螺仪的精度要求很高,漂移误差约为0.001(°)/h,或更高。静电陀螺仪是能满足这种要求的陀螺仪之一。静电陀螺仪是利用静电引力使金属球形转子悬浮起来,是自由转子陀螺。其基本结构是一只金属球形转子,加上两只碗形电极壳体,壳体外为陶瓷,内壁上固定6只金属电极,将球形转子放在对称密封壳体内而形成陀螺组件。如图2所示。

陀螺仪认识入门

谈谈对陀螺仪和加速度传感器的感性认识 前几天看到官网的新规则觉得很有意思看看自己帐号注册2年多了比赛也做了2届从论坛上下了大堆资料也没给论坛贡献什么有价值的东西实在惭愧啊正好自己以前捣鼓过一段时间四轴飞行器把当时收集的一些资料发上来大家共享下吧大部分取自网络还有一部分自己的思考重要的地方用红字标明了来自网络的都用蓝字标明本人才疏学浅论坛里藏龙卧虎有不对的还请大家指正新手看看全当一个感性认识。由于时间太长就不标原文地址了大家搜搜都能搜到另外四轴飞控论坛上已经看到有人跑过去要7260 和EN—03的资料了嘿嘿数据手册其实很好找的相关资料也很多的大家多多利用搜索引擎 啊 加速度传感器测的是什么? 我觉得很多时候大家都被它的名字给误导了我觉得准确的来说它测的不是加速度至少对于mma7260这类的片子它检测的是它受到的惯性力(包括重力!重力也是惯性力)。那又有人要问了 F=ma 惯性力不就是加速度么?差矣加速度传感器实际上是用MEMS 技术检测惯性力造成的微小形变注意检测的是微小形变所以你把加速度传感器水平静止放在桌子上它的Z轴输出的是1g的加速度因为它Z轴方向被重力向下拉出了一个形变可是你绝对不会认为它在以1g的加速度往下落吧你如果让它做自由落体它的Z轴输出应该是0 给个形象的说法可以把它看成是一块弹弹胶它检测的就是自己在三个方向被外力作用造成的形变。从刚才的分析可以发现重力这个东西实际是个很恶心的东西它能隔空打牛,在不产生加速度的情况下对加速度传感器造成形变,在产生加速度的时候不造成形变,而其他力都做不到。可惜的是,加速度传感器不会区分重力加速度与外力加 速度。 所以,当系统在三维空间做变速运动时,它的输出就不正确了或者说它的输出不能表明物体的姿态和运动状态举个例子当一个物体在空间做自由落体时在X轴受到一个外力作用产生g的加速度这时候x y z 轴的输出分别是 g,0,0 如果这个物体被x轴朝下静止放在水平面上它x y z 轴的输出也分别是 g,0,0 所以说只靠加速度传感器 来估计自己的姿态是很危险而不可取的 加速度传感器有什么用? 加速度计,可以测量加速度,包括重力加速度,于是在静止或匀速运动(匀速直线运动)的时候,加速度计仅仅测量的是重力加速度,而重力加速度与刚才所说的R坐标系(绝对坐标系)是固连的,通过这种关系,可以得到加速度计所在平面与地面的角度关系也 就是横滚角和俯仰角计算公示如下俯仰角

陀螺仪介绍三种型号

产品一:全自动积分式陀螺经纬仪(全站仪) 该产品采用积分法测量原理,在测量中除架设和瞄准外,整个过程无需任何人工操作,测量结束后,直接显示真北方位角。实现了测量全过程的自动限幅、自动锁放、自主寻北。该种型号的陀螺经纬仪(全站仪)在寻北精度及操作性方面在国内处于领先地位,可应用于高精度基准方位边的建立及火炮、雷达、大地测量、工程测量和矿山贯通测量等领域。 技术指标 ?寻北精度:≤ 5″(1σ) ?寻北时间:≤12 min ?工作模式:寻北全自动 ?工作温度:-20 ℃~+50 ℃ ?使用纬度:75°S~75°N ?主机重量(不含经纬仪):≤15kg ?主机体积(不含经纬仪):φ230mm(最大直径)×430mm(高)产品特性 ?积分法测量原理,可实现高精度寻北 ?采用直流永磁陀螺电机,降低陀螺敏感部温升,设备稳定性好 ?在较大偏北角(± 10°)条件下,自动完成粗寻北及精寻北过程,操作简单 ?陀螺敏感部上锁、解锁全自动,仪器自动化程度高 ?陀螺敏感部采用下挂式摆式陀螺,便于操作 ?多层磁屏机构,屏蔽外部磁场,设备抗干扰能力强 产品二:全自动阻尼式陀螺经纬仪(全站仪) 该产品采用阻尼跟踪法测量原理,自动跟踪、自动锁放,整个测量过程中吊带不受扭,能够在较大偏北角条件下自动完成粗寻北及精寻北过程。测量结束后,在陀螺经仪(全站仪)上直读真北方位角。该种型号的陀螺经纬仪(全站仪)寻北速度快、体积小、环境适应性强。可为火炮、雷达提供初始方位基准,并可应用于大地测量、工程测量和矿山贯通测量等领域。 技术指标 ?寻北精度:≤ 15″(1σ)(初始架设角≤± 15°)

?寻北精度:≤ 10″(1σ)(初始架设角≤± 7°) ?寻北时间: ≤ 5min ?工作模式: 寻北全自动 ?工作温度: -40 ℃~+50 ℃ ?使用纬度: 75°S~75°N ?主机重量(不含经纬仪): ≤ 13 kg ?主机体积(不含经纬仪): φ200mm(最大直径)×450mm(高)产品特性 ?阻尼跟踪法测量原理,吊带不受扭,仪器可靠性强 ?采用直流永磁陀螺电机,降低陀螺敏感部温升,设备稳定性好 ?在较大偏北角(± 10°)条件下,自动完成粗寻北及精寻北过程,操作简单 ?阻尼机构设计使陀螺自转轴快速收敛于子午面,定向速度快 ?陀螺敏感部上锁、解锁全自动,自动化程度高 ?多层磁屏机构,屏蔽外部磁场,设备抗干扰能力强 ?陀螺敏感部采用下挂式摆式陀螺,便于操作 ?仪器设计紧凑,便于携带 产品三:积分式陀螺经纬仪(全站仪) 该产品采用积分法测量原理,在测量过程中只需将陀螺摆幅限制到一定的范围内,便可实现陀螺寻北的自动积分测量。该产品通过设置基准镜及在测量过程中加入悬带零位修正程序,大大提高了仪器的定向精度。可广泛用于火炮、雷达、大地测量、工程测量和矿山贯通测量等领域。 技术指标 ?寻北精度:≤ 7″(1σ) ?寻北时间:≤ 20min ?工作模式:精密寻北全自动 ?工作温度:-20 ℃~+50 ℃ ?使用纬度: 75°S~75°N ?主机重量(不含经纬仪):≤17kg ?主机体积(不含经纬仪):φ200mm(最大直径)×400mm(高) 产品特性 ?积分法测量原理,可实现高精度寻北

谈谈对陀螺仪和加速度传感器的感性认识

前几天看到官网的新规则觉得很有意思看看自己帐号注册2年多了比赛也做了2届从论坛上下了大堆资料也没给论坛贡献什么有价值的东西实在惭愧啊正好自己以前捣鼓过一段时间四轴飞行器把当时收集的一些资料发上来大家共享下吧大部分取自网络还有一部分自己的思考重要的地方用红字标明了来自网络的都用蓝字标明本人才疏学浅论坛里藏龙卧虎有不对的还请大家指正新手看看全当一个感性认识。由于时间太长就不标原文地址了大家搜搜都能搜到另外四轴飞控论坛上已经看到有人跑过去要7260 和EN—03的资料了嘿嘿数据手册其实很好找的相关资料也很多的大家多多利用搜索引擎啊 加速度传感器测的是什么? 我觉得很多时候大家都被它的名字给误导了我觉得准确的来说它测的不是加速度至少对于mma7260这类的片子它检测的是它受到的惯性力(包括重力!重力也是惯性力)。那又有人要问了 F=ma 惯性力不就是加速度么?差矣加速度传感器实际上是用MEMS技术检测惯性力造成的微小形变注意检测的是微小形变所以你把加速度传感器水平静止放在桌子上它的Z轴输出的是1g的加速度因为它Z轴方向被重力向下拉出了一个形变可是你绝对不会认为它在以1g的加速度往下落吧你如果让它做自由落体它的Z轴输出应该是0 给个形象的说法可以把它看成是一块弹弹胶它检测的就是自己在三个方向被外力作用造成的形变。从刚才的分析可以发现重力这个东西实际是个很恶心的东西它能隔空打牛,在不产生加速度的情况下对加速度传感器造成形变,在产生加速度的时候不造成形变,而其他力都做不到。可惜的是,加速度传感器不会区分重力加速度与外力加速度。 所以,当系统在三维空间做变速运动时,它的输出就不正确了或者说它的输出不能表明物体的姿态和运动状态举个例子当一个物体在空间做自由落体时在X轴受到一个外力作用产生g的加速度这时候x y z 轴的输出分别是 g,0,0 如果这个物体被x轴朝下静止放在水平面上它x y z 轴的输出也分别是 g,0,0 所以说只靠加速度传感器来估计自己的姿态是很危险而不可取的加速度传感器有什么用? 加速度计,可以测量加速度,包括重力加速度,于是在静止或匀速运动(匀速直线运动)的时候,加速度计仅仅测量的是重力加速度,而重力加速度与刚才所说的R坐标系(绝对坐标系)是固连的,通过这种关系,可以得到加速度计所在平面与地面的角度关系也就是横滚角和俯仰角计算公示如下俯仰角 横滚角 陀螺仪测的是什么? 陀螺仪可以测量角速度,具有高动态特性,但是它是一个间接测量器件,它测量的是角度的导数,角速度,显然我们要将角速度对时间积分才能得到角度看到积分我想敏感的同学马上就能发现一个致命的问题积分误差 积分误差的来源主要有两个一个是积分时间积分时间Dt越小,输出角度越准一个是器件本身的误差假设陀螺仪固定不动,理想角速度值是0dps(degree per second),但是有一个偏置

陀螺仪的测试

SUCCESS BELONGS TO THE ONE WITH CLEAR AND LONG-TERM GOALS! 电子陀螺仪的角度获取测试 2013-06-07 16:11 by DarkHorse, 111 阅读, 0 评论, 收藏, 编辑 导航中经常用到电子陀螺。为了测试陀螺仪在静止下的零漂输出和运动情况下的输出角度值,做了2个实验。用的陀螺仪型号是:L3G4200DTR 是一个三轴输出的MEMS电子陀螺。 1 零漂测试 让陀螺仪静止不动,运行5分钟,记录串口输出数据,并解析出三个轴的角速度值。在matlab里面进行仿真。 function main clc; clear; dataFile = input('put file: ','s'); nCount = 0; fileHandle = fopen(dataFile,'r');

while ~feof(fileHandle) string = fgetl(fileHandle); nCount = nCount + 1; end nCount = nCount-2; frewind(fileHandle); i = 1; while ~feof(fileHandle) string = str2num(fgetl(fileHandle)); zData(i) = string(3); i = i + 1; if i > nCount break; end end fclose(fileHandle); figure(1); plot(zData,'b-'); hold on; meanZData = mean(zData); title('原始Z轴输出数据'); xlabel('ms'); ylabel('dps(degree per second)'); text(3500, 1.2, ['mean=',num2str(meanZData)]); figure(2); newData = runge_kutta_intergration(zData); plot(newData); xlabel('ms'); ylabel('degree'); title('积分输出的角度'); function newData = runge_kutta_intergration(rawData) samplePeriod = 0.1;%%100ms size = length(rawData); i=1; while (i <= size) %%%%%简单的积分累加获取角度 if(i == 1) Data(i) = rawData(i); else

陀螺仪的选择

陀螺仪的选择

陀螺仪的选择:其机械性能是最重要的参数 作者:ADI公司 Harvey Weinberg 选择陀螺仪时, 需要考虑将最大误差源最小化。在大多数应用中,振动敏感度是最大的误差源。其它参数可以轻松地通过校准或求取多个传感器的平均值来改善。偏置稳定度是误差预算较小的分量之一。 浏览高性能陀螺仪数据手册时,多数系统设计师关注的第一个要素是偏置稳定度规格。毕竟,它描述的是陀螺仪的分辨率下限,理所当然是反映陀螺仪性能的最佳指标!然而,实际的陀螺仪会因为多种原因而出现误差,使得用户无法获得数据手册中宣称的高偏置稳定度。的确,可能只有在实验室内才能获得那么高的性能。传统方法是借助补偿来最大程度地降低这些误差源的影响。本文将讨论多种此类技术及其局限性。最后,我们将讨论另一种可选范式——根据机械性能选择陀螺仪,以及必要时如何提高其偏置稳定度。

环境误差 所有中低价位的MEMS陀螺仪都有一定的时间-零点偏置和比例因子误差,此外还会随温度而发生一定的变化。因此,对陀螺仪进行温度补偿是很常见的做法。一般而言,陀螺仪集成温度传感器的目的就在于此。温度传感器的绝对精度并不重要,重要的是可重复性以及温度传感器与陀螺仪实际温度的紧密耦合。现代陀螺仪的温度传感器几乎毫不费力就能达到这些要求。 许多技术可以用于温度补偿,如多项式曲线拟合、分段线性近似等。只要记录了足够数量的温度点,并且在校准过程中采取了充分的措施,那么具体使用何种技术是无关紧要的。例如,在每个温度的放置时间不足是一个常见的误差源。然而,无论采用何种技术,无论有多细心,温度迟滞——即通过冷却与通过加热达到某一特定温度时的输出之差——都将是限制因素。 图1所示为陀螺仪ADXRS453的温度迟滞环路。

陀螺仪的工作原理

陀螺仪的工作原理 陀螺仪的原理就是,一个旋转物体的旋转轴所指的方向在不受外力影响时,是不会改变的。人们根据这个道理,用它来保持方向,制造出来的东西就叫陀螺仪。我们骑自行车其实也是利用了这个原理。轮子转得越快越不容易倒,因为车轴有一股保持水平的力量。陀螺仪在工作时要给它一个力,使它快速旋转起来,一般能达到每分钟几十万转,可以工作很长时间。然后用多种方法读取轴所指示的方向,并自动将数据信号传给控制系统。 现代陀螺仪是一种能够精确地确定运动物体的方位的仪器,它是现代航空,航海,航天和国防工业中广泛使用的一种惯性导航仪器,它的发展对一个国家的工业,国防和其它高科技的发展具有十分重要的战略意义。传统的惯性陀螺仪主要是指机械式的陀螺仪,机械式的陀螺仪对工艺结构的要求很高,结构复杂,它的精度受到了很多方面的制约。自从上个世纪七十年代以来,现代陀螺仪的发展已经进入了一个全新的阶段。1976年等提出了现代光纤陀螺仪的基本设想,到八十年代以后,现代光纤陀螺仪就得到了非常迅速的发展,与此同时激光谐振陀螺仪也有了很大的发展。由于光纤陀螺仪具有结构紧凑,灵敏度高,工作可靠等等优点,所以目前光纤陀螺仪在很多的领域已经完全取代了机械式的传统的陀螺仪,成为现代导航仪器中的关键部件。和光纤陀螺仪同时发展的除了环式激光陀螺仪外,还有现代集成式的振动陀螺仪,集成式的振动陀螺仪具有更高的集成度,体积更小,也是现代陀螺仪的一个重要的发展方向。 现代光纤陀螺仪包括干涉式陀螺仪和谐振式陀螺仪两种,它们都是根据塞格尼克的理论发展起来的。塞格尼克理论的要点是这样的:当光束在一个环形的通道中前进时,如果环形通道本身具有一个转动速度,那么光线沿着通道转动的方向前进所需要的时间要比沿着这个通道转动相反的方向前进所需要的时间要多。也就是说当光学环路转动时,在不同的前进方向上,光学环路的光程相对于环路在静止时的光程都会产生变化。利用这种光程的变化,如果使不同方向上前进的光之间产生干涉来测量环路的转动速度,这样就可以制造出干涉式光纤陀螺仪,如果利用这种环路光程的变化来实现在环路中不断循环的光之间的干涉,也就是通过调整光纤环路的光的谐振频率进而测量环路的转动速度,就可以制造出谐振式的光纤陀螺仪。从这个简单的介绍可以看出,干涉式陀螺仪在实现干涉时的光程差小,所以它所要求的光源可以有较大的频谱宽度,而谐振式的陀螺仪在实现干涉时,它的光程差较大,所以它所要求的光源必须有很好的单色性。

几种新型陀螺简介

几种新型陀螺简介 何传五 北京控制工程研究所,北京100080 摘 要 随着航空航天技术的发展,对惯性测量装置提出了更多的要求。利用不 同原理研制成的陀螺在各种领域均有不同应用。本文仅就微机械陀螺、半球谐振 陀螺、挠性陀螺、光纤陀螺的原理、结构及特性作一简介。 主题词 陀螺仪 3微机械陀螺 3半球谐振陀螺 动力调谐陀螺仪 纤维光学陀螺仪 Brief I ntroduction to Several G yros He Chuanwu Beijing Institute of C ontrol Engineering,Beijing100080 Abstract More and more requirements for the inertial measurement units are presented with dovelopment o f the aerospace technology.Several gyros developed by different concepts are po- ssessed o f different application areas in aerospace.In the paper the operating principle,struc2 ture and characteistics only for micromechanical gyro,hemispherical resonator gyro,dynami2 cally tuned gyro and fiber2optic gyro are introduced briefly. Subject terms Gyroscope 3Micromechamical gyro 3Hemispherical resonator gyro Dynamically tuned gyro Fiber optic gyroscope 1 微机械陀螺 微机械陀螺是微电子与微机械组结合的微型振动陀螺。两种典型的结构形式如图1所 示。图1(a)为音叉结构,呈H形,音叉振动。当有角速度输入时,将产生哥氏力而形 成绕挠性轴振动的力矩,振动幅度与输入角速度成正比。它采用压电石英晶体并由光刻和 化学蚀刻而成,然后再用激光刻修调整平衡。 图1(b)为框架式结构,它由内框架和外框架组成,二者相互正交,均为挠性轴。 检测质量固定在内框架上。检测质量绕驱动轴振动,由于振动角很小,故检测质量点的振 收稿日期 2000年10月8日

陀螺仪主要性能指标

常见的陀螺仪性能指标与解释 零偏 零偏,又称为零位漂移或零位偏移或零偏稳定性,也可简称零漂或漂移率,英文中称为drift或bias drift。零偏应理解为陀螺仪的输出信号围绕其均值的起伏或波动,习惯上用标准差(σ)或均方根(RMS)表示,一般折算为等效输入角速率(°/ h)。在角速度输入为零时,陀螺仪的输出是一条复合白噪声信号缓慢变化的曲线,曲线的峰-峰值就是零偏值(drift),如图2-6所示。在整个性能指标集中,零偏是评价陀螺仪性能优劣的最重要指标。 分辨率 陀螺仪中的分辨率是用白噪声定义的,如图2-6 中所示,可以用角随机游走来表示,可以简化为一定带宽下测得的零偏稳定性与监测带宽的平方根之比,其单位为°??1Hz,或简化为°?。角度随机游走表征了长时间累积的角

度误差。角随机游动系数反映了陀螺在此处键入公式。的研制水平,也反映了陀螺可检测的最小角速率能力,并间接反映了与光子、电子的散粒噪声效应所限定的检测极限的距离。据此可推算出采用现有方案和元器件构成的陀螺是否还有提高性能的潜力。 标度因子 标度因子是陀螺仪输出量与输入角速率变化的比值,通常用某一特定的直线斜率表示,该斜率是根据整个正(或负)输入角速率范围内测得的输入/输出数据,通过最小二乘法拟合求出的直线斜率。对应于正输入和负输入有不同的刻度因子称为刻度因子不对称,其表明输入输出之间的斜率关系在零输入点不连续。一般用刻度因子稳定性来衡量刻度因子存在的误差特性,它是指陀螺在不同输入角速率情况下能够通过标称刻度因子获得精确输出的能力。非线性往往与刻度因子相关,是指由实际输入输出关系确定的实际刻度因子与标称刻度因子相比存在的非线性特征,有时还会采用线性度,其指陀螺输入输出曲线与标称直线的偏离程度,通常以满量程输出的百分比表示。 动态范围 陀螺在正、反方向能检测到的输入角速率的最大值表示了陀螺的测量范围。该最大值除以阀值即为陀螺的动态范围,该值越大表示陀螺敏感速率的能力越强。 带宽 带宽是指陀螺能够精确测量输入角速度的频率范围,这个频段范围越大表明

基于智能手机陀螺仪数据的行为识别

基于智能手机陀螺仪数据的行为识别 中文摘要 关键字:陀螺仪行为识别 英文摘要 keywords 一、绪论 (2) 1.1背景及研究意义 (2) 1.2论文的主要工作及章节安排 (2) 二、相关概念 (3) 2.1陀螺仪传感器 (3) 2.1.1原理 (3) 2.1.2组成 (3) 2.1.3陀螺仪在手机上的应用 (3) 2.2机器学习 (4) 2.2.1分类 (5) 2.3 支持向量机SVM (5) 2.3.1基本原理 (5) 2.3.2核函数(kernel function) (6) 2.3.3 SMO算法 (7) 2.3人体行为识别 (7) 三、实验流程及方法 (8) 3.1实验流程 (8) 3.2实验工具 (8) 3.3实验方法 (9) 3.3.1 softmax (9) 3.3.2 fitcecoc (9) 3.4评价指标 (9) 四、实验一的过程及结果分析 (9) 4.1实验目的 (9) 4.2实验设计 (9) 4.2.1数据说明及处理 (9) 4.2.2参数 (10) 4.2.3对比结果 (11) 4.3实验结果 (12) 五、实验二 (13) 5.1实验目的 (13) 5.2实验设计 (13) 5.2.1数据说明及处理 (13) 5.2.2参数 (13) 5.2.3对比结果 (13) 六、总结与展望 (13)

一、绪论 1.1背景及研究意义 随着信息技术的不断发展与日益成熟,传感器制造技术也有了极大提高,在众多领域中的应用也越来越普遍。传感器技术的应用使获取环境信息和用户活动信息变得切实可行,从而对环境监控、医疗健康事业以及智能家居等其他相关领域起到了很大的辅助作用,尤其是手机传感器技术对整个感知计算环境有着重要的影响。 在过去的十几年中,手机传感器技术或者叫做随身技术已获得研究人员的极大关注,并且这种技术得到了很大的发展,原因在于使用手机式传感器系统可以对个人、家庭以及社区进行长期的监测,从而掌握其行为动机防止意外情况发生,保护器安全性。例如对小脑平衡系统紊乱的病人的复健过程进行监测,可将感知运动强度和心率的传感器连接到病人的手腕和脚踝,获取病人的心率和呼吸频率等信息,通过传感器对病人的实时监控确保病人在安全的运动强度下进行恢复训练。 智能手机传感器作为感知技术计算领域的一个重要分支,由于其便携性与价格较低因而十分具有研究及普遍应用的价值。例如用户通过佩戴智能手机,可在户外、办公等情况下对自身的活动状态进行实时监测,也可以根据历史数据对用户的行为习惯进行建模,从而能够做到自动地调整环境、相关事件的提醒等。在医疗监护领域,可以实时监测判断伤残人士的病情趋势和恢复训练过程以及老人小孩的监护情况。 基于传感器数据的行为识别属于目前的热点研究,但是,目前一般是通过研究智能手机内的加速度传感器或多种传感器共同作用对人体行为识别,少有单独研究陀螺仪对人体行为识别的作用及重要程度。本论文着重研究智能手机陀螺仪对人体行为识别的研究,通过支持向量机对陀螺仪数据进行训练,建立模型,判断对人体六种动作(跑步、站立、坐、躺、上楼梯、下楼梯)的识别能力,得出正确率。并将陀螺仪、加速度、陀螺仪与加速度合集等的正确率做对比,判断出陀螺仪及相关数据在人体行为识别中发挥的作用。 1.2论文的主要工作及章节安排 本论征,通过matlab 2016a将数据分为四个数据组,且每个数据组都包含五种数据集。通过matlab自带的两种函数fitcecoc和softmax对这五种数据进行训练分类,得出每种数据集的准确率。最后通过对比结果,分析造成准确率差异的原因文根据所需特,并判断出fitcecoc和softmax这两种函数对数据集的分类效果。 本论文第一章讲述了陀螺仪传感器的研究背景,正是在这种大背景下,陀螺仪等传感器的才得以发展迅速且研究取得很多成果。 第二章介绍了陀螺仪传感器及其工作原理,同时讲述了支持向量机(SVM)的原理。 第三章概述了试验流程, 第四章 第五章

陀螺仪原理与惯性导航

陀螺仪的原理 陀螺仪简介 绕一个支点高速转动的刚体称为陀螺(top)。通常所说的陀螺是特指对称陀螺,它是一个质量均匀分布的、具有轴对称形状的刚体,其几何对称轴就是它的自转轴。由苍蝇后翅(特化为平衡棒)仿生得来。 在一定的初始条件和一定的外在力矩作用下,陀螺会在不停自转的同时,还绕着另一个固定的转轴不停地旋转,这就是陀螺的旋进(precession),又称为回转效应(gyroscopic effect)。陀螺旋进是日常生活中常见的现象,许多人小时候都玩过的陀螺就是一例。

陀螺仪的原理 我们不用一个完整的轮框,我们用四个质点ABCD来表示边上的区域,这个边对于用图来解释陀螺仪的工作原理是很重要的。轴的底部被托住静止但是能够各个方向旋转。当一个倾斜力作用在顶部的轴上的时候,质点A向上运动,质点C则向下运动,如其中的子图1。因为陀螺仪是顺时针旋转,在旋转90度角之后,质点A将会到达质点B的位置。CD两个质点的情况也是一样的。子图2中质点A 当处于如图的90度位置的时候会继续向上运动,质点C也继续向下。AC质点的组合将导致轴在子图2所示的运动平面内运动。一个陀螺仪的轴在一个合适的角度上旋转,在这种情况下,如果陀螺仪逆时针旋转,轴将会在运动平面上向左运动。如果在顺时针的情况中,倾斜力是一个推力而不是拉力的话,运动将会向左发生。在子图3中,当陀螺仪旋转了另一个90度的时候,质点C在质点A受力之前的位置。C质点的向下运动现在受到了倾斜力的阻碍并且轴不能在倾斜力平面上运动。倾斜力推轴的力量越大,当边缘旋转大约180度时,另一侧的边缘推动轴向回运动。 万向节陀螺仪 实际上,轴在这个情况下将会在倾斜力的平面上旋转。轴之所以会旋转是因为质点AC在向上和向下运动的一些能量用尽导致轴在运动平面内运动。当质点AC最后旋转到大致上相反的位置上时,倾斜力比向上和向下的阻碍运动的力要大。

相关主题
文本预览
相关文档 最新文档