当前位置:文档之家› 陀螺仪

陀螺仪

陀螺仪
陀螺仪

陀螺仪的原理与发展

一、引言

陀螺仪是一种利用是用高速回转体的动量矩敏感壳体相对惯性空间绕正交于自转轴的一个或二个轴的角运动检测装置,在姿态控制和导航定位等领域有着非常重要的作用。

二、原理

绕一个支点高速转动的刚体称为陀螺,通常它是一个质量均匀分布的、具有轴对称形状的刚体,其几何对称轴就是它的自转轴。在一定的初始条件和一定的外在力矩作用下,陀螺会在不停自转的同时,环绕着另一个固定的转轴不停地旋转,这就是陀螺的旋进,又称为回转效应。

通常陀螺仪的基本组成包括:陀螺转子,内、外框架,附件等部件。(如图一所示)

图一图二

三、特性

陀螺仪在航空、航天、航海等领域的大规模应用,是由于它的两个基本特性:一为定轴性,另一是进动性。

定轴性是指:当陀螺仪高速旋转时,如果没有外力矩作用到陀螺仪上时,陀螺仪的自转轴在惯性空间中的指向保持稳定不变,同时当有外力矩干扰时反抗任何改变转子轴向的力矩。并且转子的转动惯量越大,转子的角速度越大,陀螺仪的稳定性越好。

进动性是指:当转子高速旋转时,若外力矩作用于外环轴,陀螺仪将绕内环轴转动;若外力矩作用于内环轴,陀螺仪将绕外环轴转动。其转动角速度方向与

外力矩作用方向互相垂直。进动角速度的方向可用右手定则判断(如图二所示)即伸直右手,大拇指与食指垂直,手指顺着自转轴的方向,手掌朝外力矩的正方向,然后手掌与4指弯曲握拳,则大拇指的方向就是进动角速度的方向。进动角速度的大小取决于转子动量矩H的大小和外力矩M的大小,其计算式为进动角速度ω=M/H。(ω为进动角速度,M为外力矩,H为动量矩)

四、陀螺仪的发展

陀螺仪由1850年法国物理学家莱昂·傅科在研究地球自传中获得灵感而发明出来的,类似像是把一个高速旋转的陀螺放到一个万向支架上,靠陀螺的方向来计算角速度。

陀螺仪发明后,首先应用到航海上,后来在航空、航天等领域迎来了大规模应用,成为了最重要的仪表之一。

到第二次世界大战,德国人为了使飞弹能准确的落到目标上空,德国人研发了惯性制导系统。惯性制导系统采用陀螺仪确定方向和角速度,用加速度计测试加速度,通过数学计算算出飞弹飞行的距离和路线,从而控制飞行姿态,使飞弹落到想去的地方,从此以陀螺仪为核心的惯性制导系统得以快速发展。

上世纪七十年代现代陀螺仪的发展已经进入了一个全新的阶段。八十年代后,现代光纤陀螺仪就得到了非常迅速的发展,与此同时激光谐振陀螺仪也有了很大的发展。

与此同时随着微电子机械系统 (MEMS) 技术的发展, 陀螺技术和MEMS技术结合产生了新一代陀螺——微机械陀螺仪。因其质量小, 体积小, 成本低, 可靠性好, 稳定性高及功耗低等优点, 在工业控制、航空航天、汽车、消费电子、军事等领域中得到广泛的应用。

五、一些典型陀螺仪的介绍

1、滚珠轴承自由陀螺仪(如图三所示)

它是经典的陀螺仪。利用滚珠轴承支承是应用最早、最广泛的支承方式。滚珠轴承靠直接接触,摩擦力矩大,陀螺仪的精度不高,漂移率为每小时几度,但工作可靠,迄今还用在精度要求不高的场合,一个自由转子陀螺仪(双自由度陀螺仪)靠内环轴和外环轴角度传感元件可以测量两个姿态角。

图三图四

2、液浮陀螺仪(如图四所示)

内框架(内环)和转子形成密封球形或圆柱形的浮子组件。转子在浮子组件内

高速旋转,在浮子组件与壳体间充以浮液,用以产生所需要的浮力和阻尼。浮力与浮子组件的重量相等者,称为全浮陀螺;浮力小于浮子组件重量者称为半浮陀螺。

由于利用浮力支承,摩擦力矩减小,陀螺仪的精度较高,但因不能定位仍有摩擦存在。为弥补这一不足,通常在液浮的基础上增加磁悬浮,即由浮液承担浮子组件的重量,而用磁场形成的推力使浮子组件悬浮在中心位置。

现代高精度的单自由度液浮陀螺常是液浮、磁浮和动压气浮并用的三浮陀螺仪。这种陀螺仪比滚珠轴承陀螺仪的精度高,漂移率为0.01度/时。但液浮陀螺仪要求较高的加工精度、严格的装配、精确的温控,因而成本较高。

3、静电陀螺仪(如图五所示)

在金属球形空心转子的周围装有均匀分布的高压电极,对转子形成静电场,用静电力支承高速旋转的转子。这种方式属于球形支承,转子不仅能绕自转轴旋转,同时也能绕垂直于自转轴的任何方向转动,故属自由转子陀螺仪类型。

静电场仅有吸力,转子离电极越近吸力就越大,这就使转子处于不稳定状态。用一套支承电路改变转子所受的力,可使转子保持在中心位置。静电陀螺仪采用非接触支承,不存在摩擦,所以精度很高,漂移率低达10 ~10 度/时。它不能承受较大的冲击和振动。它的缺点是结构和制造工艺复杂,成本较高。

图五图六

4、激光陀螺仪(如图六所示)

它的结构原理与上面几种陀螺仪完全不同。激光陀螺实际上是一种环形激光器,没有高速旋转的机械转子,但它利用激光技术测量物体相对于惯性空间的角速度,具有速率陀螺仪的功能。

激光陀螺仪的结构和工作是:用热膨胀系数极小的材料制成三角形空腔。在空腔的各顶点分别安装三块反射镜,形成闭合光路。腔体被抽成真空,充以氦氖气,并装设电极,形成激光发生器。

激光发生器产生两束射向相反的激光。当环形激光器处于静止状态时,两束激光绕行一周的光程相等,因而频率相同,两个频率之差(频差)为零,干涉条纹为零。当环形激光器绕垂直于闭合光路平面的轴转动时,与转动方向一致的那束光的光程延长,波长增大,频率降低;另一束光则相反,因而出现频差,形成干涉条纹。单位时间的干涉条纹数正比于转动角速度。激光陀螺的漂移率低达

0.1~0.01度/时,可靠性高,不受线加速度等的影响,已在飞行器的惯性导航中得到应用,是很有发展前途的新型陀螺仪。

激光陀螺仪是理想的捷联式陀螺,有很宽的动态范围,可达1000°/S,输出为数字信号,便于导航计算机计算。同时具有成本低、无机械转子,对振动、

冲击不敏感,使用前不用误差校准、启动时间短,不需预热、对交叉轴转速不敏感,可靠性高等优点。

理论上,激光陀螺的输出(脉冲数)应与输入(环形光路转过的角度)成线性关系,可以根据输出的脉冲数测量激光陀螺转过的角度,但在激光陀螺的应用中存在着严重的闭锁现象。主要原因为谐振腔中存在各种损耗,如镜面有散射损耗,正反方向光束和He-Ne激光介质之间的相互作用,导致正、反方向的光束在能量上相互耦合,使得一定的输入角速度下,无输出信号。

5、光纤陀螺仪(如图七所示)

光学陀螺仪的一种,其基本工作原理基于萨格纳效应,即在同一闭合光路中从同一光源发出两束特征相同的光,沿相反的方向进行传播,汇合到同一探测点,产生干涉。若存在绕垂直于闭合光路所在平面轴线相对惯性空间转动的角速度,则沿正、反方向传播的光束产生光程差,该插值与角速度成正比。通过光程差与相应相位差的关系,可通过检测相位差,计算角速度。

一般由光纤传感线圈、集成光学芯片、宽带光源和广电探测器组成。光纤陀螺不需要光学镜面的高精加工,光腔的严格密封和机械偏置装置,同时能克服激光陀螺的闭锁现象。

但是光纤陀螺存在:

(1)温度瞬态的影响:理论上,环形干涉仪中的两个反向传播光路是等长的,但是这仅在系统不随时间变化时才严格成立。实验证明,相位误差以及旋转速率测量值的漂移与温度的时间导数成正比,使系统产生温漂。

(2)振动的影响:振动也会对测量产生影响,必须采用适当的封装以确保线圈良好的坚固性,内部机械设计必须十分合理,防止产生共振现象。

(3)偏振的影响:现在应用比较多的单模光纤是一种双偏振模式的光纤,光纤的双折射会产生一个寄生相位差,因此需要偏振滤波。消偏光纤可以抑制偏振,但是却会导致成本的增加。

图七图八

6、硅微机电陀螺仪(如图八所示)

硅基微机械振动陀螺是微机械陀螺市场应用中发展速度最快的一种陀螺之一, 其应用正快速从汽车工业领域扩展至消费电子和个人导航系统等领域。硅基微机械陀螺因其具有体积小, 质量轻, 功耗低等特性而成为手持式设备用MVG

的理想选择。目前, 硅基微机械振动陀螺的偏置稳定性已达到0.1 (°) /h, 从而进入高精度应用市场。根据结构或输入原理的不同, 硅基微机械陀螺可分为框架式、音叉式等多种结构。由于耦合式MVG的驱动振荡和敏感振荡都作用于单个质量块上, 使机械耦合成为一个严重的问题, 因此耦合MVG难以实现更优的性能, 为克服机械耦合误差, 解耦MVG成为目前研究的主流方向。

7、压电陶瓷微机械振动陀螺(如图九所示)

与传统微机械振动陀螺相比, 压电陶瓷微机械振动陀螺不需弹性元件和检测质量这样的运动部件, 而由压电材料本身构成振子完成陀螺功能, 因此具有优良的鲁棒性, 宽的检测范围和更高的抗外部冲击和震动性能, 能工作在大气环境且不用专门的真空封装。

图九图十

8、悬浮转子陀螺(如图九所示)

悬浮转子陀螺可分为微机械静电悬浮转子陀螺 (MESGs) 和微机械磁悬浮转子陀螺 (MSGs) 。静电悬浮转子陀螺分为静电吸力和静电斥力悬浮两种;磁悬浮转子陀螺分为电磁吸力悬浮、抗磁悬浮和静电斥力悬浮3种。目前, 研究较成功的悬浮转子陀螺是电磁斥力悬浮转子陀螺和静电吸力悬浮转子陀螺。两者均通过使悬浮于平衡位置的转子高速旋转来获得恒定角动量并产生陀螺效应, 借助力矩再平衡回路来测量双输入轴角速度。悬浮转子微陀螺的优势是克服了振动式微机械陀螺所固有的正交误差问题, 无需频率调谐, 可获得较高的陀螺精度, 微转子可同时检测两轴角速度和三轴线加速度, 能降低微惯性测量组合 (MIMU) 的器件尺寸和研制成本。

1、微机械静电悬浮转子陀螺 (MESGs) 。静电悬浮转子陀螺工作时, 陀螺转子维持悬浮在壳体的零位平衡位置并高速旋转, 产生陀螺效应, 然后借助力矩再平衡原理来测量双输入轴角速度。

2) 磁悬浮转子陀螺 (MSG) 。MSG利用磁力 (或电磁力) 作为支撑使转子悬浮并转动, 同静电悬浮转子陀螺相比, 磁悬浮陀螺勿需高压和真空。将磁悬浮技术与MEMS技术结合实现的磁悬浮微机械陀螺克服了普通振动式微机械陀螺精度低的缺点,同时具有体积小,质量轻,功耗低可靠性高等优点,由广阔的发展空间。磁悬浮陀螺仪的研究开始于20世机90年中期,电磁阻尼和涡流生热问题是磁悬浮陀螺研究的瓶颈,电磁阻尼限制了转子转速进一步提高,涡流生热使器件功耗较高,此外磁悬浮陀螺的侧向刚度较低,限制了转子悬浮和旋转的稳定性。

五、结语

多年以前,莱昂·傅科发明陀螺仪是为了科学研究。如今,这个小东西却让我们的生活有了翻天覆地的改变。陀螺仪器不仅可以作为指示仪表,而更重要的是它可以作为自动控制系统中的一个敏感元件,提供准确的方位、水平、位置、速度和加速度等信号,以便驾驶员或用自动导航仪来控制飞机、舰船或航天飞机等航行体按一定的航线飞行。

如今MEMS技术的高速发展,未来大量基于MEMS技术的陀螺仪将会得到更广泛的应用,陀螺仪会变得更小,功耗更低。同时高精度,高动态响应,高稳定性

的陀螺仪成本也将更低。

参考文献:

[1]刘世贵.陀螺仪的发展概况与前景[J].经营管理者, 2010 (8) :368-369

[2]周海波,刘建业,赖际舟,李荣冰.光纤陀螺仪的发展现状[J].传感器技术,2005(6):1-3

[3]郑露滴,汤全安,章燕申.激光陀螺仪的现状与发展趋势[J].中国仪器仪表,1995(4):4-6

[4]许昕,何杰,王文,卜继军.微机械陀螺仪的新进展及发展趋势[J].压电与声光

2014(4):588-595

[5]李淑绢.陀螺仪的原理及其应用[D].甘肃:河西学院,2011

微陀螺仪的设计与制造过程

微陀螺仪的设计与制造 学校:华中科技大学 专业:机械设计制造及其自动化 姓名:潘登 班级:1104班 学号:U201110689 指导老师: 廖广兰 来五星

中文摘要 随着科学技术的发展以及科研技术的逐渐成熟。陀螺仪也逐渐进入了各个领域。现如今陀螺仪在航海导航、航天航空、研究动力学、兵器、汽车、生物医学、环境监控等方面有了广泛的应用。而各种陀螺仪也因其原理的不同而有不同的分类,诸如哥氏加速度效应微振动陀螺、流体陀螺、固体微陀螺、悬浮转子式微陀螺、微集成光学式陀螺以及原子陀螺。而其中随着MEMS技术的不断发展,以其为基础的微陀螺因尺寸小、精度高、重量轻、易于数字化、智能化而越来越受到大家青睐。其在汽车导航、消费电子和移动应用等民用领域以及现代和可预见的未来高科技战场上拥有广阔的发展和市场前景。 文章首先对陀螺仪做了简单的原理和功能介绍,阐述了当前微陀螺仪是非常具有前景的研究防线,并简单介绍了几种常见的微陀螺仪,然后对微陀螺仪的结构进行了简单的分析并且分析了微机械陀螺仪的设计及制造过程和工艺方法并对其中的技术难点进行了分析,也对加工陀螺仪必须的MEMS工艺进行了概述,然后对微陀螺仪的前景及应用进行了进一步的探讨。 关键词: 微机械陀螺仪,MEMS工艺,制作过程,关键技术

Abstract With the development of science and technology as well as scientific research and technology matures.Gyroscope is gradually coming into the fields.Now gyroscope has broad application in marine navigation, aerospace, research dynamics, weapons, cars, bio-medicine, environmental monitoring, etc.And also because of the various gyroscope different principles and have different classifications, such as the Coriolis acceleration effect of micro-vibration gyro, gyro fluid, solid micro-gyroscope, suspended gyroscope rotor micro, micro-gyroscope integrated optical and atomic gyroscope. With the continuous development of which MEMS technology, with its micro-gyroscope-based due to the small size, high precision, light weight, easy-to-digital, intelligent and increasingly being favored. It has a broad development and market prospects in the car navigation, consumer electronics and mobile applications and other civilian areas as well as modern and high-tech battlefield for the foreseeable future. The article first gyroscope do a simple principle and function description, describes the current micro-gyroscope is a very promising line of research, and a brief introduction to some common micro-gyroscope, then the structure of the micro-gyroscope simple analysis and analysis of the micromachined gyroscope design and manufacturing process and process methods and technical difficulties which were analyzed, but also on the processing of MEMS gyroscope must be an overview of the process, then the prospects for and application of micro-gyroscopes were further discussion. Keywords: Micromechanical gyroscopes, MEMS technology, production process, key technologies

带你看看高精度陀螺仪有哪些

带你看看高精度陀螺仪有哪些 对于陀螺仪,可能大家没怎么听过这样概念,但是你早已接触过陀螺仪带来的功能。就是在不锁定手机的情况下,进行手机的翻转,界面也跟着翻转;在玩精灵宝可梦的时候,你通过手机的偏转,画面进行的偏转,从而抓到你的皮卡丘。 陀螺仪的另一种叫法又称角速度传感器,从定义上来看陀螺仪是测量载体角运动或者角速度的传感器从应用的角度上来看,陀螺仪多用于导航、定位等系统常用实例如手机GPS 定位导航、卫星三轴陀螺仪定位,其陀螺仪的精度在整个过程中起到了至关重要的作用,也就是高精度的陀螺仪直接决定了惯性导航系统的精度以及制导和自动控制系统的性能品质。 现在随着陀螺仪的发展,技术越来越成熟,陀螺仪的结构和原理都有着很大的变化。由于设备对偏转度的要求越来越精准,已经出现了高精度陀螺仪这一概念,完全不局限在传统的机械陀螺仪当中,下面就来介绍一下,近年来成功开发的高精度陀螺仪。 1.静电陀螺仪 虽然传统的机械陀螺仪已经满足不了用户、或是场景变换上的精度需求了,但并不意味着包含转子结构的陀螺仪已经完全退出了高精度陀螺仪队伍当中。其身为机械陀螺仪的升级版本,静电陀螺仪利用电场克服了转子旋转的摩擦力,大大提高了陀螺仪的精度。可惜生产难度较大,限制了其大规模的应用。 2.压电陀螺仪 对于经常接触传感器的人都会知道,在需要完成测压力这一任务的时候,我们基本会采用压电传感器。但对压电陀螺仪并不清楚,压电陀螺仪是一种振动陀螺,依靠压电材料的压电效应,当角速度不同时,贴在不同方向上的压电薄片的电压也出现偏差,依此测量角速度。作为高精度陀螺仪,压电陀螺仪的抗干扰能力也十分强大,甚至经受的动态核爆实验也没有损坏,因此多用在军工方面。 3.光纤陀螺仪 光纤陀螺仪可谓顺应着时代的陀螺仪潮流而诞生,其具有精度高,体积小等特点,而且在

主要性能参数

智能辅助驾驶(ADAS)测试能力构建申请 1 背景 JT/T 1094-2016营运客车安全技术条件要求,9米以上营运车应安装车道偏离预警系统和自动紧急制动系统。GB7258-2016送审稿中要求11米以上公路客车和旅游车客车应装备车道保持系统和自动紧急制动系统。为了满足法规需求和智能汽车未来发展趋势,我司汽车电子课也立项进行自动驾驶技术研究(QC201701030006),第一阶段预计17年底开发完成。 智能辅助驾驶是自动驾驶的低级阶段也是必经之路。现阶段,智能辅助驾驶主要包含FCW(前撞预警)、LDW(车道偏离报警)、AEB (自动紧急制动)LKA(车道保持)ACC (自适应巡航)。从功能的实现到批量商用需要经过软件仿真→硬件在环(HiL)→室内试验室→受控场地测试→开放公路测试这一历程。ADAS技术涉及主动安全,目前还不完全成熟,需要大量测试以提高产品精度和可靠性,为了降低委外测试费用,提高我司ADAS配置装车性能,道路试验课申请分阶段构建ADAS测试能力,包含人员培训和设备采购,本次申请主要是测试设备购买。 2 ADAS测试能力构建计划(2017-2020) 智能辅助驾驶测试设备要求精度高,价格昂贵,考虑到成本因素,建议分阶段构建测试能力,构建计划见表1 表1 ADAS能力构建计划 201 7 年 AD AS 测 试能构建计划 设备测试功能仅满足现阶段法规和研发需求,并考虑未来功能拓展性,能力构建见表2。试验用假车和假人采用自制方式,暂不购买;与汽车电子课协商,目前满足2车测试需求即可,暂不购买第三车设备;用于开放道路测试的移动基站暂不购买。 数据采集与分析用笔记本电脑建议单独购买,要求性能稳定,坚固耐用,抗震防水性好。配置要求:15寸屏幕,酷睿i7处理器,128G以上固态硬盘,500G以上机械硬盘。推 荐型号:tkinkpadT570,Dell的Latitude系列。

什么是陀螺仪

什么是陀螺仪 陀螺仪简介 绕一个支点高速转动的刚体称为陀螺(top)。通常所说的陀螺是特指对称陀螺,它是一个质量均匀分布的、具有轴对称形状的刚体,其几何对称轴就是它的自转轴。由苍蝇后翅(特化为平衡棒)仿生得来。 在一定的初始条件和一定的外力矩在作用下,陀螺会在不停自转的同时,还绕着另一个固定的转轴不停 地旋转,这就是陀螺的旋进(precession),又称为回转效应(gyroscopic effect)。陀螺旋进是日常生活中常 见的现象,许多人小时候都玩过的陀螺就是一例。 人们利用陀螺的力学性质所制成的各种功能的陀螺装置称为陀螺仪(gyroscope),它在科学、技术、军事等各个领域有着广泛的应用。比如:回转罗盘、定向指示仪、炮弹的翻转、陀螺的章动、地球在太阳(月球)引力矩作用下的旋进(岁差)等。 陀螺仪的种类很多,按用途来分,它可以分为传感陀螺仪和指示陀螺仪。传感陀螺仪用于飞行体运动的 自动控制系统中,作为水平、垂直、俯仰、航向和角速度传感器。指示陀螺仪主要用于飞行状态的指示, 作为驾驶和领航仪表使用。 陀螺仪原理 陀螺仪的原理就是,一个旋转物体的旋转轴所指的方向在不受外力影响时,是不会改变的。人们根据这 个道理,用它来保持方向,制造出来的东西就叫陀螺仪。我们骑自行车其实也是利用了这个原理。轮子转 得越快越不容易倒,因为车轴有一股保持水平的力量。陀螺仪在工作时要给它一个力,使它快速旋转起来,一般能达到每分钟几十万转,可以工作很长时间。然后用多种方法读取轴所指示的方向,并自动将数据信 号传给控制系统。 现代陀螺仪 现代陀螺仪是一种能够精确地确定运动物体的方位的仪器,它是现代航空,航海,航天和国防工业中广 泛使用的一种惯性导航仪器,它的发展对一个国家的工业,国防和其它高科技的发展具有十分重要的战略 意义。传统的惯性陀螺仪主要是指机械式的陀螺仪,机械式的陀螺仪对工艺结构的要求很高,结构复杂, 它的精度受到了很多方面的制约。自从上个世纪七十年代以来,现代陀螺仪的发展已经进入了一个全新的 阶段。1976年等提出了现代光纤陀螺仪的基本设想,到八十年代以后,现代光纤陀螺仪就得到了非常迅 速的发展,与此同时激光谐振陀螺仪也有了很大的发展。由于光纤陀螺仪具有结构紧凑,灵敏度高,工作 可靠等等优点,所以目前光纤陀螺仪在很多的领域已经完全取代了机械式的传统的陀螺仪,成为现代导航 仪器中的关键部件。和光纤陀螺仪同时发展的除了环式激光陀螺仪外,还有现代集成式的振动陀螺仪,集 成式的振动陀螺仪具有更高的集成度,体积更小,也是现代陀螺仪的一个重要的发展方向。 现代光纤陀螺仪包括干涉式陀螺仪和谐振式陀螺仪两种,它们都是根据塞格尼克的理论发展起来的。塞 格尼克理论的要点是这样的:当光束在一个环形的通道中前进时,如果环形通道本身具有一个转动速度, 那么光线沿着通道转动的方向前进所需要的时间要比沿着这个通道转动相反的方向前进所需要的时间要多。也就是说当光学环路转动时,在不同的前进方向上,光学环路的光程相对于环路在静止时的光程都会产生 变化。利用这种光程的变化,如果使不同方向上前进的光之间产生干涉来测量环路的转动速度,就可以制 造出干涉式光纤陀螺仪,如果利用这种环路光程的变化来实现在环路中不断循环的光之间的干涉,也就是 通过调整光纤环路的光的谐振频率进而测量环路的转动速度,就可以制造出谐振式的光纤陀螺仪。从这个 简单的介绍可以看出,干涉式陀螺仪在实现干涉时的光程差小,所以它所要求的光源可以有较大的频谱宽度,而谐振式的陀螺仪在实现干涉时,它的光程差较大,所以它所要求的光源必须有很好的单色性。 编辑本段陀螺仪的用途 陀螺仪是一种既古老而又很有生命力的仪器,从第一台真正实用的陀螺仪器问世以来已有大半个世纪, 但直到现也,陀螺仪仍在吸引着人们对它进行研究,这是由于它本身具有的特性所决定的。陀螺仪最主要 的基本特性是它的稳定性和进动性。人们从儿童玩的地陀螺中早就发现高速旋转的陀螺可以竖直不倒而保

陀螺仪主要性能指标(优.选)

常见的陀螺仪性能指标与解释 零偏 零偏,又称为零位漂移或零位偏移或零偏稳定性,也可简称零漂或漂移率,英文中称为drift或bias drift。零偏应理解为陀螺仪的输出信号围绕其均值的起伏或波动,习惯上用标准差(σ)或均方根(RMS)表示,一般折算为等效输入角速率(°/ h)。在角速度输入为零时,陀螺仪的输出是一条复合白噪声信号缓慢变化的曲线,曲线的峰-峰值就是零偏值(drift),如图2-6所示。在整个性能指标集中,零偏是评价陀螺仪性能优劣的最重要指标。 分辨率 陀螺仪中的分辨率是用白噪声定义的,如图2-6 中所示,可以用角随机游走来表示,可以简化为一定带宽下测得的零偏稳定性与监测带宽的平方根之比,其单位为,或简化为。角度随机游走表征了长时间累积的角

度误差。角随机游动系数反映了陀螺在此处键入公式。的研制水平,也反映了陀螺可检测的最小角速率能力,并间接反映了与光子、电子的散粒噪声效应所限定的检测极限的距离。据此可推算出采用现有方案和元器件构成的陀螺是否还有提高性能的潜力。 标度因子 标度因子是陀螺仪输出量与输入角速率变化的比值,通常用某一特定的直线斜率表示,该斜率是根据整个正(或负)输入角速率范围内测得的输入/输出数据,通过最小二乘法拟合求出的直线斜率。对应于正输入和负输入有不同的刻度因子称为刻度因子不对称,其表明输入输出之间的斜率关系在零输入点不连续。一般用刻度因子稳定性来衡量刻度因子存在的误差特性,它是指陀螺在不同输入角速率情况下能够通过标称刻度因子获得精确输出的能力。非线性往往与刻度因子相关,是指由实际输入输出关系确定的实际刻度因子与标称刻度因子相比存在的非线性特征,有时还会采用线性度,其指陀螺输入输出曲线与标称直线的偏离程度,通常以满量程输出的百分比表示。 动态范围 陀螺在正、反方向能检测到的输入角速率的最大值表示了陀螺的测量范围。该最大值除以阀值即为陀螺的动态范围,该值越大表示陀螺敏感速率的能力越强。

陀螺仪温度控制系统设计

基于Fuzzy-PID的陀螺仪温度控制系统设计 Temperature Control System of Gyroscope Based on Fuzzy-PID 摘要:陀螺仪是舰船上的重要组成部件,其性能的稳定对于舰船的控制至关重要。将Fuzzy-PID算法应用于陀螺仪温度控制系统,以MCS-51单片机作为温度控制系统的核心部件,采用模糊PID算法以及其他的软硬件设计,实现了一套温度采集和控制的设计方案。 关键词:温度控制;Fuzzy-PID;陀螺仪 引言 ---在舰船中,陀螺仪是关键的部件,陀螺球体与陀螺壳体之间的空间内充满悬浮液体。陀螺球体质量和悬浮液体比重的选择,应确保在悬浮液体加热到工作温度以后,陀螺球体可以拥有中性浮力。所以温度控制系统的设计应保证加热和保持充入陀螺部件的液体的常值工作温度为70±0.2℃,因为在这个温度上陀螺球体具有中性浮力。 ---传统控制方法(包括经典控制和现代控制)在处理具有非线形或不精确特性的被控 对象时十分困难。而温度系统为大滞后系统,较大的纯滞后可引起系统不稳定。大量的应用实践表明,采用传统的PID控制稳态响应特性较好,但难以得到满意的动态响应特性。模糊控制的优点是能够得到较好的动态响应特性,并且无需知道被控对象的数学模型,适应性强,上升时间快,鲁棒性好。但模糊控制也存在固有的缺点,容易受模糊规则有限等级的限制而引起误差。本设计中采用AT89C52作为控制内核,并采用了Fuzzy-PID复合控制。弥补了单纯采用PID算法的不足。对PID参数的模糊自适应整定进一步完善了PID控制的自适应性能,在实际应用中取得了很好的效果。 温度控制系统的工作原理 ---陀螺仪温度控制系统主要由温度传感器、AT89C52单片机、A/D信号采集模块、可控硅输出控制及其他一些外围电路组成。系统的被控对象是陀螺部件内的液体温度,执行机构是可控硅触发电路。工作温度借助电桥测量。电桥的三个臂是配置在控制系统内的电阻,第四个臂是陀螺部件加热温度传感器的电阻。来自电桥的信号值通过高精度集成运放OP07进行差动放大、滤波,然后再送给A/D采样。根据测量的电流端和电压端原理,电桥电压信号的采集采用三线制接法,如图1所示。这是一种最实用又能较精确测温的方式,R4、R5和R6为连线和接触电阻。由于采用上述三线制接法,调整R1即可使包括R5在内的电桥平衡,而R4可通过R6抵消,因此工业上常用这种接法进行精密温度测量。控制部分采用Fuz zy-PID的复合控制使单片机输出PWM脉冲,进而控制执行机构输出到陀螺加热器的电流量,实现陀螺加热器的温度自动调节控制。由于采用了模糊自适应PID控制算法,系统就可以在

MEMS陀螺仪的简要介绍(性能参数和使用)

MEMS陀螺仪的简要介绍(性能参数和使用) MEMS传感器市场浪潮可以从最早的汽车电子到近些年来的消费电子,和即将来到的物联网时代。如今单一的传感器已不能满足人们对功能、智能的需要,像包括MEMS惯性传感器、MEMS环境传感器、MEMS光学传感器、甚至生物传感器等多种传感器数据融合将成为新时代传感器应用的趋势。 工欲善其事,必先利其器,这里就先以MEMS陀螺仪开始,简要介绍一下MEMS陀螺仪、主要性能参数和使用。 传统机械陀螺仪主要利用角动量守恒原理,即:对旋转的物体,它的转轴指向不会随着承载它的支架的旋转而变化。MEMS陀螺仪主要利用科里奥利力(旋转物体在有径向运动时所受到的切向力)原理,公开的微机械陀螺仪均采用振动物体传感角速度的概念,利用振动来诱导和探测科里奥利力。 MEMS陀螺仪的核心是一个微加工机械单元,在设计上按照一个音叉机制共振运动,通过科里奥利力原理把角速率转换成一个特定感测结构的位移。以一个单轴偏移(偏航,YAW)陀螺仪为例,通过图利探讨最简单的工作原理。 两个相同的质量块以方向相反的做水平震荡,如水平方向箭头所示。当外部施加一个角速率,就会出现一个科氏力,力的方向垂直于质量运动方向,如垂直方向箭头所示。产生的科氏力使感测质量发生位移,位移大小与所施加的角速率大小成正比。因为感测器感测部分的动电极(转子)位于固定电极(定子)的侧边,上面的位移将会在定子和转子之间引起电容变化,因此,在陀螺仪输入部分施加的角速率被转化成一个专用电路可以检测的电子参数---电容量。 下图是一种MEMS陀螺仪的系统架构,,陀螺仪的讯号调节电路可以分为马达驱动和加速度计感测电路两个部分。其中,马达驱动部分是透过静电引动方法,使驱动电路前后振动,为机械元件提供激励;而感测部分透过测量电容变化来测量科氏力在感测质量上产生的位移。

最全的陀螺仪基础知识详解

最全的陀螺仪基础知识详解 陀螺仪,又叫角速度传感器,是用高速回转体的动量矩敏感壳体相对惯性空间绕正交于自转轴的一个或二个轴的角运动检测装置,同时,利用其他原理制成的角运动检测装置起同样功能的装置也称陀螺仪。 一、陀螺仪的名字由来 陀螺仪名字的来源具有悠久的历史。据考证,1850年法国的物理学家莱昂·傅科(J.Foucault)为了研究地球自转,首先发现高速转动中地的转子(rotor),由于它具有惯性,它的旋转轴永远指向一固定方向,因此傅科用希腊字gyro(旋转)和skopein(看)两字合为“gyroscopei”一字来命名该仪器仪表。 最早的陀螺仪的简易制作方式如下:即将一个高速旋转的陀螺放到一个万向支架上,靠陀螺的方向来计算角速度。 其中,中间金色的转子即为陀螺,它因为惯性作用是不会受到影响的,周边的三个“钢圈”则会因为设备的改变姿态而跟着改变,通过这样来检测设备当前的状态,而这三个“钢圈”所在的轴,也就是三轴陀螺仪里面的“三轴”,即X轴、y轴、Z轴,三个轴围成的立体空间联合检测各种动作,然后用多种方法读取轴所指示的方向,并自动将数据信号传给控制系统。因此一开始,陀螺仪的最主要的作用在于可以测量角速度。 二、陀螺仪的基本组成 当前,从力学的观点近似的分析陀螺的运动时,可以把它看成是一个刚体,刚体上有一个万向支点,而陀螺可以绕着这个支点作三个自由度的转动,所以陀螺的运动是属于刚体绕一个定点的转动运动,更确切地说,一个绕对称轴高速旋转的飞轮转子叫陀螺。将陀螺安装在框架装置上,使陀螺的自转轴有角转动的自由度,这种装置的总体叫做陀螺仪。 陀螺仪的基本部件有:陀螺转子(常采用同步电机、磁滞电机、三相交流电机等拖动方法来使陀螺转子绕自转轴高速旋转,并见其转速近似为常值);内、外框架(或称内、外环,它是使陀螺自转轴获得所需角转动自由度的结构);附件(是指力矩马达、信号传感器等)。 三、陀螺仪的工作原理 陀螺仪侦测的是角速度。其工作原理基于科里奥利力的原理:当一个物体在坐标系中直线移动时,假设坐标系做一个旋转,那么在旋转的过程中,物体会感受到一个垂直的力和垂直方向的加速度。 台风的形成就是基于这个原理,地球转动带动大气转动,如果大气转动时受到一个切向力,便容易形成台风,而北半球和南半球台风转动的方向是不一样的。用一个形象的比喻解释了科里奥利力的原理。

陀螺仪基本原理

陀螺仪介绍2013-1-28

?陀螺仪发展及应用情况 ?MEMS陀螺仪基本原理 ?陀螺仪与加速度传感器、电子罗盘的 对比以及九轴概念 ?测试讨论 2013-1-28

?陀螺仪发展及应用情况 ?MEMS陀螺仪基本原理 ?陀螺仪与加速度传感器、电子罗盘的 对比以及九轴概念 ?测试讨论 2013-1-28

2013-1-28 1850年法国的物理学家莱昂·傅科(J.Foucault )为了研究地球自转,首先发现高速转动中的转子 (rotor ),由于惯性作用它的旋转轴永远指向一固定方向,他用希腊字 gyro (旋转)和skopein (看)两字合为gyro scopei 一字来命名这种仪表。

?最初的陀螺仪主要用于航海,起稳定船体的作用,此时主要是二维陀螺仪; ?后在航空、航天领域开始广泛的应用。用于飞行体运动的自动控制系统中,作为水平、垂直、俯仰、航向和角速度传感器。指示 陀螺仪主要用于飞行状态的指示,作为驾驶和领航仪表使用。在这些应用中都是三维陀螺仪; ?另外,在军事领域,陀螺仪也发挥着重要作用,例如炮弹的旋转、导弹的惯性导航系统,以提高击中-杀伤比 ?最开始用于航海、航空、航天的陀螺仪都是机械式的,到了现代,主要可以分为压电陀螺仪、微机械陀螺仪、光纤陀螺仪、激 光陀螺仪,现代陀螺仪在结构上已不具备“陀螺”,只是在功能上 与传统的机械陀螺仪同样罢了 2013-1-28

2013-1-28 现在广泛使用的MEMS (微机械)陀螺可应用于航空、航天、航海、兵器、汽车、生物医学、环境监控等领域。并且MEMS 陀螺相比传统的陀螺有明显的优势: 1、体积小、重量轻,适合于对安装空间和重量要求苛刻的场合,例如弹载测量等; 2、低成本; 3、更高可靠性,内部无转动部件,全固

软件系统性能的常见指标(优.选)

衡量一个软件系统性能的常见指标有: 1.响应时间(Response time) 响应时间就是用户感受软件系统为其服务所耗费的时间,对于网站系统来说,响应时间就是从点击了一个页面计时开始,到这个页面完全在浏览器里展现计时结束的这一段时间间隔,看起来很简单,但其实在这段响应时间内,软件系统在幕后经过了一系列的处理工作,贯穿了整个系统节点。根据“管辖区域”不同,响应时间可以细分为: (1)服务器端响应时间,这个时间指的是服务器完成交易请求执行的时间,不包括客户端到服务器端的反应(请求和耗费在网络上的通信时间),这个服务器端响应时间可以度量服务器的处理能力。 (2)网络响应时间,这是网络硬件传输交易请求和交易结果所耗费的时间。 (3)客户端响应时间,这是客户端在构建请求和展现交易结果时所耗费的时间,对于普通的瘦客户端Web应用来说,这个时间很短,通常可以忽略不计;但是对于胖客户端Web应用来说,比如Java applet、AJAX,由于客户端内嵌了大量的逻辑处理,耗费的时间有可能很长,从而成为系统的瓶颈,这是要注意的一个地方。 那么客户感受的响应时间其实是等于客户端响应时间+服务器端响应时间+网络响应 时间。细分的目的是为了方便定位性能瓶颈出现在哪个节点上(何为性能瓶颈,下一节中介绍)。 2.吞吐量(Throughput) 吞吐量是我们常见的一个软件性能指标,对于软件系统来说,“吞”进去的是请求,“吐”出来的是结果,而吞吐量反映的就是软件系统的“饭量”,也就是系统的处理能力,具体说来,就是指软件系统在每单位时间内能处理多少个事务/请求/单位数据等。但它的定义比较灵活,在不同的场景下有不同的诠释,比如数据库的吞吐量指的是单位时间内,不同SQL语句的执行数量;而网络的吞吐量指的是单位时间内在网络上传输的数据流量。吞吐量的大小由负载(如用户的数量)或行为方式来决定。举个例子,下载文件比浏览网页需要更高的网络吞吐量。 3.资源使用率(Resource utilization) 常见的资源有:CPU占用率、内存使用率、磁盘I/O、网络I/O。 我们将在Analysis结果分析一章中详细介绍如何理解和分析这些指标。 4.点击数(Hits per second) 点击数是衡量Web Server处理能力的一个很有用的指标。需要明确的是:点击数不是我们通常理解的用户鼠标点击次数,而是按照客户端向Web Server发起了多少次http请求计算的,一次鼠标可能触发多个http请求,这需要结合具体的Web系统实现来计算。5.并发用户数(Concurrent users) 并发用户数用来度量服务器并发容量和同步协调能力。在客户端指一批用户同时执行一个操作。并发数反映了软件系统的并发处理能力,和吞吐量不同的是,它大多是占用套接字、句柄等操作系统资源。 另外,度量软件系统的性能指标还有系统恢复时间等,其实凡是用户有关资源和时间的要求都可以被视作性能指标,都可以作为软件系统的度量,而性能测试就是为了验证这些性能指标是否被满足。

陀螺仪的详细介绍

陀螺仪 科技名词定义 中文名称:陀螺仪 英文名称:gyroscope 定义:利用高速回转体的动量矩敏感壳体相对惯性空间绕正交于自转轴的一个或二个轴的角运动检测装置。利用其他原理制成的角运动检测装置起同样功能的也称陀螺仪。 应用学科:船舶工程(一级学科);船舶通信导航(二级学科) 本内容由全国科学技术名词审定委员会审定公布 陀螺仪 用高速回转体的动量矩敏感壳体相对惯性空间绕正交于自转轴的一个或二个轴的角运动检测装置。利用其他原理制成的角运动检测装置起同样功能的也称陀螺仪。 目录

编辑本段

陀螺仪 结构 基本上陀螺仪是一种机械装置,其主要部分是一个对旋转轴以极高角速度旋转的转子,转子装在一支架内;在通过转子中心轴XX1上加一内环架,那么 陀螺仪就可环绕飞机两轴作自由运动;然后,在内环架外加上一外环架;这个陀螺仪有两个平衡环,可以环绕飞机三轴作自由运动,就是一个完整的太空陀螺仪(space gyro)。 历史 1850年法国的物理学家莱昂·傅科(J.Foucault)为了研究地球自转,首先发现高速转动中的转子(rotor),由于惯性作用它的旋转轴永远指向一固定方向,他用希腊字 gyro(旋转)和skopein(看)两字合为gyro scopei 一字来命名这种仪表。 陀螺仪是一种既古老而又很有生命力的仪器,从第一台真正实用的陀螺仪器问世以来已有大半个世纪,但直到现也,陀螺仪仍在吸引着人们对它进行研究,这是由于它本身具有的特性所决定的。陀螺仪最主要的基本特性是它的稳定性和进动性。人们从儿童玩的地陀螺中早就发现高速旋转的陀螺可以竖直不倒而保持与地面垂直,这就反映了陀螺的稳定性。研究陀螺仪运动特性的理论是绕定点运动刚体动力学的一个分支,它以物体的惯性为基础,研究旋转物体的动力学特性。 编辑本段陀螺仪原理 陀螺仪的原理就是,一个旋转物体的旋转轴所指的方向在不受外力影响时,是不会改变的。人们根据这个道理,用它来保持方向,制造出来的东西就叫陀螺仪。陀螺仪在工作时要给它一个力,使它快速旋转起来,一般能达到每分钟几十万转,可以工作很长时间。然后用多种方法读取轴所指示的方向,并自动将数据信号传给控制系统。 在现实生活中,陀螺仪发生的进给运动是在重力力矩的作用下发生的。

陀螺仪的工作原理

陀螺仪的工作原理 陀螺仪的原理 一个旋转物体的旋转轴所指的方向在不受外力影响时,是不会改变的。人们根据这个道理,用它来保持方向,制造出来的东西就叫陀螺仪。我们骑自行车其实也是利用了这个原理。轮子转得越快越不容易倒,因为车轴有一股保持水平的力量。陀螺仪在工作时要给它一个力,使它快速旋转起来,一般能达到每分钟几十万转,可以工作很长时间。然后用多种方法读取轴所指示的方向,并自动将数据信号传给控制系统。 现代陀螺仪 一种能够精确地确定运动物体的方位的仪器,它是现代航空,航海,航天和国防工业中广泛使用的一种惯性导航仪器,它的发展对一个国家的工业,国防和其它高科技的发展具有十分重要的战略意义。传统的惯性陀螺仪主要是指机械式的陀螺仪,机械式的陀螺仪对工艺结构的要求很高,结构复杂,它的精度受到了很多方面的制约。自从上个世纪七十年代以来,现代陀螺仪的发展已经进入了一个全新的阶段。1976年等提出了现代光纤陀螺仪的基本设想,到八十年代以后,现代光纤陀螺仪就得到了非常迅速的发展,与此同时激光谐振陀螺仪也有了很大的发展。由于光纤陀螺仪具有结构紧凑,灵敏度高,工作可靠等等优点,所以目前光纤陀螺仪在很多的领域已经完全取代了机械式的传统的陀螺仪,成为现代导航仪器中的关键部件。和光纤陀螺仪同时发展的除了环式激光陀螺仪外,还有现代集成式的振动陀螺仪,集成式的振动陀螺仪具有更高的集成度,体积更小,也是现代陀螺仪的一个重要的发展方向。 现代光纤陀螺仪 包括干涉式陀螺仪和谐振式陀螺仪两种,它们都是根据塞格尼克的理论发展起来的。塞格尼克理论的要点是这样的:当光束在一个环形的通道中前进时,如果环形通道本身具有一个转动速度,那么光线沿着通道转动的方向前进所需要的时间要比沿着这个通道转动相反的方向前进所需要的时间要多。也就是说当光学环路转动时,在不同的前进方向上,光学环路的光程相对于环路在静止时的光程都会产生变化。利用这种光程的变化,如果使不同方向上前进的光之间产生干涉来测量环路的转动速度,这样就可以制造出干涉式光纤陀螺仪,如果利用这种环路光程的变化来实现在环路中不断循环的光之间的干涉,也就是通过调整光纤环路的光的谐振频率进而测量环路的转动速度,就可以制造出谐振式的光纤陀螺仪。从这个简单的介绍可以看出,干涉式陀螺仪在实现干涉时的光程差小,所以它所要求的光源可以有较大的频谱宽度,而谐振式的陀螺仪在实现干涉时,它的光程差较大,所以它所要求的光源必须有很好的单色性。 陀螺仪工作原理与应用(陀螺经纬仪Jyro Station) 来源:译自日本《测量》06年8月号作者:日本测量仪器工业会更新日期:2006-9-22 阅读次数:6183

光纤陀螺仪指标 国军标

光纤陀螺仪测试方法 1范围 本标准规定了作为姿态控制系统、角位移测量系统和角速度测量系统中敏感器使用的单轴干涉性光纤陀螺仪(以下简称光纤陀螺仪)的性能测试方法。 2规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注目期的引用文件,其随后所有的修改单(不包含勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 GB321-1980优先数和优先系数 CB998低压电器基本实验方法 GJB585A-1998惯性技术术语 GJB151军用设备和分系统电磁发射和敏感度要求 3术语、定义和符号 GJB585A-1998确立的以及下列术语、定义和符号适用于本标准。

3.1术语和定义 3.1.1干涉型光纤陀螺仪interferometric fiber optic gyroscope 仪萨格奈克(Sagnac)效应为基础,由光纤环圈构成的干涉仪型角速度测量装置。当绕其光纤环圈等效平面的垂线旋转时,在环圈中以相反方向传输出的两束相干光间产生相位差,其大小正比于该装置相对于惯性空间的旋转角速度,通过检测输出光干涉强度即反映出角速度的变化。 3.1.2陀螺输入轴input axis of gyro 垂直于光纤环圈等效平面的轴。当光纤陀螺仪绕该轴有旋转角速度输入时,产生光纤环圈相对于惯性空间输入角速度的输出信号。 3.1.3标度因数非线性度scale factor nonlinearity 在输入角速度范围内,光纤陀螺仪输出量相对于最小二乘法拟合直线的最大偏差值与最大输出量之比。 3.1.4零偏稳定性bias stability 当输入角速度为零时,衡量光纤陀螺仪输出量围绕其均值的离散程度。以规定时间内输出量的标准偏差相应的等效输入角速度表示,也可称为零漂。

微机械陀螺仪的国内外发展概述

微机械陀螺仪的国内外发展概述 学号:07060441x28 姓名: 摘要:陀螺仪是一种用于测量旋转速度或旋转角的仪器。它在运输系统,例如:导航、刹车调节控制和加速度测量等方面有很多的应用。微机械陀螺仪主要有振动式微机械陀螺仪、转子式微机械陀螺仪、微机械加速度计陀螺仪三种,现在工业控制、航空航天、军用技术都不可能离开惯性传感器:汽车、消费品和娱乐市场也开始依赖这些设备。许多市场调查一致认为微机械传感器市场将以每年15%-25%的年增长率增长。微机械陀螺仪的性能指标在很短的十几年内得到了迅速提高,目前正由速率级向战术级精度迈进。根据随机游走系数定义陀螺仪的性能指标,体微机械和表面微机械陀螺仪的性能在每2年便以10倍的速度得到提高,表面微机械陀螺仪和体微机械陀螺仪的性能的差距也越来越小。也正是由于微机械陀螺仪的广泛应用,使得世界各国都致力于对陀螺仪的研究和发展。 正文: 一、微机械陀螺仪的分类简介及用途。 陀螺是首先在火箭上得到应用的,开始于二战期间德国的V2火箭。从此,陀螺仪和加速度计成为一门惯性技术而快速发展起来,冷战时期精度上快速提高,功能上有很大扩展。不仅在海、陆、空、天的军事领域普遍应用,而且在大地测量、空中摄影、隧道开凿和石油钻井等等许多民用部门也用它起到定向和稳定作用。在军事应用的牵引下,惯性仪表精度大幅提高的同时,相关的制造工艺越来越复杂,生产周期长,成本很高,价格昂贵,令民用部门望而却步。即使在军用方面,由于陀螺仪转子的高速旋转和惯性测量系统的复杂性,在可靠性、安全性、兼容性、寿命以及体积重量等方面也暴露出某些固有的弱点。凡此种种,促使科技人员去思考和探索新的测量工具和测量方式,以替代传统的机械转子式的陀螺仪。因而,各种各样的新型陀螺仪和加速度计相继研制出来并成功地获得应用。微机械陀螺仪主要有振动式微机械陀螺仪、转子式微机械陀螺仪、微机械加速度计陀螺仪三种: (1)振动式微机械陀螺仪。 振动式微机械陀螺仪利用单晶硅或多晶硅制成的振动质量,在被基座带动旋转时的哥氏效应感测角速度。多采用平面电极或是梳状电极静电驱动,并采用平板电容器进行检测。其分类如下:

陀螺仪工作原理与应用

陀螺仪工作原理与应用(陀螺经纬仪Jyro Station) 来源:译自日本《测量》06年8月号作者:日本测量仪器工业会更新日期:2006-9-22 阅读次数:3235 为了求得测量的基准方位和日照时间的方位,必须使用磁针罗盘仪进行天体观测。然而,磁针罗盘仪的精度有限,在天体观测中还要受到确保通视、天气、场所和时间等观测条件的影响。为了解决这些问题,可采用利用了力学原理求得真北的陀螺经纬仪。陀螺经纬仪在隧道测量以及由于不能和已知点通视而无法确定方位、方向角的情况下都能发挥很大的作用。 (图1:陀螺工作站) 1、陀螺工作站的原理 高速旋转的物体的旋转轴,对于改变其方向的外力作用有趋向于铅直方向的倾向。而且,旋转物体在横向倾斜时,重力会向增加倾斜的方向作用,而轴则向垂直方向运动,就产生了摇头的

运动(岁差运动)。当陀螺经纬仪的陀螺旋转轴以水平轴旋转时,由于地球的旋转而受到铅直方向旋转力,陀螺的旋转体向水平面内的子午线方向产生岁差运动。当轴平行于子午线而静止 时可加以应用。 2、陀螺工作站的构造 (图4:陀螺经纬仪的构造 0点调整螺丝,吊线,照明灯,陀螺转子、指针、供电用馈线、反 射镜、陀螺马达、刻度线、目镜)。

陀螺经纬仪的陀螺装置由陀螺部分和电源部分组成。此陀螺装置与全站仪结合而成。陀螺本体在装置内用丝线吊起使旋转轴处于水平。当陀螺旋转时,由于地球的自转,旋转轴在水平面内以真北为中心产生缓慢的岁差运动。旋转轴的方向由装置外的目镜可以进行观测,陀螺指针的振动中心方向指向真北。利用陀螺经纬仪的真北测定方法有“追尾测定”和“时间测定”等。 追尾测定[反转法] 利用全站仪的水平微动螺丝对陀螺经纬仪显示岁差运动的刻度盘进行追尾。在震动方向反转的点上(此时运动停止)读取水平角。如此继续测定之,求得其平均震动的中心角。用此方法进行20分钟的观测可以求得+/-0。5分的真北方向。 时间测定[通过法] 用追尾测定观测真北方向后,陀螺经纬仪指向了真北方向,其指针由于岁差运动而左右摆动。用全站仪的水平微动螺丝对指针的摆动进行追尾,当指针通过0点时反复记录水平角,可以提高时间测定的精度,并以+/-20秒的精度求得真北方向。 (图2:摇头运动) (图3:向子午线的岁差运动)

电子陀螺仪原理与构造

MEM陀螺仪传感器产业探究 目录: 一、MEM陀螺仪市场现状................................................. 2. 第一节、MEM主要厂家产品资料汇总 (2) 第二节、MEM在我国的产业现状 (2) 二、MEM陀螺仪介绍.................................................... 3. 第一节、什么是微机械(MEM)? (3) 第二节、微机械陀螺仪(MEMS gyroscope的工作原理 (3) 第三节、微机械陀螺仪的结构......................................... 4. 三、MEM技术的加工工艺................................................. 6. 第一节、体加工工艺.................................................. 6. 第二节、硅表面微机械加工技术....................................... 7. 第三节、结合技术................................................... 7. 第四节、逐次加工.................................................... 8. 第五节、LIGA工艺................................................... 8. 第六节、THEMLA:艺流程........................................... 9. 四、基于DSP的MEM陀螺仪信号处理平台设计 (9) 第一节、MEM陀螺仪信号处理平台的硬件结构 (9) 第二节、MEM陀螺仪信号处理平台系统任务分析....................... 1 0第三节、MEM信号处理平台软件设计方案.. (11) 五、基于GPS的汽车导航系统的设计与实现 (12) 第一节、主体控制方案.............................................. 1.2第二节、GPS定位系统设计 .. (13) 第三节、车体部分MCU主控模块设计................................ 1.4第四节、系统软件设计.............................................. 1.4

陀螺仪(gyroscope)原理

内容 MID中的传感器 1 加速计 2 陀螺仪 3 地磁传感器 4

MID中的传感器——已商用的传感器 ◆触摸屏 ◆摄像头 ◆麦克风(ST:MEMS microphones……) ◆光线传感器 ◆温度传感器 ◆近距离传感器 ◆压力传感器(ALPS:MEMS气压传感器……) ◆陀螺仪(MEMS) ◆加速度传感器(MEMS) ◆地磁传感器(MEMS)

集成电路(Integrated Circuit,IC) 把电子元件/电路/电路系统集成到硅片(或其它半导体材料)上。 微机械(Micro-Mechanics) 把机械元件/机械结构集成到硅片(或其它半导体材料)上。 微机电系统(Micro Electro Mechanical Systems,MEMS)MEMS = 集成电路+ 微机械

陀螺仪(Gyroscope) ?测量角速度 ?可用于相机防抖、视频游戏动作感应、汽车电子稳定控制系统(防滑)加速度传感器(Accelerometer) ?测量线加速度 ?可用于运动检测、振动检测、撞击检测、倾斜和倾角检测 地磁传感器(Geomagnetic sensor) ?测量磁场强度 ?可用于电子罗盘、GPS导航

陀螺仪+加速计+地磁传感器 ?电子稳像(EIS: Electronic Image Stabilization)?光学稳像(OIS: Optical Image Stabilization)?“零触控”手势用户接口 ?行人导航器 ?运动感测游戏 ?现实增强

1、陀螺仪(角速度传感器)厂商: 欧美:ADI、ST、VTI、Invensense、sensordynamics、sensonor 日本:EPSON、Panasonic、MuRata、konix 、Fujitsu、konix、SSS 国产:深迪 2、加速度传感器(G-sensor)厂商: 欧美:ADI、Freescale、ST、VTI、Invensense、Sensordynamics、Silicon Designs 日本:konix、Bosch、MSI、Panasonic、北陆电气 国产:MEMSIC(总部在美国) 3、地磁传感器(电子罗盘)厂商: 欧美:ADI、Honeywell 日本:aichi、alps、AsahiKASEI、Yamaha 国产:MEMSIC(总部在美国)

相关主题
文本预览
相关文档 最新文档