当前位置:文档之家› 简易斯特林发动机制作原理

简易斯特林发动机制作原理

简易斯特林发动机制作原理
简易斯特林发动机制作原理

简易斯特林发动机制作原理

史特灵引擎属於外燃引擎,只要高温热源温度够高,无论是使用太阳能、废热、核原料、牛粪、丙烷、天然气、沼气(甲烷)、丁烷与石油在内的任何燃料,皆可使之运转,不同於必须使用特定燃料的汽油引擎、柴油引擎等内燃引擎。

A.基础篇

A1气体的特性

如图1把橡皮绑在容器口上,我们能容易瞭解到受热时橡皮会膨胀(图2),冷却时橡皮会缩收(图3),这是加热时,内部气体压力作用在橡皮上(图2),当然人的眼睛是无法看到气体压力的。

A2移气器

如果我们放入一个移气器(Displacer)到容器内(图4),而这个移气器的直径比容器的内径小一些,当移气器自由上下移动时,即可以把容器内的气体挤下或挤上。这个时候,如果我们在容器底端加热,而在容器上端冷却,使上下两端具有足够的温差,即可看见此时橡皮会不断膨胀及收缩。其原理如下:当移气器上移,容器内的气体被挤至容器底端,此时由於容器底端加热,因此气体受热,压力变大,此压力经由活塞与容器间的空隙传到橡皮,使得橡皮会膨胀(图5)。

相反的,若施以适当的力量把移气器下移,则容器内的气体被挤至容器上端,此时由於容器上端为冷却区,因此气体被冷却,使气体温度降低,压力变小,而使得橡皮会缩收(图5)。

如此,不断使移气器自由上下移动,即可看见此时橡皮会不断膨胀及收缩。

由此,可知移气器的功用主要在於移动气体,使气体在冷热两端之间来回流动。国立成功大学航太系郑金祥教授把Displacer命名为”移气器”,实在更为贴

切,也比较不容易混淆,比较不会使人误以为它的作用跟输出功率的动力活塞一样。

A3曲柄机构

要让移气器上下移动,只要将移气器与一曲轴连结(图6)。当曲轴旋转时,移气器就会被带上及带下。将移气器与曲轴连结完毕之后,在容器底端加热上端冷却,只要用手转动曲轴,使得移气器移上及移下,此时橡皮便会重复膨胀及收缩(图7)。

A4动力活塞

橡皮的膨胀及收缩运动,可以转换为动力输出,此时,橡皮的作用即如同一动力活塞。我们可以另加一根连桿接到上述的曲轴上,便可将橡皮的膨胀及收缩运动转换为曲轴的旋转运动。连接到移气器的曲轴部位与连接到动力活塞的曲轴部位必须呈固定的角度差,一般是90度(图8,9)。橡皮的膨胀及缩收所產生的曲轴的旋转运动提供了移气器上下移动的力量,多餘的力量则可以输出。必须注意的是,移气器本身不会动,而是被曲轴带动,动力来源是动力活塞。

为何相位角是90度?

如图9当移气器移到最顶点的位置时,底部加热空间最大,此时所產生的压力也最大,当移气器移到最底点的位置时,顶部冷却空间最大,此时所產生的压力也最小,如把动力活塞的曲柄连接到曲轴水平位置最远的地方时可產生最大的扭力,此时可看到连接到移气器的曲轴部位与连接到动力活塞的曲轴部位呈90度的角度差,该角度称为相位角。曲柄连接到曲轴水平的位置也决定了引擎旋转方向。

上述的条件为静态环境的结果,当随著引擎的转速、负载、温度及使用气体的不同则会有不同的最佳相位角,一般以90度作为通用的相位角。

A5飞轮

如果只有上述的零件,引擎还是不能运转。因为利用橡皮的膨胀或收缩(图8,9),并无法让曲轴旋转一整圈。因此,必须加上一个有旋转惯性的设备,即“飞轮”,才能达成连续的运转。

一般採用的飞轮,最常见的是圆形飞轮,如图10所示。如果除了惯性需求外,还要考虑平衡问题,则在曲轴旋转面的另一端加一配重物充当飞轮,便可解决平衡问题(图11)。

B.进阶篇

史特灵引擎是一种高效率的能量转换装置,係採用封闭气体循环(Closedgascycle)及再生器(Regenerator)设计。理论上,理想史特灵引擎的热效率(Thermalefficiency)与卡诺引擎(Carnotengine)相当,二者皆属可逆热机(Reversiblecycle),具最高热力循环转换效率。史特灵引擎的使用的工作气体可为高压之空气、氮气、氦气、或氢气。一般而言,大致分为两种可能的配置:第一种配置利用一个动力活塞(Piston)压缩或膨胀气体,另利用一个移气器(Displacer)使工作气体在气缸内来回流动;第二种配置则不用移气器,完全利用两个活塞来达到压缩膨胀气体与来回驱赶气体的目的。当气缸内部气体被驱赶至加热部而受热时,即因膨胀推动动力活塞而对外作功。

以气缸数与动力活塞及移气器的排列构型来区分,史特灵引擎又可以分为下列三种形式:

(1)α型—又称双气缸型(twin-cylinderStirlingengine),此型无移气器,然具有二个动力活塞,分别在二个独立的气缸内作动。

(2)β型—又称为同轴活塞型(coaxialpiston-displacerStirlingengine),具有一动力活塞与一移气器,二者位於同一气缸,且沿相同轴移动。自由活塞式史特灵

引擎即属此类。

(3)γ型—具有二个独立气缸,其中一气缸内设置动力活塞,另一气缸则设置一移气器,本模型则属於γ型。

史特灵引擎在不同的额定功率下皆能表现出高效率,且因其乃属常压燃烧供热之外燃机,燃烧较为完全,故排气洁净。最重要的是,它可以适用不同的热来源,包括汽油、天然气、太阳能、生质能、废热利用等。近年来,能源工程技术相关的研究者对史特灵引擎的研究兴趣正逐渐加温,极可能成为另一个未来可供选择的动力来源之一。

配合上图,理想史特灵引擎的热力循环概念介绍如下:

(1)a→b过程中,工作流体等体积吸热升温;

(2)b→c过程中,工作流体等温吸热膨胀;

(3)c→d过程中,工作流体等体积冷却降温;

(4)d→a过程中,工作流体等温冷却收缩。

史特灵引擎与卡诺引擎比较,前者由两个等温过程和两个等体积过程所构成,而后者係由两个等温过程和两个绝热过程所构成。换言之,史特灵引擎循环以两个等体积的吸热与排热过程,取代卡诺循环的两个绝热过程。因此,若史特灵引擎循环欲达成卡诺引擎相同的热效率,必须将c→d过程中,工作流体等体积排热过程所排出的的热量,必须用来提供在a→b过程中,工作流体等体积吸热升温所需的热量,这个步骤,叫作再生(Regeneration),所使用的装置,称为再生器(Regenerator)。

值得注意的是,实际上史特灵引擎内部工作流体的温度和压力,在循环变化过程中并非是完全均匀的。因此,体积和压力的变化也非如上图所示那样清楚分明。

AIP发动机原理图

潜水艇对动力系统的要求,非常苛刻.即要有强大的动力.更要能非常的安安静静.尽量是无声.AIP发动机就是这样的发动机.再加上燃料电池驱动.更是完美的搭配.因为到目前为止.除了声纳探测可发现水下潜艇.还未有真正的探测技术,能发现潜艇

AIP发动机原理图

斯特林发动机系统

斯特林发动机(SE/AIP)系统与闭式循环柴油机系统大致相同,最主要的不同就是发动机。SE/AIP系统使用的是热气机,而CCD/AIP系统使用的是闭式循环柴油机。热气机的构想是英国科学家罗伯特?斯特林于1816年率先提出来的,它是一种由外部热源加热,并将热能转换为机械能的热机,其循环是一种闭式、采用定容下回热的气体循环,简称斯特林循环,其具体工作原理是:斯特林发动机的活塞上室为热室,它与另一活塞的下室相连,四个缸相互连接在一起,具体的是1号缸上部的热室与2号缸下部的冷室相连,2号缸上部的热室与3号缸下

部的冷室相连,3号缸上部的热室与4号缸下部的冷室相连,4号缸上部的热室与1号缸下部的冷室相连,互相差90°角。它们使工作气体在热室和冷室之间来回移动,使活塞运动并带动曲柄转动。斯特林发动机主要是在水下续航状态下工作,与蓄电池并联,向推进电机、全艇辅机及其他用电设备供电。

技术实现的难点和重点主要在于斯特林发动机的水下燃烧系统,因为该系统所使用的氧化剂是纯氧,燃烧方式为燃气再循环,并且是在高于周围海水压力的高压情况下进行燃烧。

主要技术优点机械噪声与振动较小。因为斯特林发动机是一种从外部对内部气体工质连续加热使之做功的活塞式往复发动机,燃烧过程中没有柴油机的爆燃现象,燃烧过程平稳,因此发动机的噪声与振动较小,但是有些斯特林发动机的部件依然采用往复式运动机械,所以在装备潜艇时仍要加装双层隔振系统以减小水下噪声。废气排放方便,当热气机的燃烧压力为22公斤/厘米2时,废气水下排放不需要闭式循环柴油机系统的庞大水管理系统,在潜深200米内可以自主排放,即使增加潜深也只需要小型压缩机协助。当燃烧压力小于20公斤/厘米2时,废气水下自主排放的深度要相应减小。这种发动机的废气排放深度与燃烧压力有关,这也是技术实现的一个难点。

缺点和不足功率较低,斯特林发动机由于其自身固有的低功率密度的特点,因而决定了整个AIP系统的功率密度小于CCD/AIP系统。如果要加大功率,需要配几台发动机,但这又影响到整个潜艇的布局与使用,实现功率突破难度较大;燃油消耗量较大,目前要高于普通柴油机。

当前,在SE/AIP系统较有建树的国家是瑞典。瑞典考库姆公司从上世纪60年代末就开始斯特林发动机的研制工作,目前已经成功研制出71千瓦的V4-275R 型斯特林发动机,装备于1995年2月2日下水的“哥特兰”号潜艇,并使之成为世界上第一艘装备SE/AIP系统的常规潜艇,这也标志着斯特林发动机进入了实用阶段。近年来,日本也从瑞典引进了斯特林发动机的建造技术,用于装备或改装海上自卫队潜艇。

闭式循环汽轮相系统

闭式循环汽轮机系统(MESMA/IP)系统主要由4个分系统构成:液氧储存罐、燃料储存罐及一、二回路系统。其中燃料通常选择乙醇,存放在储存罐中的橡胶袋中;一回路系统包括高压燃烧室、热交换机、冷凝器;二回路系统包括蒸汽发生器、蒸汽轮机、冷凝器。具体工作原理及过程:将储存在绝热罐中的低温液氧送到加热器中加温呈气态,乙醇和气态氧在高压燃烧室里燃烧,燃气通过蒸汽发生器后大部分被冷却,这些经冷却的燃气重新回到燃烧室,用于冷却烟道壁,调节燃烧壁壁温,使其保持在1000℃以下,同时稀释乙醇/氧气的混合气体,使其燃烧温度保持在700℃的最佳状态。一小部分未经冷却的燃气有些直接排出艇外,有些以液态方式储存在艇内。水在蒸汽发生器吸收燃气热量后变成高温高压蒸汽,温度达500℃,压力大约为18公斤/厘米2,这些蒸汽推动蒸汽轮机做功,驱动交流发电机和整流机组产生直流电,为推进系统提供能量。水蒸汽冷凝成水后,返回蒸汽发生器,完成循环过程。

技术实现的难点和重点主要在于此系统的液氧采用的是高压储存(60公斤/厘米2)或者低温低压储存(??185℃,2-10公斤/厘米2),无论液氧储存罐置于何处,必须要经得起5g的冲击。因此液氧储存罐应安装在低频率的弹性基座上,基座固有频率应小于5赫兹。

主要技术优点功率大,可满足潜艇水下航行需要,法国在为巴基斯坦建造

的“阿戈斯塔”90B级潜艇上所安装的MESMA/AIP系统的功率为200千瓦;燃烧产物的排放非常隐蔽,由于燃烧时的压力较大,燃烧产物的压力也较大,不需要使用其他机械系统加压就能自动排出艇外,相应也就减少了潜艇的自噪声;另外使用气泡***系统使排出的二氧化碳气泡减小,提高废气的海水溶解度,如果情况危急,可将燃烧产物进行冷凝储存在艇内,此举将大大提高潜艇的隐蔽性。

缺点和不足整个系统非常庞大,辅助机械设备较多,此AIP系统主要部件有燃烧室、蒸汽发生器、二氧化碳冷凝器、蒸汽冷凝器、涡轮交流发电机、各类泵,所以系统安装布置比较困难,需较大舱室空间,这直接影响此AIP系统的实用性;热效率低、经济性较差,此AIP系统的氧消耗量比闭式循环柴油机(CCD/AIP)系统要高15%左右,同时在相同水下续航力的条件下,乙醇所占容积要比CCD/AIP系统多一倍,而且所有系统部件都需要特殊的设计,投资较大,经济性差。

目前法国是在MESMA/AIP系统上取得进展最大的国家。1988年以来,法国就使用400千瓦燃烧室平台进行该系统的试验,并且取得较大进展,已进入实用阶段。1994年,巴基斯坦从法国舰艇建造局订购了3艘“阿戈斯塔”90B级潜艇,这三艘潜艇将安装法国自主研制的MESMA/AIP系统,这将大大提高巴基斯坦的水下作战能力。除此之外,德国MTU公司也在加大对MESMA/AIP系统的研究力度,其使用的燃料将是柴油,功率也会增大到700千瓦,一旦研制成功,将会大大提高MESMA/AIP系统在国际市场上的竞争能力。

燃料电池系统

燃料电池(FC/AIP)系统是最具竞争力的AIP系统,它是直接将反应物质化学能用电化学方式直接转换为电能的能量供应系统。主要组成部分有燃料电池及其储存设备和转换器、氧化剂及其储存设备和转换器、控制装置。其中燃料电池主要种类有碱性燃料电池、质子交换膜燃料电池、磷酸燃料电池、熔融碳酸燃料电池、固体氧化物电解燃料电池等,其中最有前途的是质子交换膜燃料电池(PEMFC)。

质子交换膜燃料电池系统中的氢/氧燃料电池的工作原理实际上就是电解水的逆过程。质子从阳极移到阴极,在阴极氧气反应形成阴离子,阴离子与透过

薄膜的氢阳离子反应生成水。这种燃料电池采用铂作催化剂的气体扩散电极,其负载量为4毫克/平方厘米,碳板用作导电体。电池双极板之间的冷却装置将水从系统中排出。一定数量的电池模块通过串、并联方式组成燃料电池装置,这只是一种单纯的能量转换装置。

燃料电池系统构成与一般电池有很大差别。在此系统中,反应物质及其存储装置与能量转换装置是相互独立的。燃料电池的大小决定系统的输出功率,与储存能量多少无关;反应物质多少决定系统储存能量,在一定的输出功率下如果要增大储存能量,只需增大反应物质及其存储装置,无须增大能量转换装置,即燃料电池。反应物质用完后,补充反应物质即可,无需更换燃料电池。

主要技术优点能量转换效率很高,燃料电池通过电化学方式直接将化学能转变为电能,省去了热机发电时所必须经过的“燃料化学能→热能→机械能→电能”复杂的转换过程,减少了能量损耗,理论上的能量转换效率可以达到100%,实际效率可达到70%;对外热辐射较少。由于能量转换过程中能量损耗较少,所以相应的散热也少,这就有效的降低了潜艇的热辐射,减小被敌红外探测仪器发现的几率;噪声较小,燃料电池系统由于直接进行能量转换,因此本身并无机械运动部件,因此工作过程中非常安静,可以使得潜艇在航行时获得极佳的隐蔽性;

系统维护保养、制造加工很方便,由于系统无机械运动部件,因此就没有磨损造成的故障,同时对于零部件的加工要求低,也便于制造加工,通过集中控制装置可以实现对各个辅助系统的控制,便于实现自动化;过载能力强,燃料电池的短时过载能力可达额定功率的2倍,而柴油机等热机却没有这么大的过载能力,因此装备燃料电池AIP系统的潜艇可进行短时的加速航行;系统配置灵活,便于安装,燃料电池是由若干个电池单元串、并联而成,可根据潜艇内部布置的需要,灵活选择燃料电池的配置方式;效率随输出功率变化特性较好,特别适合潜艇对于动力装置需要功率范围宽而效率高的要求。

缺点和不足燃料危险性非常大,易发生险情,目前的燃料电池只能用纯氢作燃料,纯氢的加工提取工作异常复杂,且在潜艇狭小空间内,纯氢一旦发生泄漏,浓度超过极限易发生爆炸,危险性很大;系统比功率较小,目前质子膜燃料电池的比功率只有100瓦/公斤,比之柴油机的300瓦/公斤相差较远,要想达到相同功率,燃料电池所需重量要大于柴油机等;工作寿命短、价格较高,目前的质子膜燃料电池的工作寿命只有5000小时,距离40000小时的目标寿命相距较远,同时其价格也是柴油发电机组的3-6倍,约为3000美元/千瓦,不是一般国家海军可以承受了的。

潜艇用燃料电池(FC/AIP)系统的开发工作已经走过了三个历史阶段。第一阶段,随着1960年燃料电池在航天领域率先成功运用后,很多国家对其在潜艇上的运用产生了浓厚的兴趣,美国、瑞典先后投入了大量的人力、物力、财力对此进行研究,但由于当时技术工艺水平尚不能达到实用要求,不久遂停止了研制工作。第二阶段是1970-1980年,日本进行了大量的开发研制工作,后来也因种种原因停止。第三阶段是1980年之后,德国加大了此项研究力度,并成功地将燃料电池安装到潜艇上进行海上试验,引起全世界的关注,各国随后都加大了对FC/AIP系统的研究投入。

此外,核电混合推进系统(SSN/AIP)的研制工作也在不断推进和深入,加拿大在此类AIP系统的研究方面走在了世界各国的前面,其研制的AMPS型核电混合推进系统即将迈入实用阶段,这种只需经过简单改装就可使常规潜艇变成小型核潜艇的动力系统日益引起各国海军的注意。但必须指出的是,目前无论哪种AIP系统,其输出功率均不能满足常规潜艇水下最大航速航行的需求。只有

将AIP系统与当前潜艇的“柴电”动力装置组合在一起,构成混合推进装置才具备实用价值。AIP系统只有在作战情况下使用,作为辅助动力系统,延长潜艇水下续航时间和航行距离,扩大水下活动范围。而在一般情况下,还需“柴电”动力装置作为主要推进系统。无论怎样,AIP系统使得常规潜艇可以在敌情威胁严重的情况下取消通气管状态,减少暴露几率,提高隐蔽性,一旦装备潜艇后,无疑将会使现代常规潜艇的攻防作战能力得到大幅提升。

对于未来常规潜艇的AIP系统的选择,一直是大家所关注的。从目前来看,燃料电池(FC/AIP)系统综合性能最佳,但危险性也相对较高,因此在解决燃料安全性的问题之后,这类系统无疑是潜艇的最佳选择。而其他三类AIP系统,无论从性能和安全性来讲,都相差不大,从技术实现难度来看,斯特林发动机(SE/AIP)系统也最小,因此可以作为当前的选择。

加快大推力氢氧发动机研制

加快大推力氢氧发动机研制迎接21世纪

摘要回顾了各国氢氧发动机的发展概况,对我国的现状和差距作了比较。提出应加快我国大推力氢氧发动机的研制,并积极开展各项先进技术的预先研究工作。

关键词氢氧发动机,运载火箭,综述。

Speed up the Development of LOX/LH 2 Rocket Engine to Greet the 21st Century

Gu Mingchu

(Beijing Institute of L iquid Rocket Engine,Beijing,100076)

Abstract The development of LOX/LH2rocket engine in the world is reviewed, and the current situation and differences of the engines in China are analysed. The suggestion of speeding up the development of a large thrust LOX/LH 2engine and taking vigorous action to research advanced propulsion technology are proposed.

Key Words Hydrogen oxygen engine,Launch vehic1e,Summary.

1 前言

20世纪下半叶,人类在航天活动方面取得了无比辉煌的成就。1957年10月4日,前苏联发射了世界上第1颗人造地球卫星,它标志着人类航天活动新纪元的开始。1969年7月20 日,美国的阿波罗飞船实现了使宇航员登上月球的目标,在人类征服宇宙的进程中迈出了巨大的一步。迄今世界各国已向宇宙空间发射了一系列卫星和飞船,它们在通信、导航、气象、地球资源勘察及

深空探测等各个领域为世界经济的发展发挥了巨大的作用。 航天活动能取得这样的成就是同液体火箭发动机技术的迅速发展密切相关的。其中,氢氧发动机技术的发展更是对人类航天活动的进展有着举足轻重的作用。因此,我们必须加速我国氢氧发动机技术的发展,以满足未来各种航天任务的需要,并且缩小与国际先进水平的差距,确保我国的航天大国地位。

2 各国氢氧发动机发展概况

2.1 美国

a) 1958年,美国开始研制它的第1台氢氧发动机RL10发动机,这也是世界上第1台氢氧火箭发动机。它采用膨胀循环,真空推力6.8 t。该发动机1963年投入使用。它可用作宇宙神、大力神、雷神及土星运载火箭上面级的动力装置,在美国的空间活动中占有重要位置。

该发动机进行了不断改进,先后有RL10A-1、RL10A-3、RL10A-3-1、RL10A-3-3、RL10A- 3-3A、RL10A-3-3B、RL10A-4、RL10A-4-1、RL10A-5等型号。1995年6月,又开始研制用于德尔它Ⅲ火箭上面级的RL10B-2发动机。该发动机采用由碳-碳材料制造的、可伸展的喷管延伸段,真空比冲达466.5 s。

b) J-2发动机是美国在1960年开始研制的大推力氢氧发动机。它采用燃气发生器循环,发动机真空推力104.3 t,真空比冲426 s。

J-2发动机用于美国为阿波罗登月任务而专门研制的土星ⅠB和土星Ⅴ大型运载火箭上。土星ⅠB火箭的第2级用单台J-2发动机作其动力装置(第1级采用8台H-1液氧煤油发动机,每台发动机的海平面推力为93 t);土星Ⅴ火箭的第2级用5台J-2发动机并联,第3级用单台J-2 发动机作为其动力装置(第1级采用5台F-1液氧煤油发动机,每台发动机的海平面推力为691 t)。

土星ⅠB主要用于载人和不载人的阿波罗飞船的近地轨道飞行试验,自1966年2月至1968 年10月,共发射5次。1973年用土星ⅠB将3批宇航员送至天空实验室。1975年又用于美、苏两国联合进行的阿波罗-联盟号空间对接飞行。

土星Ⅴ火箭的主要任务是将阿波罗载人飞船送入月球过渡轨道,并被用于发射天空实验室。1967年11月~1973年12月,该火箭共发射13次。

c) 1972年美国正式宣布开始研制新的空间运输系统——航天飞机。它的轨道飞行器上装有3台主发动机(SSME)。

SSME采用液氢/液氧作推进剂,具有高燃烧室压力、分级燃烧循环、可重复使用等特点。每台发动机的真空推力为213 t,可在65%~109%范围内调节。发动机使用次数为55次。1981年4月参加航天飞机首飞,至今,SSME 已完成近百次飞行任务。

SSME的研制成功,标志着世界液体火箭发动机技术达到了一个新的高度。

2.2 前苏联

a) D-56(KVD-1)是前苏联为登月任务研制的氢氧发动机。它采用分级燃烧循环,真空推力7.5 t,真空比冲461 s。发动机具有多次启动能力。 目前准备将该发动机用于新型的质子号M火箭的低温第4级上。并有资料报道,印度已向俄罗斯购买了7台发动机,用作地球同步轨道卫星运载火箭(GSLV)的动力装置,计划于199 9年首飞。

b) 60年代,前苏联研制了D-57发动机。这是一台高性能氢氧发动机。它采用分级燃烧循环,发动机真空推力40 t,真空比冲456 s。 该发动

机原计划用作前苏联N-1登月火箭上面级发动机的备份方案。它已完成各种地面试验。1969年~1972年,N-1火箭的4次飞行均失败,而美国已实现阿波罗计划,抢先登上了月球,前苏联只得宣布取消登月计划。

c) 鉴于N-1登月火箭失败的教训,前苏联于1974年开始研制能源号大型运载火箭及它的两台大推力液体火箭发动机RD-170和RD-0120。

RD-0120是大推力氢氧发动机,能源号火箭芯级采用4台RD-0120作为动力装置。每台发动机的真空推力200 t,真空比冲455 s。它与美国航天飞机主发动机水平相当,在某些材料、工艺方面,还超过了美国航天飞机主发动机。

能源号火箭助推级采用4台RD-170液氧煤油发动机作动力装置。每台发动机的地面推力达740 t,是目前世界上推力最大的液体火箭发动机。

能源号火箭的近地轨道运载能力达105 t。1987年5月,进行了首次飞行试验,获得成功。1988年11月,能源号火箭进行第2次飞行试验,将前苏联的暴风雪号航天飞机送入轨道。

前苏联解体后,由于政治、经济情况的变化,能源号火箭未再飞行。RD-170发动机已用于天顶号火箭的一级;RD-0120发动机将用于俄罗斯新型运载火箭安加拉的二级。

2.3 欧洲

a) 欧洲空间局于1973年开始研制HM-7氢氧发动机,用作阿里安Ⅰ火箭第3级的动力装置。它采用燃气发生器循环,真空推力6.1 t,真空比冲442.3 s。

1979年12月阿里安Ⅰ火箭首次飞行获得成功。至1986年12月,共飞行11次。

在HM-7发动机基础上又研制了HM-7B发动机,其主要改进为提高燃烧室压力,增大喷管面积比等。HM-7B发动机的真空推力为6.3 t,真空比冲为445 s。HM-7B发动机先后用于阿里安Ⅱ、阿里安Ⅲ及阿里安Ⅳ火箭。

b) 1985年,欧洲空间局开始研制Vulcain大推力氢氧发动机用作阿里安Ⅴ火箭芯级的动力装置。它采用燃气发生器循环,发动机真空推力116.8 t,真空比冲431.2 s。Vulcain发动机于1990年进行了首次试车。自1996年6月至今,已参加阿里安Ⅴ火箭的4次飞行试验。

2.4 日本

a) 1984年,日本开始研制LE-5氢氧发动机,用于H-Ⅰ火箭的第2级。该发动机采用燃气发生器循环,发动机真空推力10.5 t,真空比冲450 s。1986年8月,H-I 火箭首次飞行试验取得成功。至1992年,该火箭共发射9次。

b) 1984年,日本开始研制用于H-Ⅱ火箭芯级的大推力氢氧发动机,代号LE-7 。它采用分级燃烧循环,发动机真空推力110 t,真空比冲446 s。

H-Ⅱ火箭的第2级采用LE-5A发动机,它是LE-5发动机的改进型,其主要改进为取消了燃气发生器,将喷管延伸段由排放冷却改为再生冷却,发动机采用喷管膨胀排放循环等。发动机真空推力为12.4 t,真空比冲452.9 s。

H-Ⅱ火箭于1994年2月进行首次飞行试验,获得成功。至1998年,已发射6次。

3 当前国外氢氧发动机研制的一些情况

为了适应当前国际航天发射市场的激烈竞争,各航天大国都在积极研制新型运载火箭及其动力装置,以实现提高运载能力、降低运载成本、增加可靠性和任务适应能力的目标。在氢氧发动机的研制方面,其主要情况如下:

a) 美国波音公司正在为美国空军负责的改进型一次使用运载火箭计划研制德尔它Ⅳ系列运载火箭。美国空军计划的要求是通过采用低成本的通用助推级,使运载成本降低50%。尽管德尔它火箭已有40年用煤油作推进剂的历史,但在开始研制德尔它Ⅳ火箭时,决定采用液氢作推进剂。液氢有较高的性能(约高30%),这样可使发动机设计简单、成本降低。因此,德尔它Ⅳ系列运载火箭的通用助推级采用新研制的RS-68氢氧发动机作为动力装置。

RS-68发动机的真空推力达338.2 t,真空比冲410 s。它是迄今世界上推力最大的氢氧发动机。该发动机的一个显著设计特点是追求低成本、高可靠性的目标。通过简化系统、减少零部件数量、采用燃气发生器循环、中等的燃烧室压力(9.72 MPa)、烧蚀式喷管等一系列措施,使发动机的成本、研制周期大为减少。1999年7月,RS-68发动机在额定推力工况下试车成功,预计在2001年用于德尔它Ⅳ火箭的飞行试验。

b) 为了提高阿里安Ⅴ火箭的运载能力并降低成本,欧洲空间局于1995年开始进行阿里安Ⅴ改进型火箭及其发动机VulcainⅡ的研制工作。与阿里安Ⅴ火箭相比,阿里安Ⅴ改进型的地球同步转移轨道运载能力将增加 1 400 kg(由5 900 kg增至7 300 kg)。其中850 kg 的载荷增加值是由芯级氢氧发动机的改进所提供的。

与VulcainⅠ相比,VulcainⅡ发动机的真空推力提高到137.7 t,真空比冲提高到433 s,发动机的混合比由5.3增至6.1。阿里安Ⅴ改进型火箭将于2002年进行首次飞行试验。此外,还在研制阿里安Ⅴ火箭的新型上面级。目前阿里安Ⅴ火箭的第2级采用可贮推进剂,发动机代号为Aestus,真空推力2.83 t,真空比冲323.1 s。新型上面级ESC将采用氢氧发动机。ESC 有两种型号,分别

为ESC-A和ESC-B。ESC-A将用HM-7B氢氧发动机改进,推力6.4 t,比冲446 s,不能多次启动。ESC-A将于2002年投入使用,它能将9.5 t的有效载荷送入地球同步转移轨道。ESC-B将采用全新设计的氢氧发动机(代号MPC-150),推力15.3 t,比冲460 s,可重复启动4次。ESC-B将于2005年投入使用,它能将11 t的有效载荷送入地球同步转移轨道。

c) 由于H-Ⅱ火箭的制造和发射成本较高,缺乏商业发射竞争能力,日本于1995年开始研制H -ⅡA运载火箭,要求将H-ⅡA火箭的制造和发射成本较目前的H-Ⅱ降低50%左右。

H-ⅡA火箭的芯级将采用LE-7A发动机。LE-7发动机生产工艺和检验要求非常复杂,因而成本昂贵,而LE-7A发动机则作了很多简化改进。如在燃烧室上减少了喷嘴和隔板数目,取消了声腔,喷管喉部面积增大10%,喷管下段改为单壁结构等。LE-7A发动机的燃烧室压力为11.9 MPa,预燃室燃气温度为720 K,发动机真空比冲为441 s(LE-7发动机的燃烧室压力为12.7 MPa,预燃室燃气温度810 K,发动机真空比冲446.1 s)。 H-ⅡA 火箭的首次发射将于2000年进行。

d) 为了进一步降低运载成本,美国国家航宇局正在开展可重复使用运载器研究计划。1996年7月,航宇局选定洛克希德·马丁公司的冒险星方案,并由该公司设计、制造和试验冒险星的缩比试验件——X-33验证机。这种单级入轨运载器的验证机采用两台代号为XRS-2200的氢氧发动机作动力装置。该发动机采用J-2发动机的涡轮泵供应系统。为了适应单级入轨的工作特点,发动机采用了具有高度补偿性能的气动塞式喷管。发动机的海平面推力93.7 t,海平面比冲339 s,真空推力121.5 t,真空比冲439 s。X-33将于2000年首飞。

最近,欧洲和日本公布了他们的单级入轨运载器方案,也将采用氢氧发动机作动力装置。

斯特林发动机模型制作教程

自制简易斯特林发动机 吉林省松原市前郭县教师进修学校刘文白 斯特林发动机,又称作外燃式发动机。与传统的蒸汽机和内燃机相比,它没有复杂的配气系统,能使用各种能源。它的工作介质(一般就是空气)在封闭的气缸内往复流动,既不象蒸汽机那样需要高压水蒸汽和消耗水,也不象内燃机那样爆炸燃烧,因此制作容易,成本低廉,安全环保,作为热机教学的辅助教具是很合适的。 制成的简易斯特林发动机实物图如图一,工作原理请参看图二和图三。 图1 实物图

图2 斯特林发动机剖面图 ①热置换气缸②热置换活塞③动力气缸④动力活塞⑤支架⑥曲轴⑦飞轮 图3 斯特林发动机工作过程

材料和工具: 铁制八宝粥易拉罐3个。自行车辐条3根,要求辐条帽能在辐条杆上自由滑动。空牙膏管一个。废旧的光盘3张。气球一个。有韧性的泡沫塑料一块(如拖鞋底)。大头针一个,直径2毫米铁丝20厘米。透明胶布。废圆珠笔管。 使用的工具为钳子,剪刀,电烙铁和焊锡(也可以使用二合一强力胶),锥子或钻,直尺,圆规。 制作方法: 本设计使用的是八宝粥罐易拉罐,因为它的开口是一个大圆形,而饮料易拉罐的开口较小,需要扩口。文中所给尺寸没有严格要求,并尽量说明设计原理,以便读者可以用其它容器自行设计制作。 一、加工支架易拉罐 取一个易拉罐,在距罐口2厘米处左右对称地钻两个孔,孔的直径略大于自行车辐条的直径。这两个孔是曲轴主轴(参见图1图2图5)运转孔。 在此易拉罐的底部正中钻一个孔,插入自行车辐条帽。为了保证辐条帽的螺孔和易拉罐的轴心同心,在易拉罐塑料盖的中心扎一个小孔,盖在罐口。用一根辐条穿过辐条帽,再从塑料盖的小孔伸出,用电烙铁将辐条帽和罐底焊在一起。见图4。此孔是热置换活塞杆滑道。 图4 支架易拉罐底部图

斯特林发动机原理图解

斯特林发动机原理图解 如图1 把橡皮绑在容器口上,我们能容易瞭解到受热时橡皮会膨胀(图2),冷却时橡皮会缩收(图3),这是加热时,内部气体压力作用在橡皮上(图2),当然人的眼睛是无法看到气体压力的。 A2移气器 如果我们放入一个移气器(Displacer)到容器内(图4),而这个移气器的直径比容器的内径小一些,当移气器自由上下移动时,即可以把容器内的气体挤下或挤上。这个时候,如果我们在容器底端加热,而在容器上端冷却,使上下两端具有足够的温差,即可看见此时橡皮会不断膨胀及收缩。其原理如下: 当移气器上移,容器内的气体被挤至容器底端,此时由於容器底端加热,因此气体受热,压力变大,此压力经由活塞与容器间的空隙传到橡皮,使得橡皮会膨胀(图5)。 相反的,若施以适当的力量把移气器下移,则容器内的气体被挤至容器上端,此时由於容器上端為冷却区,因此气体被冷却,使气体温度降低,压力变小,而使得橡皮会缩收(图5)。 如此,不断使移气器自由上下移动,即可看见此时橡皮会不断膨胀及收缩。 由此,可知移气器的功用主要在於移动气体,使气体在冷热两端之间来回流动。国立成功大学航太系郑金祥教授把 Displacer 命名為”移气器”,实在更為贴切,也比较不容易混淆,比较不会使人误以為它的作用跟输出功率的动力活塞一样。

A3 曲柄机构 要让移气器上下移动,只要将移气器与一曲轴连结(图6) 。当曲轴旋转时,移气器就会被带上及带下。将移气器与曲轴连结完毕之后,在容器底端加热上端冷却,只要用手转动曲轴,使得移气器移上及移下,此时橡皮便会重复膨胀及收缩(图7)。 A4 动力活塞 橡皮的膨胀及收缩运动,可以转换為动力输出,此时,橡皮的作用即如同一动力活塞。我们可以另加一根连桿接到上述的曲轴上,便可将橡皮的膨胀及收缩运动转换為曲轴的旋转运动。连接到移气器的曲轴部位与连接到动力活塞的曲轴部位必须呈固定的角度差,一般是90度(图8,9)。橡皮的膨胀及缩收所產生的曲轴的旋转运动提供了移气器上下移动的力量,多餘的力量则可以输出。必须注意的是,移气器本身不会动,而是被曲轴带动,动力来源是动力活塞。

斯特林发动机模型制作大全

制作热声效应斯特林引擎 十九世纪的吹玻璃工人,偶尔会听到被加热的玻璃管自然发出神秘的单音,这令人费解的声音其实是热机的另一种输出形式。一般的引擎以转动的形式输出能量;声音也具有能量,只不过以空气作为传递的媒介。 热声效应的原理 空气振动形成声音,声音发生时,为方便讨论,将传播声音的空气分成无数小块空气,应用牛顿力学来分析空气振动的情形,会得到声音的波动方程式,此方程式的解显示:声音传播时,各个小块空气都会发生膨胀收缩和位移。如果小块空气被压缩后,再被加热膨胀,对周围空气作较大的正功;之后这小块空气又先被冷却,再被压缩,作较小的负功 (周围空气对这小块空气作较小的功) 。虽然这小块空气并非对活塞或涡轮作功,而是对周围空气作功,事实上也完成了工作流体加热后膨胀,冷却后被压缩的热机循环,把热能转换成声音振动的能量,增加声音的强度,此即所谓“热声效应”。 凡是利用工作流体在冷、热区间移动,执行压缩的工作流体经加热而膨胀作正功,膨胀后先冷却再压缩作负功的热机循环,这样的机构都被归类为斯特林引擎。利用热声效应把热能转换成机械能的装置,也就称为热声效应斯特林引擎(thermoacoustics stirling heat engine) ,热声效应斯特林引擎大致可分为驻波(standing wave)和行波(traveling wave)两种。 驻波型斯特林引擎的作功原理 驻波型斯特林引擎,基本上是一端闭口,一端开口的管状共振腔,在共振腔内近闭口端装有热片堆(stack),热片堆中有许多平行共振腔轴向的密集穿孔。热片堆在靠近闭端温度较高,另一端温度较低,于是延共振腔轴向的温度梯度(temperature gradient)相当大。 当驻波发生时,热堆片穿孔中的各小块空气(工作流体)向闭口端位移,而被压缩,同时移向热片堆较高温处,该小块空气在热穿透深度(thermal penetration depth)以内的部分,会被热片堆加热,使得温度升高,随即膨胀对周围空气做较大的正功,驻波的能量于是加大,小块空气也随着膨胀,同时移至热片堆的冷端,当能量增加的驻波再度压缩这小块空气时,此小块空气已先被较低温的热片堆冷却,只消耗较少的声波能量即可被压缩。于是,热能便不断地变成驻波的能量。 动手做驻波型斯特林引擎 本文介绍一种驻波型热声效应斯特林引擎的制作方法,所需材料都是一般实验室常见的东西:

斯特林发动机的工作原理及应用前景

斯特林发动机的工作原理及应用前景 【摘要】随着全球能源危机的发展与环境的恶化,传统的化石燃料日益枯竭,且燃烧的排放物造成了温室效应、雾霾天气及极端的气候等人为的灾害,为了地球的可持续发展和人类生活水平的改善,人们清楚地认识到开发利用新能源的重要性。其中,可再生能源的利用越来越广泛,可再生能源对环境无害或危害极小,且资源分布广泛。越来越多的国家采取鼓励生产和使用可再生能源的政策和措施,中国也确立了到2020年可再生能源占总能源比重15%的目标。外部燃烧系统的作用是给闭式循环系统提供能源,闭式循环系统由冷腔、冷却器、回热器、加热器和热腔组成,工质在闭式循环系统中来回流动一次,完成一个斯特林循环。 【关键词】发动机;原理;前景 1 斯特林发动机闭式循环系统的组件简介 (1)冷腔处于循环的低温部分,和冷却器联接,压缩热量由冷却器导至外界,在压缩过程中有相当一部分工质居于冷腔。 (2)冷却器位于回热器和冷腔之间,功能是将压缩热传到外界,保证工质在较低的温度下进行压缩。 (3)回热器串联在加热器和冷却器之间,是循环系统的一个内部换热器,它交替从工质吸热和向工质放热,使工质反复地受到冷却和加热。回热器并不是必需装置,但它对发动机的效率影响极大。在往复式斯特林发动机中,回热器的使用既使斯特林循环的热效率明显提高,但又增加了工质的阻力和压力损失,工质吸热、散热交替进行,限制了斯特林发动机的转速,影响了功率的输出。因此,优化回热器的设计是斯特林发动机的核心技术问题。 (4)加热器加热器是将外部热源的热能传给工质,使其受热膨胀。加热器的一端与热腔联接,另一端与回热器联接。 (5)热腔始终处于循环的高温部分,连续地将外部热源传给工质,在膨胀时相当部分的工质居于热腔。因此其必须能承受高温和高压,大量的热损失是由热腔散失的。 2 斯特林发动机的基本结构 根据工作空间和回热器的布置方式,斯特林发动机可以分为α、β和γ三种基本类型。 α型斯特林发动机的结构最简单,具有两个汽缸,两个汽缸中间通过加热器、回热器、冷却器连通,热活塞和冷活塞分别位于各自的汽缸内,热活塞负责工质

简易斯特林发动机制作原理

简易斯特林发动机制作原理 史特灵引擎属於外燃引擎,只要高温热源温度够高,无论是使用太阳能、废热、核原料、牛粪、丙烷、天然气、沼气(甲烷)、丁烷与石油在内的任何燃料,皆可使之运转,不同於必须使用特定燃料的汽油引擎、柴油引擎等内燃引擎。 A.基础篇 A1气体的特性 如图1把橡皮绑在容器口上,我们能容易瞭解到受热时橡皮会膨胀(图2),冷却时橡皮会缩收(图3),这是加热时,内部气体压力作用在橡皮上(图2),当然人的眼睛是无法看到气体压力的。 A2移气器 如果我们放入一个移气器(Displacer)到容器内(图4),而这个移气器的直径比容器的内径小一些,当移气器自由上下移动时,即可以把容器内的气体挤下或挤上。这个时候,如果我们在容器底端加热,而在容器上端冷却,使上下两端具有足够的温差,即可看见此时橡皮会不断膨胀及收缩。其原理如下:当移气器上移,容器内的气体被挤至容器底端,此时由於容器底端加热,因此气体受热,压力变大,此压力经由活塞与容器间的空隙传到橡皮,使得橡皮会膨胀(图5)。 相反的,若施以适当的力量把移气器下移,则容器内的气体被挤至容器上端,此时由於容器上端为冷却区,因此气体被冷却,使气体温度降低,压力变小,而使得橡皮会缩收(图5)。 如此,不断使移气器自由上下移动,即可看见此时橡皮会不断膨胀及收缩。 由此,可知移气器的功用主要在於移动气体,使气体在冷热两端之间来回流动。国立成功大学航太系郑金祥教授把Displacer命名为”移气器”,实在更为贴

切,也比较不容易混淆,比较不会使人误以为它的作用跟输出功率的动力活塞一样。 A3曲柄机构 要让移气器上下移动,只要将移气器与一曲轴连结(图6)。当曲轴旋转时,移气器就会被带上及带下。将移气器与曲轴连结完毕之后,在容器底端加热上端冷却,只要用手转动曲轴,使得移气器移上及移下,此时橡皮便会重复膨胀及收缩(图7)。 A4动力活塞 橡皮的膨胀及收缩运动,可以转换为动力输出,此时,橡皮的作用即如同一动力活塞。我们可以另加一根连桿接到上述的曲轴上,便可将橡皮的膨胀及收缩运动转换为曲轴的旋转运动。连接到移气器的曲轴部位与连接到动力活塞的曲轴部位必须呈固定的角度差,一般是90度(图8,9)。橡皮的膨胀及缩收所產生的曲轴的旋转运动提供了移气器上下移动的力量,多餘的力量则可以输出。必须注意的是,移气器本身不会动,而是被曲轴带动,动力来源是动力活塞。

家用燃气斯特林发动机热电联产装置

48 Innovation 创新家电科技 对微型热电联产装置进行了长期运行试验,采用WhisperGen公司的产品。结果表明,该装置基本上可满足一个三间卧室小楼中4口人的基本能耗需要,包括热水供应、采暖、照明及家用电器使用。若短期电力需求较大,可从市政电网输入电力补充。 目前日本林内公司和松下公司都进行斯特林发动机热电联产机组的开发,松下公司的机组发电功率约为400W。此外,日本新能源产业技术综合开发机构(NEDO)近期开发成功的面向寒冷地区的家用热电联产系统,试验情况良好,短期内有望批量生产。该系统配备有可利用各种燃料发电的斯特林发动机,发电输出功率为841W,发电效率为30%,燃料利用效率为为80%,不仅优于同类斯特林发动机,也优于功率相同的内燃机。若采用更先进的烟气冷凝热回收技术,整机热效率可高达96%左右。 3 家用燃气采暖炉集成斯特林发动机 2008年欧洲市场上出现了以八喜公司为代表的在壁挂式家用燃气采暖炉中配套斯特林发动机的一体化产品,标志着斯特林发动机在家用燃气热电联产装置一种新应用方案成功走向市场。由于欧洲大部分地区夏季相对清凉,具备制冷功能的家用空调装置安装、使用不普遍,所以家用燃气热电联产装置在欧洲基本使用方式是以满足采暖需求决定系统的配置和运行状态,为降低系统购置费用,一般情况下是根据房间采暖需求确定运行状态,发电机运行产生的余热只满足住宅最大热负荷的1/3~1/2,其余采用补燃方式或常规燃气加热方式补充,由于住宅热负荷变化幅度较大,这样的配置方案可以保证发电机的全负荷运行时数较长,使用户支付的购置费用与运行费用之和有效降低。以往家用燃气热电联产装置在系统配置时,需要同时配套燃气采暖炉,热力管路安装和控制系统相容性问题处理需要一定的费用。采用将斯特林发动机直接安装在燃气采暖炉内,从产品安装人员和用户来说,只是原先的燃气采暖炉增加了电力输出功能而已,大大简化了系统配置和安装工作,用户的运行管理工作因此也得到简化。 不过斯特林发动机应用于家用热电联产装置目前尚处于起步阶段,就全球范围而言民用斯特林发动机的设计和制造仍然存在一系列技术问题,这类产品的销售规模不足以内燃机驱动的家用燃气热电联产装置的1/10,短期内大规模应用的条件目前不具备。我国一些大学、研究机构和企业多年来从事斯特林发动机的研究和开发工作,已取得一些阶段性的成果,包括使用燃料驱动和太阳能热驱动的斯特林发动机已经投入试验性运 行。从技术发展的趋势角度,家用燃气斯特林发动机热电联产装置在未来仍然是燃气利用技术发展的重点发展领域。 (供稿:黄逊青) 家用燃气斯特林发动机热电联产装置 1 斯特林发动机原理 斯特林发动机(Stirling Engine)是一种由外部供热使气体在不同温度下作周期性压缩和膨胀的闭式循环往复式发动机,又称热气机,由苏格兰牧师Robert Stirling在十九世纪初发明,所以又称斯特林发动机。相对于内燃机燃料在气缸内燃烧的特点热气机又被称作外燃机。斯特林循环按正向循环工作时可以作热机循环,对外输出功;按逆向循环工作时,可以作热泵循环。其结构型式可以有多种多样,但循环原理基本相同。 斯特林发动机是一种能以多种燃料为能源的闭循环回热式发动机,由于其燃烧过程是在缸外接近于大气压力的状态下连续进行的,所以对燃料品质的要求不高,凡是燃烧温度可达450℃以上的任何种类的燃料都可作为斯特林发动机能源。另外,其燃烧过程也不会产生燃烧爆炸和排气波,气缸压力变化平稳,机组运转平衡,因而机组振动小、噪声低。目前家用燃气热电联产机组中配套的斯特林发动机的热工转换效率约为17~30%,而斯特林发动机的理论循环效率等于卡诺效率,从这个角度来说,提高斯特林发动机效率的潜力是比较大的。此外,斯特林发动机等外燃机还具备一个突出的优点,就是输出功率和效率不受海拔高度影响,非常适合于高海拔地区使用。 虽然外燃机有多种类型,不过目前采用外燃机的家用热电联产装置,基本上是配套斯特林发动机。用于家用热电联产装置的斯特林发动机通常是采用密闭型结构,维护工作量小,原则上在使用期内免维修;由于余热回收过程较为简便,热电联产运行效率高;而且外燃机可以燃烧各种可燃气体,如:天然气、沼气、石油气、氢气、煤气等,也可燃烧柴油、液化石油气等液体燃料,还可以燃烧木材,以及利用太阳能等。 在瑞典,生物质燃料直燃发电技术已经基本成熟并得到规模化商业应用,斯特林发动机发电技术处于技术开发和产业化示范阶段,是目前生物质能源利用方面的重点研发技术。而斯特林发动机另一个重要的应用领域是作为太阳能热发电的动力转换装置。 2 家用热电联产装置 新西兰WhisperGen公司的家用热电联产机组是市场上较有代表性的产品。法国国营煤气公司研究部已经在其试验大楼中 科技前沿 斯特林发动机发明时间是1816年,由于当时工业不发达,技术水平较低,未能应用于工程实践。近年来由于世界范围的能源和环境污染问题,斯特林发动机又重新引起人们的重视。

斯特林发动机原理与制作

简介:斯特林引擎(Stirling Engine)的优势特色与问题 从Stirling Engine 的原理与结构来看,它有几项颇具优势的特点: 1.、其使用外部热源,因此只要是能够产生热,皆可用来做为推动的能源, 所以并不仅限于可燃烧的燃料。而由于内燃机常令人诟病其排放的废气,会产环境污染的问题,因此能够使用地热、太阳能等自然的能源来运作StirlingEngine,显然在此方面是具有优势的。 斯特林发动机原理 2.、虽然Stirling Engine 常被归类于外燃机,但实际上,只要能够产生温差, 就能够成为运作的能源,因此使用低温流体,如乾冰、或冰水,同样可使Stirling Engine 进行运作。 3.、由于Stirling Engine 外部热源与工作气体(Working gas)是分开的,因 此没有燃烧废弃物堆积于内部的问题,使用的润滑油周期较持久。 4、由于热源位于外部,因此在调整控制上,比内燃机容易得多。 5、热源的提供是连续性的,较不会有燃料燃烧不全的情形。 6、比起其他引擎,它的构造很简单,不需要阀门,也没有化油器等机构。 7、运作的温度与压力比起蒸气引擎或内燃式引擎要低且安全的多,因此引擎强度与重量不需要很要求很高。 8、没有燃烧爆炸的作用,运作也很安静,没有剧烈的震动。 以上就是Stirling Engine 的发展优势。然而,既然Stirling Engine 具有优势,但为何当初它并没有成为普遍的动力系统?显然它仍然有一些问题有待克服或替代方桉:

斯特林发动机原理 1、无法避免热源对热室的侵蚀。毕竟高温差使得其运作效率提高,但也相对的会使活塞机构产生高温或低温侵蚀性的影响,引响运作寿命。 2、虽然在低温差可以运作,但要在低温差下产生大量的动能时,引擎的体积就会很巨大。 3、高低温差的控制很困难,尤其取决于引擎的隔热包装技术。如果无法有效控制,会徒增能源的散逸,减低效率。 4、刚开始Stirling Engine 无法迅速运转,它必须经过一段“暖机时间”。 5、要改变它的能量输出等级是很难的,它无法像内燃机一样用燃油多寡直接去控制动力的大小。 6. 最好的工作气体是使用氢等分子量小的气体,但这些气体不易保存。 所以,以上的这些特性与问题,造成了Stirling Engine 发展的兴衰。以目 尽管如此,Stirling Engine 仍被利用在进行乾淨、环保的长时期稳定运作的电力生产与低温冷冻上。

斯特林小车设计书(2)

斯特林小车 设计说明书 学院: 年级专业:二年级机械工程及自动化 设计者: 任课老师: 辅导教师: 起止时间:

目录 1. 作品简介 (1) 2. 研究背景及意义 (1) 3. 设计方案的筛选 (2) 4. 重要零部件及相应功能分析 (2) 4.1引擎 (2) 4.2驱动机构 (3) 5. 设计说明 (4) 6.斯特林实物展示 (5) 7小车的特点和创新 (6) 8参考文献 (7)

1作品简介: 我们通过对斯特林引擎的研究和认识,加上已有的机械知识,在老师的帮助和改进下完成了自己设计的第一辆小车。我们的小车采用的是α型引擎,驱动机构我们选择了皮带传动。我们的设计理念是在不影响小车性能的情况下,尽量减轻小车的质量,选用较轻的零件以使小车走的更远。同时尽量选用便宜,易买到的零件,节约生产成本。 2研究背景及意义: 斯特林发动机属外燃机,它避免了传统内燃机的震爆做功问题,从而实现了高效率、低噪音、低污染和低运行成本。可以燃烧各种可燃气体,如:天然气、沼气、石油气、氢气、煤气等,也可燃烧柴油、液化石油气等液体燃料,还可以燃烧木材,以及利用太阳能等。只要热腔达到700℃,设备即可做功运行,环境温度越低,发电效率越高。外燃机最大的优点是出力和效率不受海拔高度影响,非常适合于高海拔地区使用。 随着全球能源与环保的形势日趋严峻,斯特林发动机由于具有多种能源的广泛适应性和优良的环境特性已越来越受到重视,所以,在水下动力、太阳能动力、空间站动力、热泵空调动力、车用混合推进动力等方面得到了广泛的研究与重视,并且已得到了一些成功的应用。 在这个背景下,加快对斯特林引擎的了解和研究是至关重要。而一样事物从发明到正式投入生产运用是需要一个不断探索和尝试过程的。我们通过对斯特林小车的设计及三维图的制作正是这个不断探索和尝试的过程。 3设计方案的删选: 3.1引擎部分方案删选对比: 斯特林发动机原理: 斯特林发动机是通过气体受热膨胀,遇冷压缩而产生动力的。这是一种外燃发动机,使燃料连续地燃烧,蒸发的膨胀氢气蒸发的膨胀氢气(或氦)作为动力气体使活塞运动,膨胀气体在冷气室冷却,反复地进行这样的循环过程反复地进行这样的循环过程,便可为外机提供动力。 β型引擎:β型引擎最大特征是引擎体型小。但为了保证同轴上的2个活塞获得合适的相位角的同时能够来回往复运动,从而产生了驱动机构复杂化等问题。 γ型引擎:γ型引擎小型化比较困难。而且结构上由于不能提高压缩比,所以想得到大输出功率也非常困难。 α型引擎:α型引擎由两个动力活塞构成,具有高压缩比(最大容积/最小容积)和高输出功率的特征。而且该引擎在1980年实施的月光计划中已经被开发出输出功率为3KW级的引擎。可见这种引擎的有着很大的潜力和市场开发价值。 由此可见,不管是从制作的简便性还是输出功率的可观性,甚至市场前景。α型引擎都有着它的特点和优势。泾小组协商以及咨询老师后,最终我们决定采用α型引擎作为本次项目小车的引擎。

斯特林发动机 研究 发展

关于斯特林发动机的研究与发展 学号:13015218 姓名:彭俊图摘要:简述了斯特林发动机的发展历史及研究现状,介绍了斯特林循环并归纳了斯特林循环的分析方法,阐述了斯 特林发动机的特点和应用,并展望了斯特林发动机的发展前景。 关键词:斯特林发动机;斯特林循环;碟式太阳能热发电系统 随着社会的不断发展,化石燃料的消耗量日益增大,传统燃料的内燃机将面临着严重的能源危机,而积极解决这个问题的有效途径之一是开发一种可以使用与传统内燃机不同的燃料的动力装置,斯特林发动机则是目前可行的最佳途径之一。斯特林发动机(Stirling engine) 又叫热气机,是一种封闭式外燃机,具有燃料来源广,热效率高,排气污染少,噪音低,运转特性好,结构简单,维修方便等优点,并且在太阳能碟式发电系统中有着重要的应用,越来越受到人们的关注。国外一些专家预言,21 世纪将是斯特林发动机的 世纪。

1 斯特林发动机的发展 1816 年,罗伯特·斯特林(Robe Stirling) 发明了闭式循 环的热气机一一斯特林发动机。在当年的第4081 号专利中,罗伯特·斯特林在历史上第一次描述了回热器的结构和应用,并对第一台闭式循环热气机的构造进行了描述 斯特林发动机是一种外部燃烧(加热)的封闭式活塞发 动机。自罗伯特·斯特林于1816 年发明斯特林循环以来,限于当时条件,大部分发动机的功率和效率都很低,逐渐被比其发明晚半个多世纪的内燃机所替代。1916 年最后一台老式斯特林发动机出厂,斯特林发动机的发展告一段落[1 3J 近几十年来,随着能源问题和污染问题日益突出,以及

斯特林发动机的一些关键技术问题的解决和它所特有的优点,因而受到了国内外的广泛关注。20 世纪30 年代到60代,现代斯特林发动机的鼻祖一一荷兰的菲利普公司开创了现代斯特林发动机发展的新阶段。之后经过通用发动机公司、福特汽车公司、瑞典联合热气机公司的不断发展,在包括 美国、俄罗斯、英国、法国、德国、日本等主要工业国家政府的 资助下,在碟式太阳能热发电、制冷和热泵等领域取得重要进展。我国的某些研究机构也在20 世纪70 年代中期开始研究斯特林发动机,并在碟式太阳能热发电领域取得一定 成果 2 斯特林的国内外研究现状 Kaushik对不可逆斯特林发动机进行了有限时间热力学分析。分析指出,在不考虑各种损失和回热器效率为1条件下种循环的效率等于卡诺循环的效率,同时还指出了回热器的效率不会影响发动机的输出功率。Halit 指出工质的泄露对斯特林发动机的性能有着重要的影响。Koi-chi建立以一个斯特林发动机原型为基础,在标准状态和无负载的情况下,用空气作为工质进行试验,最后得出:提高换热器性能、降低机械损失对提高斯特林发动机的性能是十分有效的。Nezaket基于UrieliandBerchowitz’s规则,用热力学原理中稳流分析法

斯特林发动机-研究-发展

斯特林发动机-研究-发展

关于斯特林发动机的研究与发展 学号:13015218 姓名:彭俊图 摘要:简述了斯特林发动机的发展历史及研究现状,介绍了斯特林循环并归纳了斯特林循环的分析方法,阐述了斯特林发动机的特点和应用,并展望了斯特林发动机的发展前景。 关键词:斯特林发动机;斯特林循环;碟式太阳能热发电系统 随着社会的不断发展,化石燃料的消耗量日益增大,传统燃料的内燃机将面临着严重的能源危机,而积极解决这个问题的有效途径之一是开发一种可以使用与传统内燃机不同的燃料的动力装置,斯特林发动机则是目前可行的最佳途径之一。斯特林发动机(Stirling engine) 又叫热气机,是一种 封闭式外燃机,具有燃料来源广,热效率高,排气污染少,噪音低,运转特性好,结构简单,维修方便等优点,并且在太阳能碟式发电系统中有着重要的应用,越来越受到人们的

关注。国外一些专家预言, 21 世纪将是斯特林发动机的世纪。 1 斯特林发动机的发展 1816 年,罗伯特·斯特林 (Robe Stirling) 发明了闭式循环的热气机一一斯特林发动机。在当年的第 4081 号专利中,罗伯特·斯特林在历史上第一次描述了回热器的结构和应用,并对第一台闭式循环热气机的构造进行了描述 斯特林发动机是一种外部燃烧(加热)的封闭式活塞发动机。自罗伯特·斯特林于 1816 年发明斯特林循环以来,限于当时条件,大部分发动机的功率和效率都很低,逐渐被

比其发明晚半个多世纪的内燃机所替代。 1916 年最后一台老式斯特林发动机出厂,斯特林发动机的发展告一段落[1 3J 近几十年来,随着能源问题和污染问题日益突出,以及 斯特林发动机的一些关键技术问题的解决和它所特有的优点,因而受到了国内外的广泛关注。 20 世纪 30 年代到 60 代,现代斯特林发动机的鼻祖一一荷兰的菲利普公司开创了现代斯特林发动机发展的新阶段。之后经过通用发动机公司、福特汽车公司、瑞典联合热气机公司的不断发展,在包括 美国、俄罗斯、英国、法国、德国、日本等主要工业国家政府的 资助下,在碟式太阳能热发电、制冷和热泵等领域取得重要进展。我国的某些研究机构也在 20 世纪 70 年代中期开始研究斯特林发动机,并在碟式太阳能热发电领域取得一定 成果 2 斯特林的国内外研究现状 Kaushik对不可逆斯特林发动机进行了有限时间热力学分析。分析指出,在不考虑各种损失和回热器效率为1条件下种循环的效率等于卡诺循环的效率,同时还指出了回热器的效率不会影响发动机的输出功率。 Halit 指出工质的泄露对斯特林发动机的性能有着重要的影响。Koi-chi建立以一个斯特林发动机原型为基础,在标准状态和无负载的情况

十个中文例程教会你轻松上手制作Arduino智能小车

十个中文例程教会你轻松上手制作Arduino智能小车 Arduino简介 Arduino 是一款便捷灵活、方便上手的开源电子原型平台,包含硬件(各种型号的arduino 板)和软件(arduino IDE)。适用于艺术家、设计师、爱好者和对于“互动”有兴趣的朋友们。Arduino能通过各种各样的传感器来感知环境,通过控制灯光、马达和其他的装置来反馈、影响环境。板子上的微控制器可以通过Arduino的编程语言来编写程序,编译成二进制文件,烧录进微控制器对Arduino的编程是利用Arduino编程语言(基于Wiring)和Arduino开发环境(based on Processing)来实现的。基于Arduino的项目,可以只包含Arduino,也可以包含Arduino和其他一些在PC上运行的软件,他们之间进行通信(比如Flash, Processing, MaxMSP)来实现。 你可以自己自己动手制作,也可以购买成品套装;Arduino所使用到的软件都可以免费下载。硬件参考设计(CAD 文件)也是遵循availableopen-source协议, 你可以非常自由地根据你自己的要求去修改他们。 本文精选了Arduino教程、例程、设计案例,集结了国内外官方资料和资深工程师的经验,是学习AArduino的必备宝典。 小车、机器人篇 1、Arduino互动玩偶BOXZ 此设计制作在2013年Atmel AVR英雄视频大赛中荣获奖励,并且参与了2014的深圳制汇节。BOXZ,昵称盒仔,其创意始于2012年6月初。当时的想法是设计一款基于Arduino 的入门级机器人,可以和三五好友在有限的空间里进行踢足球等互动,而且要做到取材容易制作简单,在设计的上采用了模块化的接插结构,同时还要注重外观拥有个性。 2、基于Arduino的自平衡遥控小车 车模平衡控制也是通过负反馈来实现的。因为车模有两个轮子着地,车体只会在轮子滚动的方向上发生倾斜。控制轮子转动,抵消在一个维度上倾斜的趋势便可以保持车体平衡了。 3 当自家的遥控蓝牙小车坏掉的时候不是只能扔掉,作为创客不但要学会制造东西,更要学会修理东西,来看看这位创客是如何修理他的小车的吧!小车采用大电流MOSFET做的电机驱动驱动电机,用Atmega328单片机作为主控,读取航模遥控器(天六A 2.4G)的PWM 信号,然后电机驱动板,转向舵机直接接到航模遥控器的横滚通道控制转向,用天六的第5通道(开关通道)选择前进还是后退 4、基于Arduino的盒子遥控机器人 BOXZ,昵称盒仔。是一款开源的互动娱乐平台!我们将Arduino,亚克力板和纸模型创意的结合在一起,让大家可以快速搭建自己的遥控玩偶,开展互动体验,而它的组装就像搭乐高积木一样简单!而盒仔的外形和功能完全取决于您的创意。我们可以用它来搞足球比赛,角色扮演,赛车或对战,甚至拍MV!

斯特林发动机模型制作与研究

毕业设计(论文) 题目斯特林发动机模型制作与研究 系别动力工程系 专业班级热能与动力工程08k3班 学生姓名 指导教师王庆五 二○一二年六月

斯特林发动机模型制作与研究 摘要 随着石油资源的日益短缺,石油价格逐渐上涨,传统的内燃机使用石油资源而引起的环境污染、能源使用极不平衡等社会问题日见突出。研究能以天然气、沼气、生物质等作为燃料的发动机有关技术,对于促进能源的综合利用、改善当前使用单一石油资源的状况并减少环境污染,创造节约型社会,具有重要的意义。斯特林发动机作为外燃机具有的燃料多样化、效率高、噪音和污染小等特点,适于利用农村薪材、桔杆和太阳能进行发电。斯特林发动机得天独厚的优势,以及各种新材料新技术的出现,斯特林发动机必将代替内燃机为21世纪提供主要动力。斯特林发动机的广泛应用,必将使我国的能源利用效率得到大幅度提高,无沦是对环境保护还是节能减排,都有着非常重要的积极意义,也将会为我国的经济又好义快的发展提供充足动力。本文通过研究斯特林发动机的性能特性,讲述了斯特林发动机的结构类型与主要分析方法,总结了斯特林发动机的关键技术,阐述了斯特林发动机的特点及主要应用,设计制造了斯特林发动机模型,并对该模型进行了实验分析,得出的结论和模拟性能基本一致。 关键词:斯特林发动机;性能模拟;设计实验

Stirling engine model production and study Abstract The oil energy is reducing and its price is increasing day by day,theinternal-combustion engine has brought environment pollution and broken zoology balance,the problems are standing out.Researching engine that can combust gas,marsh gas,biology is very signification that it can promote the compositive utilization of energy,change the use of only one oil energy,reduce environment pollution,create the economy society.The Stirling engine as outboard engines with fuel diversification, high efficiency, noise and pollution and other characteristics, suitable for rural fuelwood, straw and solar power generation. The unique advantage of the Stirling engine, as well as a variety of new materials, new technologies emerge, the Stirling engine will replace the internal combustion engine to provide the main driving force for the 21st century. Wide range of applications of the Stirling engine, will make China's energy use efficiency has been greatly improved, no occupied by the enemy of environmental protection or energy saving, have very important positive significance, will also be good for China's economic justice the fast pace of development to provide adequate power.According to the requirements on the development of energy and basing on the theory of stifling engine,the software the simulate stirling engine character is developed,then the configuration-type and analytical method of Stirling cycle were elaborated in the following parts.The key technology that affect the performance was also summarized.Through its character,the stifling engine model is designed and manufactured,and it is tested,the conclusion consistent with the simulation character. Key Words:stirling engine,simulation eharaeter`designing experiment

斯特林发动机循环分析 工程热力学

斯特林发动机循环分析 (北京交通大学机电) 摘要:斯特林发动机不仅理论热效率高,等于卡诺循环效率,而且作为外燃机其排放特性非常好,所以近三十年来一直是研究的热点。本文介绍了斯特林发动机的装置特点、动力性能等,并对理论循环进行了分析,提出了提高循环热效率的方法及措施。 关键词:斯特林发动机,斯特林循环,热效率 1.斯特林发动机介绍 1.1斯特林发动机的装置特点 热气机是一种外燃的、闭式循环往复活塞式热力发动机。 热气机可用氢、氮、氦或空气等作为工质,按斯特林循环工作。在热气机封闭的气缸内充有一定容积的工质。气缸一端为热腔,另一端为冷腔。工质在低温冷腔中压缩,然后流到高温热腔中迅速加热,膨胀作功燃料在气缸外的燃烧室内连续燃烧,通过加热器传给工质,工质不直接参与燃烧,也不更换。 已设计制造的热气机有多种结构,可利用各种能源,已在航天、陆上、水上和水下等各个领域进行应用。试验热气机的功率传递机构分为曲柄连杆传动、菱形传动、斜盘或摆盘传动、液压传动和自由活塞传动等。 按缸内循环的组成形式分,热气机主要有配气活塞式和双作用式两类。在一个气缸内有两个活塞作规律的相对运动,冷腔与热腔之间用冷却器、回热器和加热器连接,配气活塞推动工质在冷热腔之间往返流动。 1.2斯特林发动机的应用现状 1.2.1 国内发展状况 我国从七十年代末即开始斯特林发动机的研究开发工作,已设计出功率150W-IOkW发动机11种,多数已在实验室正常运转。现从事此项工作的约300人,并正筹建中国热气机研究会。北京农业工程大学凌泽芝同志在能源政策研究通讯1991年第一期“发展热气机、促进农村电气化”一文中介绍国内外斯特林发动机的发展概况及其特点后建议:“充分利用我国农村丰富的生物质能源和部分地区丰富的太阳能资源以解决农业用电问题”。并希望纳入国家“八五”科技规划和组织有关单位联合攻关。上海711研究所研制出热气机,是一种具有国际水准的科研成果,而排放的污染气体比目前市面上的其它发动机都要小,达到欧洲排放标准。 1.2.2 国外应用现状 1)用于热电联产型 充分利用它环境污染小的特点,在大城市里可以以天燃气作燃料,通过斯特林发动机的内部的冷却装置,冷却水被加热并回收烟气,即可采暖。1台25kW的斯特林外燃机完全可以满足500—1500建筑平方米采暖。 这种使用斯特林发动机的热电联产装置实际上相当于一台副产电力的供热锅炉,一

基于创新方法的斯特林发动机改进概要

本科毕业设计(论文) 基于创新方法的斯特林发动机改进 学院机电工程学院 专业机械设计制造及其自动化 (机械电子工程方向) 年级班别2008级(2)班 学号 学生姓名 指导教师 2012年6 月

基于创新方法的斯特林发动机改进 机电工程学院

摘要 斯特林发动机由于具有燃料来源广、低噪声、低污染、安全性能高等诸多优点而受到越来越广泛的重视。但由于斯特林发动机在功率效率及结构的技术和发展还不是特别地成熟,还不能成为完全替代内燃机的新型动力机器,需要对斯特林发动机进行改进设计。本文在介绍了基于TRIZ理论的机构创新设计方法的基础上,针对现有斯特林发动机工作效率低、功率不高、结构庞大等方面问题,应用TRIZ理论的技术矛盾矩阵法对斯特林发动机进行创新设计,利用TRIZ法40条原理中的嵌套原理提出了β型斯特林发动机结构、分离与分开原理提出γ型斯特林发动机结构和周期性作用原理提出了复动型发动机结构,从结构、原理和工作循环方法上实现了产品不同角度的创新设计。用TRIZ 理论改进所得出的方案为斯特林发动机的发展方向提供实用价值的参考。 关键词:TRIZ,机构创新设计,斯特林发动机

Abstract The Stirling engine gets more and more extensive attention,because it has a lot of advantage such as the wide fuel source, low noise , low pollution, high thermal efficiency and higher safety. The technology and development of Stirling engine in power efficiency and structure is not particularly mature, which can not completely replace the internal combustion engine and become the new dynamic machine. It need to improve the design of the Stirling engine. This paper introduces the institutional innovative design method on the basis of the TRIZ theory. Since the low efficiency of the existing Stirling engine power structure low thermal efficiency and huge structure, the Author applyed technical contradiction matrix method of TRIZ on the Stirling engine to innovative design. The structure of the β-type Stirling engine, γ-type Stirling engine structure and the complex dynamic engine structure turned out. It bring about the product of innovative design from the structure, principle and duty cycle method. The improved program that obtained by TRIZ theory provide a reference of practical value for the development direction of the Stirling engine. Key words:TRIZ, Institution innovation design, The Stirling engine

最新diy自制斯特林引擎发电机汇总

d i y自制斯特林引擎 发电机

自制斯特林引擎发电机 在偏远地区,收听广播可能是唯一的娱乐,也是与文明世界沟通的管道,但偏远地区常无电力供应,甚至连电池都难以取得。虽收音机本身轻巧耐用,因缺乏适当的电力,收听广播变得十分麻烦,于是有人就想到利用发条经变速齿轮驱动微型发电机,提供收音机所需微不足道的电力。斯特林引擎在某些场合也具有类似的功能,尽管至今为止小型轻巧的斯特林引擎之输出功率,仍无法与尺寸相仿的内燃机匹敌(极其微小的斯特林引擎与同尺寸内燃机之比较,又另当别论),就收音机或小型照明设备而言,斯特林引擎之输出功率却恰到好处,并且具有燃料多元化、安静、污染少、构造简单耐用、保养方便等优点。玻璃制的透明斯特林引擎作为教具,固然可以寓教于乐,令学生印象深刻,但如果能进一步利用斯特林引擎作为动力,制作相关的动力机械,例如,装配一辆汽车模型(注一),或驱动发电机发电,并以此电力驱动小功率电器,除了完整介绍引擎之原理、构造和用途,更能演示热学原理、能量守恒原理、发电机负载原理,使斯特林引擎教具不但在高中、大学之物理学教学有用,也能应用在技职课程之教学和科普教育。 本文介绍这一部双缸水平并卧透明试管引擎发电设备,由两具特别设计的斯特林引擎(注二)组合而成,其内部构造和运转情形一目了然。尽管乍见其外观(图一),构造似乎有些复杂,装配过程好像颇棘手,但其独特的设计已降低了精度的要求,不难成功自制,正适合有兴趣的读者大显身手。

图一:试管引擎的实物照片,摄于2004年4 月14 日。 一、自制这款引擎所需的材料: 1. 外径1.85 cm、内径1.7 cm 的试管二个,外径1.63 cm,内径1.45 cm 的试管二个(化学实验室或玻璃仪器行一定有,价格各约二、三十元台币); 2. 粗约0.4 mm(0.016 号)的吉他钢弦(乐器行有售,35 元一条); 3. 长约16 cm,横截面2×3 mm2 的铝杆二支; 4. 玻璃毛细管(外径 5.8 mm,内径0. 45mm,学校实验室找得到); 5. 直径1.5 mm,长10 cm 的钢棒两根(就是尚未攻牙的钻头,钻头工厂有卖); 6. 内径1.3 cm,长约7cm 的玻璃管二个; 7. 内径8 mm 的玻璃管; 8. 内径2.2 mm,长约20 cm 的橡皮管; 9. 内径15 mm,长约20 cm 的铝棒一根; 10. 直径20 mm,长约20 cm 的PE 棒(以上五项,台北市太原路都找得到); 11. 白杨木条若干(五金行有售)。 二、自制附属发电机所需的材料:

相关主题
文本预览
相关文档 最新文档