当前位置:文档之家› 热交换器能效测试与评价规则

热交换器能效测试与评价规则

热交换器能效测试与评价规则
热交换器能效测试与评价规则

热交换器能效测试与评价规则

TSG特种设备安全技术规范 TSG 20XX

热交换器能效测试与评价规则Energy Efficiency Test and Evaluation Regulation for Heat

Exchanger

(征求意见稿)

中华人民共和国国家质量监督检验检疫总局颁布

20XX年XX月XX日

前言

2016年7月,国家质量技术监督检验检疫总局(以下简称国家质检总局)特种设备安全监察局(以下简称特种设备局)委托中国特种设备检测研究院(以下简称中国特检院)组织起草《热交换器能效测试与评价规则》(以下简称规则)。 2016年7月,中国特检院组织成立了起草组,在西安召开第一次工作会议,讨论了规则的制定原则、重点内容以及主要问题、结构(章节)框架,并且就起草工作进行了具体分工,制定了起草工作时间表。2016年9月,起草组在上海召开第二次工作会议,对规则内容进行了调整,并形成了规则征求意见稿。2016年XX月,特种设备局对征求意见稿进行审查后,以质监特函[2016]XX 号文对外征求基层部门、有关单位和专家及公民的意见。201X年XX月,根据征求到的意见起草组进行修改形成送审稿,并提交给国家质检总局特种设备安全与节能技术委员会审议,起草组根据审议意见进行修改后形成报批稿,201X年XX月XX日,由国家质检总局批准颁布。

本规则主要起草单位和人员如下:

甘肃蓝科石化高新装备股份有限公司张延丰周文学

西安交通大学白博峰

国家质量监督检验检疫总局特种设备安全监察局冷浩

中国特种设备检测研究院管坚刘雪敏

中国特种设备安全与节能促进会王为国

上海市特种设备监督检验技术研究院汤晓英

甘肃省质量技术监督局特种设备安全监察局严勇

中国石化工程建设有限公司张迎恺

中国石油化工股份有限公司上海高桥分公司蔡隆展

西安市热力总公司唐涤

上海蓝海科创检测有限公司王纪兵

上海板换机械设备有限公司张永德

目录

1总则·····························································································(- 1 -)2通用要求·······················································································(- 3 -)

3 能效测试与评价报告 ·······································································(-

4 -)

4 附则 (5)

附件A (6)

1 总则

1.1目的

为了规范热交换器能效测试与评价工作,根据《特种设备安全监察条例》、《高耗能特种设备节能监督管理办法》,制定本规则。

1.2 适用范围

本规则适用于热交换器产品的能效测试与评价。在用热交换器的能效评价可参照本规则进行。

1.3 引用标准

满足本规则热交换器性能测试与能效评价基本要求的标准称为本规则引用标准。本规则的主要引用标准如下:

(1) GB/T 151《热交换器》;

(2) GB/T 27698.1《热交换器及传热元件性能测试方法第1部分:通用要求》;

(3) GB/T 27698.2《热交换器及传热元件性能测试方法第2部分:管壳式热交换器》;

(4) GB/T 27698.3《热交换器及传热元件性能测试方法第3部分:板式热交换器》;

(5) GB/T 27698.4《热交换器及传热元件性能测试方法第4部分:螺旋板式热交换器》;

(6) GB/T 27698.5《热交换器及传热元件性能测试方法第5部分:管壳式热交换器用换热管》;

(7) GB/T 27698.6《热交换器及传热元件性能测试方法第6部分:空冷器用翅片管》;

(8) GB/T 27698.7《热交换器及传热元件性能测试方法第7部分:空冷器噪声测定》;

(9) GB/T 27698.8《热交换器及传热元件性能测试方法第8部分:热交换器工业标定》;

(10) NB/T 47004《板式热交换器》;

(11) NB/T 47007《空冷式热交换器》;

(12) NB/T 47045《钎焊板式热交换器》;

(13) NB/T 47048《螺旋板式热交换器》。

1.4术语和定义

GB/T 27698中界定的以及下列术语、符号和定义适用于本规则。

1.4.1热交换器

在不同温度的流体之间实现热量传递的设备,如板式热交换器、空冷式热交换器、螺

旋板式热交换器、管壳式热交换器、板壳式热交换器、板式空冷器等。

1.4.2 能效指标 (Energy Efficiency Index,EEI)

综合考虑热交换器传热与流动特性,基于热力学第一、第二定律,采用测试数据数理统计等方法,确定的用于判定热交换器能效的数值。

1.4.3热交换器能效目标值

判定热交换器为高效产品的指标值。

1.4.4热交换器能效限定值

允许的热交换器产品的最低能效值。

1.4.5定性温度

确定热交换器流体物性参数的参考温度。

1.4.6热平衡条件

热交换器能效测试达到热平衡时,冷、热流体换热量的允许偏差范围。

1.5符号和单位

表1列出的符号和单位适合于本规则。

表1 符号和单位

2 通用要求

2.1测试与评价机构

测试与评价机构应当对能效测试质量进行严格控制,对测试结果的准确性、公正性和可溯源性负责;具备所开展热交换器能效测试与评价的仪器设备;测试与评价负责人员应当由具有热交换器测试经验的工程师担任。

2.2测试系统

(1)具备固定的测试试验场地及配套的水、电、气、热源和冷源等公共条件;

(2)满足热交换器热力性能参数测量范围的能力,测试工况可以调节并能保持稳定状态,测试数据准确可靠并能自动采集和存储。

2.3测量仪表

(1)压力、压差、流量测量仪表的精度不低于0.5级,流体温度的测量精度不低于±0.2℃。

(2)测量仪表应在检定/校准有效期内使用。

2.4数据采集

(1)每个测试工况应稳定5分钟以上,且热平衡条件ΔΦC的绝对值不大于5%时,方可进行数据采集;

(2)每个测试工况至少重复测量3次,每次间隔5分钟以上,测量结果取平均值。

2.5评价方法

综合考虑热交换器传热与流动特性,基于热力学第一、第二定律,采用测试数据数理统计等方法,确定热交换器能效指标(EEI)。以能效指标作为依据,评价热交换器的能效水平。各种类型热交换器的能效测试与评价方法见附件。

2.6 能效指标

热交换器产品的能效水平分为三个等级,能效指标(EEI)高于能效目标值的为高效产品,低于能效限定值的为低效产品,介于两者之间的为中等能效产品。各种类型热交换器的能效指标要求见附件。

2.7特殊要求

当热交换器产品型号或主要结构参数发生变化时,应重新进行能效测试与评价。

3测试与评价报告

3.1测试与评价报告

一般格式见附件,并且至少包括以下内容:

(1) 委托方;

(2) 产品制造单位及产品编号;

(3) 测试与评价机构;

(4) 测试评价负责人和主要参加人员;

(5) 测试产品技术数据(名称、型号、结构参数等);

(6) 测试环境条件(当地大气压、环境温度、环境湿度);

(7) 设计文件(含工艺计算);

(8) 测量参数与测点布置图(冷、热两侧流体进口、出口温度与压差,进口压力);

(9) 测量仪表及精度;

(10) 测试数据表;

(11) 测试曲线;

(13) 能效指标(EEI)计算过程;

(14) 能效评价结果及等级。

4 附则

4.1规则解释权

本规则由国家质量监督检验检疫总局负责解释。

4.2施行时间

本规则自201X年XX月XX日起施行。

附件A

板式热交换器能效测试与评价方法及能效指标A1范围

本附件适合于在液-液工况状态下的可拆卸板式热交换器、半焊式板式热交换器、钎焊板式热交换器的能效测试与评价。

A2产品型号及参数

板式热交换器进行能效测试时应明确产品型号及以下参数:

(1) 板片波纹形式 (波纹角度、波纹深度、波纹间距、混合角度);

(2) 板片几何尺寸(长度、宽度、角孔直径、纵向与横向中心距);

(3) 单板传热面积;

(4) 当量直径;

(5) 板间距;

(6) 流道截面积;

(7) 板片数;

(8) 板片厚度;

(9) 板片材质;

(10) 流程组合;

(11) 设计温度;

(12) 设计压力。

当产品型号或(1)至(6)任一参数发生变化时,应重新进行能效测试与评价。

A3性能测试要求

A3.1测试系统设置

测试系统见图 A.1。测试流体为水,按水—水无相变逆流测试工况进行。首先将冷、热流体的流量调整到设定值,再将热交换器的热流体进口温度通过加热器调整至60±0.5℃,热交换器的冷流体进口温度通过冷却器调整至35±0.5℃。

所测试板式热交换器的板片数应不少于7片。

图A.1 热交换器测量参数及测点布置图

A3.2 测量项目

(1) 冷、热流体的体积流量或质量流量; (2) 冷、热流体的进、出口温度;

(3) 冷、热流体的进口压力及进出口之间的压差。 A3.3 测试方法

测试工况稳定后,按以下测试要求进行测试:

(1)两侧流体的流速从0.1m/s ~1.0m/s 均匀等流速变化,变化间隔为0.1m/s ; (2)固定一侧(热侧或冷侧)流体的流速不变,固定点宜选在0.5m/s 左右,另一侧流体的流速应从0.1m/s ~1.0m/s 变化,变化间隔为0.1m/s ; A3.4 热平衡条件

冷、热流体的换热量允许偏差范围根据冷、热流体流速为0.5m/s 时的测试结果确定,具体步骤如下:

(1)按表A.1计算热交换器冷、热流体进口温度比τ; (2)按表A.1计算效能 ε;

1-冷却塔;2-冷却器;3-热交换器试件;4-加热器;5-分离器; 6-过冷器;7-液体储槽;T -测温口;P -压力测口

(3)计算热平衡条件的下界ΔΦC ;

()()11C τε?Φ=--- (A.1)

(4)确定该热交换器能效测试允许的热平衡条件: 若ΔΦC ≤-5%,热平衡条件为{-5%,5%}; 若-5%<ΔΦC ≤-1%,热平衡条件为{ΔΦC ,5%}; 若ΔΦC >-1%,热平衡条件为{-1%,5%}。 A3.5 热交换器传热性能 按表A.1计算热交换器传热性能。 (1)确定不同流速u 下的总传热系数k ;

(2)建立努塞尔数Nu 与雷诺数Re 间的准则关联式。 A3.6 热交换器流动阻力性能 按表A.1计算热交换器流动阻力性能。 (1)确定不同流速u 下的压力降Δp ;

(2)建立欧拉数Eu 与雷诺数Re 间的准则关联式。

在定性温度热流体50℃、冷流体30℃、冷热流体流速在0.5m/s标准状态下,根据所建立的Nu准则关联式、板片厚度及其导热系数,计算出总传热系数k,根据Eu准则关联式计算冷热侧压力降Δp。

A3.8测试报告

测试报告应满足按A4.1的要求进行计算,且内容不少于附表A-1的要求。

A4 能效评价

A4.1能效指标计算

板式热交换器的能效值按下式计算:

EEI=k

/?p0.31(A.2)

cal

式中:

?p =ωcΔp ccal/l c+ ωhΔp hcal/l h,Pa·m-1

k

——按A3.8确定的总传热系数,W·m-2·K-1;

cal

ω

、ωh——冷、热流体压力梯度的权重系数,ωc=ωh=0.5;

c

l

、l h——纵向角孔中心距,m

c

Δp ccal、Δp hcal——按A3.8确定的冷、热流体侧压降,Pa。

A4.2能效等级划分

能效目标值EEI=227;

能效限定值EEI=168;

板式热交换器能效等级分为三级,见表A.2。

表A.2能效等级

A5 板式热交换器的能效测试与评价报告格式参见附表A-1。

附表A-1

能效测试与评价报告

产品名称:XXXX板式热交换器

型号规格:

委托单位:

制造单位:

检验类别:

(能效测试评价机构名称、盖章)

(测试评价日期)

注意事项

1.报告无“能效测试与评价报告专用章”或能效测试评价机构公章无效。2. 内容缺少、摘录或部分复制报告无效。

3. 报告无编制、审核、批准人签章无效。

4. 报告涂改无效。

5. 若对报告有异议,应于收到报告之日起十五个工作日内向能效测试评价机构提出。

6. 结果仅与被检测样品有关。

7. 能效测试机构信息:

地址:

电话:

邮政编码:

传真:

能效测试与评价报告

No. 第页共页

批准:审核:编制:

No. 第页共页

No. 第页共页

表A 板式热交换器测试数据

换热器性能综合测试实验

第一章实验装置说明 第一节系统概述 一、装置概述 目前我国传热元件的结构形式繁多,其换热性能差异较大,在合理选用和设计换热器的过程中,传热系数是度量其性能好坏的重要指标。本装置通过以应用较为广泛的间壁式换热器(共有套管式换热器、螺旋板式换热器、列管式换热器和钎焊板式换热器四种)为实验对象,对其传热性能进行测试。。 二、系统特点 1.采用四种不同结构的换热器(分别为套管式换热器、螺旋板式换热器、列管式换热器和钎焊板式换热器)作为实验对象,对其进行性能测量。 2.实验装置可测定换热器总的传热系数、对数传热温差和热平衡误差等,并能根据不同的换热器对传热情况和性能进行比较分析。 3.实验装置采用工业现场的真实换热器部件,与实际应用接轨。 三、技术性能 1.输入电源:三相五线制 AC380V±10% 50Hz 2.工作环境:温度-10℃~+40℃;相对湿度<85%(25℃);海拔<4000m 3.装置容量:<4kVA 4.套管式换热器:换热面积0.14m2 5.螺旋板式换换热器:换热面积1m2 6.列管式换热器:换热面积0.5m2 7.钎焊板式换热器:0.144m2 8.电加热器总功率:<3.5kW 9.安全保护:设有电流型漏电保护、接地保护,安全符合国家标准。 四、系统配置 1.被控对象系统:主要由不锈钢钢架、热水箱、热水泵、冷水箱、冷水泵、涡轮流量计、PT100温度传感器、板式换热器、列管式换热器、套管式换热器、螺旋板式换热器、冷凝器、电加热棒、电磁阀、电动球阀、黄铜闸阀以及管道管件等。 2.控制系统:主要由电源控制箱、漏电保护器、温度控制仪、流量显示仪、调压模块、开关电源以及开关指示灯等。 第二节换热器的认识 一、换热器的形式 能使热流体向冷流体传递热量,满足工艺要求的装置称为换热器。换热器的形式有很多,

氢氧燃料电池性能测试实验报告

氢氧燃料电池性能测试 实验报告 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

氢氧燃料电池性能测 试实验报告 学号: 姓名:冯铖炼 指导老师:索艳格 一、实验目的 1.了解燃料电池工作原理 2.通过记录电池的放电特性,熟悉燃料电池极化特性 3.研究燃料电池功率和放电电流、燃料浓度的关系 4.熟悉电子负载、直流电源的操作 二、工作原理 氢氧燃料电池以氢气作燃料为还原剂,氧气作氧化剂氢氧燃料电池,通过燃料的燃烧反应,将化学能转变为电能的电池,与原电池的工作原理相同。 氢氧燃料电池工作时,向氢电极供应氢气,同时向氧电极供应氧气。氢、氧气在电极上的催化剂作用下,通过电解质生成水。这时在氢电极上有多余的电子而带负电,在氧电极上由于缺少电子而带正电。接通电路后,这一类似于燃烧的反应过程就能连续进行。

工作时向负极供给燃料(氢),向正极供给氧化剂(氧气)。氢在负极上的催化剂的作用下分解成正离子H+和电子e-。氢离子进入电解液中,而电子则沿外部电路移向正极。用电的负载就接在外部电路中。在正极上,氧气同电解液中的氢离子吸收抵达正极上的电子形成水。这正是水的电解反应的逆过程。 氢氧燃料电池不需要将还原剂和氧化剂全部储藏在电池内的装置氢氧燃料电池的反应物都在电池外部它只是提供一个反应的容器 氢气和氧气都可以由电池外提供燃料电池是一种化学电池,它利用物质发生化学反应时释出的能量,直接将其变换为电能。从这一点看,它和其他化学电池如锌锰干电池、铅蓄电池等是类似的。但是,它工作时需要连续地向其供给反应物质——燃料和氧化剂,这又和其他普通化学电池不大一样。由于它是把燃料通过化学反应释出的能量变为电能输出,所以被称为燃料电池。 具体地说,燃料电池是利用水的电解的逆反应的"发电机"。它由正极、负极和夹在正负极中间的电解质板所组成。最初,电解质板是利用电解质渗入多孔的板而形成,2013年正发展为直接使用固体的电解质。 工作时向负极供给燃料(氢),向正极供给氧化剂(空气,起作用的成分为氧气)。氢在负极分解成正离子H+和电子e-。当氢离子进入电解液中,而电子就沿外部电路移向正极。用电的负载就接在外部电路中。在正极上,空气中的氧同电解液中的氢离子吸收抵达正极上的电子形成水。这正是水的电解反应的逆过程。此过程水可以得到重复利用,发电原理与可夜间使用的太阳能电池有异曲同工之妙。 燃料电池的电极材料一般为惰性电极,具有很强的催化活性,如铂电极、活性碳电极等。 利用这个原理,燃料电池便可在工作时源源不断地向外部输电,所以也可称它为一种"发电机"。 一般来讲,书写燃料电池的化学反应方程式,需要高度注意电解质的酸碱性。在正、负极上发生的电极反应不是孤立的,它往往与电解质溶液紧密联系。如氢—氧燃料电池有酸式和碱式两种: 若电解质溶液是碱、盐溶液则

性能测试工具LoadRunner实验报告

性能测试工具LoadRunner实验报告 一、概要介绍 1.1 软件性能介绍 1.1.1 软件性能的理解 性能是一种指标,表明软件系统或构件对于其及时性要求的符合程度;同时也是产品的特性,可以用时间来进行度量。 表现为:对用户操作的响应时间;系统可扩展性;并发能力;持续稳定运行等。1.1.2 软件性能的主要技术指标 响应时间:响应时间=呈现时间+系统响应时间 吞吐量:单位时间内系统处理的客户请求数量。(请求数/秒,页面数/秒,访问人数/秒) 并发用户数:业务并发用户数; [注意]系统用户数:系统的用户总数;同时在线用户人数:使用系统过程中同时在线人数达到的最高峰值。 1.2 LoadRunner介绍 LoadRunner是Mercury Interactive的一款性能测试工具,也是目前应用最为广泛的性能测试工具之一。该工具通过模拟上千万用户实施并发负载,实时性能监控的系统行为和性能方式来确认和查找问题。 1.2.1 LoadRunner工具组成 虚拟用户脚本生成器:捕获最终用户业务流程和创建自动性能测试脚本,即我们在以后说的产生测试脚本; 压力产生器:通过运行虚拟用户产生实际的负载; 用户代理:协调不同负载机上虚拟用户,产生步调一致的虚拟用户; 压力调度:根据用户对场景的设置,设置不同脚本的虚拟用户数量;

监视系统:监控主要的性能计数器; 压力结果分析工具:本身不能代替分析人员,但是可以辅助测试结果的分析。 1.2.2 LoadRunner工具原理 代理(Proxy)是客户端和服务器端之间的中介人,LoadRunner就是通过代理方式截获客户端和服务器之间交互的数据流。 1)虚拟用户脚本生成器通过代理方式接收客户端发送的数据包,记录并将其转发给服务器端;接收到从服务器端返回的数据流,记录并返回给客户端。 这样服务器端和客户端都以为在一个真实运行环境中,虚拟脚本生成器能通过这种方式截获数据流;虚拟用户脚本生成器在截获数据流后对其进行了协议层上的处理,最终用脚本函数将数据流交互过程体现为我们容易看懂的脚本语句。 2)压力生成器则是根据脚本内容,产生实际的负载,扮演产生负载的角色。 3)用户代理是运行在负载机上的进程,该进程与产生负载压力的进程或是线程协作,接受调度系统的命令,调度产生负载压力的进程或线程。 4)压力调度是根据用户的场景要求,设置各种不同脚本的虚拟用户数量,设置同步点等。 5)监控系统则可以对数据库、应用服务器、服务器的主要性能计数器进行监控。 6)压力结果分析工具是辅助测试结果分析。 二、LoadRunner测试过程 2.1 计划测试 定义性能测试要求,例如并发用户的数量、典型业务流程和所需响应时间等。 2.2 创建Vuser脚本 将最终用户活动捕获(录制、编写)到脚本中,并对脚本进行修改,调试等。协议类型:取决于服务器端和客户端之间的通信协议;

液-液换热器传热性能测试与计算方法( )

Q/SH1020 中国石化集团胜利石油管理局企业标准 Q/SH1020 ××××-×××× 液—液换热器传热性能测试 与计算方法 2005-××-××发布 2005-××-××实施中国石化集团胜利石油管理局发布

Q/SH1020××××-×××× 目次 前言 1 范围 (1) 2 规范性引用文件 (1) 3 总则 (1) 4 术语和定义 (1) 5 测试 (1) 6 换热器热负荷和传热性能指标计算 (2) 7 测试报告主要内容 (4) 附录A(资料性附录)测试计算数据综合表 (5) 附录B(资料性附录)测试数据汇总表 (6) 附录C(提示性附录)符号 (6) I

Q/SH1020××××-×××× 前言 本标准的附录A、附录B为资料性附录,附录C为提示性附录。 本标准由胜利石油管理局节能专业标准化委员会提出并归口。 本标准由中国石化集团胜利石油管理局批准。 本标准起草单位:中国石化胜利油田有限公司技术检测中心能源监测站。 本标准主要起草人:许涛、宋鑫、王强、王贵生、周长敬、李忠东、邓寿禄、冯国栋、郑召梅。 II

液-液换热器传热性能测试与计算方法 1 范围 本标准规定了液-液换热器传热性能的测试方法、技术要求、测试用仪器仪表、计算方法及测试报告主要内容。 本标准适用于液-液换热器(以下简称换热器)。 2 规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方,研究是否可使用这些文件的最新版本。 GB 151-1999 管壳式换热器 GB16409-1996 板式换热器 3 总则 3.1 换热器传热性能测试体系是由被测试换热器、冷热流体循环系统及测试仪表组成。 3.2 换热器型号表示方法符合GB 151-1999中3.10和GB16409-1996中3.5的规定。 3.3 换热器传热性能测试分级:一级测试为鉴定新投产换热器的测试,二级测试为换热器运行中的测试。 4 术语和定义 下列术语和定义适用于本标准。 4.1 液-液换热器 指水-水、水-油、油-油等以液体与液体之间进行热交换的换热器。 4.2 换热器一次侧 指热量的提供侧,即高温介质端。 4.3 换热器二次侧 指热量的接收侧,即低温介质端。 4.4 换热器传热性能指标 4.4.1 对数平均温差 指冷热流体平均温差的表示,表征换热器传热的动力。 4.4.2 传热效率 指实际传热量与最大理论传热量之比值。 4.4.3 传热面积 指从放热介质中吸收热量并传递给受热介质的表面积。 4.4.4 传热系数 指单位传热面积上,冷热流体的平均温差为1℃时,两流体通过换热器所传递的热量。 4.5 额定热负荷 指换热器使用设计的介质流体,在设计参数下运行,即在规定的介质流量、温差和一定的传热效率下连续运行时,单位时间的传热量。 4.6 运行热负荷 指在换热器连续运行工况下,单位时间的传热量。 4.7 热平衡相对误差 指一次侧热负荷与二次侧热负荷之差值与一次侧热负荷之比。 4.8 传热系数误差 指在额定热负荷工况下测试两次所得的传热系数,两值之差与其中较大的传热系数之比。 5 测试 5.1 测试技术要求 1

PC性能评测实验报告

计算机体系结构课程实验报告 PC性能测试实验报告 学号: 姓名:张俊阳 班级:计科1302 题目1:PC性能测试软件 请在网上搜索并下载一个PC机性能评测软件(比如:可在百度上输入“PC 性能benchmark”,进行搜索并下载,安装),并对你自己的电脑和机房电脑的性能进行测试。并加以比较。 实验过程及结果: 我的电脑:

机房电脑:

综上分析:分析pcbenchmark所得数据为电脑的current performance与其potential performance的比值,值大表明计算机目前运行良好,性能好,由测试结果数据可得比较出机房的电脑当前运行的性能更好。分析鲁大师性能测试结果:我的电脑得分148588机房电脑得分71298,通过分析我们可以得出CPU占总得分的比重最大,表明了其对计算机性能的影响是最大的,其次显卡性能和内存性能也很关键,另外机房的电脑显卡性能较弱,所以拉低了整体得分,我的电脑各项得分均超过机房电脑,可以得出我的电脑性能更好的结论。 题目2:toy benchmark的编写并测试 可用C语言编写一个程序(10-100行语句),该程序包括两个部分,一个部分主要执行整数操作,另一个部分主要执行浮点操作,两个部分执行的频率(频率整数,频率浮点)可调整。请在你的计算机或者在机房计算机上,以(,),(,),(,)的频率运行你编写的程序,并算出三种情况下的加权平均运行时间。 实验过程及结果: #include<> #include<> int main() {

int x, y, a; double b; clock_t start, end; printf("请输入整数运算与浮点数运算次数(单位亿次)\n"); scanf("%d%d", &x, &y); /*控制运行频率*/ start = clock(); for (int i = 0; i

换热器综合实验报告

实验四换热器综合实验报告 一、实验原理 换热器为冷热流体进行热量交换的设备。本次实验所用的均是间壁式换热器,热量通过 固体壁面由热流体传递给冷流体,包括:套管式换热器、板式换热器和管壳式换热器。针对上述三种换热器进行其性能的测试。其中,对套管式换热器、板式换热器和管壳式换热器可以进行顺流和逆流两种方式的性能测试。换热器性能实验的内容主要为测定换热器的总传热系数,对数传热温差和热平衡温度等,并就不同换热器,不同两种流动方式,不同工况的传热情况和性能进行比较和分析。 传热过程中传递的热量正比于冷、热流体间的温差及传热面积,即Q = KAΔT (1) 式中:A—传热面积,m2 (1)套管式换热器:0.45m2 (2)板式换热器:0.65m2 (3)管壳式换热器:1.05m2 电加热器:6kV ΔT—冷热流体间的平均温差,℃ K—换热器的传热系数,W/(m·℃) Q—冷热流体间单位时间交换的热量,W.冷热流体间的平均温差ΔT 常采用对数平均温差。对于工业上常用的顺流和逆流换热器,对数平均温差由下式计算 除了顺流和逆流按公式(2)计算平均温差以外,其他流动形式的对数平均温差,都可 以由假想的逆流工况对数平均温差乘上一个修正系数得到。修正系数的值可以由各种传热学书上或换热器手册上查得。 换热器实验的主要任务是测定传热系数K。实验时,由恒温热水箱中出来的热水经水泵

和转子流量计后进入实验换热器内管。在热水进出换热器处分别用热电阻测量水温。从换热 器内管出来的已被冷却的热水仍然回到热水箱中,经再加热供循环使用。冷却水由冷水箱经 水泵、转子流量计后进入换热器套管,在套管中被加热后的冷却水排向外界,一般不再循环 使用。套管外包有保温层,以尽量减少向外界的散热损失。冷却水进出口温度用热电阻测量。 通常希望冷热侧热平衡误差小于3%。 实验中待各项温度达到稳定工况时,测出冷、热流体进出口的温度和冷、热流体的流量, 就可以由下式计算通过换热面的总传热量 根据计算得到的传热量、对数平均温差及已知的换热面积,便可由公式(1)计算出传热系数K 。 换热器类型 方式 热进温度 热出温度 冷进温度 冷出温度 热流体流量 冷流体流量 板式 顺流 57.1 43.5 22.8 31.8 78 72 逆流 56.5 35.9 23.1 33.1 76 72 套管式 顺流 57.6 40.7 22.5 31.6 72 78 逆流 56.8 35.2 22.1 33 72 64 管壳式 顺流 57.1 40.5 22.5 31.3 76 72 逆流 57.2 41.1 22.6 32 74 65 计算传热系数K 和换热器效率 TA Q K ?=

热交换器能效测试与评价规则

TSG特种设备安全技术规范 TSG 20XX 热交换器能效测试与评价规则 Energy Efficiency Test and Evaluation Regulation for Heat Exchanger (征求意见稿) 中华人民共和国国家质量监督检验检疫总局颁布 20XX年XX月XX日

前言 2016年7月,国家质量技术监督检验检疫总局(以下简称国家质检总局)特种设备安全监察局(以下简称特种设备局)委托中国特种设备检测研究院(以下简称中国特检院)组织起草《热交换器能效测试与评价规则》(以下简称规则)。 2016年7月,中国特检院组织成立了起草组,在西安召开第一次工作会议,讨论了规则的制定原则、重点内容以及主要问题、结构(章节)框架,并且就起草工作进行了具体分工,制定了起草工作时间表。2016年9月,起草组在上海召开第二次工作会议,对规则内容进行了调整,并形成了规则征求意见稿。2016年XX月,特种设备局对征求意见稿进行审查后,以质监特函[2016]XX 号文对外征求基层部门、有关单位和专家及公民的意见。201X年XX月,根据征求到的意见起草组进行修改形成送审稿,并提交给国家质检总局特种设备安全与节能技术委员会审议,起草组根据审议意见进行修改后形成报批稿,201X年XX月XX日,由国家质检总局批准颁布。 本规则主要起草单位和人员如下: 甘肃蓝科石化高新装备股份有限公司张延丰周文学 西安交通大学白博峰 国家质量监督检验检疫总局特种设备安全监察局冷浩 中国特种设备检测研究院管坚刘雪敏 中国特种设备安全与节能促进会王为国 上海市特种设备监督检验技术研究院汤晓英 甘肃省质量技术监督局特种设备安全监察局严勇 中国石化工程建设有限公司张迎恺 中国石油化工股份有限公司上海高桥分公司蔡隆展 西安市热力总公司唐涤 上海蓝海科创检测有限公司王纪兵 上海板换机械设备有限公司张永德

管壳式换热器设计计算用matlab源代码

%物性参数 % 有机液体取69度 p1=997; cp1=2220; mu1=0.0006; num1=0.16; % 水取30度 p2=995.7; mu2=0.0008; cp2=4174; num2=0.62; %操作参数 % 有机物 qm1=18;%-----------有机物流量-------------- dt1=78; dt2=60; % 水 t1=23; t2=37;%----------自选----------- %系标准选择 dd=0.4;%内径 ntc=15;%中心排管数 dn=2;%管程数 n=164;%管数 dd0=0.002;%管粗 d0=0.019;%管外径 l=0.025;%管心距 dl=3;%换热管长度 s=0.0145;%管程流通面积 da=28.4;%换热面积 fie=0.98;%温差修正系数----------根据R和P查表------------ B=0.4;%挡板间距-----------------自选-------------- %预选计算 dq=qm1*cp1*(dt1-dt2); dtm=((dt1-t2)-(dt2-t1))/(log((dt1-t2)/(dt2-t1))); R=(dt1-dt2)/(t2-t1); P=(t2-t1)/(dt1-t1); %管程流速 qm2=dq/cp2/(t2-t1); ui=qm2/(s*p2);

%管程给热系数计算 rei=(d0-2*dd0)*ui*p2/mu2; pri=cp2*mu2/num2; ai=0.023*(num2/(d0-2*dd0))*rei^0.8*pri^0.4; %管壳给热系数计算 %采用正三角形排列 Apie=B*dd*(1-d0/l);%最大截流面积 u0=qm1/p1/Apie; de=4*(sqrt(3)/2*l^2-pi/4*d0^2)/(pi*d0);%当量直径 re0=de*u0*p1/mu1; pr0=cp1*mu1/num1; if re0>=2000 a0=0.36*re0^0.55*pr0^(1/3)*0.95*num1/de; else a0=0.5*re0^0.507*pr0^(1/3)*0.95*num1/de; end %K计算 K=1/(1/ai*d0/(d0-2*dd0)+1/a0+2.6*10^(-5)+3.4*10^-5+dd0/45.4); %A Aj=dq/(K*dtm*fie); disp('K=') disp(K); disp('A/A计='); disp(da/Aj); %计算管程压降 ed=0.00001/(d0-2*dd0); num=0.008; err=100; for i=0:5000 err=1/sqrt(num)-1.74+2*log(2*ed+18.7/(rei*sqrt(num)))/log(10); berr=err/(1/sqrt(num)); if berr<0.01 break; else num=num+num*0.01;

换热器性能试验大纲

换热能力验证 1、试验目的 验证换热器的换热性能流体阻力特性。 2、实验依据 JB/T 10379-2002 换热器热工性能和流体阻力特性通用测定方法。 3、试验单位资质 ISO17025 4、实验条件 4.1试验地点 4.2 试验对象 4.3 实验设备 序号名称数 量型号测试厂家鉴定单位合格证 到期日期 1 涡轮流量传 感器 1 LWGY-40 2 压力传感器 1 DW115DP0-500Kpa 3 水银温度计 2 50-100 4 温度传感器 6 PT100 5 风速仪 1 VT100 6 压力传感器 1 475-0 MARK III 4.4状态要求 乙二醇溶液额定流量15 l/min 冷风额定流量0,475 m3/s 乙二醇溶液配比48/52%(体积比)

4.5环境要求 测试环境温度为20 .....+45 ℃左右 5、试验步骤 5.1 换热量测试—变冷介质流量(在100%通风面积和90%通风面积两种条件下分别测试) 5.1.1 将换热器按照JB/T 10379-2002 图2安装到测试台上。 5.1.2 冷介质进口温度为环境温度a℃ 5.1.3 热介质进口温度为a+20℃。 5.1.4 调节热介质在15 l/min 5.1.5 将冷却介质(冷却风)分别调节到0.5m3/s,0.9m3/s,1.3m3/s,1.76m3/s,2.2m3/s, 2.64m3/s, 5.1.6 按照JB/T10379-2002 记录各项测试参数值。 5.1.7 计算换热量 冷介质热流量 热介质热流量 平均换热量 热平衡误差 5.2 换热量测试-变热介质流量

5.2.1 将换热器按照JB/T10379-2002 要求安装到测试台上。 5.2.2 冷介质进口温度为环境温度a ℃ 5.2.3 热介质进口温度为a+20℃ 5.2.4 按照下表调节冷热测流量 5.2.5 按照JB/T10379-2002 记录各项测试参数值 5.2.6 计算换热量 冷介质热流量 热介质热流量 平均换热量 热平衡相对误差 5.3 风侧阻力曲线 5.3.1 换热面积100% 5.3.1.1 将换热器按照JB/T10379-2002 图2要求安装到测试台上 5.3.1.2 冷风测试温度:环境温度20-45℃ 5.3.1.3 控制热介质(乙二醇溶液)在15 l/min 5.3.1.4 控制热介质(乙二醇溶液进口温度为75℃,进出口平均温度72℃。 5.3.1.5 冷风变化范围0.15m3/s-0.6 m3/s(0.15,0.25,35,0.475,0.6) 5.3.1.6 记录不同介质流量下对应的压降 5.3.2 换热面积90% 5.3.2.1 将换热器按照JB/T10379-2002 图2要求安装到测试台上 5.3.2.2 冷风测试温度:环境温度20-45℃ 5.3.2.3 控制热介质(乙二醇溶液)在15 l/min 5.3.2.4 控制热介质(乙二醇溶液进口温度为75℃,进出口平均温度72℃。 5.3.2.5 冷风变化范围0.5m3/s-2.64 m3/s(0.5,0.9,01.3,1.76,2.2,2.64) 5.3.2.6 记录不同介质流量下对应的压降 5.4 热侧(乙二醇溶液)阻力曲线 5.4.1将换热器按照JB/T10379-2002 图2要求安装到测试台上

流量计性能测定实验报告doc

流量计性能测定实验报告 篇一:孔板流量计性能测定实验数据记录及处理篇二:实验3 流量计性能测定实验 实验3 流量计性能测定实验 一、实验目的 ⒈了解几种常用流量计的构造、工作原理和主要特点。 ⒉掌握流量计的标定方法(例如标准流量计法)。 ⒊了解节流式流量计流量系数C随雷诺数Re的变化规律,流量系数C的确定方法。 ⒋学习合理选择坐标系的方法。 二、实验内容 ⒈通过实验室实物和图像,了解孔板、1/4园喷嘴、文丘里及涡轮流量计的构造及工作原理。 ⒉测定节流式流量计(孔板或1/4园喷嘴或文丘里)的流量标定曲线。 ⒊测定节流式流量计的雷诺数Re和流量系数C的关系。 三、实验原理 流体通过节流式流量计时在流量计上、下游两取压口之间产生压强差,它与流量的关系为: 式中: 被测流体(水)的体积流量,m3/s; 流量系数,无因次;

流量计节流孔截面积,m2; 流量计上、下游两取压口之间的压强差,Pa ; 被测流体(水)的密度,kg/m3 。 用涡轮流量计和转子流量计作为标准流量计来测量流量VS。每一 个流量在压差计上都有一对应的读数,将压差计读数△P和流量Vs绘制成一条曲线,即流量标定曲线。同时用上式整理数据可进一步得到C—Re关系曲线。 四、实验装置 该实验与流体阻力测定实验、离心泵性能测定实验共用图1所示的实验装置流程图。 ⒈本实验共有六套装置,流程为:A→B(C→D)→E→F→G→I 。 ⒉以精度0.5级的涡轮流量计作为标准流量计,测取被测流量计流量(小于2m3/h流量时,用转子流量计测取)。 ⒊压差测量:用第一路差压变送器直接读取。 图1 流动过程综合实验流程图 ⑴—离心泵;⑵—大流量调节阀;⑶—小流量调节阀; ⑷—被标定流量计;⑸—转子流量计;⑹—倒U管;⑺⑻⑽—数显仪表;⑼—涡轮流量计;⑾—真空表;⑿—流量计平衡阀;⒁—光滑管平衡阀;⒃—粗糙管平衡阀;⒀—回流阀;⒂—压力表;⒄—水箱;⒅—排水阀;⒆—闸阀;⒇—

换热器计算程序+++

换热器计算程序 2.1设计原始数据 表2—1 名称设计压力设计温度介质流量容器类别设计规范单位Mpa ℃/ Kg/h / / 壳侧7.22 420/295 蒸汽、水III GB150 管侧28 310/330 水60000 GB150 2.2管壳式换热器传热设计基本步骤 (1)了解换热流体的物理化学性质和腐蚀性能 (2)由热平衡计算的传热量的大小,并确定第二种换热流体的用量。 (3)确定流体进入的空间 (4)计算流体的定性温度,确定流体的物性数据 (5)计算有效平均温度差,一般先按逆流计算,然后再校核 (6)选取管径和管内流速 (7)计算传热系数,包括管程和壳程的对流传热系数,由于壳程对流传热系数与壳径、管束等结构有关,因此,一般先假定一个壳程传热系数,以计算K,然后再校核 (8)初估传热面积,考虑安全因素和初估性质,常采用实际传热面积为计算传热面积值的1.15~1.25倍 l (9)选取管长 N (10)计算管数 T (11)校核管内流速,确定管程数 D和壳程挡板形式及数量等 (12)画出排管图,确定壳径 i (13)校核壳程对流传热系数 (14)校核平均温度差 (15)校核传热面积 (16)计算流体流动阻力。若阻力超过允许值,则需调整设计。

2.3 确定物性数据 2.3.1定性温度 由《饱和水蒸气表》可知,蒸汽和水在p=7.22MPa、t>295℃情况下为蒸汽,所以在不考虑开工温度、压力不稳定的情况下,壳程物料应为蒸汽,故壳程不存在相变。 对于壳程不存在相变,其定性温度可取流体进出口温度的平均值。其壳程混合气体的平均温度为: t=420295 357.5 2 + =℃(2-1) 管程流体的定性温度: T=310330 320 2 + =℃ 根据定性温度,分别查取壳程和管程流体的有关物性数据。 2.3.2 物性参数 管程水在320℃下的有关物性数据如下:【参考物性数据无机表1.10.1】 表2—2 密度ρ i- =709.7 ㎏/m3 定压比热容c pi =5.495 kJ/㎏.K 热导率λ i =0.5507 W/m.℃ 粘度μ i =85.49μPa.s 普朗特数Pr=0.853 壳程蒸气在357.5下的物性数据[1]:【锅炉手册饱和水蒸气表】 表2—3

换热器性能综合测试实验教学内容

换热器性能综合测试 实验

第一章实验装置说明 第一节系统概述 一、装置概述 目前我国传热元件的结构形式繁多,其换热性能差异较大,在合理选用和设计换热器的过程中,传热系数是度量其性能好坏的重要指标。本装置通过以应用较为广泛的间壁式换热器(共有套管式换热器、螺旋板式换热器、列管式换热器和钎焊板式换热器四种)为实验对象,对其传热性能进行测试。。 二、系统特点 1.采用四种不同结构的换热器(分别为套管式换热器、螺旋板式换热器、列管式换热器和钎焊板式换热器)作为实验对象,对其进行性能测量。 2.实验装置可测定换热器总的传热系数、对数传热温差和热平衡误差等,并能根据不同的换热器对传热情况和性能进行比较分析。 3.实验装置采用工业现场的真实换热器部件,与实际应用接轨。 三、技术性能 1.输入电源:三相五线制 AC380V±10% 50Hz 2.工作环境:温度-10℃~+40℃;相对湿度< 85%(25℃);海拔<4000m 3.装置容量:<4kVA 4.套管式换热器:换热面积0.14m2 5.螺旋板式换换热器:换热面积1m2 6.列管式换热器:换热面积0.5m2 7.钎焊板式换热器:0.144m2 8.电加热器总功率:<3.5kW 9.安全保护:设有电流型漏电保护、接地保护,安全符合国家标准。 四、系统配置 1.被控对象系统:主要由不锈钢钢架、热水箱、热水泵、冷水箱、冷水泵、涡轮流量计、PT100温度传感器、板式 __________________________________________________

换热器、列管式换热器、套管式换热器、螺旋板式换热器、冷凝器、电加热棒、电磁阀、电动球阀、黄铜闸阀以及管道管件等。 2.控制系统:主要由电源控制箱、漏电保护器、温度控制仪、流量显示仪、调压模块、开关电源以及开关指示灯等。 第二节换热器的认识 一、换热器的形式 能使热流体向冷流体传递热量,满足工艺要求的装置称为换热器。换热器的形式有很多,用途也很广泛。诸如为高炉炼铁提供热风的热风炉,就是一座大型蓄热式陶土换热器;热电厂锅炉上的高温过热器是以辐射为主的高温换热器,而省煤器是以对流为主的交叉流换热器;冶金工厂安装在高温烟道中的热回收装置常用片状管式、波纹管式、插件式等型式换热器;制冷系统上的冷凝器、蒸发器属于有相变流体的换热器,这类换热器无所谓顺流或逆流;内燃机的冷却水箱属于交叉流间壁式换热器的一种。 二、几种主要的换热器 1.列管式换热器(图1) 列管式换热器是目前化工及酒精生产上应用最广的一种换热器。它主要由壳体、管板、换热管、封头、折流挡板等组成。列管式换热器可以采用普通碳钢、紫铜或不锈钢进行制作。在进行换热时,一种流体由封头的连结管处进入,在管道中流动,从封头另一端的出口管流出,这称之管程;另-种流体由壳体的接管进入,从壳体上的另一接管处流出,这称为壳程。 列管式换热器有多种结构形式,常见的有固定管板式换热器、浮头式换热器、填料函式换热器及U型管式换热器。 2.螺旋板式换热器(图2) __________________________________________________

热交换器能效测试与评价规则

热交换器能效测试与评价规则

TSG特种设备安全技术规范 TSG 20XX 热交换器能效测试与评价规则Energy Efficiency Test and Evaluation Regulation for Heat Exchanger (征求意见稿) 中华人民共和国国家质量监督检验检疫总局颁布 20XX年XX月XX日

前言 2016年7月,国家质量技术监督检验检疫总局(以下简称国家质检总局)特种设备安全监察局(以下简称特种设备局)委托中国特种设备检测研究院(以下简称中国特检院)组织起草《热交换器能效测试与评价规则》(以下简称规则)。 2016年7月,中国特检院组织成立了起草组,在西安召开第一次工作会议,讨论了规则的制定原则、重点内容以及主要问题、结构(章节)框架,并且就起草工作进行了具体分工,制定了起草工作时间表。2016年9月,起草组在上海召开第二次工作会议,对规则内容进行了调整,并形成了规则征求意见稿。2016年XX月,特种设备局对征求意见稿进行审查后,以质监特函[2016]XX 号文对外征求基层部门、有关单位和专家及公民的意见。201X年XX月,根据征求到的意见起草组进行修改形成送审稿,并提交给国家质检总局特种设备安全与节能技术委员会审议,起草组根据审议意见进行修改后形成报批稿,201X年XX月XX日,由国家质检总局批准颁布。 本规则主要起草单位和人员如下: 甘肃蓝科石化高新装备股份有限公司张延丰周文学 西安交通大学白博峰 国家质量监督检验检疫总局特种设备安全监察局冷浩 中国特种设备检测研究院管坚刘雪敏 中国特种设备安全与节能促进会王为国 上海市特种设备监督检验技术研究院汤晓英 甘肃省质量技术监督局特种设备安全监察局严勇 中国石化工程建设有限公司张迎恺 中国石油化工股份有限公司上海高桥分公司蔡隆展 西安市热力总公司唐涤 上海蓝海科创检测有限公司王纪兵 上海板换机械设备有限公司张永德

板式换热器计算程序说明

上海化工机械二厂 板式换热器计算程序V6.0使用说明 一、概述 1、板式换热器是一种高效紧凑型热交换设备。它具有传热效率高,阻力损失小,结构紧凑,拆装方便,操作灵活等优点。目前广泛应用于冶金、机械、电力、石油、化工、制药、纺织、造纸、食品、城镇小区集中供热等各个行业和领域。 2、在以往工程设计中,板式换热器设计计算均采用手算,方法有以下两种: ⑴简易算法:假定理论传热系数,求出换热面积,选定厂家及换热器型号,计算板间流速,通过厂家样本提供的传热特性曲线及流阻特性曲线,查出实际传热系数及流阻,经过反复校核得出满足工艺条件的结果,最终确定换热器型号及换热面积大小。这种算法的优点是计算简单,步骤少,时间短;缺点是结果不准确。造成结果不准确的原因主要是样本所提供的传热特性曲线及流阻特性曲线是一定工况条件下的曲线,而设计工况可能与之不符。 ⑵标准算法:选定厂家,根据角孔流速确定换热器型号,从手册查出在设计工况下冷、热介质的各种物理参数,根据厂家样本提供的传热经验公式及流阻经验公式进行热工计算,求出传热系数及流阻,经过反复校核得出满足工艺条件的结果,最终确定换热器型号及换热面积大小。这种算法的优点是计算结果准确;缺点是计算复杂,步骤多,时间长。 3、利用计算机进行板式换热器设计计算,充分发挥了计算机运算速度快的特长,一个计算在微机上几秒钟内就能完成,且结果的准确性是手算难以达到的。另一个主要特点是程序中存贮了计算所需的不同水温时水的各种物理参数及板式换热器定型设备的所有参数,设计人员在计算机上进行计算时只需输入工艺条件(如水量、水温、流阻等)就能马上得出计算结果,这为设计人员提供了极大的方便。计算人员还可以输入不同的工艺条件(如水量、水温相同,流阻不同等)得出不同的计算结果,或更换换热器型号以得出不同的计算结果,通过对结果的比较、优化,最终选定既经济合理又性能可靠的板式换热器。 二、编制依据 《板式换热器的设计计算》张治川著; 《热交换器设计手册》〔日〕尾花英朗著; 《换热器》邱树林、钱滨江著; 《换热设备的污垢与对策》杨善让、徐志明著; 《换热器设计手册》钱颂文主编; 三、应用范围 程序仅用于计算上海化工机械二厂生产的板式换热器。 四、使用方法 1、打开显示器、打印机、计算机主机电源开关,操作系统应为WIN98或更高版本,文字处理采用OFFICE97或更高版本,打印纸选择A4 2、将带有板式换热器计算程序的安装盘插入光盘驱动器,执行安装命令SETUP.EXE,按屏幕提示进行。若复制文件发生访问冲突时,选择“忽略”,直至安装完毕。 3、单击“开始”按钮,执行“程序”菜单中的“板式换热器计算程序”,开始运算。整个运算过程全部采用人机对话,操作者只需按照屏幕的提示进行操作即可得到满意的计算结果。

软件测试实验报告LoadRunner的使用

南昌大学软件学院 实验报告 实验名称 LoadRunner的使用 实验地点 实验日期 指导教师 学生班级 学生姓名 学生学号 提交日期 LoadRunner简介: LoadRunner 是一种适用于各种体系架构的自动负载测试工具,它能预测系统行为并优化系统性能。LoadRunner 的测试对象是整个企业的系统,它通过模拟实际用户的操作行为和实行实时性能监测,来帮助您更快的查找和发现问题。此外,LoadRunner 能支持广范的协议和技术,为您的特殊环境提供特殊的解决方案。LoadRunner是目前应用最为广泛的性能测试工具之一。 一、实验目的

1. 熟练LoadRunner的工具组成和工具原理。 2. 熟练使用LoadRunner进行Web系统测试和压力负载测试。 3. 掌握LoadRunner测试流程。 二、实验设备 PC机:清华同方电脑 操作系统:windows 7 实用工具:WPS Office,LoadRunner8.0工具,IE9 三、实验内容 (1)、熟悉LoadRunner的工具组成和工具原理 1.LoadRunner工具组成 虚拟用户脚本生成器:捕获最终用户业务流程和创建自动性能测试脚本,即我们在以后说的产生测试脚本; 压力产生器:通过运行虚拟用户产生实际的负载; 用户代理:协调不同负载机上虚拟用户,产生步调一致的虚拟用户;压力调度:根据用户对场景的设置,设置不同脚本的虚拟用户数量;监视系统:监控主要的性能计数器; 压力结果分析工具:本身不能代替分析人员,但是可以辅助测试结果的分析。 2.LoadRunner工具原理 代理(Proxy)是客户端和服务器端之间的中介人,LoadRunner 就是通过代理方式截获客户端和服务器之间交互的数据流。 ①虚拟用户脚本生成器通过代理方式接收客户端发送的数据包,

列管式换热器性能测试

列管式换热器性能测试 一、实验目的 1、熟悉列管式换热器的结构。 2、了解列管式换热器的工作原理。 3、掌握列管式换热器传热性能的测量计算方法。 4、测定列管式换热器的总传热系数,对数平均传热温差及热平衡误差。 5、绘制列管式换热器传热性能曲线。 6、掌握列管式换热器顺流/逆流对传热性能的影响。 二、实验原理 1、列管式换热器的结构及换热原理 列管式换热器是目前化工及酒精生产上应用最广的一种换热器。它主要由壳体、管板、换热管、封头、折流挡板等组成。所需材质,可分别采用普通碳钢、紫铜、或不锈钢制作。在进行换热时,一种流体由封头的连结管处进入,在管流动,从封头另一端的出口管流出,这称之管程;另-种流体由壳体的接管进入,从壳体上的另一接管处流出,这称为壳程。 列管式换热器种类很多,目前广泛使用的按其温差补偿结构来分,主要有以下几种: ⑴固定管板式换热器: 这类换热器的结构比较简单、紧凑、造价便宜,但管外不能机械清洗。此种换热器管束连接在管板上,管板分别焊在外壳两端,并在其上连接有顶盖,顶盖和壳体装有流体进出口接管。通常在管外装置一系列垂直于管束的挡板。同时管子和管板与外壳的连接都是刚性的,而管内管外是两种不同温度的流体。因此,当管壁与壳壁温差较大时,由于两者的热膨胀不同,产生了很大的温差应力,以至管子扭弯或使管子从管板上松脱,甚至毁坏换热器。 为了克服温差应力必须有温差补偿装置,一般在管壁与壳壁温度相差50℃以上时,为安全起见,换热器应有温差补偿装置。但补偿装置(膨胀节)只能用在壳壁与管壁温差低于60~70℃和壳程流体压强不高的情况。一般壳程压强超过0.6Mpa时由于补偿圈过厚,难以伸缩,失去温差补偿的作用,就应考虑其他结构。

热交换器性能测试实验

热交换器性能测试实验 一、实验装置 图一、实验装置示意图 1.循环水泵 2.转子流量计 3.过冷器 4.表冷器 5.实验台支架 6.吸入段 7. 整流栅 8.加热前空气温度 9. 表冷器前静压10.U形差压计11. 表冷器后静压12.加热后空气温度13.流量测试段14笛形管15. 笛形管校正安装孔16.风量调节手轮17.引风机18.风机支架19.倾斜管压力计20.控制测试仪表盘21.水箱 2.水箱电加热器总功率为9KW,分六档控制,六档功率分别为1.5KW。 3.空气温度、热水温度用铜—康铜热电偶测量。 4.空气流量用笛形管测量。 5.空气通过换热器的流通阻力,在换热器前后的风管上设静压测点;热水通过换热器的流通阻力,在换热器进出口处设测阻力测点测量。 6.热水流量用转子流量计测量。 二、设备准备 1.向电热水箱内注水至水箱净高5/6处。 2.工况调节 1)全开水箱电加热器开关,待水温接近试验温度时,打开水泵开关,利用水泵出口阀门调节热水流量。

2)在风机出口阀门全关的情况下开启风机,然后开启风阀,并利用该阀门调节空气流量。 3)视换热器情况,调节水箱电加热器功率(改变前三组加热器投入组别,并利用调压器改变第四组加热器工作电压),使热水温度稳定于试验工况附近。 4)调节热水出口再冷却器的冷水流量,使出口热水再冷却至不气化即可。 三、试验方法和数据处理 1.实验方法 1)拟定试验热水温度(可取T 1=60~80℃) 2)在固定热水流速,改变空气流速的工况下,进行一组试验(5个以上工况)。 3)在固定空气流速,改变热水流速的工况下,进行一组试验(5个以上工况)。 4)每一工况的试验,均需测定以下参数:空气进口温度(或室温);空气出口温度及空气流量;热水进出口温度及热水流量;空气和热水通过换热器的阻力等。 2.数据处理 1)空气获热量:Q 1=C pk ·G k (t 2-t 1), [W] 2)热水放热量:Q 2=C ps ·G s (T 1-T 2), [W] 3)平均换热量:2 2 1Q Q Q += , [W] 4)热平衡误差:% 1002 2 121?+-= ? Q Q Q Q 5)传热系数:t F Q K ??= · [W/m 2·℃] 式中:C pk ,C ps 分别为空气和水的定压比热。[J/kg ·℃] G k ,G s 分别为空气和水的质量流量,[Kg/s] G k =F k k p ρξ)(2?? G s ——进口温度下的水流量 Kg/s F k ——测速风管面积,[m 2] ξ——笛形管压力修正系数,=1; p ?——笛形管压差读数,[p a ] ρk ——空气密度,[Kg/m 3] t 1,t 2——空气的进出口温度,[℃] T 1,T 2——热水的进出口温度, [℃] F ——换热器散热面积2.775[m 2] t ?——传热温差,[℃]

相关主题
文本预览
相关文档 最新文档