当前位置:文档之家› 乳液型丙烯酸酯压敏胶的研究

乳液型丙烯酸酯压敏胶的研究

乳液型丙烯酸酯压敏胶的研究
乳液型丙烯酸酯压敏胶的研究

压敏胶入门知识

压敏胶xx知识 压敏胶 拼音: yaminjiao 英文名称: pressuresensitiveadhesive 说明: 压敏胶粘剂的简称。是一类具有对压力有敏感性的胶粘剂。主要用于制备压敏胶带。压敏胶的粘附力(胶粘带与被粘表面加压粘贴后所表现的剥离力)必须大于粘着力(即所谓用手指轻轻接触胶粘带时显示出来的手感粘力)。按其主要成分可分为橡胶型和树脂型两类。除主要成分外,还要加入其他辅助成分,如增粘树脂、增塑剂、填料、粘度调整剂、硫化剂、防老剂、溶剂等配合而成。 压敏胶带 拼音: yaminjiaodai 英文名称: pressure sensitive adhesive tape 说明: 一种特殊类型的胶粘剂。将胶粘剂涂于带状基材上制成。使用时,轻轻加压使胶带与被粘物表面粘结。 由压敏胶、基材、底胶、背面处理剂等构成(见图)。压敏胶是压敏胶带最重要的组成部分。其作用是使胶带具有对压力敏感粘附特性。用作基材的主

要地织物、塑料薄膜、纸类等。底胶是增加压敏胶与基材的粘结强度。广泛用于包装、电绝缘、医疗卫生、粘贴标签和作标记等。 聚丙烯酸酯压敏胶 丙烯酸酯型压敏胶的基体,是具有不饱和双键的单体在催化剂作用下进行自由基聚合反应制得的丙烯酸酯树脂。聚合时所采用的单体可分为三类: 1、粘性单体它是碳原子数为4-12的丙烯酸烷基酯,具有粘性作用,聚合物的玻璃化温度为-20——70°C,常用的有丙烯酸异辛酯和丙烯酸丁酯等。 2、内聚单体这是一些玻璃化温度较高的单体,它不仅能提高胶液的内聚力,而且对耐水性、胶接强度、透明性等也明显改善。 3、改性单体主要是一些带有反应性官能团的含有双急需的单体,如含羧基、羟基、酰胺基等的丙烯酸衍生物。它能与其它单体起交联作用,促进聚合反应,加快聚合速度,提高胶液的稳定性。 表十七列举了上述三种单体的种类及玻璃化温度 表十七丙烯酸酯型压敏胶的单体及玻璃化温度 单体类别单体各称玻璃化温度(°C) 粘性单体丙烯酸乙酯-22 丙烯酸丁酯-55 丙烯酸异辛酯-70 内聚单体醋酸乙烯酯22 丙烯腈97 丙烯酰胺165 苯乙烯80 甲基丙烯酸甲酯105

丙烯酸酯的乳液聚合

丙烯酸酯的乳液聚合 1 前言 丙烯酸酯类聚合物是工业生产中应用比较广泛的原料,可以用于生产涂料、粘合剂、塑料等产品,具有良好的性能,价格便宜。丙烯酸酯类单体多是通过乳液聚合的方式进行聚合反应。乳液聚合是高分子合成过程中常用的一种合成方法,因为它以水作溶剂,在乳化剂的作用下并借助于机械搅拌,使单体在水中分散成乳状液,由引发剂引发而进行的聚合反应。其特点是聚合热易扩散,聚合反应温度易控制; 聚合体系即使在反应后期粘度也很低,因而也适于制备高粘性的聚合物; 能获得高分子量的聚合产物; 可直接以乳液形式使用。本实验利用丙烯酸酯乳液聚合来探究其性质以及应用。 2 实验目的 1)掌握丙烯酸酯乳液合成的基本方法和工艺路线; 2)理解乳液聚合中各组成成分的作用和乳液聚合的机理; 3)了解高聚物不同玻璃化转变温度对产品性能的影响; 3 实验原理 在乳液聚合过程中,乳液的稳定性会发生变化。乳化剂的种类、用量与用法、pH值、引发剂的类型与加入方式、单体的种类与配比、加料方式、聚合工艺、搅拌形状与搅拌速度等都会影响到聚合物乳液的稳定性及最终乳液的性能。功能性单体如硅烷偶联剂、丙烯酸、丙烯酰胺、丙烯酸羟乙酯等作为交联单体参与共聚,在一定程度上可提高乳液的稳定性,但因其具有极强的亲水性,聚合过程中若在水相发生均聚形成水溶性大分子,会产生絮凝作用,极易破乳。因此选择合适的乳化体系和聚合工艺对乳液聚合过程的稳定性具有极重要的意义。 聚合物乳液承受外界因素对其破坏的能力称为聚合物乳液的稳定性。在乳液聚合过程中局部胶体稳定性的丧失会引起乳胶粒的聚结形成宏观或微观的凝聚物,即凝胶现象。凝胶多为大小不等、形态不一的块状聚合物,有的发软、发粘,有的发硬、发脆、多孔。在搅拌作用下凝胶分散在乳液中,可通过过滤法或沉降法除去,但有时也会形成大量肉眼看不到的、普通方法很难分离的微观凝胶,使乳液蓝光减弱颜色发白,外观粗糙。严重时甚至整个体系完全凝聚,造成抱轴、粘釜和挂胶现象。 乳胶粒子的表面性质与吸附或结合在其上的起稳定作用的物质有关,酸性、碱性离子末端以及吸附在乳胶粒表面上的乳化剂在一定的pH值下都是以离子形式存在的,使乳胶粒子表面带上一层电荷,从而在乳胶粒子之间就存在静电斥力,乳胶粒难于互相接近而不发生聚结。当乳胶粒表面吸附有非离子型乳化剂或高分子保护胶体时,其稳定性则与空间位阻有关。 因此乳化剂的选择是决定乳液聚合体系稳定性的关键因素之一。乳化剂虽不直接参与反应,但乳化剂的种类及用量将直接影响到引发速率、链增长速率以及聚合物的分子量和分子量分布。此外乳化剂的类型、用量和加入方式对乳胶粒的粒径和粒径分布也有着决定性的影响。如果所选用的乳化剂不适合本乳液聚合体系,则不论怎样改变乳化剂的浓度和调节聚合工艺参数,乳液聚合仍不能平稳进行或是所得到的乳液产品缺乏实用价值。离子型乳化剂的特点是乳化效率高,可有效地降低表面张力,胶束和乳胶粒子尺寸小,机械稳定性好,但由于其离子特性对电解质比较敏感;非离子型乳化剂对电解质有较好的稳定性,但机械稳定性不好,对搅拌速度比较敏感。离子型乳化剂主要靠静电斥力使乳液稳定,而非离子型乳化剂主要靠水化,两种乳化剂复合使用时,两类乳化剂分子交替吸附在乳胶粒子表面上,既使乳

丙烯酸酯乳液胶黏剂配方组成-生产工艺及应用

丙烯酸酯乳液胶黏剂配方组成,生产工艺及应用导读:本文详细介绍了丙烯酸酯乳液胶黏剂的分类,组成,配方等等,需要注意的是,本文中所列出配方表数据经过修改,如需要更详细的内容,请与我们的技术工程师联系。 1. 背景 丙烯酸乳液型胶粘剂是我国20世纪80年代以来发展最快的一种聚合物乳液胶粘剂,它一般是由丙烯酸酯类和甲基丙烯酸酯类共聚或加入醋酸乙烯酯等其它单体共聚而成。该胶粘剂耐候性、耐水性、耐老化性能特别好,并目具有优良的抗氧化性和很大的断裂仲长率,广泛用于包装、涂料、建筑、纺织以及皮革等行业。 随着人们对环境保护的愈发重视,环境友好型产品越来越受到普遍的关注,乳液型胶粘剂因具有无毒无害、无环境污染、不易燃易爆、生产成本低、使用方便等优点而逐渐成为未来胶粘剂的发展趋势。 禾川化学是一家专业从事精细化学品以及高分子分析、研发的公司,具有丰富的分析研发经验,经过多年的技术积累,可以运用尖端的科学仪器、完善的标准图谱库、强大原材料库,彻底解决众多化工企业生产研发过程中遇到的难题,利用其八大服务优势,最终实现企业产品性能改进及新产品研发。 样品分析检测流程:样品确认—物理表征前处理—大型仪器分析—工程师解谱—分析结果验证—后续技术服务。有任何配方技术难题,可即刻联系禾川化学技术团队,我们将为企业提供一站式配方技术解决方案! 2. 丙烯酸乳液胶黏剂 聚丙烯酸酯是一类具有多种性能的、用途广泛的聚合物,其乳液一般是以丙烯酸甲酯、丙烯酸乙酯或丙烯酸丁酯为主要单体,与甲基丙烯酸酯单体、苯乙烯、丙烯腈等共聚形成乳液。对聚合物的结构或聚合方法加以改进,可使得改性后的丙烯酸酯胶黏剂性能更加优异。 2.1有机硅改性 有机硅树脂具有优异的耐高低温性能和耐水性能,利用有机硅对聚丙烯酸酯类乳液胶粘剂改性成为近年来研究的热点。有机功能烷氧基硅烷作为粘合促进剂和交联剂,广泛用于胶粘剂、密封胶和涂料等领域。有专家研究了一种专用于水

丙烯酸酯乳液压敏胶制备的综合实验

仲恺农业工程学院 综合与设计实验报告 丙烯酸酯乳液压敏胶制备的综合实验 姓名谢俊 院(系)化学化工学院 专业年级材料化学091 学号200911044135 仲恺农业工程学院教务处制

丙烯酸酯乳液压敏胶制备的综合实验 摘要:本次综合实验先用水反复重结晶的方法对制备丙烯酸酯乳液压敏胶所用到的引发剂过硫酸铵进行精制,然后使用乳液聚合方法制备丙烯酸酯乳液压敏胶,最后采用 DSC,傅里叶变换红外光谱仪,粘度计对压敏胶进行性能测试 关键词:丙烯酸酯乳液压敏胶过硫酸铵压敏胶制备压敏胶性能测试 1 实验部分 1.1 过硫酸铵 丙烯酸酯乳液压敏胶多使用过硫酸盐作引发剂,本实验采用过硫酸铵。为了控制聚合反应速度和聚合物的相对分子质量,必须准确地计算引发剂的用量。由于引发剂的性质比较活泼,在储运中易发生氧化、潮解等反应,对其纯度影响很大,因此聚合前要对使用的引发剂进行提纯。过硫酸铵中的主要杂质是硫酸氢铵和硫酸铵,可用少量的水反复重结晶进行精制。 1.2 乳液压敏胶 压敏胶是无需借助于溶剂或热,只需施以一定压力就能将被粘物粘牢,得到实用粘结强度的一类胶黏剂。其中乳液压敏胶黏剂在我国压敏胶黏剂工业中占有相当重要的地位,约占压敏胶黏剂总产量的80%,占全部丙烯酸酯乳液的60%。乳液压敏胶被广泛用于制作包装胶粘带、文具胶粘带、商标纸、电子、医疗卫生等领域。 1.4 过硫酸铵精制与乳液压敏胶制备 1.4.1 过硫酸铵精制 1)在250ml锥形瓶中加入50ml去离子水,然后在40℃水浴中加热15min,使锥形瓶内水 达到40℃。 2)迅速加入5g过硫酸铵,如果很快溶解,可以适当再补加过硫酸铵直至形成饱和溶液。 3)溶液趁热用布氏漏斗过滤,滤液用冰水浴冷却即产生白色结晶(也可置于冰箱冷藏室使 结晶更完全)。过滤出结晶,并以冰水洗涤,用BaCl2溶液检验滤液直至无SO42-为止。 4)将白色晶体置于真空干燥器中干燥,称重,计算产率。将精致过得过硫酸铵放在棕色瓶

环保型丙烯酸系热熔压敏胶粘剂

收稿日期:2000-01-24 环保型丙烯酸系热熔压敏胶粘剂 杜 奕 李江屏 潘智存 刘德山 周其庠 (清华大学化工系,北京市100084) 摘要 用本体聚合法合成了含有软单体、硬单体和官能单体的丙烯酸酯类热熔压敏胶,并采用热可逆离子交联反应使压敏胶的各项性能得到大幅度提高。 关键词 丙烯酸系压敏胶 热可逆离子交联 环保 1 前言 热熔压敏胶粘剂是继溶液型和乳液型压敏胶之后的第3代压敏胶产品,其应用范围更为广泛。较之传统的溶液、乳液型压敏胶,投资成本低,加工速度快,生产中不使用溶剂,无毒害,无废液,有利于环保及安全生产。目前世界各国大力开发水乳液型和热熔型压敏胶。从压敏胶的种类来看,丙烯酸酯共聚物是最重要的一类树脂型压敏胶粘剂,具有众多优点:无色透明,耐候性好,配方简单。近20年来,这类压敏胶的发展大有取代天然橡胶压敏胶的趋势。我国的热熔压敏胶粘剂技术正在起步,在环保要求日益提高的今天,这一胶种将会得到迅速发展。2 实验部分211 主要原料 用于制备丙烯酸热熔压敏胶的单体主要有以 下3种:软单体、硬单体和官能单体。软单体为丙烯酸丁酯和丙烯酸-2-乙基己酯,其主要作用是生成玻璃化温度较低的具有压敏性的聚合物。硬单体为甲基丙烯酸甲酯、丙烯酸甲酯或乙酸乙烯酯,它们的均聚物具有较高的玻璃化转变温度,其主要作用是与软单体共聚后能提高共聚物的内聚强度和使用温度。官能单体为丙烯酸、丙烯酰胺和马来酸酐,这些极性较大的官能单体能使压敏胶的内聚强度和粘合性能得到显著提高,而且可进行交联。所用的交联体系为辛酸锌、邻甲氧基 苯甲酸或对甲氧基苯甲酸。212 合成工艺 采用本体聚合的方法:以偶氮二异丁腈为引 发剂,硫醇为分子质量调节剂合成了丙烯酸系共聚物,得到了性能优良的热熔压敏胶,在反应后期又通过离子可逆交联反应,增大了共聚物的内聚强度且降低了熔体粘度,便于涂布胶带。213 性能测定 以初粘力、粘合力、内聚力来表征压敏胶的性能。 初粘力 又称快粘力,即胶的手感粘性。采用90.快速剥离的方法测定。粘合力 在适当的压力和时间下表现的抗界面分离能力。用180.剥离方法测定。 内聚力 胶粘剂层本身的内聚强度。用抗剪切蠕变能力即持粘力来量度。测量方法为测定在918N 重力的作用下25mm 2的胶带在不锈钢实验 板上脱落的时间。3 结果与讨论 311 可逆离子交联反应对压敏胶性能的影响 分子质量对胶粘剂的力学性能影响很大,制 备热熔压敏胶时,必须将分子质量控制在一定范围内。一般,高分子质量部分决定了压敏胶的持粘力,低分子质量部分对初粘力有贡献,但分子质量过大使压敏胶难于涂布。为解决这一矛盾,可 2 1第21卷第3期 ZH ANJ IE 2000/3

乳液型丙烯酸酯压敏胶

万方数据

万方数据

万方数据

乳液型丙烯酸酯压敏胶 作者:施才财 作者单位:上海轻工业研究所有限公司 刊名: 上海轻工业 英文刊名:SHANGHAI LIGHT INDUSTRY 年,卷(期):2008,""(5) 被引用次数:0次 参考文献(24条) 1.杨明成.朱军.党从军丙烯酸酯乳液型压敏胶的制备及性能研究[期刊论文]-河南科学 2001(04) 2.王鸿.方满堂乳液型丙烯酸酯压敏胶的合成[期刊论文]-湖北化工 2001(01) 3.王建营.熊林.延玺乳液型丙烯酸酯压敏胶牯剂剥离强度的研究[期刊论文]-化学与黏合 2003(01) 4.邓传禹乳液型丙烯酸酯医用压敏胶的研制[期刊论文]-中国胶粘剂 2004(05) 5.Marcelo Do Amaral.Alexandra Roos.Jos éM Asua.Creton C Assessing the Effect of Latex ParticleSize and Distribution on the Rheological and Adhesive Propertise of Model Waterborne AcrylicPressure-Sensitive Adhesives Films 2005(02) 6.孔宪志.孙东洲.祝铁军丙烯酸酯乳液压敏胶的研制[期刊论文]-化学与黏合 2004(01) 7.杨性坤丙烯酸酯乳液压敏胶的研制[期刊论文]-中国胶祜剂 2002(06) 8.汤长青.卢鑫高性能乳液型丙烯酸酯压敏胶合成工艺研究[期刊论文]-贵州化工 2003(05) 9.王鸿.方满堂乳液型丙烯酸酯压敏胶的合成[期刊论文]-湖北化工 2001(01) 10.陆军乳液型丙烯酸酯压敏胶 1982(02) 11.Henry W.H.Yang J查看详情 1995 12.胡树文.杨玉昆查看详情 1997(06) 13.李明.徐秀雯.李琴.陶学娣增粘树脂对聚丙烯酸酯压敏胶粘合性能的影响[期刊论文]-中国胶粘剂 1999(05) 14.杨性坤.栗印环改性丙烯酸酯压敏胶的研制[期刊论文]-化学与黏合 2002(02) 15.李明.徐秀雯.李琴.陶学娣增粘树脂对聚丙烯酸脂压敏胶粘合性能的影响[期刊论文]-中国胶粘剂 1999(05) 16.王建营.熊林延.胡文祥乳液型丙烯酸酯压敏胶粘剂剥离强度的研究[期刊论文]-试验与粘合 2003(01) 17.胡树克.杨玉昆溶有增粘树脂的丙烯酸酯乳液共聚及压敏胶的性能 1997(06) 18.胡树文.杨玉昆Studies onthe blend of polyacrylate emulsions and tackifier resin emul-sions 1996(03) 19.王峰.杨玉昆用AMPS合成高耐水性丙烯酸乳液压敏胶的研究[期刊论文]-粘接 2001(06) 20.YangYukun.LiHao.FengWang查看详情 2003 21.李昊.杨玉昆无皂丙烯酸酯乳液压敏胶的制备与性能研究[期刊论文]-粘接 2005(05) 22.刘弈.储富样.赵临伍高固含、低粘度丙烯酸乳液压敏胶工业化生产中粘度控制讨论[期刊论文]-中国胶粘剂2003(01) 23.杨玉昆压敏胶粘剂 1994 24.沈涵孜乳液型丙烯酸酯压敏胶粘剂的制备及性能研究 2007 相似文献(10条) 1.期刊论文石淑先.张丁.夏宇正.焦书科.温荔钧.SHI Shu-xian.ZHANG Ding.XIA Yu-zheng.JIAO Shu-ke.WEN Li-jun脂肪酸甲酯磺酸钠作乳化剂的丙烯酸酯乳液聚合研究-现代化工2009,29(4)

丙烯酸酯乳液检测方法

乳液性能检测方法 (1)固含量的测定 (2)粘度的测定 (3)PH的测定 (4)筛余物的测定 (5)粒径的测定 (6 )残余单体的测定 (7)最低成膜温度的测定 (8)玻璃化温度的测定 (9)机械稳定性的测定 (10)冻融稳定性的测定 (11)储存稳定性的测定 (12)钙离子稳定性的测定 (13)稀释稳定性的测定 (14)耐水白的测定 (1)固体含量的测定: a) 按GB/T-20263-2006规定:取直径75mm左右的玻璃皿或马口铁洁净小皿称其重量为m o。称1g左右样品于皿内(样品尽量在容器内分散开),并称重质量为m1。将装有样品的小皿置于 150±2C的烘箱中15min烘干。然后,将小皿置干燥器中冷却至室温,再称重量为m2。(所有质量精确到0.001g) 固含=(m2- m o) / (m1- m o)x 100% 平行测定三次,取平均值。 b) 或者按GB/T11175-2002 规定: 用容器称取约1g试样,准确至0.001g .并使之流平,对于高粘度样品,最好用水或溶剂进行稀释。将其置于恒温105C士2C的电烘箱中部,经干燥60min 土5min 后取出,放入干燥器内冷却至

室温后称量。 2)粘度的测定: 用容器取约500 mL 试样,注意勿混入气泡,将容器置于恒温水槽中,使试样液面低于水面。用玻璃棒加以搅拌,使试样各部分的温度达到试验要求的温度。测量温度的选择要依据配方来定,配方上的指标要求多少度就在多少度下测量。一般先用热水或冷水将待测物调到制定的温度范围再进行测量。 安装防护装置和转子,按照转速和转子的组合,选择转子使测定粘度时指针正好能指在指示刻度盘20 写-100%范围内。实验室一般采用固定转速为60rpm 的方法测定。一般1#转 子的测量范围为1-100cps;2#转子的测量范围为:500cps;3#转子测量范围为:1-2000cps; 4#转子测量范围为:1-10000cps。根据不同的粘度选择不同的转子。 旋转升降手柄,使粘度计平缓地下降,勿使转子粘上气泡,并使液面达到转子液位标线。用水平调节螺丝将粘度计调节至水平位置后,确认转子置于试样容器的中心位置,设定转子、转速,开始测量。 报数据要注明所用转子号,所用转速和测定时的温度。例如:25000 cps (4#/60rpm/30C)。 3)PH 值的测定: 一般测量,精密试纸即可。用玻璃棒沾取少量乳液于精密试纸之上,刮去表层多余的乳 液,一般要求半分钟内不变色,与标准比色卡对比观察颜色变化,读取pH 值。 精密测量,可用以缓冲溶液标定的玻璃甘汞电极pH 计测定。先用标准液校准pH 计, 用蒸馏水洗净后置于乳液(23 ± 2C)中待稳定后读数。平行测定三次,取平均值。 乳液中表面活性剂可能对测定结果有所干扰。

丙烯酸酯乳液检测方法

乳液性能检测方法 (1)固含量的测定 (2)粘度的测定 (3)PH的测定 (4)筛余物的测定 (5)粒径的测定 (6)残余单体的测定 (7)最低成膜温度的测定 (8)玻璃化温度的测定 (9)机械稳定性的测定 (10)冻融稳定性的测定 (11)储存稳定性的测定 (12)钙离子稳定性的测定 (13)稀释稳定性的测定 (14)耐水白的测定 (1)固体含量的测定: a)按GB/T-20263-2006规定:取直径75mm左右的玻璃皿或马口铁洁净小皿称其重量为m0。称1g左右样品于皿(样品尽量在容器分散开),并称重质量为m1。将装有样品的小皿置于150±2℃的烘箱中15min烘干。然后,将小皿置干燥器中冷却至室温,再称重量为m2。(所有质量精确到0.001g) 固含= (m2- m0)/(m1- m0)×100% 平行测定三次,取平均值。 b)或者按GB/T11175-2002规定: 用容器称取约1g试样,准确至0.001g .并使之流平,对于高粘度样品,最好用水或溶剂进行稀释。将其置于恒温105℃士2℃的电烘箱中部,经干燥60min±5min 后取出,放入干燥器冷却至室温后称量。

(2)粘度的测定: 用容器取约 500 mL试样,注意勿混入气泡,将容器置于恒温水槽中,使试样液面低于水面。用玻璃棒加以搅拌,使试样各部分的温度达到试验要求的温度。测量温度的选择要依据配方来定,配方上的指标要求多少度就在多少度下测量。一般先用热水或冷水将待测物调到制定的温度围再进行测量。 安装防护装置和转子,按照转速和转子的组合,选择转子使测定粘度时指针正好能指在指示刻度盘20写-100%围。实验室一般采用固定转速为60rpm的方法测定。一般1#转子的测量围为1-100cps;2#转子的测量围为:500cps;3#转子测量围为:1-2000cps;4#转子测量围为:1-10000cps。根据不同的粘度选择不同的转子。 旋转升降手柄,使粘度计平缓地下降,勿使转子粘上气泡,并使液面达到转子液位标线。 用水平调节螺丝将粘度计调节至水平位置后,确认转子置于试样容器的中心位置,设定转子、转速,开始测量。 报数据要注明所用转子号,所用转速和测定时的温度。例如:25000 cps(4#/60rpm/30C)。(3)PH值的测定: 一般测量,精密试纸即可。用玻璃棒沾取少量乳液于精密试纸之上,刮去表层多余的乳液,一般要求半分钟不变色,与标准比色卡对比观察颜色变化,读取pH值。 精密测量,可用以缓冲溶液标定的玻璃甘汞电极pH计测定。先用标准液校准pH计,用蒸馏水洗净后置于乳液(23±2℃)中待稳定后读数。平行测定三次,取平均值。 乳液中表面活性剂可能对测定结果有所干扰。 (4)筛余物的测定: (无国标) 将100g左右的过滤后的产品取样称重为m1(精确到0.1g),经过配方规定目数的滤袋过滤,将残渣烘干,降至常温称重,为m2(精确到0.001g)

丙烯酸酯乳液型压敏胶黏剂的应用

丙烯酸酯乳液型压敏胶黏剂的应用 资料来源:https://www.doczj.com/doc/2e13079926.html, 乳液型压敏胶黏剂是由单体、乳化剂、引发剂、水等原料,以乳液聚合的方式得到的分散型高分子聚合物,并加入多种必要的助剂(例如增稠剂、中和剂、润湿剂、分散剂、消泡剂、防霉剂、着色剂等)制备而成的。对于它在性能上的不足,试图通过下面几个途径获得改善。 (1)提高耐水性 ①水溶胶的利用水溶胶是非常微小粒子的高分子聚合分散体,它兼有乳液系和溶液系两者的特性,能够有效地提高耐水性。 ②减少乳化剂的用量虽然乳化剂对聚合中胶束的形成和聚合后乳液的稳定性起着重要的作用,但也是造成耐水性和黏着性下降的重要原因。采用特殊的乳化剂或减少乳化剂的用量,均可对提高乳液的耐水性有所帮助。 (2)提高粘接强度 ①增黏树脂增黏树脂的加入,可以明显提高压敏胶黏剂的180°剥离强度和初黏力。其加入方式有两种。一是共混,作为一个有效的增黏树脂它必须满足三个基本要求:a.它的分子量必须低于胶黏剂聚合物的分子量;b.增黏树脂的玻璃化温度必须高于聚合物的玻璃化温度;c.增黏树脂与要添加的胶黏剂聚合物的混容性要好。二是在进行乳液聚合之前,事先把增黏树脂溶解于丙烯酸酯单体中,然后再进行乳液聚合,也可以制得综合性能良好的胶黏剂。 ②选择不同的聚合方式如采用核-壳聚合。其中聚合物的核使用较硬的如苯乙烯、丙烯腈、甲基丙烯酸酯等单体,而聚合物的壳使用较软的丙烯酸烷基酯单体,这样结构的聚合物乳液可以大大提高胶黏剂的内聚强度。采用特殊的单体,如使用适量的丙烯酸异壬基酯(Tg=82℃)与丙烯酸酯单体进行共聚合,可以进一步提高其综合性能。作为改良对链烷烃粘接的方法,可以使用安息香酸乙烯酸、甲基丙烯酸四氢化糠基酯、丙烯酸环己酯、2一苯氧基乙基丙烯酸酯等单体与丙烯酸烷基酯共聚合,改善对非极性被粘体的润湿性,有效提高粘接力。(3)在使用丙烯酸酯乳液压敏胶的过程中,常会遇到这样一些问题:如非极性基材的润湿不好;纸、布及无纺布等透气性基材的渗透问题;PE、PVC等不耐温基材的烘烤问题等。下面就针对几种基材的胶黏带的制备作一下简单的介绍。 ①纸基材胶黏制品。该类制品主要用作标签、商标、标贴等。通常的丙烯酸酯压敏胶乳液黏

压敏胶入门知识

压敏胶入门知识 压敏胶 拼音:yaminjiao 英文名称:pressure sensitive adhesive 说明:压敏胶粘剂的简称。是一类具有对压力有敏感性的胶粘剂。主要用于制备压敏胶带。压敏胶的粘附力(胶粘带与被粘表面加压粘贴后所表现的剥离力)必须大于粘着力(即所谓用手指轻轻接触胶粘带时显示出来的手感粘力)。按其主要成分可分为橡胶型和树脂型两类。除主要成分外,还要加入其他辅助成分,如增粘树脂、增塑剂、填料、粘度调整剂、硫化剂、防老剂、溶剂等配合而成。 压敏胶带 拼音:yaminjiaodai 英文名称:pressure sensitive adhesive tape 说明:一种特殊类型的胶粘剂。将胶粘剂涂于带状基材上制成。使用时,轻轻加压使胶带与被粘物表面粘结。由压敏胶、基材、底胶、背面处理剂等构成(见图)。压敏胶是压敏胶带最重要的组成部分。其作用是使胶带具有对压力敏感粘附特性。用作基材的主要地织物、塑料薄膜、纸类等。底胶是增加压敏胶与基材的粘结强度。广泛用于包装、电绝缘、医疗卫生、粘贴标签和作标记等。 聚丙烯酸酯压敏胶 丙烯酸酯型压敏胶的基体,是具有不饱和双键的单体在催化剂作用下进行自由基聚合反应制得的丙烯酸酯树脂。聚合时所采用的单体可分为三类: 1、粘性单体它是碳原子数为4-12的丙烯酸烷基酯,具有粘性作用,聚合物的玻璃化温度为 -20——70°C ,常用的有丙烯酸异辛酯和丙烯酸丁酯等。 2、内聚单体这是一些玻璃化温度较高的单体,它不仅能提高胶液的内聚力,而且对耐水性、胶接强度、透明性等也明显改善。 3、改性单体主要是一些带有反应性官能团的含有双急需的单体,如含羧基、羟基、酰胺基等的丙烯酸衍生物。它能与其它单体起交联作用,促进聚合反应,加快聚合速度,提高胶液的稳定性。 表十七列举了上述三种单体的种类及玻璃化温度 表十七丙烯酸酯型压敏胶的单体及玻璃化温度 单体类别单体各称玻璃化温度(°C ) 粘性单体丙烯酸乙酯-22 丙烯酸丁酯-55 丙烯酸异辛酯-70 内聚单体醋酸乙烯酯22 丙烯腈97 丙烯酰胺165 苯乙烯80 甲基丙烯酸甲酯105 丙烯酸甲酯8 改性单体甲基丙烯酸228 丙烯酸106 甲基丙烯酸羟乙酯86 甲基丙烯酸羟丙酯76 二胺基乙基甲基丙烯酸酯13

不同类型乳化剂对丙烯酸脂乳液

不同类型乳化剂对丙烯酸脂乳液 压敏胶粘剂耐水性能影响的研究 王峰杨玉昆 (中科院化学研究所 100080) 摘要:用两种低分子乳化剂(SDS,钠盐和CO-436,铵盐)和两种可聚合乳化剂(AMPS-Na和AMPS—NH4)分别在最佳条件下制得了四种主体成分相同的丙烯酸酯乳液压敏胶。测试并比较了四种乳液和压敏胶的性能,较系统的研究了不同类型的乳化剂对丙烯酸酯乳液压敏胶耐水性能的影响。 关键词:低分子乳化剂可聚合乳化剂丙烯酸酯乳液压敏胶耐水性能 1 前言: 丙烯酸酯乳液压敏胶因其价廉,无污染,使用方便和安全等特点在我国压敏胶制造工业中有着特殊而重要的地位。目前,我国70%以上的压敏胶制品是丙烯酸酯乳液压敏胶制造的;其年生产和使用量已超过十万吨。[1] 然而,丙烯酸酯乳液压敏胶与相应的溶剂型压敏胶相比还存在着压敏胶性能较差,特别是胶层的耐水性较差和对高湿环境敏感等缺点。这主要是由于胶层中少量乳化剂的存在引起的。[2]用可聚合乳化剂代替普通低分子乳化剂是提高乳液聚合物耐水性能的重要途径。也有人认为用铵盐乳化剂制得压敏胶比用钠盐乳化剂制得的相应压敏胶的耐水性能要好。[3]但还未见到过不同类型的乳化剂对丙烯酸乳液压敏胶耐水性能影响的系统研究报道。 本文采用一种普通的低分子钠盐乳化剂(十二烷基硫酸钠,商称SDS),一种低分子铵盐乳化剂(硫酸—(—2—对壬基酚氧—)—乙酯铵盐,Rhodapex CO—436)以及两种可聚合乳化剂(2—丙烯酰胺基—2—甲基—丙基硫酸钠盐,AMPS—NA和2—丙烯酰胺基—2—甲基—丙基硫酸铵盐AMPS—NH4)分别在最佳的实验条件下制得了四种主体成分相同的丙烯酸酯乳液压敏胶,分别标记为EPS—1,EPS—2,EPS—3,EPS—4。四种乳化剂的分子式如下:

橡胶型压敏胶的研究进展

234 橡 胶 工 业2019年第66卷橡胶型压敏胶的研究进展 杨一涵,李 卓*,李英哲 (青岛科技大学橡塑材料与工程教育部重点实验室,山东青岛 266042) 摘要:橡胶型压敏胶(RPSAs)广泛应用于胶带、标签等领域,其粘合性能评价标准有初粘性、剥离强度和持粘性3项。用作RPSAs基体的橡胶弹性体主要有天然橡胶(NR)、合成橡胶(SR)和热塑性弹性体(TPE)3类,新型TPE基RPSAs 为近年来的研究热点。对于RPSAs的优化主要从基体改性和优化配方两个方面展开,基体改性采用物理和化学改性手 段,配方优化包括调整增粘树脂品种和用量等。与其他种类的压敏胶相比,橡胶型压敏胶具有独特优势,应用领域越来 越广。 关键词:橡胶型压敏胶;基体改性;粘合性能;配方优化 中图分类号:TQ339 文章编号:1000-890X(2019)03-0234-06 文献标志码:A DOI:10.12136/j.issn.1000-890X.2019.03.0234 橡胶型压敏胶(RPSAs)是以橡胶弹性体为基体,配以适当的增粘树脂、填料、软化剂、交联剂、溶剂等制成的一种只需施以较小压力便可与被粘物紧密粘合的胶粘剂,广泛应用于单/双面胶带、商标、标签、医疗用品以及电子产品等领域[1-6]。衡量RPSAs粘合性能的标准有初粘性、剥离强度和持粘性3项。初粘性是指在较小压力下快速润湿基材表面所产生的粘接力,是RPSAs与被粘物接触时其表面的化学和物理性能的综合反映;剥离强度是指胶层从一个标准基材上以恒定的速率和角度剥离下来所需要的力,主要反映RPSAs与被粘物表面粘合力的大小;持粘性是指RPSAs抵抗持久性剪切蠕变破坏的能力,反映了胶层的内聚强度[7-8]。用作RPSAs基体的橡胶弹性体主要有3类——天然橡胶(NR)、合成橡胶(SR)和热塑性弹性体(TPE)。 1 NR基RPSAs 最早的RPSAs是以NR和增粘树脂共溶在甲苯和庚烷中制得[8-9]。迄今为止,NR仍然在RPSAs基体中占据重要的位置,这是由NR的结构特性决定的。首先,NR的高相对分子质量以及在应变条件下具有的结晶能力赋予RPSAs足够的内聚强度,有利于提高其持粘性;其次,高含量的顺式结构使NR在较宽的温度范围内具有很好的弹性,提高了RPSAs的耐低温性能;另外,因分子内无极性基团,NR易于与非极性增粘树脂相容,制成的RPSAs 表面能低,易于润湿各种固体表面,因而具有较高的粘合性能,尤其是初粘性[7,10]。但是,作为一种不饱和非极性橡胶,NR的耐油、耐溶剂和耐热氧老化性能均较差[11]。为了进一步提高NR基RPSAs的粘合性能,并同时改善其综合性能,需要对其进行适当的优化。优化的方法可以分为对NR基体改性和优化配方两种,后者主要针对增粘树脂和填料进行。 1.1 NR基体改性 对NR基体的改性可以分为物理共混和化学改性两类,化学改性又包括环氧化、接枝等方法。1.1.1 物理共混 单一橡胶为基体制备的RPSAs不可避免会受基体性能缺陷的影响。将两种或两种以上橡胶并用,可以起到优势互补,弥补单一基体缺点的作用。基于不同的改性目的,常用于和NR并用的橡胶包括丁苯橡胶(SBR)、丁腈橡胶(NBR)和三元乙丙橡胶(EPDM)等[2,12-15]。例如,SBR与NR并用可以发挥SBR成本低、耐老化和耐蠕变性能好 基金项目:国家自然科学基金资助项目(51603110) 作者简介:杨一涵(1998—),女,山东聊城人,青岛科技大学在读本科生,主要从事高性能橡胶基复合材料的研究。 *通信联系人(lizhuoqust@https://www.doczj.com/doc/2e13079926.html,)

丙烯酸酯乳液改性研究现状及发展

丙烯酸酯乳液改性的研究现状及发展 姓名:何阳班级:应用化工技术1班学号:20131880 摘要:文章就丙烯酸酯乳液改性的研究现状及其用途作了详细论述,重点介绍了有机硅改性丙烯酸酯乳液和聚氨酯改性的丙烯酸酯乳液(PUA)以及氟改性丙烯酸酯乳液的研究现状及发展前景,并简要地对丙烯酸酯乳液改性的未来方向作了展望。 关键词:丙烯酸酯乳液改性原理现状发展 前言: 丙烯酸酯类共聚物乳液是丙烯酸酯类或甲基丙烯酯类与其它乙烯基酯类单体进行乳液聚合的产物[1],它主要用作涂料成膜剂和纺织印染粘合剂,也广泛应用于日用化工、化学电源、功能膜、医用高分子、纳米材料以及水处理等方面,其用量与日俱增。丙烯酸酯乳液具有优异的耐水性、耐候性、耐酸碱性和耐腐蚀性,但它存在着耐水性和附着性差及低温变脆、高温变粘等缺点,限制了其应用。 近年来随着聚合理论和技术的不断完善和发展,以及人们对环境友好的绿色化工产品的呼声愈来愈高,丙烯酸酯乳液的改性受到了广泛的重视。一般来说,从两个方面对丙烯酸酯乳液进行改性:一是引入一些功能性单体对丙烯酸酯乳液进行改性,得到高性能的共聚乳液;二是采用新的乳液聚合方法如核壳乳液聚合和互穿网络聚合技术以及微乳液共聚技术来改善丙烯酸酯乳液的性能,在研究过程中通常是这两个方面的相互结合,共同提高丙烯酸酯乳液的性能。本文主要探讨有机硅、有机氟、聚氨酯等对丙烯酸酯乳液性能的改性及其对乳液性能的影响。 1、有机硅改性的丙烯酸酯乳液 1.1 改性原理 有机硅对丙烯酸酯乳液的改性是指将有机硅化学和丙烯酸酯乳液聚合技术结合起来,用来制备高性能的硅丙乳液。丙烯酸酯聚合物具有优良的成膜性、粘接性、保光性、耐候性、耐腐蚀性和柔韧性。但其本身是热塑性的,线性分子上又缺少交联点,难以形成三维网状交联胶膜,因此其耐水性、耐沾污性差,低温

压敏胶粘剂

压敏胶粘剂 压敏胶粘剂的全称为压力敏感型胶粘剂,又俗称不干胶,简称压敏胶。压敏胶制品包括压敏胶粘带和压敏胶标签纸、压敏胶片三大类。它们的全称为压力敏感型胶粘带、压力敏感型胶粘标签纸、压力敏感型胶粘片,俗称胶带、不干胶标签纸、压敏胶片。调节过这种组分以达到产品具有较好性能。 压敏胶粘剂的定义 压敏胶和压敏胶制品的含义有十多种解释,最普遍的定义有如下说法:定义 1:采用指能压力,它就能使胶粘剂立即达到粘接任何被粘物光洁表面的目的。与此同时,如果破坏被粘物粘接表面时,胶粘剂不污染被粘物表面,此类胶粘剂称为压敏胶。它的粘接过程对压力非常敏感故称谓压力敏感型。压敏胶一般不直接使用于被粘物的粘接,压敏胶是通过各种材料制成压敏胶制品(胶带和胶粘标签)。 定义 2:(pressure sensitive adhe-sives)学术性的定义:压敏胶是一种同时具备着液体的粘性性质和固体的弹性性质的粘弹性体;这种粘弹性体同时具备着能够承受粘接的接触过程和破坏过程两方面的影响因素和性质[1]。 压敏胶粘剂制备工艺 工业上使用的压敏胶主要有4大类:溶剂型压敏胶、乳液型压敏胶、热熔型压敏胶和射线固化型压敏胶。 压敏胶按其聚合物分成橡胶类压敏胶、聚丙烯酸酯类压敏胶、聚乙烯基醚树脂类、聚氨树脂类、聚异丁烯类等乳液型压敏胶占据着绝对优势地位,是我国压敏胶工业的一大特色,乳液压敏胶尤其是丙烯酸酯乳液压敏胶在我国有着特殊的重要性。 丙烯酸酯类压敏胶粘剂是目前仅次于橡胶类,用得最多的压敏胶粘剂,它是以丙烯酸酯单体和其他乙烯类单体的共聚物,大致可以分为交联型和非交联型两类。由于均聚物的玻璃化温度较低(Tg:-20——-700C),一般情况下是由起粘着性作用的柔性单体为主,加入高玻璃化温度、能被赋予胶粘性和内聚力的硬性单体,以及少量含官能团的单体共聚而成。加入含官能团单体的目的是使压敏胶能够通过交联而进一步提高其胶粘力、内聚力和耐热蠕变性。

丙烯酸酯乳液的成膜性能

丙烯酸酯乳液的成膜性能 吴跃焕1,2,赵建青1,暴志菊3 1.华南理工大学材料科学与工程学院,广州510640; 2.太原工业学院应用化学系,太原030008; 3.新华化工有限公司,太原030008 丙烯酸酯乳液作为水性成膜物被广泛应用于建筑、木器、皮革等领域。然而胶膜的光泽度、透明性、耐水性以及其他物理机械性能都无法与溶剂型树脂相比,这是由于聚合物乳液具有与聚合物溶液完全不同的成膜过程。 在聚合物乳液的成膜方面,近年来有许多学者对乳胶粒变形的驱动力(外因)进行了研究,并提出颗粒变形的理论模型,比较一致的看法是粒径的毛细作用力决定乳液的成膜性能。但对乳液聚合物特殊的分子形态、相互作用和分子运动等内在因素对成膜过程所起的作用报道较少。本文从合成的大量样品中筛选出不同粒径的MMA/BA/AA和St/BA/AA系列乳液,考察了上述内在因素的影响,具体体现为乳胶粒粒径、成膜温度、水的挥发、体系单体组成对成膜性能的影响,并进一步对具有特殊分子形态的寡链聚合物的成膜过程进行了研究,希望可以丰富聚合物乳液成膜机理的内容。 1 实验材料和方法 1.1 实验材料 甲基丙烯酸甲酯(MMA)、丙烯酸丁酯(BA)、丙烯酸(AA)、Dowfax2A-1、OP -10,均为工业品,未作进一步处理,直接使用。 1.2 乳液的制备 (1) 先将部分水、大部分乳化剂、缓冲剂加入装置有回流管、滴液漏斗、温度计和恒压滴液漏斗的四口烧瓶中升温搅拌均匀,在75~80℃下加入部分引发剂溶液,尔后滴加预乳化的种子单体,使其聚合生成种子。保温0.5 h后开始滴加预乳化的外层单体以及余下的引发剂溶液。升高温度保温1 h使反应完全,降温至60℃以下出料,得到聚合物乳液。按照上述工艺分别制得固含量为40%的MMA/BA/AA和St/BA/AA乳液。 (2) 依次称取前一步制得乳液重量的12.5%做种子,加入部分水以及少量的引发剂过硫酸钾,水浴升温到86℃,开始滴加与种子等重量的单体(单体用少量乳化剂预乳化后加入),2 h内滴完,补加少量的引发剂使反应完全,将余下的水加入体系。保温1 h。 (3) 降温至60℃,过滤出料,制得不同粒径的MMA/BA/AA和St/BA/AA的系列乳液。 1.3 粒径增长与种子用量的计算 设a为种子乳胶中所含固体重量(g),x为聚合加入的单体重量(g)。 则种子增长比为(x+a)/a 设种子乳液粒径为d1,增加x重量以后的直径为d2,则体积增长比为(d2/ d1) 3,因此(d2/ d1)3=(x+a)/a所以d2= d1[(x+a)/a]1/3 如果要求粒径每增加2倍,即d2/ d1=2则(x+a)/a =23=8 因此取前一步乳液的12.5%(单体量5 g)作为种子,可制得粒径增大一倍的40%的乳液。 1.4 表征 Malvern Acoto Sizer LocFc963激光散射粒度分布仪,颗粒尺寸用Z均数值表示。向乳液中滴加20%(质量分数)三氯化铝水溶液进行破乳,经多次洗涤后

橡胶型压敏1

橡胶型压敏胶 一概述 橡胶型压敏胶是由橡胶弹性体、增粘剂、软化剂、防老剂等组份溶于溶剂中配制而成。 橡胶型压敏胶具有粘附力强、耐低温性能好、价格低廉等优点。 但由于橡胶弹性体中还存在未反应的双键,尽管加入防老剂,但在光和热的作用下仍易老化,这是它的缺点。 橡胶弹性体可采用天然橡胶、异丁烯橡胶、丁苯橡胶、丁苯热塑性弹性体(SBS)、苯乙烯异丁烯热塑性弹性体(SIS)、丁基橡胶、聚异丁烯、硅橡胶、聚乙烯异丁基醚、氯丁橡胶、丁腈橡胶、接枝橡胶等多种。以天然橡胶用的较多 橡胶型压敏胶增粘剂主要有松香、氢化松香缩水甘油酯、萜烯树脂、萜烯酚醛树脂、石油树脂、苯乙烯系树脂、古马隆树脂、烷基酚醛树脂、二甲苯树脂等。 二橡胶弹性体 (一)天然橡胶 由人工栽培的三叶橡胶树分泌的乳汁,经凝固、加工而制得,它是以聚异戊二烯为主要成分的不饱和状态的天然高分子化合物。 含杂质的天然橡胶透明而略带黄色,Tg = -70℃,加热到130~140℃完全软化,200℃左右开始分解,270℃急剧分解。 天然橡胶溶于苯、甲苯、溶剂汽油、二硫化碳、四氯化碳、氯仿、松节油等,不溶于乙醇和丙酮。天然橡胶具有很好的弹性,机械强度较高,门尼粘度较高,自粘性好,耐透气性好,耐碱,不耐浓强酸。耐油、耐溶剂性差,耐老化不佳。 天然橡胶贮存时可发生粘度和硬度增加的贮存硬化现象,低温易结晶,应贮存于阴凉、通风、温度为10~30℃的库房内,防止日晒,不可重压,贮存期1年。 作为压敏胶粘剂的弹性体,天然橡胶的结构决定了它的优点: ①由于平均分子量高(尤其是由于存在着部分分子量极高的凝胶体),具有一定的结晶性, 因而内聚强度高,制成的压敏胶具有很好的持粘力。 ②含有98%以上的顺式1,4-聚异戊二烯的分子结构,决定了它在较广的温度范围 (-70~130℃)内具有很好的弹性,因此,制成的压敏胶比较柔软,弹性好,低温性能也好。 ③分子内无极性基团,决定了它易于与增粘树脂尤其是非极性增粘树脂相混溶,制成的压 敏胶表面能较低,易于湿润各种固体表面,因而初粘和粘接性能也都比较好,容易达到三大压敏胶粘接性能的平衡。 主要缺点: ①分子中含有大量的不饱和双键,因而耐气候老化(主要是耐氧气和紫外线)的性能较差 ②橡胶的分子量及非橡胶成分的含量和组成因产地、树种等不同而有差异,使压敏胶质量 不易稳定 ③耐增强剂、油和有机溶剂的性能较差。 (二)丁苯橡胶 丁苯橡胶是以丁二烯与苯乙烯为单体,通过乳液或溶液聚合而制得的无规共聚弹性体,简称SBR,是产量最大的通用合成橡胶。Tg = -57~ -52℃ 丁苯橡胶具有良好的耐热性、耐磨性、耐老化性、耐油性和耐臭氧性较差。 贮存稳定性较好,在阴暗处可贮存数年。 可溶于苯、甲苯、二甲苯、乙酸乙酯、氯仿等溶剂。

丙烯酸酯的乳液合成方法

丙烯酸酯的乳液合成 一、实验目的 1.了解和掌握苯丙乳液合成的基本方法和工艺路线; 2.理解乳液聚合中各组成成分的作用和乳液聚合的机理; 二、实验原理 在乳液聚合过程中,乳液的稳定性会发生变化。乳化剂的种类、用量与用法、pH值、引发剂的类型、搅拌形状与搅拌速度、加料方式、聚合工艺等都会影响到聚合物乳液的稳定性。功能性单体如硅烷偶联剂、丙烯酸、丙烯酰胺、丙烯酸羟乙酯等作为交联单体参与共聚,在一定程度上可提高乳液的稳定性,但因其具有极强的亲水性,聚合过程中若在水相发生均聚形成水溶性大分子,会产生絮凝作用,极易破乳。因此选择合适的乳化体系和聚合工艺对乳液聚合过程的稳定性具有极重要的意义。 聚合物乳液承受外界因素对其破坏的能力称为聚合物乳液的稳定性。在乳液聚合过程中局部胶体稳定性的丧失会引起乳胶粒的聚结形成宏观或微观的凝聚物,即凝胶现象。凝胶多为大小不等、形态不一的块状聚合物,有的发软、发粘,有的发硬、发脆、多孔。在搅拌作用下凝胶分散在乳液中,可通过过滤法或沉降法除去,但有时也会形成大量肉眼看不到的、普通方法很难分离的微观凝胶,使乳液蓝光减弱颜色发白,外观粗糙。严重时甚至整个体系完全凝聚,造成抱轴、粘釜和挂胶现象。凝聚物的生成在乳液研究和生产中具有极大的危害性,它不仅降低单体的有效利用率,增加聚合装置的停机时间和处理的费用,而且还会加大各釜和各批次间产品性能的不一致性,污染环境。 目前比较权威的用于解释聚合物乳液稳定性的理论是双电层理论和空间位阻理论。乳胶粒子的表面性质与吸附或结合在其上的起稳定作用的物质有关,酸性、碱性离子末端以及吸附在乳胶粒表面上的乳化剂在一定的pH值下都是以离子形式存在的,使乳胶粒子表面带上一层电荷,从而在乳胶粒子之间就存在静电斥力,乳胶粒难于互相接近而不发生聚结。当乳胶粒表面吸附有非离子型乳化剂或高分子保护胶体时,其稳定性则与空间位阻有关。 乳化剂的选择是决定乳液聚合体系稳定性的关键因素之一。乳化剂虽不直接参与反应,但乳化剂的种类及用量将直接影响到引发速率、链增长速率以及聚合物的分子量和分子量分布。此外乳化剂的类型、用量和加入方式对乳胶粒的粒径和粒径分布、乳液粒度也有着决定性的影响。如果所选用的乳化剂不适合本乳液聚合体系,则不论怎样改变乳化剂的浓度和调节聚合工艺参数,乳液聚合仍不能平稳进行或是所得到的乳液产品缺乏实用价值。离子型乳化剂的特点是乳化效率高,可有效地降低表面张力,胶束和乳胶粒子尺寸小,机械稳定性好,但由于其离子特性对电解质比较敏感;非离子型乳化剂对电解质有较好的稳定性,但机械稳定性不好,对搅拌速度比较敏感。离子型乳化剂主要靠静电斥力使乳液稳定,而非离子型乳化剂主要靠水化,两种乳化剂复合使用时,两类乳化剂分子交替吸附在乳胶粒子表面上,既使乳胶粒间有很大的静电斥力,又在乳胶粒表面形成很厚的水化层,二者双重作用的结果可使聚合物乳液稳定性大大提高。目前乳液聚合体系多采用阴离子型与非离子型复配乳化体系,所得乳液兼有粒子尺寸小、低泡和稳定性好的特点。 引发剂对整个聚合过程起差重要的作用,不同的引发剂制得的聚合物具有不同的分子结构及性能。乳液聚合引发剂分为两类:受热分解产生自由基的引发剂(如过硫酸铵APS、过硫酸钾KPS、过硫酸钠NPS、过氧化氢等无机过氧化物);有机过氧化物和还原剂组合可构成另一类引发剂。丙烯酸酯类共聚物乳液聚合体系中的引发剂多为水性的过硫酸盐,常用的有APS、KPS及NPS等。较适宜的引发剂量为单体总量的0.2%~0.8%,当引发剂用量为0.2%~0.4%时,制备的丙烯酸酯类共聚物乳液呈蓝相、乳液粒子的粒度小,并且稳定性好。

相关主题
文本预览
相关文档 最新文档