当前位置:文档之家› 卡尔曼滤波与组合导航课程实验报告

卡尔曼滤波与组合导航课程实验报告

卡尔曼滤波与组合导航课程实验报告
卡尔曼滤波与组合导航课程实验报告

《卡尔曼滤波与组合导航》课程实验报告=+

X FX GW

卡尔曼滤波计算举例

卡尔曼滤波计算举例 ?计算举例 ?卡尔曼滤波器特性

假设有一个标量系统,信号与观测模型为 [1][][]x k ax k n k +=+[][][] z k x k w k =+其中a 为常数,n [k ]和w [k ]是不相关的零均值白噪声,方差分别为和。 系统的起始变量x [0]为随机变量,其均值为零,方差为。2n σ2 σ[0]x P (1)求估计x [k ]的卡尔曼滤波算法;(2)当时的卡尔曼滤波增益和滤波误差方差。 22 0.9,1,10,[0]10 n x a P =σ=σ==1. 计算举例

根据卡尔曼算法,预测方程为: ??[/1][1/1]x k k ax k k -=--预测误差方差为: 2 2 [/1][1/1]x x n P k k a P k k -=--+σ 卡尔曼增益为: () 1 22 22 22 [][/1][/1][1/1][1/1]x x x n x n K k P k k P k k a P k k a P k k -=--+σ --+σ=--+σ+σ ???[/][/1][]([][/1])??[1/1][]([][1/1])?(1[])[1/1][][]x k k x k k K k z k x k k ax k k K k z k ax k k a K k x k k K k z k =-+--=--+---=---+滤波方程:

()() 2 2222222 222 22 [/](1[])[/1] [1/1]1[1/1][1/1][1/1][1/1]x x x n x n x n x n x n P k k K k P k k a P k k a P k k a P k k a P k k a P k k =--??--+σ=---+σ ?--+σ+σ??σ--+σ = --+σ+σ 滤波误差方差 起始:?[0/0]0x =[0/0][0] x x P P =

卡尔曼滤波器在PID控制器中的应用

卡尔曼滤波器在PID控制器中的应用 学生姓名:潘培哲 学号: 12013002347 专业:控制工程 指导教师:李鹏 云南大学信息学院

一、引言 传统的倒立摆系统采用单纯的PID 控制模式,这种控制模式虽然可以在一定程度上满足系统的要求,但是具有精度差,响应时间长,稳定性不高等不足之处.造成这种情况的一个原因是控制信号中含有噪声干扰,噪声干扰会在很大程度上影响系统的性能.另外,除了以上提到的外界干扰外,系统内部也存在干扰,主要包括建模时因抽象和简化而引入的结构干扰以及实际系统中因参数变化而引入的参数干扰.因此,为了提高系统的稳定性,使之具有较短的响应时间和控制精度,本文设计了一种基于卡尔曼滤波器的PID 控制系统,通过卡尔曼滤波器对系统的一些噪声进行滤波处理之后,对系统的随机误差进行了比普通PID 更进一步的补偿,获得了更为精确的系统模型,从而使系统的稳定性和精度以及响应时间都得到了有效的提高.本文以直线小车倒立摆为例,研究了卡尔曼滤波器在倒立摆控制系统中的应用. 二、卡尔曼滤波器原理 在现代随机最优控制和随机信号处理技术中,信号和噪声往往是多维非平稳随机过程,因其时变性,功率谱不固定.在1960年卡尔曼提出了卡尔曼滤波理论,该理论采用时域上的递推算法在计算机上进行数据滤波处理. 对于离散域系统:

离散卡尔曼滤波器递推算法为: 图1 卡尔曼滤波器结构图 三、基于卡尔曼滤波器的PID 控制器工作过程 下面便以直线小车倒立摆为被控对象,来进一步研究卡尔曼滤波技术在倒立摆系统中的应用. 3.1 倒立摆系统的数学模型 对直线小车的倒立摆系统的数学建模. 对于倒立摆系统,由于其本身是自不稳定的非线性系统,实验建模存在一定的困难.但经过小心的假设忽略掉一些次要的因素后,倒立摆系统就是一个典型的运动的刚体系统,可以在惯性坐标系内应用经典力学理论建立系统的动力学方程. 对一级倒立摆线性化后得到系统的近似模型如下

北航卡尔曼滤波课程-捷联惯导静基座初始对准实验

卡尔曼滤波实验报告 捷联惯导静基座初始对准实验 一、实验目的 ①掌握捷联惯导的构成和基本工作原理; ②掌握捷联惯导静基座对准的基本工作原理; ③了解捷联惯导静基座对准时的每个系统状态的可观测性; ④了解双位置对准时系统状态的可观测性的变化。 二、实验原理 选取状态变量为:[]T E N E N U x y x y z X V V δδεεε=ψψψ??,其

中导航坐标系选为东北天坐标系,E V δ为东向速度误差,N V δ为北向速度误差,E ψ为东向姿态误差角,N ψ为北向姿态误差角,U ψ为天向姿态误差角,x ?为东向加速度偏置,y ?为北向加速度偏置,x ε为东向陀螺漂移,y ε为北向陀螺漂移,z ε为天向陀螺漂移。则系统的状态模型为: X AX W =+ (1) 其中, 1112212211 12 1321222331323302sin 000002sin 000000000sin cos 0000sin 000000cos 0000000000000000000000000000000000000000000000000000 0L g C C L g C C L L C C C L C C C L C C C A Ω-? ? ??-Ω????Ω-Ω? ?-Ω????Ω=? ?????? ?????????? ? [00000]E N E N U T V V W W W W W W δδψψψ=,E D V W W δψ 为零均值高斯 白噪声,分别为加速度计误差和陀螺漂移的噪声成分,Ω为地球自转角速度,ij C 为姿态矩 阵n b C 中的元素,L 为当地纬度。 量测量选取两个水平速度误差:[ ]T E N Z V V δδ=,则量测方程为: 10000000000100000000E E N N V X V δηδη???? ??=+???????????? (2) 即Z HX η=+ 其中,H 为量测矩阵,[]T E N ηηη=为量测方程的随机噪声状态矢量,为零均值高 斯白噪声。 要利用基本卡尔曼滤波方程进行状态估计,需要将状态方程和量测方程进行离散化。 系统转移矩阵为: 2323/1111102!3!! n n k k k k k k n T T T I TA A A A n ∞ -----=Φ=++++=∑ (3)

卡尔曼滤波的应用步骤

具体步骤分述如下 1、确定系统的模型 根据对系统的充分了解,建立一个真实系统的完整模型,并用状态空间描述之。这里包括选择状态变量,观察量,建立系统的动力方程和观察方程,以及建立误差的统计模型。同时建立地面计算机模拟试验用的“模拟器”。这些“模拟器”实质上是一套计算机程序。它模拟了噪声发生,传感器信息产生 及传递过程以及研究对象的运动等等。模拟器是滤波器模拟分析的工具和鉴别标准。2、建立完整滤波器及模拟试验 根据系统的完整模型建立一个最佳的完整滤波器。它包括了所有的误差源。其维数一般较高。完整滤波器用来反映一个精确工作的最佳滤波器性能,并作为鉴定简化滤波器的标准。同时建立一个地面计算机模拟分析程序工,对完整滤波器进行模拟鉴定。这种程序包括了详细的模拟器,并模拟了完整滤波器方程。模拟目的是鉴定一个精确工作滤波器所能达到的理论精度,当然它应该超过系统所希望的精度,否则就没有必要继续进行设计了。 3、建立简化滤波器及模拟试验 这项工作主要是简化系统。系统的完整模型一般比较复杂,完整滤波器的维数较高。例如,飞机导航方程可达、个变量。因此运算要求较高。实际应用中必须简化模型。先根据工程经验简化模型,设计出相应的简化滤波器,然后作理论上的模型误差分析,但更重要的是通过计算机模拟分析来完成设计和鉴定。这里同样要借助于地面计算机模拟分析程序。程序既包括了多种模拟器,反映了真实系统,又能方便地模拟简化滤波器方程。通过程序鉴定分析简化滤波器,并与完整滤波器结果作比机一边模拟分析,一边删去对总系统影响不大的状态量,最后完成了一个维数较少且能满足性能要求的简化滤波器,这阶段的工作反映了一个不完整滤波器在精确运算时的理论精度,它至少要达到系统所希望的精度。 4、建立确定性滤波器及模拟试验 这项工作是建立一个能在实际工作环境下实时完成系统任务的确定性滤波器。建立过程中要用各种滤波技术,使得滤波器对传感器误差恶化不灵敏,并能符合计算机实时要求、容量要求以及精度限制,而又能满足系统性能的要求。建立确定性滤波器,先是根据工程经验作理论上的设计和分析,而更重要的是利用了地面计算机模拟分析程序。

几种卡尔曼滤波算法理论

自适应卡尔曼滤波 卡尔曼滤波发散的原因 如果卡尔曼滤波是稳定的,随着滤波的推进,卡尔曼滤波估计的精度应该越来越高,滤波误差方差阵也应趋于稳定值或有界值。但在实际应用中,随着量测值数目的增加,由于估计误差的均值和估计误差协方差可能越来越大,使滤波逐渐失去准确估计的作用,这种现象称为卡尔曼滤波发散。 引起滤波器发散的主要原因有两点: (1)描述系统动力学特性的数学模型和噪声估计模型不准确,不能直接真实地反映物理过程,使得模型与获得的量测值不匹配而导致滤波发散。这种由于模型建立过于粗糙或失真所引起的发散称为滤波发散。 (2)由于卡尔曼滤波是递推过程,随着滤波步数的增加,舍入误差将逐渐积累。如果计算机字长不够长,这种积累误差很有可能使估计误差方差阵失去非负定性甚至失去对称性,使滤波增益矩阵逐渐失去合适的加权作用而导致发散。这种由于计算舍入误差所引起的发散称为计算发散。 针对上述卡尔曼滤波发散的原因,目前已经出现了几种有效抑制滤波发散的方法,常用的有衰减记忆滤波、限定记忆滤波、扩充状态滤波、有限下界滤波、平方根滤波、和自适应滤波等。这些方法本质上都是以牺牲滤波器的最优性为代价来抑制滤波发散,也就是说,多数都是次优滤波方法。 自适应滤波 在很多实际系统中,系统过程噪声方差矩阵Q和量测误差方差阵R事先是不知道的,有时甚至连状态转移矩阵 或量测矩阵H也不能确切建立。如果所建立的模型与实际模型不符可能回引起滤波发散。自适应滤波就是这样一种具有抑制滤波发散作用的滤波方法。在滤波过程中,自适应滤波一方面利用量测值修正预测值,同时也对未知的或不确切的系统模型参数和噪声统计参数进行估计修正。自适应滤波的方法很多,包括贝叶斯法、极大似然法、相关法与协方差匹配法,其中最基本也是最重要的是相关法,而相关法可分为输出相关法和新息相关法。 在这里只讨论系统模型参数已知,而噪声统计参数Q和R未知情况下的自适应滤波。由于Q和R等参数最终是通过增益矩阵K影响滤波值的,因此进行自适应滤波时,也可以不去估计Q和R等参数而直接根据量测数据调整K就可以了。

自适应滤波实验报告

LMS 自适应滤波实验报告 姓名: 学号: 日期:2015.12.2 实验内容: 利用自适应滤波法研究从宽带信号中提取单频信号的方法。 设()()()()t f B t f A t s t x 212cos 2cos π?π+++=,()t s 是宽带信号,A ,B ,1f ,2f , ?任选 (1)要求提取两个单频信号; (2)设f f f ?+=12,要求提取单频信号()t f 22cos π,研究f ?的大小对提取单频信号的影响。 1. 自适应滤波器原理 自适应滤波器理论是现代信号处理技术的重要组成部分,它对复杂信号的处理具有独特的功能。自适应滤波器在信号处理中属于随机信号处理的范畴。在一些信号和噪声特性无法预知或他们是随时间变化的情况下,自适应滤波器通过自适应滤波算法调整滤波器系数,使得滤波器的特性随信号和噪声的变化,以达到最优滤波的效果,解决了固定全系数的维纳滤器和卡尔曼滤波器的不足。 (1) 自适应横向滤波器 所谓自适应滤波,就是利用前一时刻已获得的滤波器参数等结果,自动调节现时刻的滤波器参数,以适应信号和噪声未知或随时间变化的统计特性,从而实现最优滤波。自适应滤波器由两个部分组成:滤波器结构和调节滤波器系数的自适应算法。自适应滤波器的特点是自动调节自身的冲激响应,达到最优滤波,此算法适用于平稳和非平稳随机信号,并且不要求知道信号和噪声的统计特性。 一个单输入的横向自适应滤波器的原理框图如图所示:

实际上这种单输入系统就是一个FIR 网络结构,其输出()n y 用滤波器单位脉冲响应表示成下式: ()()()∑-=-=1 N m m n x m w n y 这里()n w 称为滤波器单位脉冲响应,令:()()n i n x x i w w m i i i ,1,1,1+-=-=+=用j 表示,上式可以写成 ∑==N i ij i j x w y 1 这里i w 也称为滤波器加权系数。用上面公式表示其输出,适用于自适应线性组合器,也适用于FIR 滤波器。将上式表示成矩阵形式: X W W X j T T j j y == 式中 [][ ] T Nj j j j T N x x x w w w X W ,...,,, ,...,,2121== 误差信号表示为 X W j T j j j j d y d e -=-= (2) 最小均方(LMS )算法 Widrow 等人提出的最小均方算法,是用梯度的估计值代替梯度的精确值,这种算法简单易行,因此获得了广泛的应用。 LMS 算法的梯度估计值用一条样本曲线进行计算,公式如下:

卡尔曼滤波的基本原理及应用

卡尔曼滤波的基本原理及应用卡尔曼滤波在信号处理与系统控制领域应用广泛,目前,正越来越广泛地应用于计算机应用的各个领域。为了更好地理解卡尔曼滤波的原理与进行滤波算法的设计工作,主要从两方面对卡尔曼滤波进行阐述:基本卡尔曼滤波系统模型、滤波模型的建立以及非线性卡尔曼滤波的线性化。最后,对卡尔曼滤波的应用做了简单介绍。 卡尔曼滤波属于一种软件滤波方法,其基本思想是:以最小均方误差为最佳估计准则,采用信号与噪声的状态空间模型,利用前一时刻的估计值和当前时刻的观测值来更新对状态变量的估计,求出当前时刻的估计值,算法根据建立的系统方程和观测方程对需要处理的信号做出满足最小均方误差的估计。 最初的卡尔曼滤波算法被称为基本卡尔曼滤波算法,适用于解决随机线性离散系统的状态或参数估计问题。卡尔曼滤波器包括两个主要过程:预估与校正。预估过程主要是利用时间更新方程建立对当前状态的先验估计,及时向前推算当前状态变量和误差协方差估计的值,以便为下一个时间状态构造先验估计值;校正过程负责反馈,利用测量更新方程在预估过程的先验估计值及当前测量变量的基础上建立起对当前状态的改进的后验估计。这样的一个过程,我们称之为预估-校正过程,对应的这种估计算法称为预估-校正算法。以下给出离散卡尔曼滤波的时间更新方程和状态更新方程。 时间更新方程: 状态更新方程: 在上面式中,各量说明如下: A:作用在X k-1上的n×n 状态变换矩阵 B:作用在控制向量U k-1上的n×1 输入控制矩阵 H:m×n 观测模型矩阵,它把真实状态空间映射成观测空间 P k-:为n×n 先验估计误差协方差矩阵 P k:为n×n 后验估计误差协方差矩阵 Q:n×n 过程噪声协方差矩阵 R:m×m 过程噪声协方差矩阵 I:n×n 阶单位矩阵K k:n×m 阶矩阵,称为卡尔曼增益或混合因数 随着卡尔曼滤波理论的发展,一些实用卡尔曼滤波技术被提出来,如自适应滤波,次优滤波以及滤波发散抑制技术等逐渐得到广泛应用。其它的滤波理论也迅速发展,如线性离散系统的分解滤波(信息平方根滤波,序列平方根滤波,UD 分解滤波),鲁棒滤波(H∞波)。 非线性样条自适应滤波:这是一类新的非线性自适应滤波器,它由一个线性组合器后跟挠性无记忆功能的。涉及的自适应处理的非线性函数是基于可在学习

卡尔曼滤波简介和实例讲解.

卡尔曼,美国数学家和电气工程师。1930年5月 19日生于匈牙利首都布达佩斯。1953年在美国麻省理工学院毕业获理学士学位,1954年获理学硕士学位,1957年在哥伦比亚大学获科学博士学位。1957~1958年在国际商业机器公司(IBM)研究大系统计算机控制的数学问题。1958~1964年在巴尔的摩高级研究院研究控制和数学问题。1964~1971年到斯坦福大学任教授。1971年任佛罗里达大学数学系统理论研究中心主任,并兼任苏黎世的瑞士联邦高等工业学校教授。1960年卡尔曼因提出著名的卡尔曼滤波器而闻名于世。卡尔曼滤波器在随机序列估计、空间技术、工程系统辨识和经济系统建模等方面有许多重要应用。1960年卡尔曼还提出能控性的概念。能控性是控制系统的研究和实现的基本概念,在最优控制理论、稳定性理论和网络理论中起着重要作用。卡尔曼还利用对偶原理导出能观测性概念,并在数学上证明了卡尔曼滤波理论与最优控制理论对偶。为此获电气与电子工程师学会(IEEE)的最高奖──荣誉奖章。卡尔曼著有《数学系统概论》(1968)等书。 什么是卡尔曼滤波 最佳线性滤波理论起源于40年代美国科学家Wiener和前苏联科学家Kолмогоров等人的研究工作,后人统称为维纳滤波理论。从理论上说,维纳滤波的最大缺点是必须用到无限过去的数据,不适用于实时处理。为了克服这一缺点,60年代Kalman把状态空间模型引入滤波理论,并导出了一套递推估计算法,后人称之为卡尔曼

滤波理论。卡尔曼滤波是以最小均方误差为估计的最佳准则,来寻求一套递推估计的算法,其基本思想是:采用信号与噪声的状态空间模型,利用前一时刻地估计值和现时刻的观测值来更新对状态变量的估计,求出现时刻的估计值。它适合于实时处理和计算机运算。 卡尔曼滤波的实质是由量测值重构系统的状态向量。它以“预测—实测—修正”的顺序递推,根据系统的量测值来消除随机干扰,再现系统的状态,或根据系统的量测值从被污染的系统中恢复系统的本来面目。 释文:卡尔曼滤波器是一种由卡尔曼(Kalman)提出的用于时变线性系统的递归滤波器。这个系统可用包含正交状态变量的微分方程模型来描述,这种滤波器是将过去的测量估计误差合并到新的测量误差中来估计将来的误差。 卡尔曼滤波的应用 斯坦利.施密特(Stanley Schmidt)首次实现了卡尔曼滤波器.卡尔曼在NASA埃姆斯研究中心访问时,发现他的方法对于解决阿波罗计划的轨道预测很有用,后来阿波罗飞船的导航电脑使用了这种滤波器. 关于这种滤波器的论文由Swerling (1958), Kalman (1960)与 Kalman and Bucy (1961)发表.

自适应滤波实验报告

LMS 自适应滤波实验报告 : 学号: 日期:2015.12.2 实验容: 利用自适应滤波法研究从宽带信号中提取单频信号的方法。 设()()()()t f B t f A t s t x 212cos 2cos π?π+++=,()t s 是宽带信号,A ,B ,1f ,2f , ?任选 (1)要求提取两个单频信号; (2)设f f f ?+=12,要求提取单频信号()t f 22cos π,研究f ?的大小对提取单频信号的影响。 1. 自适应滤波器原理 自适应滤波器理论是现代信号处理技术的重要组成部分,它对复杂信号的处理具有独特的功能。自适应滤波器在信号处理中属于随机信号处理的畴。在一些信号和噪声特性无法预知或他们是随时间变化的情况下,自适应滤波器通过自适应滤波算法调整滤波器系数,使得滤波器的特性随信号和噪声的变化,以达到最优滤波的效果,解决了固定全系数的维纳滤器和卡尔曼滤波器的不足。 (1) 自适应横向滤波器 所谓自适应滤波,就是利用前一时刻已获得的滤波器参数等结果,自动调节现时刻的滤波器参数,以适应信号和噪声未知或随时间变化的统计特性,从而实现最优滤波。自适应滤波器由两个部分组成:滤波器结构和调节滤波器系数的自适应算法。自适应滤波器的特点是自动调节自身的冲激响应,达到最优滤波,此算法适用于平稳和非平稳随机信号,并且不要求知道信号和噪声的统计特性。

一个单输入的横向自适应滤波器的原理框图如图所示: 实际上这种单输入系统就是一个FIR 网络结构,其输出()n y 用滤波器单位脉冲响应表示成下式: ()()()∑-=-=1 N m m n x m w n y 这里()n w 称为滤波器单位脉冲响应,令: ()()n i n x x i w w m i i i ,1,1,1+-=-=+=用j 表示,上式可以写成 ∑==N i ij i j x w y 1 这里i w 也称为滤波器加权系数。用上面公式表示其输出,适用于自适应线性组合器,也适用于FIR 滤波器。将上式表示成矩阵形式: X W W X j T T j j y == 式中 [][ ] T Nj j j j T N x x x w w w X W ,...,,, ,...,,2121== 误差信号表示为 X W j T j j j j d y d e -=-= (2) 最小均方(LMS )算法 Widrow 等人提出的最小均方算法,是用梯度的估计值代替梯度的精确值,这种算法简单易行,因此获得了广泛的应用。

北航卡尔曼滤波实验报告-GPS静动态滤波实验

卡尔曼滤波实验报告

2014 年 4 月 GPS 静/动态滤波实验 一、实验要求 1、分别建立GPS 静态及动态卡尔曼滤波模型,编写程序对静态和动态GPS 数据进行Kalman 滤波。 2、对比滤波前后导航轨迹图。 3、画出滤波过程中估计均方差(P 阵对角线元素开根号)的变化趋势。 4、思考:① 简述动态模型与静态模型的区别与联系;② R 阵、Q 阵,P0阵的选取对滤波精度及收敛速度有何影响,取值时应注意什么;③ 本滤波问题是否可以用最小二乘方法解决,如果可以,请阐述最小二乘方法与Kalman 滤波方法的优劣对比。 二、实验原理 2.1 GPS 静态滤波 选取系统的状态变量为[ ]T L h λ=X ,其中L 为纬度(deg),λ为经度(deg),h 为高度 (m)。设()w t 为零均值高斯白噪声,则系统的状态方程为: 310()w t ?=+X (1) 所以离散化的状态模型为: ,111k k k k k W ---=+X X Φ (2) 式中,,1k k -Φ为33?单位阵,k W 为系统噪声序列。 测量数据包括:纬度静态量测值、经度静态量测值和高度构成31?矩阵Z ,量测方程

可以表示为: k k k Z HX V =+ (3) 式中,H 为33?单位阵,k V 为量测噪声序列。 系统的状态模型是十分准确的,所以系统模型噪声方差阵可以取得十分小,取Q 阵零矩阵。 系统测量噪声方差阵R 由测量确定,由于位置量测精度为5m ,采用克拉索夫斯基地球椭球模型,长半径e R 为6378245m ,短半径p R 为6356863m 。所以R 阵为: 2 2 25180()0 05180 ( )0cos()00 5p e R R L ππ ??? ?? ? ??= ??? ? ? ?? ? R (4) 2.2 GPS 动态滤波 动态滤波基于当前统计模型,在地球坐标系下解算。选取系统的状态变量为 T x x x y y y z z z X x v a y v a z v a εεε??=??,其中,,,x x x x v a ε依次为地球坐标系下x 轴上的位置、速度、加速度和位置误差分量,,y z 轴同理。系统的状态模型可以表示为: ()()()()t t t t =++X AX U W (5) 式中,位置误差视为有色噪声,为一阶马尔科夫过程,可表示为: x x x x y y y y z z z z w w w εετεετεετ?=-+????=-+????=-+?? 1 11 (6) 其中,i τ(,,i x y z =)为对应马尔科夫过程的相关时间常数,(,,)i w i x y z =为零均值高斯白噪声。

北航卡尔曼滤波实验报告_GPS静动态滤波实验

卡尔曼滤波实验报告 2014 年 4 月 GPS静/动态滤波实验 一、实验要求 1、分别建立GPS静态及动态卡尔曼滤波模型,编写程序对静态和动态GPS数据进行Kalman滤波。 2、对比滤波前后导航轨迹图。

3、画出滤波过程中估计均方差(P 阵对角线元素开根号)的变化趋势。 4、思考:① 简述动态模型与静态模型的区别与联系;② R 阵、Q 阵,P0阵的选取对滤波精度及收敛速度有何影响,取值时应注意什么;③ 本滤波问题是否可以用最小二乘方法解决,如果可以,请阐述最小二乘方法与Kalman 滤波方法的优劣对比。 二、实验原理 2.1 GPS 静态滤波 (deg) 度(m) (1) 所以离散化的状态模型为: (2) 可以表示为: (3) 矩阵。 5m ,采用克拉索夫斯基地球 6378245m 6356863m (4) 2.2 GPS 动态滤波 动态滤波基于当前 统计模型,在地球坐标系下解算。选取系统的状态变量为 (5)

式中,位置误差视为有色噪声,为一阶马尔科夫过程,可表示为: ε τεετεετ-=- =-1 1 (6) 白噪声。 (7) (8) 系统噪声为: (9) 量测量为纬度动态量测值、经度动态量测值、高度和三向速度量测值。由于滤波在地球 坐标系下进行,为了简便首先将纬度、经度和高度转化为三轴位置坐标值,转化方式如下: (10) 量测方程为: (11)

综上,离散化的Kalman滤波方程为: (12) 离散化的系统噪声协方差阵为: 2 [ π ?] ? k x = +<0 “当前”加速度 (13) 离散化量测噪声协方差阵为:diag = R 三、实验结果 3.1 GPS静态滤波

卡尔曼滤波与组合导航课程报告

卡尔曼滤波与组合导航》课程实验报告 实验 捷联惯导 /GPS 组合导航系统静态导航实验 实验序号 3 姓名 陈星宇 系院专业 17 班级 ZY11172 学号 ZY1117212 日期 2012-5-15 指导教师 宫晓琳 成绩 、实验目的 ① 掌握捷联惯导 /GPS 组合导航系统的构成和基本工作原理; ②掌握采用卡尔曼滤波方法进行捷联惯导 /GPS 组合的基本原理; ③掌握捷联惯导 /GPS 组合导航系统静态性能; ④了解捷联惯导 /GPS 组合导航静态时的系统状态可观测性; 、实验原理 ( 1)系统方程 X FX GW 系统噪声矢量由陀螺仪和加速度计的随机误差组成,表达式为: 2)量测方程 和 H 分别为捷联解算与 GPS 的东向速度、北向速度、天向速度、纬度、经度和高度之 差;量测矩阵 H H V H P T ,H P 03 6 diag R M H, (R N H )cos L, 036 , H V 033 diag 1, 1, 1 039 ,v v V E v V N v V U v L v v H 为量测噪声。 量测噪声 v E v N T v U L h x y z x y z 其中, E 、 N 、 U 为数学平台失准角; v E 、 v N 、 v U 分别为载体的东向、北向和天向速度误差; L 、 、 h 分别为纬度误差、经度误差和高度误差; x 、 y 、 z 、 x 、 y 、 z 分别为陀螺随 机常值漂移和加速度计随机常值零偏。(下 标 系统的噪声转移矩阵 G 为: E 、N 、 U 分别代表东、北、天) C b n 3 3 0 9 3 3 3 C n C b 9 3 15 6 系统的状态转移矩阵 w w w w F 组成内容为: w z F 06N 9 F S F M ,其中 F N 中非零元素为可由惯导误差模型获得。 F S C b n 3 3 0 3 3 3 3 C b n 3 3 96 量测变量 z V E V N V U L H , , V E 、 V N 、 V U 、 L 、 X U

卡尔曼(kalman)滤波算法特点及其应用

Kalman滤波算法的特点: (1)由于Kalman滤波算法将被估计的信号看作在白噪声作用下一个随机线性系统的输出,并且其输入/输出关系是由状态方程和输出方程在时间域内给出的,因此这种滤波方法不仅适用于平稳随机过程的滤波,而且特别适用于非平稳或平稳马尔可夫序列或高斯-马尔可夫序列的滤波,所以其应用范围是十分广泛的。 (2)Kalman滤波算法是一种时间域滤波方法,采用状态空间描述系统。系统的过程噪声和量测噪声并不是需要滤除的对象,它们的统计特征正是估计过程中需要利用的信息,而被估计量和观测量在不同时刻的一、二阶矩却是不必要知道的。 (3)由于Kalman滤波的基本方程是时间域内的递推形式,其计算过程是一个不断地“预测-修正”的过程,在求解时不要求存储大量数据,并且一旦观测到了新的数据,随即可以算的新的滤波值,因此这种滤波方法非常适合于实时处理、计算机实现。 (4)由于滤波器的增益矩阵与观测无关,因此它可预先离线算出,从而可以减少实时在线计算量。在求滤波器增益矩阵时,要求一个矩阵的逆,它的阶数只取决于观测方程的维数,而该维数通常很小,这样,求逆运算是比较方便的。另外,在求解滤波器增益的过程中,随时可以算出滤波器的精度指标P,其对角线上的元素就是滤波误差向量各分量的方差。 Kalman滤波的应用领域 一般地,只要跟时间序列和高斯白噪声有关或者能建立类似的模型的系统,都可以利用Kalman滤波来处理噪声问题,都可以用其来预测、滤波。Kalman滤波主要应用领域有以下几个方面。 (1)导航制导、目标定位和跟踪领域。 (2)通信与信号处理、数字图像处理、语音信号处理。 (3)天气预报、地震预报。 (4)地质勘探、矿物开采。 (5)故障诊断、检测。 (6)证券股票市场预测。 具体事例: (1)Kalman滤波在温度测量中的应用; (2)Kalman滤波在自由落体运动目标跟踪中的应用; (3)Kalman滤波在船舶GPS导航定位系统中的应用; (4)Kalman滤波在石油地震勘探中的应用; (5)Kalman滤波在视频图像目标跟踪中的应用;

北航卡尔曼滤波实验报告-GPS静动态滤波实验

卡尔曼滤波实验报告 2014 年4 月 GPS静/动态滤波实验 一、实验要求 1、分别建立GPS静态及动态卡尔曼滤波模型,编写程序对静态和动态GPS数据进行Kalman滤波。 2、对比滤波前后导航轨迹图。

3、画出滤波过程中估计均方差(P 阵对角线元素开根号)的变化趋势。 4、思考:① 简述动态模型与静态模型的区别与联系;② R 阵、Q 阵,P0阵的选取对滤波精度及收敛速度有何影响,取值时应注意什么;③ 本滤波问题是否可以用最小二乘方法解决,如果可以,请阐述最小二乘方法与Kalman 滤波方法的优劣对比。 二、实验原理 GPS 静态滤波 选取系统的状态变量为[ ]T L h λ=X ,其中L 为纬度(deg),λ为经度(deg),h 为高度(m)。设()w t 为零均值高斯白噪声,则系统的状态方程为: 31 0()w t ?=+&X (1) 所以离散化的状态模型为: ,111k k k k k W ---=+X X Φ (2) 式中,,1k k -Φ为33?单位阵,k W 为系统噪声序列。 测量数据包括:纬度静态量测值、经度静态量测值和高度构成31?矩阵Z ,量测方程 可以表示为: k k k Z HX V =+ (3) 式中,H 为33?单位阵,k V 为量测噪声序列。 系统的状态模型是十分准确的,所以系统模型噪声方差阵可以取得十分小,取Q 阵零矩阵。 系统测量噪声方差阵R 由测量确定,由于位置量测精度为5m ,采用克拉索夫斯基地球椭球模型,长半径e R 为6378245m ,短半径p R 为6356863m 。所以R 阵为: 22 25180()0 05180 ( )0cos()00 5p e R R L ππ ??? ?? ? ??= ??? ? ? ?? ? R (4) GPS 动态滤波 动态滤波基于当前统计模型,在地球坐标系下解算。选取系统的状态变量为 T x x x y y y z z z X x v a y v a z v a εεε??=??,其中,,,x x x x v a ε依次为地球坐标系下x 轴上的位置、速度、加速度和位置误差分量,,y z 轴同理。系统的状态模型可以表示为: ()()()()t t t t =++X AX U W & (5) 式中,位置误差视为有色噪声,为一阶马尔科夫过程,可表示为:

卡尔曼滤波的原理及应用自己总结

卡尔曼滤波的原理以及应用 滤波,实质上就是信号处理与变换的过程。目的是去除或减弱不想要成分,增强所需成分。卡尔曼滤波的这种去除与增强过程是基于状态量的估计值和实际值之间的均方误差最小准则来实现的,基于这种准则,使得状态量的估计值越来越接近实际想要的值。而状态量和信号量之间有转换的关系,所以估计出状态量,等价于估计出信号量。所以不同于维纳滤波等滤波方式,卡尔曼滤波是把状态空间理论引入到对物理系统的数学建模过程中来,用递归方法解决离散数据线性滤波的问题,它不需要知道全部过去的数据,而是用前一个估计值和最近一个观察数据来估计信号的当前值,从而它具有运用计算机计算方便,而且可用于平稳和不平稳的随机过程(信号),非时变和时变的系统的优越性。 卡尔曼滤波属于一种软件滤波方法,概括来说其基本思想是:以最小均方误差为最佳估计准则,采用信号与噪声的状态空间模型,利用前一时刻的估计值和当前时刻的观测值来更新对状态变量的估计,求出当前时刻的估计值,算法根据建立的系统方程和观测方程对需要处理的信号做出满足最小均方误差的估计。其所得到的解是以估计值的形式给出的。 卡尔曼滤波过程简单来说主要包括两个步骤:状态变量的预估以及状态变量的校正。预估过程是不考虑过程噪声和量测噪声,只是基于系统本身性质并依靠前一时刻的估计值以及系统控制输入的一种估计;校正过程是用量测值与预估量测值之间的误差乘以一个与过程

噪声和量测噪声相关的增益因子来对预估值进行校正的,其中增益因子的确定与状态量的均方误差有关,用到了使均方误差最小的准则。而这一过程中体现出来的递归思想即是:对于当前时刻的状态量估计值以及均方误差预估值实时进行更新,以便用于下一时刻的估计,使得系统在停止运行之前能够源源不断地进行下去。 下面对于其数学建模过程进行详细说明。 1.状态量的预估 (1)由前一时刻的估计值和送给系统的可控制输入来预估计当前时刻状态量。 X(k|k-1)=A X(k-1|k-1)+B U(k) 其中,X(k-1|k-1)表示前一时刻的估计值,U(k)表示系统的控制输入,X(k|k-1)表示由前一时刻估计出来的状态量的预估计值,A表示由k-1时刻过渡到k时刻的状态转移矩阵,B表示控制输入量与状态量之间的一种转换因子,这两个都是由系统性质来决定的。 (2)由前一时刻的均方误差阵来预估计当前时刻的均方误差阵。 P(k|k-1)=A P(k-1|k-1)A’+Q 其中,P(k-1|k-1)是前一时刻的均方误差估计值,A’代表矩阵A 的转置,Q代表过程噪声的均方误差矩阵。该表达式具体推导过程如下: P(k|k-1)=E{[Xs(k|k)-X(k|k-1)][Xs(k|k)-X(k|k-1)]’}------ 其中Xs(k|k)=A Xs(k-1|k-1)+B U(k)+W(k-1)表示当前时刻的实际值,Xs(k-1|k-1)表示前一时刻的实际值,可以看出与当前时刻的预估计值

扩展卡尔曼滤波(EKF)应用于GPS-INS组合导航

clear all; %% 惯性-GPS组合导航模型参数初始化 we = 360/24/60/60*pi/180; %地球自转角速度,弧度/s psi = 10*pi/180; %psi角度/ 弧度 Tge = 0.12; Tgn = 0.10; Tgz = 0.10; %这三个参数的含义详见参考文献 sigma_ge=1; sigma_gn=1; sigma_gz=1; %% 连续空间系统状态方程 % X_dot(t) = A(t)*X(t) + B(t)*W(t) A=[0 we*sin(psi) -we*cos(psi) 1 0 0 1 0 0; -we*sin(psi) 0 0 0 1 0 0 1 0; we*cos(psi) 0 0 0 0 1 0 0 1; 0 0 0 -1/Tge 0 0 0 0 0; 0 0 0 0 -1/Tgn 0 0 0 0; 0 0 0 0 0 -1/Tgz 0 0 0; 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0;]; %状态转移矩阵 B=[0 0 0 sigma_ge*sqrt(2/Tge) 0 0 0 0 0; 0 0 0 0 sigma_gn*sqrt(2/Tgn) 0 0 0 0; 0 0 0 0 0 sigma_gz*sqrt(2/Tgz) 0 0 0;]';%输入控制矩阵%% 转化为离散时间系统状态方程 % X(k+1) = F*X(k) + G*W(k) T = 0.1; [F,G]=c2d(A,B,T);

H=[1 0 0 0 0 0 0 0 0; 0 -sec(psi) 0 0 0 0 0 0 0;];%观测矩阵 %% 卡尔曼滤波器参数初始化 t=0:T:50-T; length=size(t,2); y=zeros(2,length); Q=0.5^2*eye(3); %系统噪声协方差 R=0.25^2*eye(2); %测量噪声协方差 y(1,:)=2*sin(pi*t*0.5); y(2,:)=2*cos(pi*t*0.5); Z=y+sqrt(R)*randn(2,length); %生成的含有噪声的假定观测值,2维X=zeros(9,length); %状态估计值,9维 X(:,1)=[0,0,0,0,0,0,0,0,0]'; %状态估计初始值设定 P=eye(9); %状态估计协方差 %% 卡尔曼滤波算法迭代过程 for n=2:length X(:,n)=F*X(:,n-1); P=F*P*F'+ G*Q*G'; Kg=P*H'/(H*P*H'+R); X(:,n)=X(:,n)+Kg*(Z(:,n)-H*X(:,n)); P=(eye(9,9)-Kg*H)*P; end %% 绘图代码 figure(1) plot(y(1,:)) hold on; plot(y(2,:)) hold off; title('理想的观测量'); figure(2)

完整word版Kalman滤波MATLAB综合实验报告

《数学实验》综合实验报告实验名称综合实验(Kalman滤波) 2016年 5月

一、【实验目的】 明白滤波计算流程 能够调用相关函数进行数据处理 使用循环函数和二维曲线画图 有效的构建仿真模型,产生模拟数据 二、【实验原理分析】 卡尔曼滤波器是一个“optimal recursive data processing algorithm(最优化自回归数据处理算法)”。对于解决很大部分的问题,它是最优,效率最高甚至是最有用的。它的广泛应用已经超过30年,包括机器人导航,控制,传感器数据融合甚至在军事方面的雷达系统以及导弹追踪等等。近来更被应用于计算机图像处理,例如头脸识别,图像分割,图像边缘检测等等。 设系统可用一个线性随机微分方程来描述: X(k)=A X(k-1)+B U(k)+W(k) 再加上系统的测量值:Z(k)=H X(k)+V(k) 上两式子中,X(k)是k时刻的系统状态,U(k)是k时刻对系统的控制量。A和B是系统参数,对于多模型系统,他们为矩阵。Z(k)是k时刻的测量值,H是测量系统的参数,对于多测量系统,H为矩阵。W(k)和V(k)分别表示过程和测量的噪声。他们被假设成高斯白噪声,他们的协方差分别是Q,R(这里假设他们不随系统状态变化而变化)。 对于满足上面的条件(线性随机微分系统,过程和测量都是高斯白噪声),卡尔曼滤波器是最优的信息处理器。首先要利用系统的过程模型,来预测下一状态的系统。假设现在的系统状态是k,根据系统的模型,可以基于系统的上一状态而预测出现在状态: X(k|k-1)=A X(k-1|k-1)+B U(k) (1) 式(1)中,X(k|k-1)是利用上一状态预测的结果,X(k-1|k-1)是上一状态最优的结果,U(k)为现在状态的控制量,如果没有控制量,它可以为0。到现在为止,我们的系统结果已经更新了,可是,对应于X(k|k-1)的协方差还没更新。我们用P表示协方差: P(k|k-1)=A P(k-1|k-1) A'+Q (2) 式(2)中,P(k|k-1)是X(k|k-1)对应的协方差,P(k-1|k-1)是X(k-1|k-1)对应的协方差,A'表示A的转置矩阵,Q是系统过程的协方差。式子1,2就是卡尔曼滤波器5个公式当中的前两个,也就是对系统的预测。 现在我们有了现在状态的预测结果,然后我们再收集现在状态的测量值。结合预测值和测量值,我们 2 可以得到现在状态(k)的最优化估算值X(k|k): X(k|k)= X(k|k-1)+Kg(k) (Z(k)-H X(k|k-1)) (3) 其中Kg为卡尔曼增益(Kalman Gain): Kg(k)= P(k|k-1) H' / (H P(k|k-1) H' + R) (4) 到现在为止,我们已经得到了k状态下最优的估算值X(k|k)。但是为了要令卡尔曼滤波器不断的运行下去直到系统过程结束,我们还要更新k状态下X(k|k)的协方差:

卡尔曼滤波和角度测定

小车下面就是 L3G4200D + ADXL345 两个模块,加速度模块没固定好,板子太小了没地方打孔,有时间将两个模块焊到一个万能板上应该会容易固定一些。 加速度模块角度计算: 如果传感器x 轴朝下,y 轴朝前 那竖直方向弧度计算公式为:angle = atan2(y, z) //结果以弧度表示并介于-pi 到pi 之间(不包括-pi) 如果要换算成具体角度:angle = atan2(y, z) * (180/3.14) 陀螺仪角度计算: 式中angle(n)为陀螺仪采样到第n次的角度值; angle(n-1)为陀螺仪第n-1次采样时的角度值; gyron为陀螺仪的第n次采样得到的瞬时角速率值; dt为运行一遍所用时间; angle_n += gyro(n) * dt //积分计算 卡尔曼滤波 网上找的kalman滤波,具体代码如下 static const float dt = 0.02; static float P[2][2] = {{ 1, 0 }, { 0, 1 }}; float angle; float q_bias; //偏心、倾向于 float rate; //比率 static const float R_angle = 0.5 ; //R倾角 static const float Q_angle = 0.001; //Q倾角

static const float Q_gyro = 0.003; //Q陀螺仪 float stateUpdate(const float gyro_m){ /*状态更新*/ float q; float Pdot[4]; q = gyro_m - q_bias; Pdot[0] = Q_angle - P[0][1] - P[1][0]; /* 0,0 */ Pdot[1] = - P[1][1]; /* 0,1 */ Pdot[2] = - P[1][1]; /* 1,0 */ Pdot[3] = Q_gyro; /* 1,1 */ rate = q; angle += q * dt; P[0][0] += Pdot[0] * dt; P[0][1] += Pdot[1] * dt; P[1][0] += Pdot[2] * dt; P[1][1] += Pdot[3] * dt; return angle; } float kalmanUpdate(const float incAngle) { float angle_m = incAngle; float angle_err = angle_m - angle; float h_0 = 1; const float PHt_0 = h_0*P[0][0]; /* + h_1*P[0][1] = 0*/ const float PHt_1 = h_0*P[1][0]; /* + h_1*P[1][1] = 0*/ float E = R_angle +(h_0 * PHt_0);

相关主题
文本预览
相关文档 最新文档