当前位置:文档之家› 最新中考数学复习圆专题复习教案

最新中考数学复习圆专题复习教案

最新中考数学复习圆专题复习教案
最新中考数学复习圆专题复习教案

中考数学专题复习六 几何(圆)

【教学笔记】

一、与圆有关的计算问题(重点)

1、扇形面积的计算

扇形:扇形面积公式 21

3602

n R S lR π=

= n :圆心角 R :扇形对应的圆的半径 l :扇形弧长 S :扇形面积

圆锥侧面展开图:

(1)S S S =+侧表底=2

Rr r ππ+

(2)圆锥的体积:2

13

V r h π=

2、弧长的计算:弧长公式 180

n R

l π=; 3、角度的计算

二、圆的基本性质(重点)

1、切线的性质:圆的切线垂直于经过切点的半径.

2、圆周角定理:一条弧所对圆周角等于它所对圆心角的一半;

推论:(1)在同圆或等圆中,同弧或等弧所对的圆周角相等;

(2)相等的圆周角所对的弧也相等。 (3)半圆(直径)所对的圆周角是直角。 (4)90°的圆周角所对的弦是直径。

注意:在圆中,同一条弦所对的圆周角有无数个。

3、垂径定理定理:垂直于弦的直径平分这条弦,并且平分这条弦所对的两段弧

推论:(1)平分弦(不是直径)的直径垂直与这条弦,并且平分这条弦所对的两段弧

(2)弦的垂直平分线经过圆心,并且平分这条弦所对的弧

(3)平分弦所对的一条弧的直径垂直平分这条弦,并且平分这条弦所对的另一条弧 (4)在同圆或者等圆中,两条平行弦所夹的弧相等

三、圆与函数图象的综合

一、与圆有关的计算问题

【例1】(2016?资阳)在Rt△ABC中,∠ACB=90°,AC=2,以点B为圆心,BC的长为半径作弧,交AB于点D,若点D为AB的中点,则阴影部分的面积是()

A.2﹣π B.4﹣π C.2﹣π D.π

【解答】解:∵D为AB的中点,∴BC=BD=AB,∴∠A=30°,∠B=60°.∵AC=2,

∴BC=AC?tan30°=2?=2,∴S阴影=S△AB C﹣S扇形C B D=×2×2﹣=2﹣π.故选A.

【例2】(2014?资阳)如图,扇形AOB中,半径OA=2,∠AOB=120°,C是的中点,连接AC、BC,则图中阴影部分面积是()

A.﹣2B.﹣2C.﹣D.﹣

解答:连接OC,

∵∠AOB=120°,C为弧AB中点,∴∠AOC=∠BOC=60°,∵OA=OC=OB=2,

∴△AOC、△BOC是等边三角形,∴AC=BC=OA=2,

∴△AOC的边AC上的高是=,△BOC边BC上的高为,

∴阴影部分的面积是﹣×2×+﹣×2×=π﹣2,

故选A.

【例3】(2013?资阳)钟面上的分针的长为1,从9点到9点30分,分针在钟面上扫过的面积是()πBππ

=

【例4】(2015成都)如图,正六边形ABCDEF 内接于⊙O ,半径为4,则这

个正六边形的边心距OM 和BC 弧线的长分别为( )

A .2,3

π

B .π

C 23π

D .43π

【课后练习】

1、(2015南充)如图,P A 和PB 是⊙O 的切线,点A 和B 的切点,AC 是⊙O 的直径,已知∠P =40°,则

∠ACB 的大小是( B )

A .40°

B .60°

C .70°

D .80°

2、(2015达州)如图,直径AB 为12的半圆,绕A 点逆时针旋转60°,此时点B 旋转到点B ′,则图中阴影部分的面积是( B )

A .12π

B .24π

C .6π

D .36π

3、(2015内江)如图,在⊙O 的内接四边形ABCD 中,AB 是直径,∠BCD =120°,过D 点的切线PD 与

直线AB 交于点P ,则∠ADP 的度数为( ) A .40° B .35° C .30° D .45°

解析:连接BD ,∵∠DAB=180°-∠C=50°,AB 是直径,∴∠ADB =90°,∠ABD =90°-∠DAB=40°,∵PD 是切线,∴∠ADP =∠B=40°.故选A .

4、(2015自贡)如图,AB 是⊙O 的直径,弦CD ⊥AB ,∠CDB =30°,CD =32,则阴影部分的面积为 A .2π B .π C .3π D .32π

解析:∠BOD =60°

5、(2015凉山州)如图,△ABC 内接于⊙O ,∠OBC=40°,则∠A 的度数为( ) A .80° B .100° C .110° D .130°

6、(2015凉山州)将圆心角为90°,面积为4πcm 2

的扇形围成一个圆锥的侧面,则所围成的圆锥的底面半径 ( )

A .1cm

B .2cm

C .3cm

D .4cm

7、(2015泸州)如图,P A 、PB 分别与⊙O 相切于A 、B 两点,若∠C =65°,则∠P 的度数为( ) A .65° B .130° C .50° D .100°

8、(2015眉山)如图,⊙O 是△ABC 的外接圆,∠ACO =450,则∠B 的度数为( ) A .300 B .350 C .400 D 450

9、(2015巴中)如图,在⊙O 中,弦AC ∥半径OB ,∠BOC =50°,则∠OAB 的度数为( ) A .25° B .50° C .60° D .30°

10、(2015攀枝花)如图,已知⊙O 的一条直径AB 与弦CD 相交于点E ,且AC =2,AE CE =1,则图中阴影部分的面积为( )

A B C .29π D .49

π

11、(2015甘孜州)如图,已知扇形AOB 的半径为2,圆心角为90°,连接AB ,则图中阴影部分的面积是 ( )

A.π﹣2B.π﹣4C.4π﹣2D.4π﹣4

12、(2015达州)已知正六边形ABCDEF cm,则正六边形的半径为cm.

13、(2015自贡)如图,已知AB是⊙O的一条直径,延长AB至C点,使AC=3BC,CD与⊙O相切于D点.若CD=3,则劣弧AD的长为.

14、(2015遂宁)在半径为5cm的⊙O中,45°的圆心角所对的弧长为cm.

15、(2015宜宾)如图,AB为⊙O的直径,延长AB至点D,使BD=OB,DC切⊙O于点C,点B是CF的中点,弦CF交AB于点E.若⊙O的半径为2,则CF= .

16、(2015泸州)用一个圆心角为120°,半径为6的扇形作一个圆锥的侧面,这个圆锥的底面圆的半径是.

17、(2015眉山)已知⊙O的内接正六边形周长为12cm,则这个圆的半经是_________cm.

18、(2015广安)如图,A.B.C三点在⊙O上,且∠AOB=70°,则∠C= 度.

19、24.(2015巴中)圆心角为60°,半径为4cm的扇形的弧长为cm.

20、(2015甘孜州)如图,AB是⊙O的直径,弦CD垂直平分半径OA,则∠ABC的大小为度.

二、圆的基本性质

【例1】(2016?资阳)如图,在⊙O中,点C是直径AB延长线上一点,过点C作⊙O的切线,切点为D,连结BD.

(1)求证:∠A=∠BDC;

(2)若CM平分∠ACD,且分别交AD、BD于点M、N,当DM=1时,求MN的长.

【解答】解:(1)如图,连接OD,

∵AB为⊙O的直径,∴∠ADB=90°,即∠A+∠ABD=90°,

又∵CD与⊙O相切于点D,∴∠CDB+∠ODB=90°,

∵OD=OB,∴∠ABD=∠ODB,∴∠A=∠BDC;

(2)∵CM平分∠ACD,∴∠DCM=∠ACM,

又∵∠A=∠BDC,∴∠A+∠ACM=∠BDC+∠DCM,即

∠DMN=∠DNM,∵∠ADB=90°,DM=1,∴DN=DM=1,∴MN==.

【例2】(2015?资阳)如图11,在△ABC中,BC是以AB为直径的⊙O的切线,且⊙O与AC相交于点D,E 为BC的中点,连接DE.

(1)求证:DE是⊙O的切线;

(2)连接AE,若∠C=45°,求sin∠CAE的值.

解答:解:(1)连接OD,BD,∴OD=OB ∴∠ODB=∠OBD.

∵AB是直径,∴∠ADB=90°,∴∠CDB=90°.

∵E为BC的中点,∴DE=BE,∴∠EDB=∠EBD,

∴∠ODB+∠EDB=∠OBD+∠EBD,即∠EDO=∠EBO.

∵BC是以AB为直径的⊙O的切线,∴AB⊥BC,∴∠EBO=90°,∴∠ODE=90°,

∴DE是⊙O的切线;

(2)作EF⊥CD于F,设EF=x

∵∠C=45°,∴△CEF、△ABC都是等腰直角三角形,∴CF=EF=x,

∴BE=CE=x,∴AB=BC=2x,在RT△ABE中,AE==x,

∴sin∠CAE==.

【例3】(2014?资阳)如图,AB是⊙O的直径,过点A作⊙O的切线并在其上取一点C,连接OC交⊙O于点D,BD的延长线交AC于E,连接AD.

(1)求证:△CDE∽△CAD;

(2)若AB=2,AC=2,求AE的长.

解答:(1)证明:∵AB是⊙O的直径,∴∠ADB=90°,∴∠B+∠BAD=90°,

∵AC为⊙O的切线,∴BA⊥AC,∴∠BAC=90°,即∠BAD+∠DAE=90°,∴∠B=∠CAD,

∵OB=OD,∴∠B=∠ODB,而∠ODB=∠CDE,∴∠B=∠CDE,∴∠CAD=∠CDE,

而∠ECD=∠DCA,∴△CDE∽△CAD;

(2)解:∵AB=2,∴OA=1,

在Rt△AOC中,AC=2,∴OC==3,∴CD=OC﹣OD=3﹣1=2,

∵△CDE∽△CAD,∴=,即=,∴CE=.

【例4】(2013?资阳)在⊙O中,AB为直径,点C为圆上一点,将劣弧沿弦AC翻折交AB于点D,连结CD.

(1)如图1,若点D与圆心O重合,AC=2,求⊙O的半径r;

(2)如图2,若点D与圆心O不重合,∠BAC=25°,请直接写出∠DCA的度数.

AC=

OE=

r

根据翻折的性质,

所对的圆周角等于

所对的圆周角,【课后练习】

1、(2015达州)如图,AB 为半圆O 的在直径,AD 、BC 分别切⊙O 于A 、B 两点,CD 切⊙O 于点E ,连

接OD 、OC ,下列结论:①∠DOC =90°,②AD +BC =CD ,③22

ΔAOD ΔBOC ::S S AD AO =,④OD :OC =DE :

EC ,⑤2

OD DE CD =?,正确的有( ) A .2个 B .3个 C .4个 D .5个 解析:如图,连接OE ,

∵AD 与圆O 相切,DC 与圆O 相切,BC 与圆O 相切,

∴∠DAO=∠DEO=∠OBC=90°,∴DA=DE ,CE=CB ,AD ∥BC 。 ∴CD=DE+EC=AD+BC 。结论②正确。

在Rt △ADO 和Rt △EDO 中,OD=OD ,DA=DE ,∴Rt △ADO ≌Rt △EDO (HL )

∴∠AOD=∠EOD 。同理Rt △CEO ≌Rt △CBO ,∴∠EOC=∠BOC 。又∠AOD+∠DOE+∠EOC+∠COB=180°, ∴2(∠DOE+∠EOC )=180°,即∠DOC=90°。结论⑤正确。 ∴∠DOC=∠DEO=90°。又∠EDO=∠ODC ,∴△EDO ∽△ODC 。∴,即OD 2=DC ?DE 。结论①正确。

,结论④错误。由OD 不一定等于OC ,结论③错

误。∴正确的选项有①②⑤。故选A 。

2、(2015遂宁)如图,在半径为5cm 的⊙O 中,弦AB =6cm ,OC ⊥AB 于点C ,则OC =( )

A .3cm

B .4cm

C .5cm

D .6cm

【解析】连接OA ,∵AB=6cm ,OC ⊥AB 于点C ,∴AC=AB=×6=3cm , ∵⊙O 的半径为5cm ,∴OC==

=4cm ,

故选B .

3、(2015广元)如图,已知⊙O的直径AB⊥CD于点E.则下列结论一定错误的是()

D.△OCE≌△ODE

A.CE=DE B.AE=OE C.BC BD

4、(2015广元)如图,在⊙O中,AB是直径,点D是⊙O上一点,点C是AD的中点,弦CE⊥AB于点E,过点D的切线交EC的延长线于点G,连接AD,分别交CF、BC于点P、Q,连接AC.给出下列结论:

①∠BAD=∠ABC;②GP=GD;③点P是△ACQ的外心.

其中正确结论是(只需填写序号).

5、(2015成都)如图,在Rt△ABC中,∠ABC=90°,AC的垂直平分线分别与AC,BC及A B的延长线相交于点D,E,F,且BF=BC.⊙O是△BEF的外接圆,∠EBF的平分线交EF于点G,交于点H,连接BD、FH.(1)求证:△ABC≌△EBF;(2)试判断BD与⊙O的位置关系,并说明理由;

(3)若AB=1,求HG?HB的值.

6、(2015遂宁)如图,AB为⊙O的直径,直线CD切⊙O于点D,AM⊥CD于点M,BN⊥CD于N.(1)

求证:∠ADC=∠ABD;(2)求证:AD2=AM?AB;(3)若AM=18

5

,sin∠ABD=

3

5

,求线段BN的长.

解答:(1)证明:连接OD,∵直线CD切⊙O于点D,∴∠CDO=90°,

∵AB为⊙O的直径,∴∠ADB=90°,∴∠1+∠2=∠2+∠3=90°,∴∠1=∠3,

∵OB=OD,∴∠3=∠4,∴∠ADC=∠ABD;

(2)证明:∵AM⊥CD,∴∠AMD=∠ADB=90°,∵∠1=∠4,∴△ADM∽△ABD,

∴,∴AD2=AMAB;

(3)解:

∵sin∠ABD=,∴sin∠1=,∵AM=,∴AD=6,∴AB=10,∴BD=

=8,

∵BN⊥CD,∴∠BND=90°,∴∠DBN+∠BDN=∠1+∠BDN=90°,∴∠DBN=∠1,∴

sin∠NBD=,∴DN=,∴BN==.

7、(2015宜宾)如图,CE是⊙O的直径,BD切⊙O于点D,DE∥BO,CE的延长线交BD于点A.(1)

求证:直线BC是⊙O的切线;(2)若AE=2,tan∠DEO,求AO的长.

8、(2015泸州)如图,△ABC内接于⊙O,AB=AC,BD为⊙O的弦,且AB∥CD,过点A作⊙O的切线AE与DC的延长线交于点E,AD与BC交于点F.(1)求证:四边形ABCE是平行四边形;(2)若AE=6,CD=5,求OF的长.

解答:(1)证明:∵AE与⊙O相切于点A,∴∠EAC=∠ABC,

∵AB=AC,∴∠ABC=∠ACB,∴∠EAC=∠ACB,∴AE∥BC,

∵AB∥CD,∴四边形ABCE是平行四边形;

(2)解:如图,连接AO,交BC于点H,双向延长OF分别交AB,CD

与点N,M,∵AE是⊙O的切线,

由切割线定理得,AE2=EC?DE,∵AE=6,CD=5,

∴62=CE(CE+5),解得:CE=4,(已舍去负数),

由圆的对称性,知四边形ABDC是等腰梯形,且AB=AC=BD=CE=4,

又根据对称性和垂径定理,得AO垂直平分BC,MN垂直平分AB,DC,

设OF=x,OH=Y,FH=z,∵AB=4,BC=6,CD=5,∴BF=BC﹣FH=3

﹣z,DF=CF=BC+FH=3+z,

易得△OFH∽△DMF∽△BFN,∴,,

即,①②,①+②得:,①÷②得:,

解得,∵x2=y2+z2,∴,∴x=,∴OF=.

9、(2015绵阳)如图,O 是△ABC 的内心,BO 的延长线和△ABC 的外接圆相交于点D ,连接DC ,DA ,OA ,OC ,四边形OADC 为平行四边形.(1)求证:△BOC ≌△CDA ;(2)若AB =2,求阴影部分的面积. 【解析】

(1)证明:∵O 是△ABC 的内心,∴∠2=∠3,∠5=∠6,

∵∠1=∠2,∴∠1=∠3,由AD ∥CO,AD=CO ,∴∠4=∠5,∴∠4=∠6, ∴△BOC ≌△CDA (AAS )

由(1)得,BC=AC,∠3=∠4=∠6,∴∠ABC=∠ACB ,∴AB=AC ∴△ABC 是等边三角形,∴O 是△ABC 的内心也是外心,∴OA=OB=OC

设E 为BD 与AC 的交点,BE 垂直平分AC.在Rt △OCE 中,CE=AC=AB=1,∠OCE=30o,

∴OA=OB=OC=.∵∠AOC=120o,∴.

10、(2015广元)如图,AB 是⊙O 的弦,D 为半径OA 的中点.过D 作CD ⊥OA 交弦AB 于点E ,交⊙O 于点F .且CE =CB .(1)求证:BC 是⊙O 的切线;(2)连接AF 、BF ,求∠ABF 的度数;(3)如果CD =15,

BE =10,sinA =

5

13

.求⊙O 的半径. 解:(1)证明:连接OB∵OB=OA,CE=CB ,∴∠A=∠OBA ,∠CEB=∠ABC 又∵CD ⊥OA ∴∠A+∠AED=∠A+∠CEB=90 °∴∠OBA+∠ABC=90 ° ∴OB ⊥BC ∴BC 是⊙O 的切线.

(2)连接OF ,AF ,BF , ∵DA=DO ,CD ⊥OA ,

∴△OAF 是等边三角形, ∴∠AOF=60 °∴∠ABF=∠AOF=30 ° (3)过点C 作CG ⊥BE 于点G ,由CE=CB ,∴EG=BE=5 又Rt △ADE ∽Rt △CGE ,∴sin ∠ECG=sin ∠A=, ∴CE=

=13

∴CG=

=12,

又CD=15,CE=13, ∴DE=2, 由Rt △ADE ∽Rt △CGE 得=

,∴AD=

CG=

,∴⊙O 的半径为2AD=

11、(2015广安)如图,PB为⊙O的切线,B为切点,过B作OP的垂线BA,垂足为C,交⊙O于点A,连接P A、AO,并延长AO交⊙O于点E,与PB的延长线交于点D.(1)求证:P A是⊙O的切线;(2)

2

3

OC

AC

,且OC=4,求P A的长和tanD的值.

解:(1)证明:连接OB,则OA=OB,∵OP⊥AB,∴AC=BC,

∴OP是AB的垂直平分线,∴PA=PB,

在△PAO和△PBO中,

∵PA=PBPO=POOA=OB,∴△PAO≌△PBO(SSS)

∴∠PBO=∠PAO,PB=PA,

∵2+OC2=213,∴AE=2OA=413,OB=OA=213,在Rt△APO中,

∵AC⊥OP,∴AC2=OC?PC,

解得:PC=9,∴OP=PC+OC=13,

在Rt△APO中,由勾股定理得:AP=OP2-OA2=313,∴PB=PA=∵PB为⊙O的切线,B为切点,∴∠PBO=90°,

∴∠PAO=90°,即PA⊥OA,∴PA是⊙O的切线;

(2)连接BE,∵OCAC=23,且OC=4,∴AC=6,∴AB=12,

在Rt△ACO中,由勾股定理得:AO=AC13,∵AC=BC,OA=OE,

∴OC=12BE,OC∥BE,∴BE=2OC=8,BE∥OP,∴△DBE∽△DPO,∴BDPD=BEOP,

即BD313+BD=813,解得:BD=24135,在Rt△OBD中, tanD=OBBD=21324135=512.

12、(2015巴中)如图,AB是⊙O的直径,OD⊥弦BC于点F,交⊙O于点E,连结CE、AE、CD,若∠AEC=∠ODC.(1)求证:直线CD为⊙O的切线;(2)若AB=5,BC=4,求线段CD的长.

解:(1)证明:连接OC,

∵∠CEA=∠CBA,∠AEC=∠ODC,∴∠CBA=∠ODC,

又∵∠CFD=∠BFO,∴∠DCB=∠BOF,

∵CO=BO,∴∠OCF=∠B,

∵∠B+∠BOF=90°,∴∠OCF+∠DCB=90°,∴直线CD为⊙O的切线;

(2)解:连接AC,∵AB是⊙O的直径,∴∠ACB=90°,∴∠DCO=∠ACB,

又∵∠D=∠B,∴△OCD∽△ACB,

∵∠ACB=90°,AB=5,BC=4,∴AC=3,∴=,即=,解得;DC=.

三、圆与函数图象的综合

【例1】(2015?资阳)如图4,AD、BC是⊙O的两条互相垂直的直径,点P从点O出发,沿O→C→D→O

的路线匀速运动,设∠APB=y(单位:度),那么y与点P运动的时间x(单位:秒)的关系图是()

解答:(1)当点P沿O→C运动时,当点P在点O的位置时,y=90°,当点P在点C的位置时,

∵OA=OC,∴y=45°,∴y由90°逐渐减小到45°;

(2)当点P沿C→D运动时,根据圆周角定理,可得y≡90°÷2=45°;

(3)当点P沿D→O运动时,当点P在点D的位置时,y=45°,当点P在点0的位置时,y=90°,∴y由45°逐渐增加到90°.故选:B.

【例2】(2013年四川巴中)如图,在平面直角坐标系中,坐标原点为O,A点坐标为(4,0),B点坐标为(-1,0),以AB的中点P为圆心,AB为直径作⊙P交y轴的正半轴于点C.

(1)求经过A,B,C三点的抛物线所对应的函数解析式;

(2)设M为(1)中抛物线的顶点,求直线MC对应的函数解析式;

(3)试说明直线MC与⊙P的位置关系,并证明你的结论.

解:(1)∵A(4,0),B(-1,0),

∴AB=5,半径是PC=PB=PA=。∴OP=。

在△CPO中,由勾股定理得:。∴C

(0,2)。

设经过A、B、C三点抛物线解析式是,

把C(0,2)代入得:,∴。∴。

∴经过A、B、C三点抛物线解析式是,

(2)∵,∴M。

设直线MC对应函数表达式是y=kx+b,

把C(0,2),M代入得:,解得。

∴直线MC对应函数表达式是。

(3)MC与⊙P的位置关系是相切。证明如下:设直线MC交x轴于D,

当y=0时,,∴,OD=。∴D(,0)。

在△COD中,由勾股定理得:,

又,,∴CD 2 +PC 2 =PD2 。∴∠PCD=90 0 ,即PC⊥DC。∵PC为半径,∴MC与⊙P的位置关系是相切。

【课后作业】

一、选择题(每小题3分,共24分)

1.如图,已知A,B,C在⊙O上,下列选项中与∠AOB相等的是()

A. 2∠C B. 4∠B

C. 4∠A D.∠B+∠C

2.如图,已知AB是△ABC外接圆的直径,∠A=35°,则∠B的度数是()

A.35° B. 45°

C.55° D.65°

3.如图,AB是⊙O的直径,弦CD⊥AB,垂足为M,下列结论不成立的是()

A.CM=DM B.CB=DB

C.∠ACD=∠ADC D.OM=MD

4.如图,已知⊙O的半径为13,弦AB长为24,则点O到AB的距离是()

A. 6 B.5

C. 4 D.3

第1题图 第2题图 第3题图 第4题图

5. 已知⊙O 的半径为6,圆心到直线l 的距离为8,则直线l 与⊙O 的位置关系是( ) A .相交 B .相切 C .相离 D .无法确定

6. 圆锥底面圆的半径为3cm ,其侧面展开图是半圆,则圆锥母线长为( ) A .3cm B .6cm C .9cm D .12cm

7.如图,Rt △ABC 中,∠ACB =90°,AC =4,BC =6,以斜边AB 上的一点O 为圆心所作的半圆分别与AC 、BC 相切于点D 、E ,则AD 的长为( ) A . 2.5 B . 1.6 C . 1.5 D . 1

8. 如图,直线y =

+x 轴、y 分别相交与A 、B 两点,圆心P 的坐标为(1,0),圆P 与y 轴相切与点O.若将圆P 沿x 轴向左移动,当圆P 与该直线相交时,横坐标为整数的点P ′的个数是( ) A .2 B .3 C .4 D.5

第7题图 第8题图

二、填空题:(每小题3分,共24分)

9.如图,AB 为O ⊙的直径,CD 为O ⊙的弦,25ACD =∠,则BAD ∠的度数为 . 10.如图,在△ABC 中∠A =25°,以点C 为圆心,BC 为半径的圆交AB 于点D ,交AC 于点E ,则的度数

为 .

11.如图,ABC ?的一边AB 是⊙O 的直径,请你添加一个条件,使BC 是⊙O 的切线,你所添加的条件为 .

第9题图第10题图第11题图

12.如果圆锥的底面周长是20π,侧面展开后所得的扇形的圆心角为120°,则圆锥的母线长是.

13.如果一个扇形的弧长等于它的半径,那么此扇形称为“等边扇形”.则半径为2的“等边扇形”的面积为 .

14. 如图,AB为⊙O的直径,CD⊥AB,若AB=10,CD=8,则圆心O到弦CD的距离为 .

15.如图,⊙A、⊙B、⊙C两两外切,它们的半径都是a,顺次连接三个圆心得到△ABC,则图中阴影部分的面积之和是 .

16.如图,直线l与半径为4的⊙O相切于点A,P是⊙O上的一个动点(不与点A重合),过点P作PB⊥l,垂足为B,连接PA.设PA=x,PB=y,则(x-y)的最大值是

第14题图第15题图第16题图

三、解答题(本大题共8个小题,满分52分):

17. (本题4分)如图,圆弧形桥拱的跨度12

AB=米,拱高

4

CD=米,试求拱桥的半径.

18.(本题4分)如图,已知AB是⊙O的直径,CD是弦,且CD⊥AB,BC=6,AC=8,求sin∠ABD的值.

19.(满分6分)如图,已知在以点O为圆心的两个同心圆中,大圆的弦AB交小圆于点C,D .

⑴.求证:AC=BD;

⑵.若大圆的半径R=10,小圆的半径r=8,且圆O到直线AB的距离为6,求AC的长.

20.(本题6分)如图,以△ABC的一边AB为直径作⊙O,⊙O与BC边的交点恰好为BC的中点D,过点D 作⊙O的切线交AC于点E.

⑴.求证:DE⊥AC;

⑵.若AB=3DE,求tan∠ACB的值.

21. (本题6分)如图,AB是⊙O的直径,点E是上的一点,

∠DBC=∠BED.

⑴.求证:BC是⊙O的切线;

⑵.已知AD=3,CD=2,求BC的长.

22. (本题8分)已知:如图,⊙O 的直径AB 垂直于弦CD ,过点C 的切线与直径AB 的延长线相交于点P ,连结PD .

⑴.求证:PD 是⊙O 的切线.

⑵.求证:2

PD PB PA =? ⑶.若PD =4,1

tan 2

CDB ∠=

,求直径AB 的长.

23. (本题8分)已知:AB 是⊙O 的直径,直线CP 切⊙O 于点C ,过点B 作BD ⊥CP 于D . ⑴.求证:△ACB ∽△CDB ;

⑵.若⊙O 的半径为1,∠BCP =30°,求图中阴影部分的面积.

24. (本题10分)如图,在平面直角坐标系中,已知A(8,0),B(0,6),圆M经过原点O及点A、B.

⑴.求圆M的半径及圆心M的坐标;

⑵.过点B作圆M的切线l,求直线l的解析式;

⑶.∠BOA的平分线交AB于点N,交圆M于点E,求点N的坐标和线段OE的长.

中考数学专题训练圆专题复习

——圆 ◆知识讲解 一.圆的定义 1、在一个平面内,线段OA绕着它固定的一个端点O旋转一周,另一个端点A所形成的图形叫做圆。 2、圆是到定点的距离等于定长的所有点的集合。 3、确定一个圆需要两个要素:一是位置二是大小,圆心确定其位置,半径确定其大小。 4、连接圆上任意两点的线段叫弦,经过圆心的弦叫直径。圆上任意两点间的部分叫做圆弧,简称弧。以A、B为端点的弦记作“圆弧AB”,或者“弧AB”。大于半圆的弧叫作优弧(用三个字母表示,如ABC)叫优弧;小于半圆的弧(如AB)叫做劣弧。 二、垂直于弦的直径、弧、弦、圆心角 1、垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弦。 2、垂径定理逆定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧。 3、在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等。 在同圆或等圆中,等弧所对的圆心角相等。 在等圆中,弦心距相等的弦相等。 三、圆周角 1、定义:顶点在圆上,并且角的两边和圆相交的角。 2、定理:一条弧所以的圆周角等于这条弧所对的圆心角的一半。 3、推论:(1)在同圆或等圆中,同弧或等弧所以的圆周角相等。 (2)直径所对的圆周角是直角,90°的圆周角所对的弦是直径。 四、点和圆的位置关系 1、设⊙O的半径为r,点到圆心的距离为d。 则d>r ?点在圆外,d=r ?点在圆上,d

2020年中考数学 圆专题复习(中等生) 学生版

2020年中考数学圆专题复习 1.如图,在Rt△ABC中,∠C=90°,以BC为直径的⊙O交AB于点D,切线DE交AC于点E. (1)求证:∠A=∠ADE; (2)若AD=8,DE=5,求BC的长. 2.已知点A、B在半径为1的⊙O上,直线AC与⊙O相切,OC⊥OB,连接AB交OC于点D. (1)如图①,若∠OCA=60°,求OD的长; (2)如图②,OC与⊙O交于点E,若BE∥OA,求OD的长.

3.如图,AB为⊙O直径,C是⊙O上一点,CO⊥AB于点O,弦CD与AB交于点F.过点D作⊙O的切 线交AB的延长线于点E,过点A作⊙O的切线交ED的延长线于点G. (1)求证:△EFD为等腰三角形; (2)若OF:OB=1:3,⊙O的半径为3,求AG的长. 4.如图,已知在△ABC中,⊙O在AB上,AC为⊙O的弦,延长BC至D,使AD为⊙O切线, 且DA=DC. (1)求证:BD为⊙O切线; (2)若AB=9,AD=12,求BD的长及⊙O的半径; (3)若⊙O的半径为6,tan∠BAC=,求CD的长.

5.如图,AB是⊙O的直径,AC与⊙O交于点F,弦AD平分∠BAC,DE⊥AC,垂足为E. (1)试判断直线DE与⊙O的位置关系,并说明理由; (2)若⊙O的半径为2,∠BAC=60°,求线段EF的长. 6.如图,AB为⊙O的直径,C为⊙O上一点,∠ABC的平分线交⊙O于点D,DE⊥BC于点E. (1)试判断DE与⊙O的位置关系,并说明理由; (2)过点D作DF⊥AB于点F,若BE=3,DF=3,求图中阴影部分的面积.

7.如图,四边形ABCD为矩形,E为BC边中点,连接AE,以AD为直径的⊙O交AE于点F,连接CF. (1)求证:CF与⊙O相切; (2)若AD=2,F为AE的中点,求AB的长. 8.如图,AB是⊙O的直径,C是⊙O上一点,过点O作OD⊥AB,交BC的延长线于D,交AC 于点E,F是DE的中点,连接CF. (1)求证:CF是⊙O的切线. (2)若∠A=22.5°,求证:AC=DC.

中考数学专题训练圆的证明与计算(含答案)

圆的证明与计算 1.如图,已知△ABC 内接于△O , P 是圆外一点,P A 为△O 的切线,且P A =PB ,连接 OP ,线段 AB 与线段 OP 相交于点D . (1)求证:PB 为△O 的切线; (2)若P A =4 5PO ,△O 的半径为10,求线段 PD 的长. 第1题图 (1)证明:△△△△△△OA △OB △ 第1题解图 △P A △PB △OA △OB △OP △OP △ △△OAP △△OBP (SSS)△ △△OAP △△OBP △ △P A △△O △△△△ △△OAP △90°△ △△OBP △90°△ △OB △△O △△△△ △PB △△O △△△△

△△Rt△AOP △△OA △PO 2 △△4 5PO △2△10△ △△PO △50 3△ △cos△AOP △AO OP △OD AO △ △OD △6△ △PD △PO △OD △32 3. 2. △△△△△ABC △△AB △AC △△D △BC △△△△△AD △DC △△A △B △D △△△△O △AE △△O △△△△△△DE . △1△△△△AC △△O △△△△ △2△△cos C △3 5△AC △24△△△△AE △△. 第2题图 (1)证明:△AB △AC △AD △DC △ △△C △△B △△DAC △△C △ △△DAC △△B △ △△△E △△B △ △△DAC △△E △ △AE △△O △△△△ △△ADE △90°△ △△E △△EAD △90°△ △△DAC △△EAD △90°△ △△EAC △90°△

△OA △△O △△△△ △AC △△O △△△△ (2)解:△△△△△△D △DF △AC △△F △ 第2题解图 △DA △DC △ △CF △1 2AC △12△ △Rt△CDF △△△cos C △CF CD △3 5△ △DC △20△ △AD △20△ △Rt△CDF △△△△△△△△1622==CF CD DF -△ △△ADE △△DFC △90°△△E △△C △ △△ADE △△DFC △ △AE DC △AD DF △ △AE 20△1620 △△△AE △25△ △△O △△△AE △25. 3.如图,在△ABC 中,AB =BC ,以AB 为直径作△O ,交BC 于点D ,交AC 于点E ,过点E 作△O 的切线EF ,交BC 于点F . (1)求证:EF △BC ; (2)若CD =2,tan C =2,求△O 的半径.

2019年中考数学圆专题复习试卷含详解

2018-2019学年初三数学专题复习圆 一、单选题 1.下列说法,正确的是( ) A. 半径相等的两个圆大小相等 B. 长度相等的两条弧是等弧 C. 直径不一定是圆中最长的弦 D. 圆上两点之间的部分叫做弦 2.如图,在⊙O中,∠ABC=50°,则∠AOC等于() A. 50° B. 80° C. 90° D. 100° 3.已知⊙O的半径为5,A为线段OP的中点,当OP=6时,点A与⊙O的位置关系是( ) A. 点A在⊙O内 B. 点A在⊙O上 C. 点A在⊙O外 D. 不能确定 4.如果两圆半径分别为5和8,圆心距为3,那么这两个圆的位置关系是() A. 外离 B. 外切 C. 相交 D. 内切 5. 两个圆的半径分别为2和3,当圆心距d=5时,这两个圆的位置关系是() A. 内含 B. 内切 C. 相交 D. 外切 6.一个扇形的半径为2,扇形的圆心角为48°,则它的面积为()。 A. B. C. D. 7.钝角三角形的外心在() A. 三角形的内部 B. 三角形的外部 C. 三角形的钝角所对的边上 D. 以上都有可能 8.如图,AB是⊙O的直径,四边形ABCD内接于⊙O,若BC=CD=DA=4cm,则⊙O的周长为() A. 5πcm B. 6πcm C. 8πcm D. 9πcm 9.如图,在Rt△ABC中,∠BAC=90°,AB=3,BC=5,若把Rt△ABC绕直线AC旋转一周,则所得圆锥的侧面积等于( ) A. 6π B. 9π C. 12π D. 15π 10.直线a上有一点到圆心O的距离等于⊙O的半径,则直线a与⊙O的位置关系是() A. 相离 B. 相切 C. 相交 D. 相切或相交 11.如图,BD是⊙O的直径,点A、C在圆上,且CD=OB,则∠DAC等于()

中考数学精编—初中数学圆专题复习

初中数学圆的专题圆 一、知识点梳理 知识点1:圆的定义: 1. 圆上各点到圆心的距离都等于 . 2. 圆是对称图形,任何一条直径所在的直线都是它的; 圆又是对称图形,是它的对称中心. 知识点2:弦、弧、半圆、优弧、同心圆、等圆、等弧、圆心角、圆周角等与圆有关的概念 1.在同圆或等圆中,相等的弧叫做 2. 同弧或等弧所对的圆周角,都等于它所对的圆心角的 . 3. 直径所对的圆周角是,90°所对的弦是 . 例1 P为⊙O内一点,OP=3cm,⊙O半径为5cm,则经过P点的最短弦长为________;?最长弦长为_______. 例2 如图,在Rt△ABC中,∠ACB=90度.点P是半圆弧AC的中点,连接BP交AC于点D,若 半圆弧的圆心为O,点D、点E关于圆心O对称.则图中的两个阴影部分的面积S 1,S 2 之间的关系是 () A.S 1<S 2 B.S 1 >S 2 C.S 1 =S 2 D.不确定 例3 如图,正方形的边长为a,以各边为直径在正方形内画半圆,所围成的图形(阴影部分)

的面积为() 例4 车轮半径为0.3m的自行车沿着一条直路行驶,车轮绕着轴心转动的转速为100转/分,则自行车的行驶速度() A.3.6π千米/时 B.1.8π千米/时 C.30千米/时 D.15千米/时 例5 如图,⊙O中,点A,O,D以及点B,O,C分别在一条直线上,图中弦的条数有() A.2条 B.3条 C.4条 D.5条 知识点3:圆心角、弧、弦、弦心距之间的关系 在同圆或等圆中,如果两个圆心角,两条弧,两条弦,两个圆周角中有一组量,那么它们所对应的其余各组量都分别 . 知识点4:垂径定理 垂直于弦的直径平分,并且平分; 平分弦(不是直径)的垂直于弦,并且平分 . 例1、如图(1)和图(2),MN是⊙O的直径,弦AB、CD?相交于MN?上的一点P,?∠APM=∠CPM.(1)由以上条件,你认为AB和CD大小关系是什么,请说明理由. (2)若交点P在⊙O的外部,上述结论是否成立?若成立,加以证明;若不成立,请说明理由.

深圳中考数学专题--圆

2017届深圳中考数学专题——圆 一.解答题(共30小题) 1.如图,AB是⊙O的直径,点C,D在⊙O上,且AD平分∠CAB,过点D作AC的垂线,与AC的延长线相交于点E,与AB的延长线相交于点F. (1)求证:EF与⊙O相切; (2)若AB=6,AD=4,求EF的长. 2.如图,在△ABC中,AB=AC,以AC为直径的⊙O交BC于点D,交AB于点E,过点D作DF⊥AB,垂足为F,连接DE. (1)求证:直线DF与⊙O相切; (2)若AE=7,BC=6,求AC的长. 3.如图,在△ABC中,∠ABC=90°,以AB的中点O为圆心、OA为半径的圆交AC于点D,E是BC的中点,连接DE,OE. (1)判断DE与⊙O的位置关系,并说明理由; (2)求证:BC2=CD?2OE; (3)若cos∠BAD=,BE=6,求OE的长.

4.如图,已知BC为⊙O的直径,BA平分∠FBC交⊙O于点A,D是射线BF上的一点,且满足=,过点O作OM⊥AC于点E,交⊙O于点M,连接BM,AM. (1)求证:AD是⊙O的切线; (2)若sin∠ABM=,AM=6,求⊙O的半径. 5.如图,AB是⊙O的弦,D为半径OA的中点,过D作CD⊥OA交弦于点E,交⊙O 于点F,且CE=CB. (1)求证:BC是⊙O的切线; (2)连接AF、BF,求∠ABF的度数; (3)如果CD=15,BE=10,sinA=,求⊙O的半径.

6.如图,AB、CD为⊙O的直径,弦AE∥CD,连接BE交CD于点F,过点E作直线EP与CD的延长线交于点P,使∠PED=∠C. (1)求证:PE是⊙O的切线; (2)求证:ED平分∠BEP; (3)若⊙O的半径为5,CF=2EF,求PD的长. 8.如图,△ABC中,以AC为直径的⊙O与边AB交于点D,点E为⊙O上一点,连接CE并延长交AB于点F,连接ED. (1)若∠B+∠FED=90°,求证:BC是⊙O的切线; (2)若FC=6,DE=3,FD=2,求⊙O的直径. 9.如图,△ABC为等边三角形,以边BC为直径的半圆与边AB,AC分别交于D,F两点,过点D作DE⊥AC,垂足为点E. (1)判断DF与⊙O的位置关系,并证明你的结论; (2)过点F作FH⊥BC,垂足为点H,若AB=4,求FH的长(结果保留根号).

中考数学综合题专题【圆】专题训练含答案

中考数学综合题专题【圆】专题训练含答案 一、选择题 1.(北京市西城区)如图,BC 是⊙O 的直径,P 是CB 延长线上一点,PA 切⊙O 于点A ,如果PA =3,PB =1,那么∠APC 等于 ( ) (A ) 15 (B ) 30 (C ) 45 (D ) 60 2.(北京市西城区)如果圆柱的高为20厘米,底面半径是高的 41,那么这个圆柱的侧面积是 ( ) (A )100π平方厘米 (B )200π平方厘米 (C )500π平方厘米 (D )200平方厘米 3.(北京市西城区)“圆材埋壁”是我国古代著名的数学菱《九章算术》中的一个问题,“今在圆材,埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺,问径几何?”用 现在的数学语言表述是:“如图,CD 为⊙O 的直径,弦AB ⊥CD ,垂足为E ,CE =1寸,AB =寸,求直径CD 的长”.依题意,CD 长为 ( ) (A )2 25寸 (B )13寸 (C )25寸 (D )26寸 4.(北京市朝阳区)已知:如图,⊙O 半径为5,PC 切⊙O 于点C ,PO 交⊙O 于点A ,PA =4,那么PC 的长等于 ( ) (A )6 (B )25 (C )210 (D )214 5.(北京市朝阳区)如果圆锥的侧面积为20π平方厘米,它的母线长为5厘 米,那么此圆锥的底面半径的长等于 ( ) (A )2厘米 (B )22厘米 (C )4厘米 (D )8厘米 6.(天津市)相交两圆的公共弦长为16厘米,若两圆的半径长分别为10厘 米和17厘米,则这两圆的圆心距为 ( ) (A )7厘米 (B )16厘米 (C )21厘米 (D )27厘米 7.(重庆市)如图,⊙O 为△ABC 的内切圆,∠C = 90,AO 的延长线交BC 于点D ,AC =4,DC =1,,则⊙O 的半径等于 ( )

初三数学圆知识点复习专题经典

《圆》 一、圆的概念 概念:1、圆可以看作是到定点的距离等于定长的点的集合; 2、圆的外部:可以看作是到定点的距离大于定长的点的集合; 3、圆的内部:可以看作是到定点的距离小于定长的点的集合 轨迹形式的概念:1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆; (补充)2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线(也叫中垂线); 3、角的平分线:到角两边距离相等的点的轨迹是这个角的平分线; 4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线; 5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线。 二、点与圆的位置关系 1、点在圆内?d r ?点A在圆外; 三、直线与圆的位置关系 1、直线与圆相离?d r >?无交点; 2、直线与圆相切?d r =?有一个交点; 3、直线与圆相交?d r +; 外切(图2)?有一个交点?d R r =+; 相交(图3)?有两个交点?R r d R r -<<+; 内切(图4)?有一个交点?d R r =-; 内含(图5)?无交点?d R r <-; A

r R d 图3 r R d 五、垂径定理 垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。 推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧; (2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧; (3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧 以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即: ①AB 是直径 ②AB CD ⊥ ③CE DE = ④ 弧BC =弧BD ⑤ 弧AC =弧AD 中任意2个条件推出其他3个结论。 推论2:圆的两条平行弦所夹的弧相等。 即:在⊙O 中,∵AB ∥CD ∴弧AC =弧BD 例题1、 基本概念 1.下面四个命题中正确的一个是( ) A .平分一条直径的弦必垂直于这条直径 B .平分一条弧的直线垂直于这条弧所对的弦 C .弦的垂线必过这条弦所在圆的圆心 D .在一个圆内平分一条弧和它所对弦的直线必过这个圆的圆心 2.下列命题中,正确的是( ). A .过弦的中点的直线平分弦所对的弧 B .过弦的中点的直线必过圆心 C .弦所对的两条弧的中点连线垂直平分弦,且过圆心 D .弦的垂线平分弦所对的弧 例题2、垂径定理 1、 在直径为52cm 的圆柱形油槽内装入一些油后,截面如图所示,如果油的最大 深度为16cm ,那么油面宽度AB 是________cm. r R d 图4 r R d 图5 r R d O E D C A O C D A B

中考数学圆专题练习

中考数学圆 专题练习-- 一、选择题 1.(2010年 湖里区 二次适应性考试)已知半径分别为5 cm 和8 cm 的两圆相交,则它们的圆心距可能是( ) A .1 cm B .3 cm C .10 cm D .15 cm 答案:C 2.(2010年教育联合体)如图,已知AB 是⊙O 的直径,⊙O 交BC 的中点于D ,DE ⊥AC 于E ,连接AD ,则下列结论 正确的个数是( ) ①AD ⊥BC ,②∠EDA =∠B ,③OA = 1 2AC ,④DE 是⊙O 的切线. A .1个 B .2个 C .3个 D .4个 答案:D 3.(2010安徽省模拟)如图,AB 是⊙O 的直径,点D 、E 是圆的三等分点,AE 、BD 的延长线交于点C ,若CE=2,则 ⊙O 中阴影部分的面积是( ) A .433π- B .2 3π C .2 23 π- D .1 3 π 答案:A 4.(2010年重庆市綦江中学模拟1).在直角坐标系中,⊙A 、⊙B 的 位置如图所示.下列四个点中,在⊙A 外部且在⊙B 内部的是( ) A.(1,2) B.(2,1). C.(2,-1). D.(3,1) 答案C 5.(2010年聊城冠县实验中学二模)如下图,将半径为2cm 的圆形纸片 第4题图 O D B C E A 第3题 A O B C D E

折叠后,圆弧恰好经过圆心O ,则折痕AB 的长为( ) A .2cm B .3cm C .32cm D .52cm 答案C 6.(2010年广州市中考六模)、如果圆锥的母线长为6cm ,底面圆半径为3cm ,则这个圆锥的侧面积为( ) A. 2 9cm π B. 2 18cm π C. 2 27cm π D. 2 36cm π 答案:B 7.(2010年广州市中考六模)如图,已知⊙O 的弦AB 、CD 相交于点E , 的度数为60°, 的度数为100°,则∠AEC 等于( ) A. 60° B. 100° C. 80° D. 130° 答案:C 8.(2010年广西桂林适应训练)如图,圆弧形桥拱的跨度AB = 12米,拱高CD =4米,则拱桥的半径为( ). A.6.5米 B.9米 C.13米 D.15米 答案:A 9.(2010年广西桂林适应训练)如图,BD 是⊙O 的直径,∠CBD=30o , 则∠A 的度数为( ).[来 A.30o B.45o C.60o D.75o 答案:C 10.(2010山东新泰)已知⊙O 1的半径为5cm ,⊙O 2的半径为3cm ,圆心距O 1O 2=2,那么⊙O 1与⊙O 2的位置关系是( ) A .相离 B .外切 C .相交 D .内切 答案:D 11.(2010年济宁师专附中一模)如图,A B C D ,,,为⊙O 的四等分点,动点P 从圆心O 出发,沿O C D O ---路 7题图 8题图 9题图

初中数学“圆”专题复习(初三必备)

初中数学“圆”专题复习(初三必备) 一、知识点梳理 知识点1:圆的定义: 1. 圆上各点到圆心的距离都等于 . 2. 圆是对称图形,任何一条直径所在的直线都是它的; 圆又是对称图形,是它的对称中心. 知识点2:弦、弧、半圆、优弧、同心圆、等圆、等弧、圆心角、圆周角等与圆有关的概念 1.在同圆或等圆中,相等的弧叫做 2. 同弧或等弧所对的圆周角,都等于它所对的圆心角的 . 3. 直径所对的圆周角是,90°所对的弦是 . 例1 P为⊙O内一点,OP=3cm,⊙O半径为5cm,则经过P点的最短弦长为________;?最长弦长为_______. 例2 如图,在Rt△ABC中,∠ACB=90度.点P是半圆弧AC的中点,连接BP交AC于点D,若半圆弧的圆心为O,点D、点E关于圆心O对称.则图中的两个阴影部分的面积S 1 , S 2 之间的关系是() A.S 1<S 2 B.S 1 >S 2 C.S 1 =S 2 D.不确定 例3 如图,正方形的边长为a,以各边为直径在正方形内画半圆,所围成的图形(阴影部分)的面积为()

A.2条 B.3条 C.4条 D.5条 知识点3:圆心角、弧、弦、弦心距之间的关系 在同圆或等圆中,如果两个圆心角,两条弧,两条弦,两个圆周角中有一组量,那么它们所对应的其余各组量都分别 . 知识点4:垂径定理 垂直于弦的直径平分,并且平分; 平分弦(不是直径)的垂直于弦,并且平分 . 例1、如图(1)和图(2),MN是⊙O的直径,弦AB、CD?相交于MN?上的一点P,?∠APM=∠CPM. (1)由以上条件,你认为AB和CD大小关系是什么,请说明理由. (2)若交点P在⊙O的外部,上述结论是否成立?若成立,加以证明;若不成立,请说明理由. 例2 在圆柱形油槽内装有一些油.截面如图,油面宽AB为6分米,如果再注入一些油后,油面AB上升1分米,油面宽变为8分米,圆柱形油槽直径MN为() A.6分米 B.8分米 C.10分米 D.12分米

天津市2020版中考数学专题练习:圆50题_含答案

、选择题: 1. 如图,小明同学设计了一个测量圆直径的工具,标有刻度的尺子 3. 已知圆内接正三角形的边心距为 1,则这个三角形的面积为( ) A .2 B .3 C .4 D .6 4. 如图,点 A , B , C ,在⊙ O 上,∠ ABO=32°,∠ ACO=38°,则∠ BOC 等于 ( 6.如图, ⊙O 是△ ABC 的外接圆 ,弦AC 的长为 3,sinB=0.75, 则⊙ O 的半径为( ) 圆 50 题 垂直,在测直径时,把 A . O 点靠在圆周上,读得刻度 OE=8个单位, 12 个单位 B . 10 个单位 C CD 是⊙ O 的两条弦,连结 AD 、BC .若∠ BCD=70°, OF=6个单位,则圆的直径为 ( 1 个单位 D . 15 个单位 则∠ BAD 的度数为( 2. 如图, AB 、 A . 40° B .50° C . 60° D . 70° B .70° C .120° D . 140° 5. 如图 , 点 A,B,C 在⊙ O 上, ∠A=36° , ∠ C=28° , 则∠ B=( A.100 B.72 C.64 D.36 OA 、 OB 在 O 点钉在一起,并使它们保持

AD 切⊙ O 于点 A ,点 C 是弧 BE 的中点,则下列结论不成立的是( B . EC=B C C .∠ DAE=∠ABE D .AC ⊥OE 10. 如图 , △ABC 中,AB=5,BC=3,AC=4, 以点 C 为圆心的圆与 AB 相切 ,则⊙ C 半径为( 11. 数学课上,老师让学生尺规作图画 Rt △ABC ,使其斜边 AB=c ,一条直角边 BC=a ,小明的作法如图所 示, 你认为这种作法中判断∠ ACB 是直角的依据是( ) A.4 B.3 C.2 D. OB=6cm,高 OC=8cm 则. 这个圆锥的侧面 积是 7. 如图,圆锥的底面半径 22 A.30cm 2 B.30 π cm 2 C.60 2 π cm D.120cm 9. 如图,AB 是⊙ O 的直径 ,C 、D 是⊙ O 上两点 , 分别连接 AC 、BC 、CD 、OD .∠ DOB=140° A.20° B.30 C.40 D.70 ,则∠ ACD (= B.2.5 C.2.4 D.2.3

中考数学专题:圆.(学生版)

中考数学试题专题复习:圆 【学生版】 一、选择题 1. (天津3分)已知⊙1O 与⊙2O 的半径分别为3 cm 和4 cm ,若12O O =7 cm ,则⊙1O 与⊙2O 的位置关系是 (A) 相交 (B) 相离 (C) 内切 (D) 外切 2.(内蒙古包头3分)已知两圆的直径分别是2厘米与4厘米,圆心距是3厘米,则这两个圆的位置关系是 A 、相交 B 、外切 C 、外离 D 、内含 3,(内蒙古包头3分)已知AB 是⊙O 的直径,点P 是AB 延长线上的一个动点, 过P 作⊙O 的切线,切点为C ,∠APC 的平分线交AC 于点D ,则∠CDP 等于 A 、30° B 、60° C 、45° D 、50° 4.(内蒙古呼和浩特3分)如图所示,四边形ABCD 中,DC∥AB,BC=1, AB=AC=AD=2.则BD 的长为 A. 14 B. 15 C. 32 D. 23 5.(内蒙古呼伦贝尔3分)⊙O 1的半径是cm 2,⊙2的半径是cm 5,圆心距是cm 4,则两圆的位置关系为 A. 相交 B. 外切 C.外离 D. 内切 6.(内蒙古呼伦贝尔3分)如图,⊙O 的半径为5,弦AB 的长为8,M 是弦AB 上的动点, 则线段OM 长的最小值为. A. 5 B. 4 C. .3 D. 2 7.(内蒙古呼伦贝尔3分)如图,AB 是⊙O 的直径,点C 、D 在⊙O 上 ,∠BOD=110°, AC∥OD,则∠AOC 的度数 A. 70° B. 60° C. 50° D. 40° 8.(内蒙古乌兰察布3分)如图, AB 为 ⊙ O 的直径, CD 为弦, AB ⊥ CD , 如果∠BOC = 700 ,那么∠A 的度数为 A 70 0 B. 350 C. 300 D . 200 17.填空题 1.(天津3分)如图,AD ,AC 分别是⊙O 的直径和弦.且∠CAD=30°.OB⊥AD,交AC 于点B .若OB=5,则BC 的长等于 ▲ 。

“中考数学专题复习 圆来如此简单”经典几何模型之隐圆专题(含答案)

经典几何模型之隐圆”“圆来如此简单” 一.名称由来 在中考数学中,有一类高频率考题,几乎每年各地都会出现,明明图形中没有出现“圆”,但是解题中必须用到“圆”的知识点,像这样的题我们称之为“隐圆模型”。 正所谓:有“圆”千里来相会,无“圆”对面不相逢。“隐圆模型”的题的关键突破口就在于能否看出这个“隐藏的圆”。一旦“圆”形毕露,则答案手到擒来! 二.模型建立 【模型一:定弦定角】 【模型二:动点到定点定长(通俗讲究是一个动的点到一个固定的点的距离不变)】 【模型三:直角所对的是直径】 【模型四:四点共圆】 ` 三.模型基本类型图形解读 【模型一:定弦定角的“前世今生”】 【模型二:动点到定点定长】

【模型三:直角所对的是直径】 【模型四:四点共圆】 四.“隐圆”破解策略 牢记口诀:定点定长走圆周,定线定角跑双弧。 直角必有外接圆,对角互补也共圆。五.“隐圆”题型知识储备

3 六.“隐圆”典型例题 【模型一:定弦定角】 1.(2017 威海)如图 1,△ABC 为等边三角形,AB=2,若P 为△ABC 内一动点,且满足 ∠PAB=∠ACP,则线段P B 长度的最小值为_ 。 简答:因为∠PAB=∠PCA,∠PAB+∠PAC=60°,所以∠PAC+∠PCA=60°,即∠APC=120°。因为A C定长、∠APC=120°定角,故满足“定弦定角模型”,P在圆上,圆周角∠APC=120°,通过简单推导可知圆心角∠AOC=60°,故以AC 为边向下作等边△AOC,以O 为圆心,OA 为半径作⊙O,P在⊙O 上。当B、P、O三点共线时,BP最短(知识储备一:点圆距离), 此时B P=2 -2 2.如图1所示,边长为2的等边△ABC 的原点A在x轴的正半轴上移动,∠BOD=30°,顶点A 在射线O D 上移动,则顶点C到原点O的最大距离为。

中考数学培优专题复习圆的综合练习题附详细答案

一、圆的综合 真题与模拟题分类汇编(难题易错题) 1.如图,四边形OABC 是平行四边形,以O 为圆心,OA 为半径的圆交AB 于D ,延长AO 交O 于E ,连接CD ,CE ,若CE 是⊙O 的切线,解答下列问题: (1)求证:CD 是⊙O 的切线; (2)若BC=4,CD=6,求平行四边形OABC 的面积. 【答案】(1)证明见解析(2)24 【解析】 试题分析:(1)连接OD ,求出∠EOC=∠DOC ,根据SAS 推出△EOC ≌△DOC ,推出∠ODC=∠OEC=90°,根据切线的判定推出即可; (2)根据切线长定理求出CE=CD=4,根据平行四边形性质求出OA=OD=4,根据平行四边形的面积公式=2△COD 的面积即可求解. 试题解析:(1)证明:连接OD , ∵OD=OA , ∴∠ODA=∠A , ∵四边形OABC 是平行四边形, ∴OC ∥AB , ∴∠EOC=∠A ,∠COD=∠ODA , ∴∠EOC=∠DOC , 在△EOC 和△DOC 中, OE OD EOC DOC OC OC =?? ∠=∠??=? ∴△EOC ≌△DOC (SAS ), ∴∠ODC=∠OEC=90°, 即OD ⊥DC , ∴CD 是⊙O 的切线; (2)由(1)知CD 是圆O 的切线, ∴△CDO 为直角三角形, ∵S △CDO = 1 2 CD?OD , 又∵OA=BC=OD=4,

∴S △CDO = 1 2 ×6×4=12, ∴平行四边形OABC 的面积S=2S △CDO =24. 2.已知 O 的半径为5,弦AB 的长度为m ,点C 是弦AB 所对优弧上的一动点. ()1如图①,若m 5=,则C ∠的度数为______; ()2如图②,若m 6=. ①求C ∠的正切值; ②若ABC 为等腰三角形,求ABC 面积. 【答案】()130;()2C ∠①的正切值为3 4 ;ABC S 27=②或 432 25 . 【解析】 【分析】 ()1连接OA ,OB ,判断出AOB 是等边三角形,即可得出结论; ()2①先求出10AD =,再用勾股定理求出8BD =,进而求出tan ADB ∠,即可得出结 论; ②分三种情况,利用等腰三角形的性质和垂径定理以及勾股定理即可得出结论. 【详解】 ()1如图1,连接OB ,OA ,

最新中考数学复习圆专题复习教案

中考数学专题复习六 几何(圆) 【教学笔记】 一、与圆有关的计算问题(重点) 1、扇形面积的计算 扇形:扇形面积公式 21 3602 n R S lR π= = n :圆心角 R :扇形对应的圆的半径 l :扇形弧长 S :扇形面积 圆锥侧面展开图: (1)S S S =+侧表底=2 Rr r ππ+ (2)圆锥的体积:2 13 V r h π= 2、弧长的计算:弧长公式 180 n R l π=; 3、角度的计算 二、圆的基本性质(重点) 1、切线的性质:圆的切线垂直于经过切点的半径. 2、圆周角定理:一条弧所对圆周角等于它所对圆心角的一半; 推论:(1)在同圆或等圆中,同弧或等弧所对的圆周角相等; (2)相等的圆周角所对的弧也相等。 (3)半圆(直径)所对的圆周角是直角。 (4)90°的圆周角所对的弦是直径。 注意:在圆中,同一条弦所对的圆周角有无数个。 3、垂径定理定理:垂直于弦的直径平分这条弦,并且平分这条弦所对的两段弧 推论:(1)平分弦(不是直径)的直径垂直与这条弦,并且平分这条弦所对的两段弧 (2)弦的垂直平分线经过圆心,并且平分这条弦所对的弧 (3)平分弦所对的一条弧的直径垂直平分这条弦,并且平分这条弦所对的另一条弧 (4)在同圆或者等圆中,两条平行弦所夹的弧相等 三、圆与函数图象的综合

一、与圆有关的计算问题 【例1】(2016?资阳)在Rt△ABC中,∠ACB=90°,AC=2,以点B为圆心,BC的长为半径作弧,交AB于点D,若点D为AB的中点,则阴影部分的面积是() A.2﹣π B.4﹣π C.2﹣π D.π 【解答】解:∵D为AB的中点,∴BC=BD=AB,∴∠A=30°,∠B=60°.∵AC=2, ∴BC=AC?tan30°=2?=2,∴S阴影=S△AB C﹣S扇形C B D=×2×2﹣=2﹣π.故选A. 【例2】(2014?资阳)如图,扇形AOB中,半径OA=2,∠AOB=120°,C是的中点,连接AC、BC,则图中阴影部分面积是() A.﹣2B.﹣2C.﹣D.﹣ 解答:连接OC, ∵∠AOB=120°,C为弧AB中点,∴∠AOC=∠BOC=60°,∵OA=OC=OB=2, ∴△AOC、△BOC是等边三角形,∴AC=BC=OA=2, ∴△AOC的边AC上的高是=,△BOC边BC上的高为, ∴阴影部分的面积是﹣×2×+﹣×2×=π﹣2, 故选A. 【例3】(2013?资阳)钟面上的分针的长为1,从9点到9点30分,分针在钟面上扫过的面积是()πBππ =

中考数学专题训练---圆的综合的综合题分类

一、圆的综合真题与模拟题分类汇编(难题易错题) 1.如图,△ABC的内接三角形,P为BC延长线上一点,∠PAC=∠B,AD为⊙O的直径,过C作CG⊥AD于E,交AB于F,交⊙O于G. (1)判断直线PA与⊙O的位置关系,并说明理由; (2)求证:AG2=AF·AB; (3)若⊙O的直径为10,AC=25,AB=45,求△AFG的面积. 【答案】(1)PA与⊙O相切,理由见解析;(2)证明见解析;(3)3. 【解析】 试题分析:(1)连接CD,由AD为⊙O的直径,可得∠ACD=90°,由圆周角定理,证得∠B=∠D,由已知∠PAC=∠B,可证得DA⊥PA,继而可证得PA与⊙O相切. (2)连接BG,易证得△AFG∽△AGB,由相似三角形的对应边成比例,证得结论. (3)连接BD,由AG2=AF?AB,可求得AF的长,易证得△AEF∽△ABD,即可求得AE的长,继而可求得EF与EG的长,则可求得答案. 试题解析:解:(1)PA与⊙O相切.理由如下: 如答图1,连接CD, ∵AD为⊙O的直径,∴∠ACD=90°. ∴∠D+∠CAD=90°. ∵∠B=∠D,∠PAC=∠B,∴∠PAC=∠D. ∴∠PAC+∠CAD=90°,即DA⊥PA. ∵点A在圆上, ∴PA与⊙O相切.

(2)证明:如答图2,连接BG , ∵AD 为⊙O 的直径,CG ⊥AD ,∴AC AD =.∴∠AGF=∠ABG. ∵∠GAF=∠BAG ,∴△AGF ∽△ABG. ∴AG :AB=AF :AG. ∴AG 2=AF?AB. (3)如答图3,连接BD , ∵AD 是直径,∴∠ABD=90°. ∵AG 2=AF?AB ,55∴5 ∵CG ⊥AD ,∴∠AEF=∠ABD=90°. ∵∠EAF=∠BAD ,∴△AEF ∽△ABD. ∴AE AF AB AD =5 45=,解得:AE=2. ∴221EF AF AE =-=. ∵224EG AG AE =-=,∴413FG EG EF =-=-=. ∴11 32322 AFG S FG AE ?= ??=??=.

2021中考数学专题训练——圆 (解析版)

2021中考数学专题训练——圆 考点一 圆的有关概念及性质 1.(2018衢州,10,3分)如图,AC 是☉O 的直径,弦BD ⊥AO 于E,连接BC,过点O 作OF ⊥BC 于F,若BD=8 cm,AE=2 cm,则OF 的长度是?( ) A.3 cm B.6cm C. 2.5cm D.5cm 答案 D ∵AC ⊥BD,∴BE=DE=2 1BD=4 cm. 设☉O 的半径为r cm. 连接OB,则在Rt △BOE 中,r 2=42+(r-2)2,解得r=5. ∴CE=8 cm.∴BC=54 cm. 又∵OF ⊥BC,∴CF=2 1BC=52 cm, ∵OC=5 cm,∴OF=5 cm.故选D. 2.(2016杭州,8,3分)如图,已知AC 是☉O 的直径,点B 在圆周上(不与A,C 重合),点D 在AC 的延长线上,连接BD 交☉O 于点E.若∠AOB=3∠ADB,则?( ) A.DE=EB B.?DE=2EB C.3DE=DO D.DE=OB 答案 D 连接OE,∠AOB=∠ADB+∠B=3∠ADB, ∴∠B=2∠ADB,∵OE=OB, ∴∠OEB=∠B=2∠ADB=∠ADB+∠EOC, ∴∠ADB=∠EOC,∴DE=EO,∴DE=OB.故选D. 3. (2019台州,14,5分)如图,AC 是圆内接四边形ABCD 的一条对角线,点D 关于AC 的对称点E 在边BC 上,连接AE,若∠ABC=64°,则∠BAE 的度数为_______ . 答案 52° 解析 由题意得∠D=180°-∠ABC=116°, ∵点D 关于AC 的对称点E 在边BC 上, ∴∠D=∠AEC=116°, ∴∠BAE=116°-64°=52°. ? 4.(2018杭州,14,4分)如图,AB 是☉O 的直径,点C 是半径OA 的中点,过点C 作DE ⊥AB,交☉O

中考数学总复习专题训练及答案(圆)

2008年中考总复习专题训练(圆) 一、选择题(每小题3分,共45分) 1.在△ABC 中,∠C=90°,AB =3cm ,BC =2cm,以点A 为圆心,以2.5cm 为半径作圆,则点C 和⊙A 的位置关系是( )。 A .C 在⊙A 上 B.C 在⊙A 外 C .C 在⊙A 内 D.C 在⊙A 位置不能确定。 2.一个点到圆的最大距离为11cm ,最小距离为5cm,则圆的半径为( )。 A .16cm 或6cm B.3cm 或8cm C .3cm D.8cm 3.AB 是⊙O 的弦,∠AOB =80°则弦AB 所对的圆周角是( )。 A .40° B.140°或40° C .20° D.20°或160° 4.O 是△ABC 的内心,∠BOC 为130°,则∠A 的度数为( )。 A .130° B.60° C .70° D.80° 5.如图1,⊙O 是△ABC 的内切圆,切点分别是D 、E 、F ,已知∠A = 100°,∠C = 30°, 则∠DFE 的度数是( )。 A .55° B.60° C .65° D.70° 6.如图2,边长为12米的正方形池塘的周围是草地,池塘边A 、B 、C 、D 处各有一棵树, 且AB=BC=CD=3米.现用长4米的绳子将一头羊拴在其中的一棵树上.为了使羊在草地上活动区域的面积最大,应将绳子拴在( )。 A . A 处 B . B 处 C .C 处 D .D 处 图1 图2 7.已知两圆的半径分别是2和4,圆心距是3,那么这两圆的位置是( )。 A .内含 B.内切 C .相交 D. 外切 8.已知圆锥的底面半径为3,高为4,则圆锥的侧面积为( )。 A.10π B .12π C.15π D.20π 9.如果在一个顶点周围用两个正方形和n 个正三角形恰好可以进行平面镶嵌,则n 的值是 ( )。 A .3 B .4 C .5 D .6 10.下列语句中不正确的有( )。 ①相等的圆心角所对的弧相等 ②平分弦的直径垂直于弦 ③圆是轴对称图形,任何一条直径都是它的对称轴 ④长度相等的两条弧是等弧 A .3个 B.2个 C .1个 D.4个 11.先作半径为2 3的第一个圆的外切正六边形,接着作上述外切正六边形的外接圆,再作上述外接圆的外切正六边形,…,则按以上规律作出的第8个外切正六边形的边长为( )。

中考初三数学专题隐形圆

中考初三数学专题 隐形圆 辅助圆 模型一:“隐形圆”解点的存在性 模型分析“定边、定角”圆上找.具体来说:当边长一定,其所对角度也一定时,该角顶点 在两段弧上. 1. 如图,已知线段AB. (1)请你在图①中画出使∠APB=90°的所有满足条件的点P; (2)请你在图②中画出使∠APB=60°的所有满足条件的点P; (3)请你在图③中画出使∠APB=45°的所有满足条件的点P. 2. (1)如图①,在矩形ABCD中,AB=2,BC=5.请你在图①中矩形ABCD的边上画出使∠BPC=90°的点P; (2)如图②,在矩形ABCD中,AB=2,BC=.请你在图②中矩形ABCD的边上画出使∠BPC=60°的点P;(3)如图③,在正方形ABCD中,AB=2,BC= .请你在图③正方形ABCD的边上画出使∠BPC=45°的点P. 3. 如图,线段AB和动点C构成△ABC,AB=2,∠ACB=120°,则△ABC周长的最大值为___________. . 模型二:“隐形圆”解角的最值 模型分析同弧所对的圆周角相等,其所对的“圆外角”小于圆周角,“圆内角”大于圆周角. 如图①,∠ B=∠D=∠E;如图②,∠F>∠B>∠G.

4. 如图,线段AB是球门的宽,球员(前锋)在距球门前一定距离的直线b上,在直线b上是否存在一点P,使得球员在P点射门更易进球?若存在这样的点,请找出;若不存在,请说明理由. 5. 如图,点A与点B的坐标分别是(1,0),(5,0),点P是该直角坐标系内的一个动点. (1)使∠APB=30°的点P有________个; (2)若点P在y轴上,且∠APB=30°,求满足条件的点P的坐标; (3)当点P在y轴上移动时,∠APB是否有最大值?若有,求点P的坐标,并说明此时∠APB最大的理由;若没有,请说明理由. 模型三:“隐形圆”解线段的最值 模型分析平面内一定点D和⊙O上动点E的连线中,当连线过圆心O时,线段DE有最大值和最小值. 具体分以下三种情况讨论(规定OD=d,⊙O半径为r): 第一种:当点D在⊙O外时,d>r,如图①、②:当D,E,O三点共线时,线段DE出现最值,DE的最大值为(d+r),DE的最小值为(d-r); 第二种:当点D在圆上时,d=r,如图③:当D,E,O三点共线时,线段DE出现最值, DE的最大值为d+r=2r(即为⊙O的直径),DE的最小值为d-r=0(点D,E重合); 第三种:当点D在⊙O内时,d

相关主题
文本预览
相关文档 最新文档