当前位置:文档之家› 三角函数值的定义符号

三角函数值的定义符号

三角函数值的定义符号
三角函数值的定义符号

南京城市职业学院课程教案

第三象限:0,0.<

∴sin α<0,cos α<0,tan α>0,cot α>0,sec α<0,csc α<0 第四象限:0,0.<>y x

∴sin α<0,cos α>0,tan α<0,cot α<0,sec α>0,csc α<0 记忆法则:一全正,二正弦,三正切,四余弦. 2. 终边相同的角的同一三角函数值相等

例如390°和-330°都与30°终边位置相同, 由三角函数定义可知它们的三角函数值相同, 即sin390°=sin30° cos390°=cos30° sin(-330°)=sin30° cos(-330°)=cos30°

诱导公式一(其中Z ∈k ): 用弧度制可写成

ααsin )360sin(=??+k απαsin )2sin(=+k ααcos )360cos(=??+k απαcos )2cos(=+k ααtan )360tan(=??+k απαtan )2tan(=+k

例1 确定下列三角函数值的符号 (1) sin 250° (2))4

tan(π-

(3)cos850° (4) sin(-672°)

解:(1)∵250°是第三象限角 ∴sin250°<0 (2)∵4π-

是第四象限角,∴0)4

tan(<-π (3) cos850°=cos (2×360°+130°)=cos130° 而130°是第二象限角,∴cos850°< 0

(4) sin(-672°)=sin(-2×360°+48°)= sin48° 而48°是第一象限角,∴sin(-672°)0>. 例2根据下列条件,确定角α所在的象限

(1)0sin >α且0cos <α (2)0tan sin α可知 α在第一象限角和第二象限角

由0cos <α可知 α在第二象限角和第四象限角 所以α在第二象限角 (2)由0tan sin

θ可知,??

?<>0

tan 0

sin θθ① 或???><0tan 0sin θθ② 由①得 θ在第二象限角 由②得 θ在第三象限角

所以 θ在第二象限角或第三象限角 练习:1.确定下列各式的符号

(1)sin100°·cos240° (2)sin5+tan5

2. 若是第三象限角,则下列各式中不成立的是………………( )

任意角的三角函数及基本公式

第 18 讲 任意角的三角函数及基本公式 (第课时) 任意角的三角函数? ? ?? ? ? ? ?? ??? ????? ?? ??????? ±±--?±?+????? ????? ??的函数关系与以及的函数关系 与以及的函数关系与的函数关系与诱导公式倒数关系式 商数关系式平方关系式系式同角三角函数的基本关任意角三角函数定义 弧度制角的概念的扩充三角函数的概念ααπαπααααααα232360180360k 重点:1.任意角三角函数的定义;2.同角三角函数关系式;3.诱导公式。 难点:1.正确选用三角函数关系式和诱导公式;2.公式的理解和应用。 2.理解任意角的正弦、余弦、正切的定义,了解余切、正割、余割的定义;3.掌握同角三角函数的基本关系式;4. 掌握正弦、余弦的诱导公式。 ⑴ 角可以看成是一条射线绕着它的端点旋转而成的,射线旋转开始的位置叫做角的始边,旋转终止的位置叫做角的终边,射线的端点叫做角的顶点。 ⑵ 射线逆时针旋转而成的角叫正角。射线顺时针旋转而成的角叫负角。射线没有任何旋转所成的角叫零角。 2.弧度制 ⑴ 等于半径长的圆弧所对的圆心角叫做1弧度的角。用“弧度” 作单位来度量角的制度叫做“弧度制”。 注意:1sin 表示1弧度角的正弦,2sin 表示2弧度角的正弦,它们与?1sin 、?2sin 不是

一回事。 ⑵ 一个圆心角所对的弧长与其半径的比就是这个角的弧度数的绝对值。正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零。 ⑶ 设一个角的弧度数为α,则 r l = α (l 为这角所对的弧长,r 为半径)。 ⑷ 所有大小不同的角组成的集合与实数集是一一对应的,这个对应是利用角的弧度制建立的。 ⑸ 1π=?弧度,1弧度?=)180 ( 。 设扇形的弧长为l ,扇形面积为S ,圆心角大小为α弧度,半径为r , 则 αr l = ,α22 1 21r lr S == 。 3.角的集合表示 ⑴ 终边相同的角 设β表示所有终边与角α终边相同的角(始边也相同),则 αβ+??=360k (也可记为 απβ+=k 2 Z k ∈) 。 ⑵ 区域角 介于某两条终边间的角叫做区域角。例如 ?+??<

任意角的三角函数定义

任意角的三角函数定义 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-

教材:任意角的三角函数(定义) 目的:要求学生掌握任意角的三角函数的定义,继而理解角与=2k+(kZ)的同 名三角函数值相等的道理。 过程:一、提出课题:讲解定义: 1.设是一个任意角,在的终边上任取(异于原点的)一点P (x,y ) 则P 与原点的距离0222 2>+=+=y x y x r (图示见P13略) 2.比值 r y 叫做的正弦 记作: r y =αsin 比值r x 叫做的余弦 记作: r x = αcos 比值x y 叫做的正切 记作: x y = αtan 比值 y x 叫做的余切 记作: y x =αcot 比值x r 叫做的正割 记作: x r =αsec 比值 y r 叫做的余割 记作: y r =αcsc 注意突出几个问题: ①角是“任意角”,当=2k+(kZ)时,与的同名 三角函数值应该是相等的,即凡是终边相同的角的三角函数值相等。 ②实际上,如果终边在坐标轴上,上述定义同样适用。(下面有例 子说明) ③三角函数是以“比值”为函数值的函数

④0>r ,而x,y 的正负是随象限的变化而不同,故三角函数的符号 应由象限确定(今后将专题研究) ⑤定义域: αααtan cos sin ===y y y )(2 Z k k R R ∈+≠π πα αααcsc sec cot ===y y y ) ()(2) (Z k k Z k k Z k k ∈≠∈+≠∈≠παπ παπα 二、例一 已知的终边经过点P(2,3),求的六个三角函数值 解:13)3(2,3,22 2=-+=-==r y x ∴sin=13133 cos=1313 2 23 cot=32 213 csc=3 13 例二 求下列各角的六个三角函数值 ⑴ 0 ⑵ ⑶ 2 3π ⑷ 2 π 解:⑴ ⑵ ⑶的解答见P16-17 ⑷ 当=2 π 时 r y x ==,0 ∴sin 2π=1 cos 2π=0 tan 2π不存在 cot 2π=0 sec 2π不存在 csc 2 π =1 例三 《教学与测试》P103 例一 求函数x x x x y tan tan cos cos + =的值域 解: 定义域:cosx0 ∴x 的终边不在x 轴上

任意角的三角函数教学设计

《任意角的三角函数》第一课时教学设计 会宁县第二中学数学教研组曹蕊 一、教学内容分析 本节课是三角函数这一章里最重要的一节课,它是本章的基础,主要是从通过问题引导学生自主探究任意角的三角函数的生成过程,从而很好理解任意角的三角函数的定义。在《课程标准》中:三角函数是基本初等函数,它是描述周期现象的重要数学模型,在数学和其他领域中具有重要的作用。《课程标准》还要求我们借助单位圆去理解任意角的三角函数(正弦、余弦、正切)的定义。二、学生情况分析 本课时研究的是任意角的三角函数,学生在初中阶段曾经研究过锐角三角函数,其研究范围是锐角;其研究方法是几何的,没有坐标系的参与;其研究目的是为解直角三角形服务。以上三点都是与本课时不同的,因此在教学过程中要发展学生的已有认知经验,发挥其正迁移。 三、教学目标 知识与技能目标:借助单位圆理解任意角的三角函数(正弦、余弦、正切)的定义;能根据任意角的三角函数的定义求出具体的角的各三角函数值;能根据定义探究出三角函数值在各个象限的符号。 方法与过程目标:在定义的学习及概念同化和精致的过程中培养学生类比、分析以及研究问题的能力。 情感态度与价值观: 在定义的学习过程中渗透数形结合的思想。 四、教学重、难点分析: 重点:理解任意角三角函数(正弦、余弦、正切)的定义。 难点:引导学生将任意角的三角函数的定义同化,帮助学生真正理解定义。 五、教学方法与策略: 教学中注意用新课程理念处理教材,采用学生自主探索、动手实践、合作交流、阅读自学,师生互动,教师发挥组织者、引导者、合作者的作用,引导学生主体参与、揭示本质、经历过程. 根据本节课内容、高一学生认知特点,本节课采用“启发探索、讲练结合”的方法组织教学. 六、教具、教学媒体准备: 为了加强学生对三角函数定义的理解,帮助学生克服在理解定义过程中可能遇到的障碍,本节课准备在计算机的支持下,利用几何画板动态地研究任意角与其终边和单位圆交点坐标的关系,构建有利于学生建立概念的“多元联系表示”的教学情境,使学生能够更好地数形结合地进行思维. 七、教学过程 (一)教学情景 1.复习锐角三角函数的定义 问题1:在初中,我们已经学过锐角三角函数.如图1(课件中)在直角△POM中,∠M是直角,那么根据锐角三角函数的定义,∠O的正弦、余弦和正切分别是什么?

巩固练习_任意角的三角函数_基础

【巩固练习】 1.角θ的终边经过点12? ? ? ??? ,那么tan θ的值为( ) A .12 B .- C . D .2.若角0420的终边上有一点()a ,4-,则a 的值是( ) A .34 B .34- C .34± D .3 3.下列三角函数值结果为正的是( ) A .cos100° B .sin700° C .2tan 3π??- ??? D .9sin 4π??- ??? 4.化简0sin 390的值是( ) A . 12B .12-C .5.若42π π θ<<,则下列不等式成立的是( ) A .sin θ>cos θ>tan θ B .cos θ>tan θ>sin θ C .sin θ>tan θ>cos θ D .tan θ>sin θ>cos θ 6.设α角属于第二象限,且2cos 2cos α α -=,则2 α角属于( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 7.若θ为锐角且2cos cos 1-=--θθ,则θθ1cos cos -+的值为( ) A .22 B .6 C .6 D .4 8.若cos θ>0,且sin2θ<0,则角θ的终边所在象限是( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 9.5sin90°+2cos0°―3sin270°+10cos180°=________。 10.若α为第二象限角,则|sin |cos sin |cos | αααα-=________。 11.已知角α的终边经过点(230,2cos30)P sin -o o ,则cos α=。 12.已知角α的终边在直线2y x =上,则sin α=。

任意角的三角函数和弧度制 基础练习(含解析)

任意角的三角函数和弧度制 基础练习 一、选择题 1.下列选项中与-80°终边相同的角为( ) A. 100° B. 260° C. 280° D. 380° 2.在平面直角坐标系中,角 3πα+ 的终边经过点P (1,2),则sin α=( ) 3.若5sin 13α=- ,且α为第四象限角,则tan α的值等于( ) A. 125 B. 512- C. 512 D. 125 - 4.小明出国旅游,当地时间比中国时间晚一个小时,他需要将表的时针旋转,则转过的角的弧度数是 ( ) A. π3 B. π6 C. -π3 D. -π6 5.已知角α的终边经过点(sin 48,cos48)P ??,则 sin(12)α?-=( ) A. 12 C. 12- D. 6.若12cos 13x = ,且x 为第四象限的角,则tanx 的值等于 A 、125 B 、-125 C 、512 D 、-512 7.若函数 ()cos 2()6f x x xf π=+',则()3f π-与()3f π的大小关系是( ) A. ()()33f f π π-= B. )3()3(ππf f <- C. )3()3(π πf f >- D. 不确定 8.若θ是第四象限角,则下列结论正确的是( ) A .sin 0>θ B .cos 0<θ C .tan 0>θ D .sin tan 0>θθ 9.一扇形的中心角为2,对应的弧长为4,则此扇形的面积为( ) A .1 B .2 C .3 D .4 10.已知tan 2α ,其中α为三角形内角,则cos α=() A. 5 - D.

二、填空题 11.若扇形的面积是1 cm 2,它的周长是4 cm,则扇形圆心角的弧度数为______. 12.已知角2α的终边落在x 轴下方,那么α是第 象限角. 13.在平面直角坐标系xOy 中,角α与角β均以Ox 为始边,它们的终边关于y 轴对称.若sin α=1 3,则 sin β=_________. 14.已知一扇形所在圆的半径为10cm ,扇形的周长是45cm ,那么这个扇形的圆心角为 弧度. 15.弧长为3π,圆心角为135°的扇形,其面积为____. 三、解答题 16.已知角α的终边经过点P (54,5 3-). (1)求 sin α的值. (2) 17.(本小题满分14分)某单位拟建一个扇环面形状的花坛(如图所示),该扇环面是由以点O 为圆心的两个 同心圆弧和延长后通过点O 的两条直线段围成.按设计要求扇环面的周长为30米,其中大圆弧所在圆的 半径为10米.设小圆弧所在圆的半径为x 米,圆心角为θ(弧度). (1)求θ关于x 的函数关系式; (2)已知在花坛的边缘(实线部分)进行装饰时,直线部分的装饰费用为4元/米,弧线部分的装饰费用为 9元/米.设花坛的面积与装饰总费用的比为y ,求y 关于x 的函数关系式,并求出x 为何值时,y 取得最 大值?

三角函数值的定义符号

南京城市职业学院课程教案

第三象限:0,0.<0,cot α>0,sec α<0,csc α<0 第四象限:0,0.<>y x ∴sin α<0,cos α>0,tan α<0,cot α<0,sec α>0,csc α<0 记忆法则:一全正,二正弦,三正切,四余弦. 2. 终边相同的角的同一三角函数值相等 例如390°和-330°都与30°终边位置相同, 由三角函数定义可知它们的三角函数值相同, 即sin390°=sin30° cos390°=cos30° sin(-330°)=sin30° cos(-330°)=cos30° 诱导公式一(其中Z ∈k ): 用弧度制可写成 ααsin )360sin(=??+k απαsin )2sin(=+k ααcos )360cos(=??+k απαcos )2cos(=+k ααtan )360tan(=??+k απαtan )2tan(=+k 例1 确定下列三角函数值的符号 (1) sin 250° (2))4 tan(π- (3)cos850° (4) sin(-672°) 解:(1)∵250°是第三象限角 ∴sin250°<0 (2)∵4π- 是第四象限角,∴0)4 tan(<-π (3) cos850°=cos (2×360°+130°)=cos130° 而130°是第二象限角,∴cos850°< 0 (4) sin(-672°)=sin(-2×360°+48°)= sin48° 而48°是第一象限角,∴sin(-672°)0>. 例2根据下列条件,确定角α所在的象限 (1)0sin >α且0cos <α (2)0tan sin α可知 α在第一象限角和第二象限角 由0cos <α可知 α在第二象限角和第四象限角 所以α在第二象限角 (2)由0tan sin 0 tan 0 sin θθ① 或???><0tan 0sin θθ② 由①得 θ在第二象限角 由②得 θ在第三象限角 所以 θ在第二象限角或第三象限角 练习:1.确定下列各式的符号 (1)sin100°·cos240° (2)sin5+tan5 2. 若是第三象限角,则下列各式中不成立的是………………( )

任意角的三角函数知识点

2.1任意角的三角函数 课前复习: 1. 特殊角的三角函数值记忆 新课讲解: 任意点到原点的距离公式: 1.三角函数定义 在直角坐标系中,设α是一个任意角,α终边上任意一点P (除了原点)的坐标为(,)x y , 它与原点的距离为(0)r r == >,那么 (1)比值y r 叫做α的正弦,记作sin α,即sin y r α=; (2)比值x r 叫做α的余弦,记作cos α,即cos x r α=; (3)比值y x 叫做α的正切,记作tan α,即tan y x α=; (4)比值x y 叫做α的余切,记作cot α,即cot x y α=; 说明:①α的始边与x 轴的非负半轴重合,α的终边没有表明α一定是正角或负角,以及α 的大小,只表明与α的终边相同的角所在的位置; ②根据相似三角形的知识,对于确定的角α,四个比值不以点(,)P x y 在α的终边上的位置的改变而改变大小; ③当()2k k Z π απ=+∈时,α的终边在y 轴上,终边上任意一点的横坐标x 都等 于0,所以tan y x α= 无意义;同理当()k k Z απ=∈时,y x =αcot 无意义; ④除以上两种情况外,对于确定的值α,比值 y r 、x r 、y x 、x y 分别是一个确定的实数。 正弦、余弦、正切、余切是以角为自变量,比值为函数值的函数,以上四种函数统称为三角函数。

当角的终边上一点(,)P x y 1=时,有三角函数正弦、余弦、正切值的几何表示——三角函数线。 有向线段: 坐标轴是规定了方向的直线,那么与之平行的线段亦可规定方向。 规定:与坐标轴方向一致时为正,与坐标方向相反时为负。 有向线段:带有方向的线段。 2.三角函数线的定义: 设任意角α的顶点在原点O ,始边与x 轴非负半轴重合,终边与单位圆相交与点 P (,)x y ,过P 作x 轴的垂线,垂足为M ;过点(1,0)A 作单位圆的切线,它与角α的终边或其反向延长线交与点T . 由四个图看出: 当角α的终边不在坐标轴上时,有向线段,OM x MP y ==,于是有 sin 1y y y MP r α====, cos 1x x x OM r α====,tan y MP AT AT x OM OA α==== 我们就分别称有向线段,,MP OM AT 为正弦线、余弦线、正切线。 (Ⅳ) (Ⅲ)

任意角的三角函数及同角三角函数的基本关系式同步测试(含答案)

任意角的三角函数及同角三角函数的基本关系式同步测试 一、选择题(每小题5分,共60分,请将所选答案填在括号内) 1.已知的正弦线与余弦线相等,且符号相同,那么的值 为() A. B. C. D. 2.若为第二象限角,那么的值() A.正值 B.负值C.零 D.不能确定 3.已知的值() A.-2 B.2 C. D.- 4.函数的值域是() A.{-1,1,3} B.{-1,1,-3} C.{-1,3} D.{-3,1} 5.已知锐角终边上一点的坐标为(则= ()

A. B.3 C.3- D.-3 6.已知角的终边在函数的图象上,则的值为()A. B.- C.或- D. 7.若那么2的终边所在象限为() A.第一象限 B.第二象限 C.第三象 限 D.第四象限 8.、、的大小关系为() A. B. C. D. 9.已知是三角形的一个内角,且,那么这个三角形的形状 为() A.锐角三角形B.钝角三角形 C.不等腰的直角三角形 D.等腰直角三角形

10.若是第一象限角,则中能确定为正值有() A.0个 B.1个 C.2 个 D.2个以上 11.化简(是第三象限角)的值等于() A.0 B.- 1 C. 2 D.-2 12.已知,那么的值为() A. B.- C.或- D.以上全错 二、填空题(每小题4分,共16分,请将答案填在横线上) 13.已知则 . 14.函数的定义域是_________. 15.已知,则=______. 16.化简 .

三、解答题(本大题共74分,17—21题每题12分,22题14分) 17.已知 求证:. 18.若, 求角的取值范围. 19.角的终边上的点P和点A()关于轴对称()角的终边上的点Q与A关于直线对称. 求 的值. 20.已知是恒等式. 求a、b、c 的值.

任意角的三角函数练习题及标准答案详解

任意角的三角函数练习题及答案详解

————————————————————————————————作者:————————————————————————————————日期:

任意角的三角函数 一、选择题 1.以下四个命题中,正确的是( ) A .在定义域内,只有终边相同的角的三角函数值才相等 B .{α|α=k π+ 6π,k ∈Z }≠{β|β=-k π+6 π ,k ∈Z } C .若α是第二象限的角,则sin2α<0 D .第四象限的角可表示为{α|2k π+ 2 3 π<α<2k π,k ∈Z } 2.若角α的终边过点(-3,-2),则( ) A .sin α tan α>0 B .cos α tan α>0 C .sin α cos α>0 D .sin α cot α>0 3.角α的终边上有一点P (a ,a ),a ∈R ,且a ≠0,则sin α的值是( ) A . 2 2 B .- 2 2 C .± 2 2 D .1 4.α是第二象限角,其终边上一点P (x ,5),且cos α=42 x ,则sin α的值为( ) A .410 B .46 C .42 D .-410 5.使lg (cos θ·tan θ)有意义的角θ是( ) A .第一象限角 B .第二象限角 C .第一或第二象限角 D .第一、二象限角或终边在y 轴上 6.设角α是第二象限角,且|cos 2α|=-cos 2α,则角2α 是( ) A .第一象限角 B .第二象限角 C .第三象限角 D .第四象限角 7. 已知集合E={θ|cos θ<sin θ,0≤θ≤2π},F={θ|tan θ<sin θ},那么E ∩F 是区间( )

1、任意角的三角函数练习题及答案详解

任意角的三角函数 一、选择题 1.以下四个命题中,正确的是( ) A .在定义域内,只有终边相同的角的三角函数值才相等 B .{α|α=k π+6 π,k ∈Z }≠{β|β=-k π+6 π ,k ∈Z } C .若α是第二象限的角,则sin2α<0 D .第四象限的角可表示为{α|2k π+2 3π<α<2k π,k ∈Z } 2.若角α的终边过点(-3,-2),则( ) A .sin α tan α>0 B .cos α tan α>0 C .sin α cos α>0 D .sin α cot α>0 3.角α的终边上有一点P (a ,a ),a ∈R ,且a ≠0,则sin α的值是( ) A . 2 2 B .- 2 2 C .± 2 2 D .1 4.α是第二象限角,其终边上一点P (x ,5),且cos α=42 x ,则sin α的值为 ( ) A .410 B .46 C .42 D .-410 5.使lg (cos θ·tan θ)有意义的角θ是( ) A .第一象限角 B .第二象限角 C .第一或第二象限角 D .第一、二象限角或终边在y 轴上 6.设角α是第二象限角,且|cos 2α|=-cos 2α,则角2α 是( ) A .第一象限角 B .第二象限角 C .第三象限角 D .第四象限角 7.点P 是角α终边上的一点,且 ,则b 的值是( ) A 3 B -3 C ±3 D 5 8.在△ABC 中,若最大的一个角的正弦值是 ,则△ABC 是( ) A 锐角三角形 B 钝角三角形 C 直角三角形 D 等边三角形 9.若α是第四象限角,则 是( ) A 第二象限角 B 第三象限角 C 第一或第三象限角 D 第二或第四象限角 10.已知sin α=4 5 ,且α为第二象限角,那么tan α的值等于 ( )

三角函数符号的来历和读法

三角函数符号的来历和读法 古印度数学家阿耶波多Aryabhata最初研究正弦函数时,因该函数图酷似半张弓弦,命名其为ardha-jya【半弦】。 这是一个非常传神的定义。这个名称也可写成“jya-ardha”,有时还简写成jya 或jiva。。Arayabhata的《Arayabhatiya》是第一本明确提出正弦函数的著作。 阿耶波多(Aryabhata)(476~550)相当于中国南北朝的祖冲之(429-500)那个年代。1976年,为纪念阿耶波多诞生1500周年,印度发射了以阿耶波多命名的第一颗人造卫星。 阿拉伯人继承和发扬了印度的数学成就,他们保留了“jiva”单词,却没有翻译出它的意思,由于阿拉伯语发音的原因,该词转写为jiba(请不要笑)。

并且被读作jiba或jaib(因我不识阿拉伯语,不知其详),而恰好“jaib”在阿拉伯 语中的意思是“胸部、海湾或曲线”。当欧洲人将阿拉伯人的作品翻译成拉丁文时, 就用拉丁文中表示“胸部、海湾或曲线的单词“sinus”替代了阿拉伯语的“jaib”, sinus这个词在欧洲就被广泛采用,简写符号“sin”最初由冈特开始采用,冈特还 发明了“tan”符号。 弦的简写sin是英国天文学教授冈特Edmund Gunter所率先使用的,他还率先将余弦写作cosinus,后者是对拉丁语comlementi sinus【正弦的补】的简写。 与此相似,余切cotangent是正切tangent的补,符号为cot;余割cosecant是正割secant的补,符号位csc。之所以是补,因为他们每对之间角度和都是直角。 正切函数起源于古代的日影测量,其主要作用是天文计时。早先人们用日晷的投影和晷长之比来判定时间,而这个比值即为正切函数的雏形。人们将直立杆在地面的投影称之为umbra recta【直立杆之投影】,将垂直于墙面的水平杆在墙面的投影称为umbra versa【倒杆之投影】,这二者分别演变成后来的正切函数和余切函数。 最早的正切和余切表建立于公元860年天文学家al-Battani(美索不达米亚人),他得出垂直日晷的影子与日晷高度之比。但未用cot这个符号。1583年,丹麦数学家Thomas Fincke,使用术语umbra recta(直影),来描述垂直日晷的水平投影的大小。1620年,Edmund Gunter首先使用cotangents这个词。 现代的正切函数是1573年丹麦数学家芬克Thomas Fincke命名的,他将这个函数称为tangens,后者是拉丁语动词tangere (‘to touch’)的现在分词

任意角的三角函数公开课教案(精.选)

任意角的三角函数(第一课时) 教学目标 1.掌握任意角的正弦、余弦、正切函数的定义(包括定义域、正负符号判断);了解任意角的余切、正割、余割函数的定义. 2.经历从锐角三角函数定义过度到任意角三角函数定义的推广过程,体验三角函数概念的产生、发展过程. 领悟直角坐标系的工具功能,丰富数形结合的经验. 3.培养学生通过现象看本质的唯物主义认识论观点,渗透事物相互联系、相互转化的辩证唯物主义世界观. 4.培养学生求真务实、实事求是的科学态度. 一、重点、难点、关键 重点:任意角的正弦、余弦、正切函数的定义、定义域、(正负)符号判断法. 难点:把三角函数理解为以实数为自变量的函数. 关键:如何想到建立直角坐标系;六个比值的确定性(α确定,比值也随之确定)与依赖性(比值随着α的变化而变化). 二、教学过程 [执教线索: 回想再认:函数的概念、锐角三角函数定义(锐角三角形边角关系)——问题情境:能推广到任意角吗?——它山之石:建立直角坐标系(为何?)——优化认知:用直角坐标系研究锐角三角函数——探索发展:对任意角研究六个比值(与角之间的关

系:确定性、依赖性,满足函数定义吗?)——自主定义:任意角三角函数定义——登高望远:三角函数的要素分析(对应法则、定义域、值域与正负符号判定)——例题与练习——回顾小结——布置作业] (一)复习引入、回想再认 开门见山,面对全体学生提问: 在初中我们初步学习了锐角三角函数,前几节课,我们把锐角推广到了任意角,学习了角度制和弧度制,这节课该研究什么呢? 探索任意角的三角函数(板书课题),请同学们回想,再明确一下: (情景1)什么叫函数?或者说函数是怎样定义的? 让学生回想后再点名回答,投影显示规范的定义,教师根据回答情况进行修正、强调: 传统定义:设在一个变化过程中有两个变量x与y,如果对于x的每一个值,y都有唯一确定的值和它对应,那么就说y是x的函数,x叫做自变量,自变量x的取值范围叫做函数的定义域. 现代定义:设A、B是非空的数集,如果按某个确定的对应关系f,使对于集合A中的任意一个数,在集合B中都有唯一确定的数 f(x)和它对应,那么就称映射?:A→B为从集合A到集合B的一个函数,记作: f(x),x∈A ,其中x叫自变量,自变量x的取值范围A叫做函数的定义域. (情景2)我们在初中通过锐角三角形的边角关系,学习

高考数学总复习教案:任意角和弧度制及任意角的三角函数

第三章 三角函数、三角恒等变换及解三角形第1课时 任意角和弧度制及任意角的三角函数 (对应学生用书(文)、(理)40~41页) 页 考情分析 考点新知 ① 了解任意角的概念;了解终边相同的角的意义. ② 了解弧度的意义,并能进行弧度与角度的互化. ③ 理解任意角三角函数(正弦、余弦、正切)的定义;初步了解有向线段的概念,会利用单位圆中的三角函数线表示任意角的正弦、余弦、正切. ① 能准确进行角度与弧度的互化. ② 准确理解任意角三角函数的定义,并能准确判断三角函数的符号. 1. (必修4P15练习6改编)若角θ同时满足sin θ<0且tan θ<0,则角θ的终边一定落在第________象限. 答案:四 解析:由sin θ<0,可知θ的终边可能位于第三或第四象限,也可能与y 轴的非正半轴重合.由tan θ<0,可知θ的终边可能位于第二象限或第四象限,可知θ的终边只能位于第四象限. 2. 角α终边过点(-1,2),则cos α=________. 答案:-5 5 3. 已知扇形的周长是6cm ,面积是2cm2,则扇形的圆心角的弧度数是________. 答案:1或4 4. 已知角α终边上一点P(-4a ,3a)(a<0),则sin α=________. 答案:-3 5 5. (必修4P15练习2改编)已知角θ的终边经过点P(-x ,-6),且cos θ=-5 13,则sin θ=____________,tan θ=____________. 答案:-1213 12 5 解析:cos θ= -x x2+36=-513,解得x =5 2.sin θ=-6? ?? ?-52 2 +(-6)2=-1213,tan θ=12 5.

任意角的三角函数(终边定义法)

任意角的三角函数(第一课时)教学设计 一、学情分析 教学对象是高一的学生(按照1、4、5、2、3的顺序讲解),他们在初中学学习过锐角三角函数.因此本课的内容对于学生来说,有比较厚实的基础,新课的引入会比较容易和顺畅.学生要面对的新的学习问题是,角的概念推广了,原先学生所熟悉的锐角三角函数的定义是否也可以推广到任意角呢? 二、教学目标 1. 知识与技能目标 理解任意角的三角函数的终边定义法,了解单位圆定义法. 理解三角函数是以实数为自变量的函数. 2. 过程与方法目标 通过三角函数的几何表示,进一步加深对数形结合思想的理解. 3. 情感与态度价值观 激发学生探求新知欲望; 体会数学数学概念的严谨性和科学性. 三、教学重、难点 重点:任意角的三角函数的定义. 难点:①由初中锐角三角函数的定义过渡到任意角三角函数的定义; ②在直角坐标系中用角的终边上的点的坐标来刻画三角函数; ③三角函数定义的应用. 四、教学设计思路 1.复习初中学过的锐角三角函数的定义引出任意角的三角函数的定义 提出问题:三角函数能否用终边上的点的坐标来表示? (1)初中学过的锐角三角函数的定义 (2)把角放在直角坐标系中研究引出坐标表示 ①在α的终边上任选一点P (a ,b ),||0OP r ==>(由相似知与点P sin α= 斜边对边,con α= 斜边 邻边,tan α= 对边邻边 邻边 对边 (图1)

的选取无关) 以锐角α为自变量,以与坐标有关的比值为函数值的函数. 2.任意角 (1)理论基础 任意角α α????→唯一对应 的终边的坐标b a b r r a ???? →唯一对应或或 即任意角b a b r r a α???? →唯一对应 或或 (2)沿用初中的三角函数的名称 设α是一个任意角,它的终边上任意一点P (除端点外)的坐标是(x ,y ),它与原点的距离是r (022>+=y x r ),那么: ① 正弦r y =αsin ; ② 余弦r x = αcos cos x α=; ③ 正弦tan (0)y x x α=≠. 即:正弦、余弦、正切都是以角(实数)为自变量,以坐标的比值为函数值的函数,我们称它们为三角函数.(终边定义法) ①正弦函数sin y x =,定义域为R ,值域[-1,1]; ②余弦函数cos y x =,定义域为R ,值域[-1,1]; sin α= 斜边对边 = MP OP =b r ,con α=斜边邻边= OM OP = a r , tan α= 邻边对边 = MP OM = b a (图3) (图4) (图5)

第五章 5.2 5.2.1 第二课时 三角函数值的符号及公式一

第二课时三角函数值的符号及公式一 课标要求素养要求 1. 能利用三角函数的定义,判断正弦、余弦、正切函数值在各象限内的符号. 2.通过任意角的三角函数的定义理解终边相同角的同一三角函数值相等. 通过三角函数值在各象限内的符号和公式一的应用,重点提升学生的数学运算和逻辑推理素养 . 教材知识探究 地球自转会引起昼夜的交替变化,而公转引起四季交替变化,月亮圆缺变化的周期性,而三角函数值是否有“周而复始”的变化规律呢? 问题如图,角α的终边OP绕原点O,旋转无数周后的三角函数值与α的对应的三角函数值相等吗? 提示相等,根据任意角的三角函数的定义可得,终边相同角的同一三角函数值相等. 1.三角函数值在各象限的符号 口诀概括为:一全正、二正弦、三正切、四余弦(如图). 2.公式一函数名称不变 (1)语言表示:终边相同的角的同一三角函数的值相等.

(2)式子表示:???sin (α+k ·2π)=sin α, cos (α+k ·2π)=cos α,其中k ∈Z .tan (α+k ·2π)=tan α, (3)角α的终边每绕原点旋转一周,函数值将重复出现. 教材拓展补遗 [微判断] 1.同一个三角函数值能找到无数个角与之对应.(√) 2.若sin α·cos α>0,则角α为第一象限角.(×) 提示 sin α·cos α>0,则sin α,cos α同号,则α为第一、三象限角. 3.终边相同角的同名三角函数的值相等.(√) 4.sin 3>0,cos 4<0.(√) 5.sin α>0,则α为第一、二象限角.(×) 提示 α的终边位于第一、二象限或y 轴正半轴. [微训练] 1.sin 390°的值为( ) A.32 B.22 C.12 D.-12 解析 sin 390°=sin(360°+30°)=sin 30°=1 2,故选C. 答案 C 2.下列4个实数中,最小的数是( ) A.sin 1 B.sin 2 C.sin 3 D.sin 4 解析 ∵4位于第三象限,故sin 4<0,故选D. 答案 D 3.计算:sin(2π+π6)=________,cos 19π 3=________. 解析 sin(2π+π6)=sin π6=12,cos 19π3=cos(6π+π3)=cos π3=1 2. 答案 12 12

三角函数基本概念和表示

第三章三角函数 第一节三角函数及概念 复习要求: 1.任意角、弧度 了解任意角的概念和弧度制,能进行弧度与角度的互化; 2.三角函数 (1)借助单位圆理解任意角三角函数(正弦、余弦、正切)的定义; (2)借助单位圆中的三角函数线推导出诱导公式。 : 知识点: 1.任意角的概念 角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形。一条射线由原来的位置OA,绕着它的端点O按逆时针方向旋转 到终止位置OB,就形成角α。旋转开始时的射线OA叫做角的 始边,OB叫终边,射线的端点O叫做叫α的顶点。 2.角的分类 为了区别起见,我们规定: | 按逆时针方向旋转所形成的角叫正角, 按顺时针方向旋转所形成的角叫负角。 如果一条射线没有做任何旋转,我们称它为零角。 3.象限角 角的顶点与原点重合,角的始边与x轴的非负半轴重合。那么,角的终边(除端点外)落在第几象限,我们就说这个角是第几象限角。 (1)第一象限角的集合: |22, 2 k k k Z π απαπ ?? <<+∈ ???? (2)第二象限的集合: |22, 2 k k k Z π απαππ ?? +<<+∈ ?? ??。 (3)第三象限角的集合: 3 |22, 2 k k k Z π αππαπ ?? +<<+∈ ?? ??。

(4)第四象限角的集合: 3|222,2k k k Z παπαππ?? +<<+∈?? ?? 4.轴线角 角的顶点与原点重合,角的始边与x 轴的非负半轴重合。若角的终边落在坐标轴上,称这个角为轴线角。它不属于任何象限,也称为非象限角。 < 5.终边相同的角 所有与角α终边相同的角连同角α在内,构成的角的集合,称之为终边相同的角。记为: {} |360,S k k Z ββα==+?∈或 {} |2,S k k Z ββαπ==+∈。它们彼此相差 2()k k Z π∈,根据三角函数的定义知,终边相同的角的各种三角函数值都相等。 6.区间角 区间角是指介于两个角之间的所有角,如5| ,6 666π πππααα???? =≤≤ =????? ???。 7,角度制与弧度制 角度制:规定周角的1 360为1度的角,记作0 1,它不会因圆的大小改变而改变, 与r 无关 弧度制:长度等于半径长的圆弧所对的圆心角叫做1弧度角,记作1rad 或1弧度或1(单位可以省略不写)。 | 角有正负零角之分,它的弧度数也应该有正负零之分,如-π,-2π等等,一般地, 正角的弧度数是一个正数,负角的弧度数是一个负数,零角的弧度数是0,角的正负主要由角的旋转方向来决定。 8.角的度量 (1)角的度量制有:角度制,弧度制 (2)换算关系:角度制与弧度制的换算主要抓住180rad π=。 3602π=,180rad π=, 10.01745()180rad rad π= ≈,1801()57.30 rad π=≈ (3 {

任意角的三角函数基础练习题

任意角的三角函数练习题 (一)三角函数的定义 1.已知角α的终边过点P ,则sin α=______,cos α=_________,tan α=________ 2. 角α的终边经过点P ,则(1) ;tan α=________ 3.若角的终边过点(-3,-2),则sin α=______,cos α=_________,tan α=________ 4.已知角的终边过P (-3,4),则sin α=______,cos α=_________,tan α=________ 5.角的终边上有一点P (a ,a ),a ∈R ,且a ≠0,则sin α=____,cos α=____,tan α=________ 6.已知P (-3,y )为角的终边上一点,且sin =13 13,那么y 的值等于________. 7.α是第二象限角,其终边上一点P (x ,5),且cos α=42 x ,则sin α的值为________. 8.点P 是角α终边上的一点,且 ,则b 的值是________. 9.已知角的终边经过点P (x ,-3)(x >0).且cos =2 x ,则sin=_______,cos________,tan________. 10 是角θ终边上的一点,且 。 11.已知锐角终边上一点P (1,3),则的弧度数为________. 12.已知角的终边落在直线y =3x 上,则sin =________. 13. 已知角α的终边落在第一和第三象限的角平分线上,求α的3个三角函数值。 14. 已知角α的终边落在第二和第四象限的角平分线上,求α的3个三角函数值。 (二)三角函数值符号的判断. 1.求值。(1)sin00=_______, cos00=_______, tan00=_______. (2) sin1800=_______, cos1800=_______, tan1800=_______. (3)sin2700=_______, cos2700=_______, tan2700=_______. (4) sin900=_______, cos900=_______, tan900=_______. 2. 填入不等号:(1) ;(2) tan3200_______0;(3) ;

任意角的三角函数的定义教案

教 案 5.3.1任意角的三角函数的定义 授课教师——王定洲 教学目标: 1.掌握任意角的三角函数的定义; 2.任意角的三角函数和锐角的三角函数的联系和区别; 3.理解角的三角函数值与角终边上点的位置无关; 4.正弦函数、余弦函数、正切函数的定义域; 5.已知角α终边上一点,会求角α的各三角函数值。 教学重点: 1.掌握并理解任意角的三角函数的定义; 2.会运用任意角的三角函数的定义求函数值。 教学难点:理解角的三角函数值与角终边上点的位置无关; 教学方法: 1.情境教学法; 2.问题驱动教学法及小组讨论法。 教学用具:教学课件.多媒体、实物投影仪、教案、三角板等 教学过程: 一、复习引入 (情境1)前面我们学习了角的概念的推广,通过推广,使角动了起来,同时把角的范围也突破了0度和360度的界限,角可为任意大小。这节课我们要研究的问题是任意角的三角函数。 初中阶段我们学习了锐角的三角函数。 【问题1】在Rt △ABC 中,sin α=斜边 的对边 角α= 、 cos α= 斜边 的邻边 角α= 、tan α=的邻边角的对边角αα= . 【问题2】如图,在Rt △ABC 中,求sin α,cos α,tan α。(学生口答) sin α= cos α= tan α= 4 535 4 4 3A B C a b c B

二、动脑思考,探索新知 (情境2)我们已经把锐角推广到任意角,锐角三角函数的概念也能推广到任意角。那么我们应如何来给任意角的三角函数下定义呢 将Rt△ABC放在直角坐标系中,使得点A与__________重合,AC边在_______上.设点P(即顶点)的坐标为(x,y),r为角终边上的点P到_______的距离,则r=________.于是,上面的三角函数的定义可以写作: sinα=、cosα=、tanα=. 设α是任意大小的角,点(,) P x y为角α的终边 上的任意一点(不与原点重合),点P到原点的距 离为r=,那么角α的正弦、余弦、正切分别定义为sin y r α=;cos x r α=;tan y x α=. 提问:1、当角大小发生变化时,比值会改变吗 2、比值会随着点P在终边上的位置改变而改变吗 一般地,在比值存在的情况下,对角α的每一个确定的值,按照相应的对应关系,角α的正弦、余弦、正切、都分别有唯一的比值与之对应,它们都是以角α为自变量的函数,分别叫做正弦函数、余弦函数、正切函数,统称为三角函数. 由定义可以看出:当角α的终边在y轴上时,ππ() 2 k k α=+∈Z,终边上任意 一点的横坐标x的值都等于0,此时tan y x α=无意义.除此以外,对于每一个确定的角α,三个函数都有意义.

相关主题
文本预览
相关文档 最新文档