当前位置:文档之家› 分类讨论题(含答案)

分类讨论题(含答案)

分类讨论题(含答案)
分类讨论题(含答案)

分类讨论题

在数学中,我们常常需要根据研究对象性质的差异,分各种不同情况予以考查.这种分类思考的方法是一种重要的数学思想方法,同时也是一种解题策略.

分类是按照数学对象的相同点和差异点,将数学对象区分为不同种类的思想方法,掌握分类的方法,领会其实质,对于加深基础知识的理解、提高分析问题、解决问题的能力是十分重要的.分类的原则:(1)分类中的每一部分是相互独立的;(2)一次分类按一个标准;(3)分类讨论应逐级进行.

类型之一直线型中的分类讨论

直线型中的分类讨论问题主要是对线段、三角形等问题的讨论,特别是等腰三角形问题和三角形高的问题尤为重要.

1.(沈阳市)若等腰三角形中有一个角等于50°,则这个等腰三角形的顶角的度数为()A.50°B.80°C.65°或50° D.50°或80°

2.(?乌鲁木齐)某等腰三角形的两条边长分别为3cm和6cm,则它的周长为()

A.9cm B.12cm C.15cm D.12cm或15cm

3. (江西省)如图,把矩形纸片ABCD沿EF折叠,使点B落在边AD上的点B′处,点A落在点A′处,

(1)求证:B′E=BF;(2)设AE=a,AB=b, BF=c,试猜想a、b、c之间有何等量关系,并给予证明.

类型之二 圆中的分类讨论

圆既是轴对称图形,又是中心对称图形,在解决圆的有关问题时,特别是无图的情况下,有时会以偏盖全、造成漏解,其主要原因是对问题思考不周、思维定势、忽视了分类讨论等.

4.(湖北罗田)在Rt △ABC 中,∠C =900,AC =3,BC =4.若以C 点为圆心, r 为半径 所作的圆与斜边AB 只有一个公共点,则r 的取值范围是___ __.

5.(上海市)在△ABC 中,AB=AC=5,3cos 5B

.如果圆O 的半径为10,且经

过点B 、C ,那么线段AO 的长等于 .

6.(?威海市)如图,点A ,B 在直线MN 上,AB =11厘米,⊙A ,⊙B 的半径均

为1厘米.⊙A 以每秒2厘米的速度自左向右运动,与此同时,⊙B 的半径也不断增大,其半径r (厘米)与时间t (秒)之间的关系式为r =1+t (t≥0).

(1)试写出点A ,B 之间的距离d (厘米)与时间t (秒)之间的函数表达式;

(2)问点A 出发后多少秒两圆相切?

类型之三方程、函数中的分类讨论

方程、函数的分类讨论主要是通过变量之间的关系建立函数关系式,然后根据实际情况进行分类讨论或在有实际意义的情况下的讨论,在讨论问题的时候要注意特殊点的情况.

7.(上海市)已知AB=2,AD=4,∠DAB=90°,AD∥BC(如图).E是射线BC上的动点(点E与点B不重合),M是线段DE的中点.

(1)设BE=x,△ABM的面积为y,求y关于x的函数解析式,并写出函数的定义域;

(2)如果以线段AB为直径的圆与以线段DE为直径的圆外切,求线段BE的长;

(3)联结BD,交线段AM于点N,如果以A、N、D为顶点的三角形与△BME相似,求线段BE的长.

8.(福州市)如图,以矩形OABC的顶点O为原点,OA所在的直线为x轴,OC所在的直线为y轴,建立平面直角坐标系.已知OA=3,OC=2,点E是AB的中点,在OA上取一点D,将△BDA沿BD翻折,使点A落在BC边上的点F处.

(1)直接写出点E、F的坐标;

(2)设顶点为F的抛物线交y轴正半轴

...于点P,且以点E、F、P为顶点的三角形是等腰三角形,求该抛物线的解析式;

(3)在x轴、y轴上是否分别存在点M、N,使得四边形MNFE的周长最小?如果存在,求出周长的最小值;如果不存在,请说明理由.

参考答案

1.【解析】由于已知角未指明是顶角还是底角,所以要分类讨论:(1)当50°角是顶角时,则(180°-50°)÷2=65°,所以另两角是65°、65°;(2)当50°角是底角时,则180°-50°×2=80°,所以顶角为80°。故顶角可能是50°或80°.

【答案】D .

2.【解析】在没有明确腰长和底边长的情况下,要分两种情况进行讨论,当腰长是3cm ,底边长是6cm 时,由于3+3不能大于6所以组不成三角形;当腰长是6cm ,地边长是3cm 时能组成三角形.

【答案】D

3.【解析】由折叠图形的轴对称性可知,B F BF '=,B FE BFE '∠=∠,从而可求得B′E=BF ;第(2)小题要注意分类讨论.

【答案】(1)证:由题意得B F BF '=,B FE BFE '∠=∠,

在矩形ABCD 中,AD BC ∥,B EF

BFE '∴∠=∠, B FE B EF ''∴∠=∠,

B F B E ''∴=.B E BF '∴=.

(2)答:a b c ,,三者关系不唯一,有两种可能情况:

(ⅰ)a b c ,,三者存在的关系是22

2a b c +=. 证:连结BE ,则BE B E '=.

由(1)知B E B F c '==,B E c ∴=.

在A B E △中,90A ∠= ,222AE AB BE ∴+=. A E a = ,A B

b =,222a b

c ∴+=. (ⅱ)a b c ,,三者存在的关系是a b

c +>.证:连结BE ,则BE B E '=. 由(1)知B E B F c '==,B E c ∴=.在A B E △中,AE AB BE +>, a b c ∴+>.

4.【解析】圆与斜边AB 只有一个公共点有两种情况,1、圆与AB 相切,此时r =2.4;2、圆与线段相交,点A 在圆的内部,点B 在圆的外部或在圆上,此时3<r≤4。

【答案】 3<r≤4或r =2.4

5.【解析】本题考察了等腰三角形的性质、垂径定理以及分类讨论思想。由AB=AC=5,3

cos 5B =,可

得BC 边上的高AD 为4,圆O 经过点B 、C 则O 必在直线AD 上,若O 在BC 上方,则AO=3,若O 在BC 下方,则AO=5。

【答案】3或5.

6.【解析】在两圆相切的时候,可能是外切,也可能是内切,所以需要对两圆相切进行讨论.

【答案】解:(1)当0≤t≤5.5时,函数表达式为d =11-2t ;

当t >5.5时,函数表达式为d =2t -11.

(2)两圆相切可分为如下四种情况:

①当两圆第一次外切,由题意,可得11-2t =1+1+t ,t =3;

②当两圆第一次内切,由题意,可得11-2t =1+t -1,t =311

③当两圆第二次内切,由题意,可得2t -11=1+t -1,t =11;

④当两圆第二次外切,由题意,可得2t -11=1+t +1,t =13.

所以,点A 出发后3秒、311

秒、11秒、13秒两圆相切.

7.【解析】建立函数关系实质就是把函数y 用含自变量x 的代数式表示。要求线段的长,可假设线段的长,找到等量关系,列出方程求解。题中遇到“如果以A N D ,,为顶点的三角形与B M E △相似”,一定要注意分类讨论。

【答案】(1)取A B 中点H ,联结M H ,

M 为D E 的中点,M H BE ∴∥,1

()2M H B E A D =+.

又AB BE ⊥ ,M H AB ∴⊥. 12

A B M S AB M H ∴=

△,得1

2(0)2y x x =+>; (2)由已知得22(4)2DE x =-+. 以线段AB 为直径的圆与以线段DE 为直径的圆外切,

1

12

2M H A B D E ∴=+,即2211(4)2(4)222x x ??+=+-+??. 解得4

3x =,即线段B E 的长为43;

(3)由已知,以A N D ,,为顶点的三角形与B M E △相似,

又易证得D AM EBM ∠=∠.

由此可知,另一对对应角相等有两种情况:①AD N BEM ∠=∠;②AD B BM E ∠=∠.

①当AD N BEM ∠=∠时,A D B E ∥, A D N D B E ∴∠=∠.D BE BEM ∴∠=∠.

D B D

E ∴=,易得2B E A D =.得8B E =;

②当AD B BM E ∠=∠时,A D B E ∥, AD B D BE ∴∠=∠.

D B

E BM E ∴∠=∠.又BED M EB ∠=∠, B E D M E B ∴△∽△.

D E

B E

B E E M ∴=,即2BE EM DE = ,得22222

1

2(4)2(4)2x x x =+-+- . 解得12x =,210x =-(舍去).即线段BE 的长为2.

综上所述,所求线段BE 的长为8或2.

8.【解析】①解决翻折类问题,首先应注意翻折前后的两个图形是全等图,找出相等的边和角.其次要注意对应点的连线被对称轴(折痕)垂直平分.结合这两个性质来解决.在运用分类讨论的方法解决问题时,关键在于正确的分类,因而应有一定的分类标准,如E 为顶点、P 为顶点、F 为顶点.在分析题意时,也应注意一些关键的点或线段,借助这些关键点和线段来准确分类.这样才能做到不重不漏.③解决和最短之类的问题,常构建水泵站模型解决.

【答案】(1)(31)E ,;(12)F ,.

(2)在R t E B F △中,90B ∠= , 2222125EF EB BF ∴=+=+=.

设点P 的坐标为(0)n ,,其中0n >, 顶点(12)F ,,

∴设抛物线解析式为2

(1)2(0)y a x a =-+≠. ①如图①,当E F P F =时,22EF PF =,

22

1(2)5n ∴+-=.解得10n =(舍去);24n =.

(04)P ∴,. 24(01)2a ∴=-+.解得2a =. ∴抛物线的解析式为2

2(1)2y x =-+

②如图②,当EP FP =时,22EP FP =,

22(2)1(1)9n n ∴-+=-+.解得5

2n =-(舍去).

③当EF EP =时,53EP =<,这种情况不存在.

综上所述,符合条件的抛物线解析式是22(1)2y x =-+.

(3)存在点M N ,,使得四边形M N F E 的周长最小.

如图③,作点E 关于x 轴的对称点E ',

作点F 关于y 轴的对称点F ',连接E F '',分别与x 轴、y 轴交于点M N ,,则点M N ,就是所求点. (31)E '∴-,,(12)F NF NF ME ME '''-==,,,.

43BF BE ''∴==,. F N N M M E F N N M M E F E ''''∴++=++=22

345=+=. 又5EF = , ∴55FN NM M E EF +++=+,此时四边形M N F E 的周长最小值是55+.

与圆有关的分类讨论题(含答案)

与圆有关的分类讨论题 一.选择题 1.如图,将半径为2的圆形纸片,沿半径OA、OB将其裁成1:3两个部分, 用所得扇形围成圆锥的侧面,则圆锥的底面半径为() A.B.1 C.1或3 D. 2.若⊙O所在平面内一点P到⊙O上的点的最大距离为a,最小距离为b(a> b),则此圆的半径为() A. B.C.或D.a+b或a﹣b 3.已知⊙O的半径为5,AB是弦,P是直线AB上的一点,PB=3,AB=8,则tan∠OPA的值为() A.3 B.C.或D.3或 二.填空题 4.如果圆中一条弦长与半径相等,那么此弦所对的圆周角的度数为______. 5.已知:⊙O的直径为14cm,弦AB=10cm,点P为AB上一点,OP=5cm,则AP的长为______cm. 6.⊙O的半径OA=2,弦AB、AC的长分别为一元二次方程x2﹣(2+2)x+4=0的两个根,则∠BAC的度数为______. 7.已知点P是半径为2的⊙O外一点,PA是⊙的切线,切点为A,且PA=2,在⊙O内作长为2的弦AB,连接PB,则PB的长为______. 8.若Rt△ABC的内一个内角为30°,它的外接圆○O的半径为2,OD⊥AC交AC于D,则OD=________ 9、已知⊙O的半径为2cm,弦AB长为23cm,则弦的中点到这条弦所对弧的中点的距离为_______________cm。 10、已知:⊙O半径OA=1,弦AB、AC长分别为2、1则∠BAC=________________。 11、如图,直线AB、CD相交于点D,∠AOC=300,半径为1cm的⊙ P的圆心在直线OA上,且与点O的距离为6cm,如果⊙P以1cm/s的 速度沿由A向B的方向移动,那么____________秒钟后⊙P与直线CD 相切。 12、已知等腰⊿ABC内接于半径为5的⊙O中,如果底边BC的长为8,则BC边上的高为____________________。 13.已知△ABC内接与圆O,AB=AC=a,BC=b,AE切○O于点A,BC∥AE,在射线AE 上是否存在一点P,使得以A、P、C为顶点的三角形与△ABC相似?若 不存在,请说明理由;若存在,求出AP的长。

圆中的分类讨论习题

细说圆中的分类讨论题------之两解情况 由于圆既是轴对称图形,又是中心对称图形,还具有旋转不变性,有许多问题需要分类讨论,分类讨论是一种同学们应该掌握并且相当重要的数学思想,对于锻炼同学们的缜密思维和分析问题能力异常的重要,但同学们在遇到分类讨论题时易出现漏解情况, 这就要求同学们在解题时一要读懂题意,明白题干的要求,二要有顺序步骤的做。先从几个方面举例说明如下: 一、根据点与圆的位置分类 例1、点P 是圆O 所在平面上一定点,点P 到圆上的最大距离和最短距离分别为8和2,则该圆的半径为 。 分析:根据点和圆的位置关系,这个点P 与圆有两种位置关系。分为点在圆内和点在圆外两种情况。 解:过点P 和圆心O 作直线分别与圆O 相交于A 、B 两点。PA 、PB 分别表示圆上各点到点P 的最长距离和最短距离。 (1)当点P 在圆内时,如图1所示,直径 ; (2)当点P 在圆外时,如图2所示,直径 ; 所以,圆O 的直径为2或6。 二、三角形与圆心的位置关系 例2:已知?ABC 内接于圆O ,∠=?O BC 35,则∠A 的度数为________。 分析:因点A 的位置不确定。所以点A 和圆心O 可能在BC 的同侧,也可能在BC 的异侧。也可分析为圆心在?ABC 的内部和外部两种情况。 解:(1)当点A 和圆心O 在BC 的同侧时,如图3, B P

图3 图4 (2)当点A 和圆心O 在BC 的异侧时,如图4, ∠=?O BC 35∴∠=?BO C 110∴∠=?BPC 55∴∠=?BAC 125 所以∠A 的度数是55?或125?。 练习:已知圆内接?ABC 中,AB=AC ,圆心O 到BC 的距离为3cm ,圆的半径为6cm,求腰长AB 。(两种情况如图5、图6) A C 图5 图6 三、角与圆心的位置关系 例3:在半径为1的⊙O 中,弦AB 、AC 的长分别为3和2,则∠BAC 的度数是____。 分析:角与圆心的位置关系为圆心在角内部和外部两种情况。 解:如图7,当圆心在∠BAC 内部时,连接AO 并延长交⊙O 于E 在Rt △ABE 中,由勾股定理得:B E A E ==112 , 所以∠BAE =30° 同理,在Rt △CAE 中,EC =AC , 所以∠EAC =45°,∠BAC =?+?=?304575 当圆心O 在∠BAC 的外部时(∠BAC'),由轴对称性可知: ∠BAC '=?-?=?453015 所以∠BAC 为75°或15° C' E C A

初中数学几何图形初步技巧及练习题

初中数学几何图形初步技巧及练习题 一、选择题 1.如图是由若干个大小相同的小正方体堆砌而成的几何体,那么其三种视图中面积最小的是() A.主视图B.俯视图C.左视图D.一样大 【答案】C 【解析】 如图,该几何体主视图是由5个小正方形组成, 左视图是由3个小正方形组成, 俯视图是由5个小正方形组成, 故三种视图面积最小的是左视图, 故选C. 2.如图,在直角坐标系中,点A、B的坐标分别为(1,4)和(3,0),点C是y轴上的一个动点,且A、B、C三点不在同一条直线上,当△ABC的周长最小时,点C的坐标是 A.(0,0)B.(0,1)C.(0,2)D.(0,3) 【答案】D 【解析】 【详解】 解:作B点关于y轴对称点B′点,连接AB′,交y轴于点C′, 此时△ABC的周长最小,

∵点A 、B 的坐标分别为(1,4)和(3,0), ∴B ′点坐标为:(-3,0),则OB′=3 过点A 作AE 垂直x 轴,则AE=4,OE=1 则B′E=4,即B′E=AE ,∴∠EB ′A=∠B ′AE , ∵C ′O ∥AE , ∴∠B ′C ′O=∠B ′AE , ∴∠B ′C ′O=∠EB ′A ∴B ′O=C ′O=3, ∴点C ′的坐标是(0,3),此时△ABC 的周长最小. 故选D . 3.如图,在正方形ABCD 中,E 是AB 上一点,2,3BE AE BE ==,P 是AC 上一动点,则PB PE +的最小值是( ) A .8 B .9 C .10 D .11 【答案】C 【解析】 【分析】 连接DE ,交AC 于P ,连接BP ,则此时PB+PE 的值最小,进而利用勾股定理求出即可. 【详解】 解:如图,连接DE ,交AC 于P ,连接BP ,则此时PB PE +的值最小 ∵四边形ABCD 是正方形 B D ∴、关于A C 对称 PB PD =∴

几何中的分类讨论题

几何中的分类讨论题 1、有一三角铁片ABC,已知最长边BC=12cm,高AD=8cm,要把他加工成一个矩形 铁片,使矩形的一边在BC上,其余两个顶点分别在AB、AC上,且矩形的长是宽的2倍。问:加工成的铁片的面积为多少平方厘米? 2、如图所示,现有一边长为12cm的正方形纸片,E为正方形的边AD上一点, AE=10cm,现欲从正方形纸片上剪下等腰三角形AEP(要求该等腰三角形的另一顶点P也在正方形的一边上) 3、正在修建的冬奥会的体育馆外有一块边长为6和8的直角三角形空地需要绿化,从三 角形的直角顶点出发作射线,将△ABC分成面积相等的三个三角形,以便种上三种不同的花草,请你帮助画出图案,并计算出每块面积. 4、为了美化校园,决定把两种花栽种到一块等腰三角形的花圃中,要求一腰上的中线把两种花分开,并把三角形的周长分成9m和15m两部分,求花圃的面积。 5、王叔叔家有一块等腰三角形的菜地,腰长为40米,一条笔直的水渠从菜地穿过,这条水渠恰好垂直平分等腰三角形的一腰,水渠穿过菜地部分的长为15米(水渠的宽不计)请你计算这块等腰三角形菜地的面积。

6、在劳技课上,老师请同学们在一张长为17cn,宽为16cm的长方形纸板上剪下一个 腰长为10cm的等腰三角形(要求等腰三角形的一个顶点与长方形的一个顶点重合,其余两个顶点在长方形的边上)请你帮助同学们计算剪下的等腰三角形的面积。 7、红光中学有一块三角形形状的花圃ABC,现可直接测到∠A=30°,AC=40米, BC=25米,请你求出这块花圃的面积。 8、美化环境,计划在某小区内用30平方米的草皮铺设一块边长10米的等腰三角形绿 地,请你求出这个等腰三角形绿地的另两边长。9、已知四边形ABCD,AD∥BC,AB=CD,AC与BD相交于O,AD=7,BD=10,∠BOC=120°,画出图形并求四边形面积。 10、一条东西走向的高速公路上有两个加油站A、B,在A的北偏东45度方向还有 一个加油站C,C到高速公路的最短距离是30千米,B、C间的距离是60千米,想到经过C修一条笔直的公路与高速公路相交,使两路交叉口P与加油站A的距离(结果可保留根号)。 11、等腰梯形的上底长为2,下底长为3,且梯形的四个顶点都在边长为4的正方形的边上,求这个梯形的面积。

初中数学几何图形初步基础测试题及答案(1)

初中数学几何图形初步基础测试题及答案(1) 一、选择题 1.如图,圆柱形玻璃板,高为12cm,底面周长为18cm,在杯内离杯底4cm的点C处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿4cm与蜂蜜相对的A处,则蚂蚁到达蜂蜜的最短距离()cm. A.14 B.15 C.16 D.17 【答案】B 【解析】 【分析】 在侧面展开图中,过C作CQ⊥EF于Q,作A关于EH的对称点A′,连接A′C交EH于P,连接AP,则AP+PC就是蚂蚁到达蜂蜜的最短距离,求出A′Q,CQ,根据勾股定理求出A′C 即可. 【详解】 解:沿过A的圆柱的高剪开,得出矩形EFGH, 过C作CQ⊥EF于Q,作A关于EH的对称点A′,连接A′C交EH于P,连接AP,则 AP+PC就是蚂蚁到达蜂蜜的最短距离, ∵AE=A′E,A′P=AP, ∴AP+PC=A′P+PC=A′C, ∵CQ=1 2 ×18cm=9cm,A′Q=12cm﹣4cm+4cm=12cm, 在Rt△A′QC中,由勾股定理得:A′C=22 129 =15cm, 故选:B. 【点睛】 本题考查了圆柱的最短路径问题,掌握圆柱的侧面展开图、勾股定理是解题的关键.

2.如图,B是线段AD的中点,C是线段BD上一点,则下列结论中错误 ..的是() A.BC=AB-CD B.BC=1 2 (AD-CD) C.BC= 1 2 AD-CD D.BC=AC-BD 【答案】B 【解析】 试题解析:∵B是线段AD的中点, ∴AB=BD=1 2 AD, A、BC=BD-CD=AB-CD,故本选项正确; B、BC=BD-CD=1 2 AD-CD,故本选项错误; C、BC=BD-CD=1 2 AD-CD,故本选项正确; D、BC=AC-AB=AC-BD,故本选项正确. 故选B. 3.如图,是一个正方体的表面展开图,将其折成正方体后,则“扫”的对面是() A.黑B.除C.恶D.☆ 【答案】B 【解析】 【分析】 正方体的空间图形,从相对面入手,分析及解答问题. 【详解】 解:将其折成正方体后,则“扫”的对面是除. 故选B. 【点睛】 本题考查了正方体的相对面的问题.能够根据正方体及其表面展开图的特点,找到相对的面是解题的关键.

(专题精选)初中数学几何图形初步易错题汇编及答案解析

(专题精选)初中数学几何图形初步易错题汇编及答案解析 一、选择题 1.如图,直线AB∥CD,直线EF分别交AB、CD于E、F两点,EG平分∠AEF,如果∠ 1=32°,那么∠2的度数是() A.64°B.68°C.58°D.60° 【答案】A 【解析】 【分析】 首先根据平行线性质得出∠1=∠AEG,再进一步利用角平分线性质可得∠AEF的度数,最后再利用平行线性质进一步求解即可. 【详解】 ∵AB∥CD, ∴∠1=∠AEG. ∵EG平分∠AEF, ∴∠AEF=2∠AEG, ∴∠AEF=2∠1=64°, ∵AB∥CD, ∴∠2=64°. 故选:A. 【点睛】 本题主要考查了角平分线性质以及平行线的性质,熟练掌握相关概念是解题关键. 2.∠1与∠2互余,∠1与∠3互补,若∠3=125°,则∠2=() A.35°B.45°C.55°D.65° 【答案】A 【解析】 【分析】 【详解】 解:根据题意得:∠1+∠3=180°,∠3=125°,则∠1=55°,∵∠1+∠2=90°,则∠2=35° 故选:A. 【点睛】 本题考查余角、补角的计算.

3.将一副三角板如下图放置,使点A 落在DE 上,若BC DE P ,则AFC ∠的度数为( ) A .90° B .75° C .105° D .120° 【答案】B 【解析】 【分析】 根据平行线的性质可得30E BCE ==?∠∠,再根据三角形外角的性质即可求解AFC ∠的度数. 【详解】 ∵//BC DE ∴30E BCE ==?∠∠ ∴453075AFC B BCE =+=?+?=?∠∠∠ 故答案为:B . 【点睛】 本题考查了三角板的角度问题,掌握平行线的性质、三角形外角的性质是解题的关键. 4.在等腰ABC ?中,AB AC =,D 、E 分别是BC ,AC 的中点,点P 是线段AD 上的一个动点,当PCE ?的周长最小时,P 点的位置在ABC ?的( ) A .重心 B .内心 C .外心 D .不能确定 【答案】A 【解析】 【分析】 连接BP ,根据等边三角形的性质得到AD 是BC 的垂直平分线,根据三角形的周长公式、两点之间线段最短解答即可. 【详解】 连接BP 、BE ,

初中数学分类讨论问题专题

中考数学专题复习——分类讨论问题 一、教学目标 使学生养成分类讨论思想,并掌握一定的分类技巧,以及常见题型的分类方法。形成一定的分类体系,对待问题能有更严谨、缜密的思维。 二、教学重点 对常见题型分类方法的掌握;能够灵活运用一般的分类技巧。 三、教学难点 对于分类的“界点”、“标准”把握不准确,容易出现重复解、漏解等现象。 四、板书设计 1:分式方程无解的分类讨论问题; 2:“一元二次”方程系数的分类讨论问题; 3:三角形、圆等几何图形相关量求解的分类讨论问题; 4:分类问题在动点问题中的应用; 4.1常见平面问题中动点问题的分类讨论; 4.2组合图形(二次函数、一次函数、平面图形等组合)中动点问题 的分类。 1:分式方程无解的分类讨论问题 例题1:(2011武汉) 解:去分母,得: 猜想:把“无解”改为“有增根”如何解? 例题2:(2011郴州) 2:“一元二次”方程系数的分类讨论问题 例题3:(2010上海)已知方程有实数根,求m的取值范围。 (1)当时,即m=0时,方程为一元一次方程x+1=0,有实数根x= (2)当时,方程为一元二次方程,根据有实数根的条件得:,且综(1)(2)得, 常见病症:(很多同学会从(2)直接开始而且会忽略的条件)

总结:字母系数的取值范围是否要讨论,要看清题目的条件。一般设置问题的方式有两种(1)前置式,即“二次方程”;(2)后置式,即“两实数根”。这都是表明是二次方程,不需要讨论,但切不可忽视二次项系数不为零的要求,本题是根据二次项系数是否为零进行讨论的。 例题4:(2011益阳)当m是什么整数时,关于x的一元二次方程与的 根都是整数。 解:因为是一元二次方程,所以二次项系数不为0,即,, 同理,且,又因为m为整数 (1)当m=—1时,第一个方程的根为不是整数,所以m=—1舍去。 (2)当m=1时,方程1、2的根均为整数,所以m=1. 练习:已知关于x的一元二次方程有实数根,则m的取值范围是: 3:三角形、圆等几何图形相关量求解的分类讨论问题 例题:5:(2011青海)方程的两个根是等腰三角形的底和腰,则这个三角形的周长为( ) A 12 B 12或15 C 15 D不能确定 例题6:(2011武汉)三角形一边长AB为13cm,另一边AC为 15cm,BC上的高为12cm,求此三角形的面积。(54或84)例题8:(2011四校联考)一条绳子对折后成右图A、B, A.B上一点C,且有BC=2AC,将其从C点剪断,得到的线段中最长的一段为40cm,请 问这条绳子的长度为:60cm或120cm A B C 4:动点问题的分类分类讨论问题 4.1:常见平面问题中动点问题的分类讨论; 例题9:(2011永州)正方形ABCD的边长为10cm,一动点P从点A出发,以2cm/秒的速度沿正方形的边逆时针匀速运动。如图,回到A点停止,求点P运动t秒时, P,D两点间的距离。

函数背景下几何图形的分类讨论

《函数背景下几何图形的分类讨论》教案 一、教学目标: 知识与技能: 1、通过本专题的复习,再次体会分类讨论思想在解题中的应用; 2、培养学生思维的严谨性和周密性,提高解题正确性与完整性。 过程与方法: 通过观察分析、类比归纳的探究,加深对分类讨论数学思想的认识。 情感态度与价值观: 通过主动探究,合作交流,感受探索的乐趣和成功的体验,体会数学思维的严谨性和周密性。增 强克服困难的勇气和信心。 二、 教学方法: 多媒体辅助教学,引导发现法、合作探究法和直观演示法。 三、教学重点:进一步了解分类讨论思想的应用和分类的标准。 教学难点:分类讨论思想的应用和分类的标准。及相应的图形计算。 四、教学过程: (一)创设情境引入: 1、一张矩形纸片有四个角,剪掉一个角后还剩几个角? 2、如图,线段OA 的一个端点O 在直线a 上,以OA 为一边画等腰三角形,并且使另一个顶点在直 线a 上,这样的等腰三角形能画多少个? (二)探究活动1 问题回顾:对于平面直角坐标系xOy 中的点(),P m n ,定义一种变换:作点(),P m n 关于y 轴对称的点'P ,再将'P 向左平移()0k k >个单位得到点'k P ,'k P 叫做对点(),P m n 的k 阶“?”变换. (1)求()3,2P 的3阶“?”变换后3'P 的坐标; (2)若直线33y x =-与x 轴,y 轴分别交于,A B 两点,点A 的2阶“?”变换后得到点C ,求过 ,,A B C 三点的抛物线M 的解析式; (3)在(2)的条件下,抛物线M 的对称轴与x 轴交于D ,若在抛物线M 对称轴上存在一点E , 使得以,,E D B 为顶点的三角形是等腰三角形,求点E 的坐标. 变式思考:1、连接AB ,在抛物线的对称轴上是否存在点P 使以A 、B 、P 为顶点的三角形是直角三角形?求出点P 坐标。 2、抛物线的顶点为M ,过M 作y 轴的垂线PF ,垂足为F ,点P 为坐标系中的一点,若以M 、O 、 F 、P 为顶点的四边形是平行四边形,求点P 的坐标。

初中数学分类讨论问题专题.

” = 无解,求 a = 由已知 - = -3或 - = 3或a - 1 = 0 - = 2无解,求a = 中考数学专题复习——分类讨论问题 一、教学目标 使学生养成分类讨论思想,并掌握一定的分类技巧,以及常见题型的分类方法。形成一定 的分类体系,对待问题能有更严谨、缜密的思维。 二、教学重点 对常见题型分类方法的掌握;能够灵活运用一般的分类技巧。 三、教学难点 对于分类的“界点”、“标准”把握不准确,容易出现重复解、漏解等现象。 四、板书设计 1:分式方程无解的分类讨论问题; 2:“一元二次 方程系数的分类讨论问题; 3:三角形、圆等几何图形相关量求解的分类讨论问题; 4:分类问题在动点问题中的应用; 4.1 常见平面问题中动点问题的分类讨论; 4.2 组合图形(二次函数、一次函数、平面图形等组合)中动点问题的分类。 1:分式方程无解的分类讨论问题 例题 1:(2011 武汉) 3 ax 4 + x - 3 x 2 - 9 x + 3 解:去分母,得: 3( x + 3) + ax = 4( x - 3) ?(a -1)x = -21 21 21 a -1 a -1 ∴ a = 8, a = -6.或者a = 1 猜想:把“无解”改为“有增根”如何解? a = 8或a = -6 例题 2:(2011 郴州) 2 a x + 1 x - 1 2:“一元二次”方程系数的分类讨论问题 例题 3:(2010 上海)已知方程 m 2 x 2 + (2m + 1) x + 1 = 0 有实数根,求 m 的取值范围。 (1) 当 m 2 = 0 时,即 m=0 时,方程为一元一次方程 x+1=0,有实数根 x= - 1

初中数学几何图形初步知识点训练及答案

初中数学几何图形初步知识点训练及答案 一、选择题 1.已知直线m∥n,将一块含30°角的直角三角板按如图所示方式放置(∠ABC=30°),并且顶点A,C分别落在直线m,n上,若∠1=38°,则∠2的度数是() A.20°B.22°C.28°D.38° 【答案】B 【解析】 【分析】 过C作CD∥直线m,根据平行线的性质即可求出∠2的度数. 【详解】 解:过C作CD∥直线m, ∵∠ABC=30°,∠BAC=90°, ∴∠ACB=60°, ∵直线m∥n, ∴CD∥直线m∥直线n, ∴∠1=∠ACD,∠2=∠BCD, ∵∠1=38°, ∴∠ACD=38°, ∴∠2=∠BCD=60°﹣38°=22°, 故选:B. 【点睛】 本题考查了平行线的计算问题,掌握平行线的性质是解题的关键. 2.某包装盒如下图所示,则在下列四种款式的纸片中,可以是该包装盒的展开图的是()

A.B. C.D. 【答案】A 【解析】 【分析】 将展开图折叠还原成包装盒,即可判断正确选项. 【详解】 解:A、展开图折叠后如下图,与本题中包装盒相同,故本选项正确; B、展开图折叠后如下图,与本题中包装盒不同,故本选项错误; C、展开图折叠后如下图,与本题中包装盒不同,故本选项错误;

D、展开图折叠后如下图,与本题中包装盒不同,故本选项错误; 故选:A. 【点睛】 本题主要考查了含图案的正方体的展开图,学生要经历一定的实验操作过程,当然学生也可以将操作活动转化为思维活动,在头脑中模拟(想象)折纸、翻转活动,较好地考查了学生空间观念. 3.如图,将矩形纸片沿EF折叠,点C在落线段AB上,∠AEC=32°,则∠BFD等于() A.28°B.32°C.34°D.36° 【答案】B 【解析】 【分析】 根据折叠的性质和矩形的性质,结合余角的性质推导出结果即可. 【详解】

分类讨论(拉分题-几何篇)几何小技巧

专题一分类讨论 典型应用1、与线段、角有关的分类讨论 1.1.1 如图1.1.1所示,已知矩形ABCD中,AB=3,BC=4。将此矩形绕矩形的顶点旋转,使点A落在直线BC上的A'处,则AA’=___________。 解析:按分别绕点B,点C,点D顺时针和逆时针旋转进行分类讨论。解得AA’= 。 备注:由点的位置的不确定和旋转方向的不确定展开讨论。 1.1.2 如图1.1.2所示,已知∠AOB=52°,以OB为边画∠BOC,使得∠BOC与∠AOB互余,则∠AOC=__________。 解析:如图1.1.3所示,本题分OC在OB上方还是下方两类讨论。 故∠AOC=90°或14°。 1.1.3 已知正方形ABCD的边长为2,∠MAN=45°.开始时,射线AN与射线AB重合,射线AM

位于正方形ABCD的外侧,将∠MAN绕定点A按逆时针旋转,当射线AM与射线AD重合时停止旋转。设旋转角为θ,∠MAN与正方形ABCD的重叠部分面积为S(S>0). 求S关于θ的函数解析式,并写出θ的变化范围。 典型应用2、与等腰三角形有关的分类讨论 1.2.1 等腰三角形的一个外角为110°,则其顶角为__________。 解析:分为110°是底角的外角和顶角的外角两种情况讨论。用内角和计算可得顶角为70°或40°。 1.2.2 在直角坐标系中,点O为坐标原点,已知点A(-2,2),试在x轴上找一点P,使△AOP 为等腰三角形,求符合条件的点P的坐标。

解析:分为OA=OP,OA=AP,OP=AP 三类情况讨论。故点P 的坐标为 )或或(-2,0)或(-4,0). 1.2.3 △ABC 中,点H 是高AD 与高BE 的交点,若BH=AC,求∠ABC. 解析:三角形高的位置是由三角形的形状决定的。锐角三角形的高在图形内部,钝角三角形有两条高在图形外部。如图1.2.1,图1.2.2所示,可求得∠ABC=45°或135°。 1.2.4 若一个三角形的边长是大于1且小于5的整数,求该三角形的周长。 解析: 当三边长为2、2、4时,无法构成三角形,舍去。故三角形周长可能是6、7、8、9、10、11、12.

圆的分类讨论例题及习题

圆的分类讨论例题及习题

圆中的分类讨论题------之两解情况 一、根据点与圆的位置分类 例1、点P 是圆0所在平面上一定点,点 P 到圆上的最大距离和最短距离分别为8和2, 则该圆的半径为 ___________________ 。 解:过点P 和圆心0作直线分别与圆0相交于A 、B 两点。PA 、 PB 分别表示圆上各点到点 P 的最长距离和最短距离。 (1)当点P 在圆内时,如图1所示,直径 (2)当点P 在圆外时,如图2所示,直径--1 - : H . 所以,圆0的直径为2或6。 练习1:若。0所在平面内一点P 到。0上的点的最大距离为a ,最 小距离为b ,则此圆的半径为( ) 2: P 在。0内,距圆心0的距离为4,。0半径长为5,经过P 点, 有多 少条? 解:过P 点的弦长为整数的最短弦长是 6cm (该弦垂直于0P ,等于5与4的平方和的平方 根的 2倍);最长的是10cm (过0、P 的直径);其间弦长为整数的长度还有 7、8、9cm ,所以共 有8条(其中的7、8、9各有两条,以0P 为对称轴)。 3:00的半径为2.5,动点P 到定点0的距离为2,动点Q 到P 的点的距离为1,则点P 、 Q 与O 0 有何位置关系? 二、弦与弦的位置关系不唯一,需要分类讨论 例 1、圆 0 的直径为 10cm ,弦 AB//CD , AB=6cm , CD = 8cm ,求 AB 和CD 的距离。 解:(1)当AB 、CD 在圆心的同侧时,如图,过点 0作0M_AB 交 AB 于点M ,交CD 于N ,连结OB 、0D ,得Rt 0MB , Rt 0ND ,然后 由勾股定理求0M = 4cm, 0N = 3cm ,故 AB 和 CD 的距离为 1cm 。 (2)当AB 、CD 在圆心的异侧时,如图9,仍可求得0M = 4cm, ON = 3cm 故AB 和 CD 的距离为7cm 。 所以AB 和CD 的距离为1cm 和7cm 。 例2、已知弓形的弦长为8cm ,所在圆的半径为5cm ,则弓形的高为多少? ( 2或8cm ) k _________ 止 ______________ ________ L A P . 定点 交于。O 的弦为整数的 B M D M A N

圆的分类讨论例题及习题

圆中的分类讨论题------之两解情况 一、根据点与圆的位置分类 例1、点P 是圆O 所在平面上一定点,点P 到圆上的最大距离和最短距离分别为8和2,则该圆的半径为 。 解:过点P 和圆心O 作直线分别与圆O 相交于A 、B 两点。PA 、PB 分别表示圆上各点到点P 的最长距离和最短距离。 (1)当点P 在圆内时,如图1所示,直径 ; (2)当点P 在圆外时,如图2所示,直径; 所以,圆O 的直径为2或6。 练习1:若⊙O 所在平面内一点P 到⊙O 上的点的最大距离为a ,最小距离为b ,则此圆的半径为( ) 2:P 在⊙O 内,距圆心O 的距离为4,⊙O 半径长为5,经过P 点,交于⊙O 的弦为整数的有多少条? 解:过P 点的弦长为整数的最短弦长是6cm (该弦垂直于OP ,等于5与4的平方和的平方根的2倍);最长的是10cm (过O 、P 的直径);其间弦长为整数的长度还有7、8、9cm ,所以共有8条(其中的7、8、9各有两条,以OP 为对称轴) 。 3:⊙O 的半径为2.5,动点P 到定点O 的距离为2,动点Q 到P 的点的距离为1,则点P 、Q 与⊙O 有何位置关系? 二、弦与弦的位置关系不唯一,需要分类讨论 例1、圆O 的直径为10cm ,弦AB//CD ,AB=6cm ,CD cm =8,求AB 和CD 的距离。 解:(1)当AB 、CD 在圆心的同侧时,如图,过点O 作OM AB ⊥交AB 于点M ,交CD 于N ,连结OB 、OD ,得Rt OMB ?,Rt OND ?,然后由勾股定理求得:OM cm ON cm ==43,,故AB 和CD 的距离为1cm 。 (2)当AB CD 、在圆心的异侧时,如图9,仍可求得OM cm ON cm ==43,。故AB 和CD 的距离为7cm 。 所以AB 和CD 的距离为1cm 和7cm 。 例2、 已知弓形的弦长为8cm ,所在圆的半径为5cm ,则弓形的高为多少?(2或8cm ) 例3、 已知:如图,AB 是⊙O 的直径,AC 是⊙O 的弦,AB=2,∠BAC=30°.在图中作弦AD ,使AD=1, 并求∠CAD 的度数. 解:连接BC , ∵AB 是⊙O 的直径, ∴∠ACB=90°, ∵∠BAC=30°, ∴BC=1/2AB=1, ∠B=60° 以A 圆心BC 长为半径画弧可得点D ,再连接AD 即可; ∵AD=BC , 所以弧BCE=弧ADC ∴∠DAB=∠B=60°, ∴∠DAC=60°-30°=30°; P O B A P O B A N M C D O B A N M C D O B A

几何中的分类讨论学案

几何图形中的分类讨论 教学目标:1、了解分类讨论思想在解题过程中的重要性 2、明确分类的一般步骤 3、会应用分类讨论思想解决数学问题 重点:应用分类讨论思想解题 难点:变式2 一、课前热身: 将金西大道看成是直线l ,岔路口为l 上一点B ,水上乐园为点A , 在直线l 上确定一点P ,使△ABP 为等腰三角形。 例、已知:点A (-1,0),B(0,3),作直线 x =1,在直线 x =1上 找一点P,使△ABP 为等腰三角形,并求出P 点坐标。 二、学以致用 变式1 在直线 x =1上是否存在点Q ,使△ABQ 是直角三角形?若存在,求出符合条件的Q 点坐标;若不存在,请说明理由 . l A

三、挑战提高 变式2 若抛物线 y= - x 2+2x+3 经过A ,B 两点,交 x 轴于点C ,点E 为抛物线上一点,F 是 x 轴 正半轴上的一个动点,是否存在以A 、B 、E 、F 为顶点的直角梯形,若存在,求出符合条件的E 点坐标;若不存在,请说明理由. 3、小结:今天你有哪些收获? x x x

课后作业: 1、如图,抛物线y=-x2+2x+3于x轴交与A,C两点,直线AE交抛物线于点E(2,3),G为抛物线上一点,F 为x轴上一个动点,以A,E,G,F为顶点的平行四边形是否存在,若存在请求出符合条件的G点坐标;若不存在,请说明理由 . 2、已知在矩形ABCD中,AB=4,BC=25 2 ,O为BC上一点,BO= 7 2 ,如图所示,以BC所在直线为 x轴,O为坐标原点建立平面直角坐标系,M为线段OC上的一点. (1)若点M的坐标为(1,0),如图①,以OM为一边作等腰△OMP,使点P在矩形ABCD的一边上,则符合条件的等腰三角形有几个?请直接写出所有符合条件的点P的坐标; (2)若将(1)中的点M的坐标改为(4,0),其它条件不变,如图②,那么符合条件的等腰三角形有几个?求出所有符合条件的点P的坐标; (3)若将(1)中的点M的坐标改为(5,0),其它条件不变,如图③,请直接写出符合条件的等腰三角形有几个.(不必求出点P的坐标)

圆的一题多解

圆的一题多解 【案例】试题来源(浙教版九年级上册练习题) 已知在圆O 中,A 为优弧BC 的中点,且AB=BC,E 为弧BC 上的一点,求AE=BE+CE . 【分析】本题知识点(1)等边三角形和全等的相关知识;(2)利用截长补短的解题方法. 1.一题多解 (1)利用截长方法的方法解题 解析:在AE 上取点F ,使得AF=BE, (AFC BEC AF BE FAC EBC AC BC ??=?? ∠=∠??=? 在和中 作法可得)(同弧所对的圆周角相等)(等边三角形边相等) AFC ?≌BEC ?(SAS) ∴CF=CE 60AEC ABC ∠=∠=? ∴ECF ?是等边三角形 ∴EF=EC AE=AF+EF ∴AE=BE+CE (2)利用补短的方法解题 解析:延长EB 至点F,使BF=EC, BF ACE B C (ABF ACE ABE B A A F E A C ??=?? ∠=∠∠??=? 在和中 作法可得)(同角的补角相等) (等边三角形边相等) ABF ?≌ACE ?(SAS) ∴BAF=CAE ∠∠ AE=AF CAE+EAB=60∠∠? E F

∴+EAB=60BAF ∠∠? ∴AFE ?是等边三角形 ∴AE=EF=BE+BF 即AE=BE+CE (3)利用旋转的方法解题 解析:将ACE ?顺时针旋转60?,则ABF ?≌ACE ? ∴AEF ?是等边三角形,ACE ABF ∠=∠ +ABE=180ACE ∠∠?(圆内接四边形对角互补) ∴BF+ABE=180A ∠∠? 即点F 、B 、E 三点共线 ∴AE=EB+BF 即:AE=EB+EC (4)利用平行的方法解题 解析:过点C 作AE 的平行线CF 交圆于点F ,连接AF. (5)利用托勒密定理解题 解析:利用托勒密定理可得 +EC AB=AE BC BE AC ??? ABC ?是等边三角形 ∴AB=AC=BC ∴BE+EC=AE 新课程标准中提倡“通过解决问题的反思,获得解决问题的经验”.在数学教学中离不开习题讲解,通过一题多解使学生加深知识的理解与内化,培养学生思维的灵活性、创新性, E CF//AE FCE+18060+CFB=180CE//FG CEGF BEG AFG BE=EG,CF=GF=AG BF+CF=GE+AG=AE CEA BFC CEA FCE ∴∠∠=?∠==?∴∠∠?∴∴??∴∴ 即四边形是平行四边形和是等边三角形 E F E

《几何图形初步》练习题

《几何图形初步》练习题

《几何图形初步》复习学案 知识点一:余角和补角的概念(思考什么叫互为余角,什么叫互为补角) 1.★若∠α=79°25′,则∠α的补角是() A. 100°35′B. 11°35′C. 100°75′D. 101°45′ 2 ★已知∠α与∠β互余,若∠α=43°26′,则∠β的度数是() A. 56°34′B. 47°34′C. 136°34′D. 46°34′ 3 ★已知α=25°53′,则α的余角和补角各是 4★★已知∠1=30°21’,则∠1的余角的补角的度数是() 知识点二从正面、上面、左面看立体图形 1★画出从正面、上面、左面三个方向看到的立体图的形状 2★从正面、上面、左面看圆锥得到的平面图形是() A.从正面、上面看得到的是三角形,从左面看得到的是圆 B.从正面、左面看得到的是三角形,从上面看得到的是圆 C.从正面、左面看得到的是三角形,从上面看得到的是圆和圆心 D.从正面、上面看得到的是三角形,从左面看得到的是圆和圆心 3★★下列四个几何体中,从正面、上面、左面看都是圆的几何体是() A 圆锥B圆柱C球D 正方体 4★★一个几何体从正面、上面、左面看到的平面图形 如右图所示,这个几何体是() A 圆锥B圆柱C球D正方体

5★★观察下列几何体,,从正面、上面、左面看都是长方形的是() 6★★从正面、左面、上面看四棱锥,得到的3个图形是() ABC 7★★★如下图,是一个几何体正面、左面、上面看得到的平面图形,下列说法错误的是() A.这是一个棱锥B.这个几何体有4个面 C.这个几何体有5个顶点D.这个几何体有8条棱 8★★★如图是由几个小立方块所搭成的几何体的俯视图,小正方 形体的数字表示该位置小立方块的个数,则从正面看该几何体的图形是() 知识点三:度分换算 1度分 38.2°= 度分 22.55°=°′ 18.65°=°′ 2分度 79°24′=°29°48′=° 把56°36′换算成度的结果是 把37°54′换算成度的结果是 知识点四对直线、射线、线段三个概念的理解 1 ★图中有条直线,条射线,条线段

几何中的分类讨论问题(二)

几何中的分类讨论问题 【典型例题】 例 1 已知抛物线22)1(t t x a y +--=(a ,t 是不为0的常数)的顶点是A,另一条抛物线 122+-=x x y 的顶点是B . (1)写出A ,B 两点的坐标;(2)试证A 点在抛物线122+-=x x y 上;(3)如果抛物线22)1(t t x a y +--=经过B 点,求a 的值.问:这条抛物线与x 轴的两个交点B ,C 和这条抛物线的顶点A 能否构成直角三角形?若能,试求出t 的值;若不能,请说明理由. 例2 如图,在直角坐标系中,⊙O 与x 轴交于A ,B 两点,⊙O 的半径为2,C ,D ,M 三点的坐标分别为(3,0),(0,6),(0,m ),且0<m <6.(1)求经过C 、D 两点的直线的解析式; (2)当点M 在线段OD 上移动时,直线CM 与⊙O 有哪几种位置关系?求出每种位置关系时 m 取值范围. ① ②

例3 如图,⊙O 与直线MN 相切于A ,连结OA ,在OA 上任取一点O 1,以O 1为圆心作圆与⊙O 相切于B ,交直线MN 于C ,D .设⊙O 的半径为1,OO 1的长为x (0<x ≤1),以CD 为边向上作正方形,其面积为y 。(1)求y 与x 的函数关系式;(2)在这正方形中,设CD 的对边所在的直线为l ,问当x 为何值时,l 与⊙O 相切、相离、相交? 例4 如图,AB 是⊙O 的直径,弦(非直径)CD ⊥AB 于E .(1)当点P 在⊙O 上运动时(不考虑点P 与A 、C 、D 重合的情形),∠APC 与∠APD 的关系如何?说明理由;(2)当PC ⊥AD 时,证明:四边形DBCF 是菱形. 例5 已知:在Rt △ABC 中,∠B=90°,BC=4cm ,AB=8cm ,D 、E 、F 分别为AB 、AC 、BC 边上的中点,若P 为AB 边上的一个动点,PQ ∥BC ,且交AC 于点Q ,以PQ 为一边,在点A 的异侧作正方形PQMN ,设正方形PQMN 与矩形EDBF 的公共部分的面积为y .(1)如图,当AP=3cm 时, 求y 的值;(2)设AP=x cm ,试用含x 的代数式表示y (cm 2);(3)当y =2cm 2 时,试确定点P 的位置. C

初中数学分类讨论思想应用(几何部分)

分类讨论思想专题——几何部分(一) 教学目的: 1、让学生识别分类讨论思想应用的相关考点; 2、让学生掌握分类讨论思想在几何中的应用类型。 教学重难点: 1、重点是分类讨论考点的识别; 2、难点是分类讨论思想的掌握应用。 教学内容: 一、分类讨论思想 数学问题比较复杂时,有时可以分解成若干小问题或一系列步骤进行分类并分别加以讨论的方法,我们称为分类讨论法或分类讨论思想。 二、分类讨论思想应把握的原则 明确对象,不重不漏,逐级讨论,综合作答。 三、分类讨论思想的应用 [线段中分类讨思想的应用]——线段及端点位置的不确定性引发讨论。 例1已知直线AB 上一点C ,且有CA=3AB ,则线段CA 与线段CB 之比为_3:2_或_3:4____。 练习:已知A 、B 、C 三点在同一条直线上,且线段AB=7cm ,点M 为线段AB 的中点,线段BC=3cm ,点N 为线段BC 的中点,求线段MN 的长. 解析:(1)点C 在线段AB 上: (2)点C 在线段AB 的延长线上 N M A B C 例2下列说法正确的是( ) A 、 两条线段相交有且只有一个交点。 B 、如果线段AB=A C 那么点A 是 BC 的中点。 B 、两条射线不平行就相交。D 、不在同一直线上的三条线段两两相交必有 三个交点。 [ OM 平分∠AOB ,ON 平分∠A B C1 C2

[练习] 已知o AOB 60∠=,过O 作一条射线OC ,射线OE 平分A O C ∠,射线OD 平分 这两种情况下,都有o o AO B 60D O E= 30 2 2 ∠∠== 小结:(对分类讨论结论的反思)——为什么结论相同?虽然A O C ∠的大小不确定,但是所求的D O E ∠与A O C ∠的大小无关。我们虽然分了两类,但是结果是相同的!这也体现了分类讨论的最后一个环节——总结的重要性。 [三角形中分类讨论思想的应用] 一般有以下四种类型:一是由于一般三角形的形状不确定而进行的分类;二是由于等腰三角形的腰与底不确定而进行的分类;三是由于直角三角形的斜边不确定而进行的分类;四是由于相似三角形的对应角(或边)不确定而进行的分类。 1、三角形的形状不定需要分类讨论 例4、 在△ABC 中,∠B=25°,AD 是BC 上的高,并且AD BD DC 2 =·,则 ∠BC A 的度数为_____________。 解析:因未指明三角形的形状,故需分类讨论。 如图1,当△ABC 的高在形内时,由 AD BD DC 2 =· , 得△ABD∽△CAD,进而可 以证明△ABC 为直角三角形。由 ∠B=25°。可知∠BAD=65°。所以∠BCA=∠BAD=65°。 如图2,当高AD 在形外时,此时△ABC 为钝角三角形。 由 AD BD DC 2 =·,得 △ABD∽△CAD 所以∠B=∠CAD=25° ∠BCA=∠CAD+∠ADC=25°+90°=115° 2、等腰三角形的分类讨论: a 、在等腰三角形中求边:等腰三角形中,对给出的边可能是腰,也可能是底边,所以我们要进行分类讨论。 例5、已知等腰三角形的一边等于5,另一边等于6,则它的周长等于_________。 [练习]若等腰三角形一腰上的中线分周长为9cm 和12cm 两部分,求这个等腰三角形的底和腰的长。 简析:已知条件并没有指明哪一部分是9cm ,哪一部分是12cm ,因此,应有两种情形。

圆的解题技巧总结

圆的解题技巧总结 一、垂径定理的应用 给出的圆形纸片如图所示,如果在圆形纸片上任意画一条垂直于直径CD的弦AB,垂足为P,再将纸片沿着直径CD对折,我们很容易发现A、B两点重合,即有结论AP=BP,弧AC=弧BC.其实这个结论就是“垂径定理”,准确地叙述为:垂直于弦的直径平分这条弦,并且平分弦所对的弧. 垂径定理是“圆”这一章最早出现的重要定理,它说明的是圆的直径与弦及弦所对的弧之间的垂直或平分的对应关系,是解决圆内线段、弧、角的相等关系及直线间垂直关系的重要依据,同时,也为我们进行圆的有关计算与作图提供了方法与依据. 例1某居民小区一处圆柱形的输水管道破裂,维修人员为更换管道,需确定管道圆形截面的半径,下图是水平放置的破裂管道有水部分的截面. (1)请你补全这个输水管道的圆形截面; (2)若这个输水管道有水部分的水面宽AB=16cm,水面最深地方的高度为4cm,求这个圆形截面的半径. 例2如图,PQ=3,以PQ为直径的圆与一个以5为半径的圆相切于点P,正方形ABCD 的顶点A、B在大圆上,小圆在正方形的外部且与CD切于点Q,则AB=? 例3如图,已知⊙O中,直径MN=10,正方形ABCD的四个顶点分别在半径OM、OP以及⊙O上,并且∠POM=45°,则AB的长为多少? 例4图为小自行车内胎的一部分,如何将它平均分给两个小朋发做玩具?

二、与圆有关的多解题 几何题目一般比较灵活,若画图片面,考虑不周,很容易漏解,造成解题错误,在解有关圆的问题时,常常会因忽视图形的几种可能性而漏解. 1.忽视点的可能位置. 例5 △ABC 是半径为2的圆的内接三角形,若32 BC cm ,则∠A 的度数为______. 2.忽视点与圆的位置关系. 例6 点P 到⊙0的最短距离为2 cm ,最长距离为6 cm ,则⊙0的半径是______. 3.忽视平行弦与圆心的不同位置关系. 例7 已知四边形ABCD 是⊙0的内接梯形,AB∥CD,AB=8 cm ,CD=6 cm ,⊙0的半径是5 cm ,则梯形的面积是______. 4.忽略两圆相切的不同位置关系 例8 点P 在⊙0外,OP=13 cm ,PA 切⊙0于点A ,PA=12 cm ,以P 为圆心作⊙P 与⊙0相切,则⊙P 的半径是______. 例9 若⊙O 1与⊙02相交,公共弦长为24 cm ,⊙O 1与⊙02的半径分别为13 cm 和15 cm ,则圆心距0102的长为______. 三、巧证切线 切线是圆中重要的知识点,而判断直线为圆的切线是中考的重要考点. 判断直线是否是圆的切线,主要有两条途径: 1.圆心到直线的距离等于半径 当题中没有明确直线与圆是否相交时,可先过圆心作直线的垂线,然后证明圆心到直线

相关主题
文本预览
相关文档 最新文档