当前位置:文档之家› 初中数学分类讨论思想例题分析

初中数学分类讨论思想例题分析

初中数学分类讨论思想例题分析
初中数学分类讨论思想例题分析

分类讨论思想例题分析

[线段中分类讨思想的应用]——线段及端点位置的不确定性引发讨论。

例1已知直线AB 上一点C ,且有CA=3AB ,则线段CA 与线段CB 之比为_3:2_或_3:4____。

练习:已知A 、B 、C 三点在同一条直线上,且线段AB=7cm ,点M 为线段AB 的中点,线段BC=3cm ,点N 为线段BC 的中点,求线段MN 的长.

解析:(1)点C 在线段AB 上: (2)点C 在线段AB 的延长线上

M

例2下列说法正确的是( )

A 、 两条线段相交有且只有一个交点。

B 、如果线段AB=A

C 那么点A 是BC 的中点。 C 、两条射线不平行就相交。

D 、不在同一直线上的三条线段两两相交必有三个交点。

[

OM 平分∠AOB ,ON 平分∠[练习] 已知o AOB 60∠=,过O 作一条射线OC ,射线OE 平分AOC ∠,射线OD 平分

这两种情况下,都有o

o AOB 60

DOE=

3022

∠∠== A B C1 C2

小结:(对分类讨论结论的反思)——为什么结论相同?虽然AOC ∠的大小不确定,但是所求的DOE ∠与AOC ∠的大小无关。我们虽然分了两类,但是结果是相同的!这也体现了分类讨论的最后一个环节——总结的重要性。

[三角形中分类讨论思想的应用]

一般有以下四种类型:一是由于一般三角形的形状不确定而进行的分类;二是由于等腰三角形的腰与底不确定而进行的分类;三是由于直角三角形的斜边不确定而进行的分类;四是由于相似三角形的对应角(或边)不确定而进行的分类。 1、三角形的形状不定需要分类讨论

例4、 在△AB C 中,∠B=25°,AD 是BC 上的高,并且

AD BD DC 2=·,则∠BCA 的度数为_____________。

解析:因未指明三角形的形状,故需分类讨论。 如图1,当△ABC 的高在形内时,

由AD BD DC 2=·, 得△ABD∽△CAD,进而

可以证明△ABC 为直角三角形。由 ∠B=25°。可知∠BAD=65°。所以∠BCA=∠BAD=65°。 如图2,当高AD 在形外时,此时

△ABC 为钝角三角形。 由

AD BD DC 2=·,得△ABD∽△CAD 所以∠B=∠CAD=25°

∠BCA=∠CAD+∠ADC=25°+90°=115°

2、等腰三角形的分类讨论:

a 、在等腰三角形中求边:等腰三角形中,对给出的边可能是腰,也可能是底边,所以我们要进行分类讨论。

例5、已知等腰三角形的一边等于5,另一边等于6,则它的周长等于_________。

[练习]若等腰三角形一腰上的中线分周长为9cm 和12cm 两部分,求这个等腰三角形的底和腰的长。

简析:已知条件并没有指明哪一部分是9cm ,哪一部分是12cm ,因此,应有两种情形。

若设这个等腰三角形的腰长是x cm ,底边长为y cm ,可得???????=+=+,1221,921y x x x 或???????=+=+.921,122

1y x x x 解

得???==,9,6y x 或???==.5,

8y x 即当腰长是6cm 时,底边长是9cm ;当腰长是8cm 时,底边长是5cm 。

b 、在等腰三角形中求角:等腰三角形的一个角可能指底角,也可能指顶角,所以必须分情况讨论。

例6、已知等腰三角形的一个内角为75°则其顶角为( )

A. 30°

B. 75°

C. 105°

D. 30°或75°

[练习]1、等腰三角形一腰上的高与另一腰所成的夹角为45°,求这个等腰三角形的顶角的度数。

简析:依题意可画出图1和图2两种情形。图1中顶角为45°,图2中顶角为135°。

2、在ΔABC中,AB=AC,AB的中垂线与AC所在直线相交所得的锐角为50°,则底角∠B=____________。

3、直角三角形中,直角边和斜边不明确时需要分类讨论

例7、已知x,y为直角三角形两边的长,满足

x y y

22

4560

-+-+=

,则第三边的长为_____________。

解析:由

x y y

22

4560

-+-+=

,可得x240

-=且y y

2560

-+=分别解这两个方程,可得满足条件的解

x

y

1

1

2

2

=

=

?

?

?,或

x

y

2

2

2

3

=

=

?

?

?

由于x,y是直角边长还是斜边长没有明确,因此需要分类讨论。

当两直角边长分别为2,2时,斜边长为2222

22

+=;

当直角边长为2,斜边长为3时,另一直角边的长为5;

当一直角边长为2,另一直角边长为3时,斜边长为13。

综上,第三边的长为22或5或13。

4、相似三角形的对应角(或边)不确定而进行的分类。

例8、如图所示,在ABC

△中,64

AB AC P

==

,,是AC的中点,过P点的直线交AB于点Q,若以A P Q

、、为顶点的三角形和以A B C

、、为顶点的三角形相似,则AQ的长为()

(A)3 (B)3或

43 (C)3或34 (D)43

析解:由于以A P Q 、、为顶点的三角形和以A B C 、、为顶点的三角形有一个公共角(A ∠),因此依据相似三角形的判定方法,过点P 的直线PQ 应有两种作法:一是过点P 作PQ ∥BC ,这样根据相似三角形的性质可得

AQ AP AB AC =,即2

64

AQ =,解得3AQ =;

二是过点P 作APQ ABC ∠=∠,交边AB 于点Q ,这时

APQ

ABC ,于是有

AQ AP AC AB =,即246AQ =,解得43AQ =. 所以AQ 的长为3或4

3,故应选(B)。

四、本节小结

分类讨论思想是在解决问题出现不确定性时的有效方法。线段及端点的不确定;角的一边不确定;三角形形状不确定;等腰三角形腰或顶角不确定;直角三角形斜边不确定;相似三角形对应角(边)不确定等,都需要我们正确地运用分类讨论的思想进行解决。分类讨论思想不仅可以使我们有效地解决一些问题,同时还可以培养我们的观察能力和全面思考问题的能力。

C

B

数学的转化思想

中考数学专题复习之三:数学的转化思想 【中考题特点】: 转化思想要求我们居高临下地抓住问题的实质,在遇到较复杂的问题时,能够辩证地分析问题,通过一定的策略和手段,使复杂的问题简单化,陌生的问题熟悉化,抽象的问题具体化。具体地说,比如把隐含的数量关系转化为明显的数量关系;把从这一个角度提供的信息转化为从另一个角度提供的信息。转化的内涵非常丰富,已知与未知、数量与图形、概念与概念之间、图形与图形之间都可以通过转化,来获得解决问题的转机..。 【范例讲析】: 例1:已知:n m ,满足13,132 2 =-=-n n m m , 求 n m m n +的值。 例2:已知:一元二次方程x 2+x+m=0,x 2-(m -1)x+4 1 =0中至少有一个方程有实数根,求m 的取值范围。 例3:已知:如图,平行四边形ABCD 中,DE ⊥AB ,DF ⊥BC ,垂足分别为E 、F ,AB ∶BC=6∶5,平行四边形ABCD 的周长为110,面积为600。 求:cos ∠EDF 的值。 A B C D E F

例4:已知方程组 kx 2-x -y+ 2 1=0 y=k(2x -1) (x 、y 为未知数) 有两个不同的实数解 x=x 1 或 x=x 2 y=y 1 y=y 2 ⑴求实数k 的取值范围;⑵如果3x 1 x 1y y 2 121=++,求实数k 的值。 例5:如图,AB 是⊙O 的直径,PB 切⊙O 于点B ,PA 交⊙O 于点C ,∠APB 的平分线分别交BC 、AB 于点D 、E ,交⊙O 于点F ,∠A=60°,并且线段AE 、BD 的长是一元二次方程x 2-kx+23=0的两个根(k 为正的常数)。 ⑴求证:PA ·BD=PB ·AE ; ⑵求证:⊙O 的直径为常数k ; ⑶求tan ∠FPA 的值。 【练习】: 1.已知:m, n 是方程x 2-3x+1=0的两根,求代数式2m 2+4n 2-6n+1999的值。 2.已知:ab ≠1,且5a 2+1995a+8=0,8b 2+1995b+5=0。求 b a 的值。 3.如图,在直角坐标系中,点B 、C 在x 轴的负半轴上,点A 在y 轴的负半轴上,以AC 为直径的圆与AB 的延长线交于点D ,弧CD =弧AO ,如果AB=10AO>BO ,且AO 、BO 是关于x 的二次方程x 2+kx+48=0的两个根。 ⑴求点D 的坐标;⑵若点P 在直径AC 上,且AC=4AP ,判断点 (-2,-10)是否在过D 、P 两点的直线上,并说明理由。 A B C D E F P

初中数学最值问题典型例题

初中数学《最值问题》典型例题 一、解决几何最值问题的通常思路 两点之间线段最短; 直线外一点与直线上所有点的连线段中,垂线段最短; 三角形两边之和大于第三边或三角形两边之差小于第三边(重合时取到最值) 是解决几何最值问题的理论依据,根据不同特征转化是解决最值问题的关键.通过转化减少变量,向三个定理靠拢进而解决问题;直接调用基本模型也是解决几何最值问题的高效手段. 轴 对 称 最 值 图形 l P B A N M l B A A P B l 原理两点之间线段最短两点之间线段最短三角形三边关系 特征 A,B为定点,l为定直 线,P为直线l上的一 个动点,求AP+BP的 最小值 A,B为定点,l为定直线, MN为直线l上的一条动线 段,求AM+BN的最小值 A,B为定点,l为定直线, P为直线l上的一个动 点,求|AP-BP|的最大值转化 作其中一个定点关于定 直线l的对称点 先平移AM或BN使M,N 重合,然后作其中一个定 点关于定直线l的对称点 作其中一个定点关于定 直线l的对称点 折 叠 最 值 图形 B' N M C A B 原理两点之间线段最短 特征 在△ABC中,M,N两点分别是边AB,BC上的动点,将△BMN沿MN翻折, B点的对应点为B',连接AB',求AB'的最小值. 转化转化成求AB'+B'N+NC的最小值 1.如图:点P是∠AOB内一定点,点M、N分别在边OA、OB上运动,若∠AOB=45°,OP=32,则△PMN 的周长的最小值为. 【分析】作P关于OA,OB的对称点C,D.连接OC,OD.则当M,N是CD与OA,OB的交点时,△PMN 的周长最短,最短的值是CD的长.根据对称的性质可以证得:△COD是等腰直角三角形,据此即可求解.【解答】解:作P关于OA,OB的对称点C,D.连接OC,OD.则当M,N是CD与OA,OB的交点时,△PMN的周长最短,最短的值是CD的长. ∵PC关于OA对称, ∴∠COP=2∠AOP,OC=OP 同理,∠DOP=2∠BOP,OP=OD ∴∠COD=∠COP+∠DOP=2(∠AOP+∠BOP)=2∠AOB=90°,OC=OD.

专题讲座(数学思想方法与初中数学教学)

专题讲座(数学思想方法与初中数学教学)

数学活动的机会,帮助学生在自主探索和合作交流的过程中,真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验。学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者。学生只有领会了数学思想方法,才能有效地应用知识,形成能力,从而为解决数学问题、进行数学思维起到很好的促进作用。因此,在初中数学教学中,教师必须重视对学生进行数学思想方法的渗透与培养。 二、几种常见的数学思想方法在初中数学教学中的应用 (一)渗透转化思想,提高学生分析解决问题的能力 所谓“转化思想”是指把待解决或未解决的问题,通过转化,归结到已经解决或比较容易解决的问题中去,最终使问题得到解决的一种思想方法。转化思想是初中数学中常见的一种数学思想,它的应用十分广泛,我们在数学学习过程中,常常把复杂的问题转化为简单的问题,把生疏的问题转化为熟悉的问题。数学问题的解决过程就是一系列转化的过程,转化是化繁为简,化难为

易,化未知为已知的有力手段,是解决问题的一种最基本的思想,对提高学生分析解决问题的能力有积极的促进作用。 我们对转化思想并不陌生,中学数学中常用的化高次为低次、化多元为一元,都是转化思想的体现。在具体内容上,有加减法的转化、乘除法的转化、乘方与开方的转化、数形转化等等。例如:初中数学“有理数的减法”和“有理数的除法”这两节教学内容中,教材是通过“议一议”的形式,使学生在自主探究和合作交流的过程中,经历把有理数的减法转化为加法、把有理数的除法转化为乘法的过程,“减去一个数等于加上这个数的相反数”,“除以一个数等于乘以这个数的倒数”,这个地方虽然很简单,但却充分体现了把“没有学过的知识”转化为“已经学过的知识”来加以解决,学生一旦掌握了这种解决问题的策略,今后无论遇到多么难、多么复杂的问题,都会自然而然地想到把“不会的”转化为“会的”、“已经掌握的”知识来加以解决,这符合学生原有认知规律,作为教师,我们不能因为简单而忽视它的教学,实践告诉我们,往往是越简单、越浅显的例子,越能引起学生的认同,

初中数学概念的变式教学研究阶段报告详解

课题名称:初中数学概念的变式教学研究阶段报告 研究内容:初三阶段数学概念的变式教学研究 关键词:数学概念变式教学 一、问题提出: (一)问题提出的背景: 十年来,我一直担任初中数学的教学工作,也做了很多全国各地中考题和辅导书上的练习题,慢慢发现很多题实际上考查的知识点都是同一个内容,只是题目的立意,创设的情景不同而已。在平时的教学中,我们认为学生已经很熟知的知识,但只要对问题的背景或情景做一些改变,学生就做不出来了。现在社会需要的是创新人才,需要有独立解决问题能力的人才,为了培养学生思维习惯,提高学生的应变能力,我在实际的教学中进行了“关于初中数学概念的变式教学研究”的课题研究。 针对以上背景,也为了进一步提高我校数学教师的整体教学水平,为进一步适应时代的要求,着眼学生的终身学习,着眼学生的发展,让学生积极主动地参与学习活动,在主动参与的过程中掌握学习的方法与技能,进一步提高学生数学的综合素养,我们组内全体成员以饱满的热情、高度的责任感和使命感,围绕这一研究课题展开工作。 (二)研究的目的、意义 1、研究的目的: (1)学生能够更好的理解数学中的重要概念以及相关概念的联系和区别,熟悉概念在解题中的运用。 (2)提高我校初三学生的自主探究能力,优化学生的思维能力,提高课堂教学质量。同时,提高教师的专业水平。 2、研究的意义: 数学概念的学习是学生学习数学知识的起点,变式教学是提高学生解题能力的一种重要途径,而数学概念的变式教学能够更好的帮助学生理解所学的知识,以及利用概念来解决相关的问题,使教学过程成为一种有利于学生积极探究的过程,提高学生的学习效能。 传统的数学教学模式早已不适合现代的教学节奏,一些有识之士已经对于数学变式教学进行过研究。如:形式变式、内容变式和方法变式等。结合我校实际,我的研究课题,力求在数学概念的变式教学研究中,找到符合知识体系,符合学生发展认知规律的课堂教学模式。 (三)、概念界定: 1、变式教学是指在教学过程中通过变更概念非本质的特征、改变问题的条

初中数学10大解题方法及典型例题详解

初中数学10大解题方法及典型例题详解 1、配方法 所谓配方,就是把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。通过配方解决数学问题的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是数学中一种重要的恒等变形的方法,它的应用十分非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。 例题: 用配方法解方程x2+4x+1=0,经过配方,得到( ) A.(x+2) 2=5 B.(x-2) 2=5 C.(x-2) 2=3 D.(x+2) 2=3 【分析】配方法:若二次项系数为1,则常数项是一次项系数的一半的平方,若二次项系数不为1,则可先提取二次项系数,将其化为1后再计算。【解】将方程x2+4x+1=0, 移向得:x2+4x=-1, 配方得:x2+4x+4=-1+4, 即(x+2) 2=3; 因此选D。 2、因式分解法 因式分解,就是把一个多项式化成几个整式乘积的形式。因式分解是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角等的解题中起着重要的作用。因式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。 例题: 若多项式x2+mx-3因式分解的结果为(x-1)(x+3),则m的值为()A.-2 B.2 C.0 D.1 【分析】根据因式分解与整式乘法是相反方向的变形,先将(x-1)(x+3)乘法公式展开,再根据对应项系数相等求出m的值。

【解】∵x2+mx-3因式分解的结果为(x-1)(x+3), 即x2+mx-3=(x-1)(x+3), ∴x2+mx-3=(x-1)(x+3)=x2+2x-3, ∴m=2; 因此选B。 3、换元法 换元法是数学中一个非常重要而且应用十分广泛的解题方法。我们通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。 例题: 已知(x2+y2+1)(x2+y2+3)=8,则x2+y2的值为() A.-5或1 B.1 C.5 D.5或-1 【分析】解题时把x2+y2当成一个整体来考虑,再运用因式分解法就比较简单【解】设x2+y2=t,t≥0,则原方程变形得 (t+1)(t+3)=8,化简得: (t+5)(t-1)=0, 解得:t 1=-5,t 2 =1 又t≥0 ∴t=1 ∴x2+y2的值为只能是1. 因此选B. 4、判别式法与韦达定理 一元二次方程ax2+bx+c=0(a、b、c属于R,a≠0)根的判别,△=b2-4ac,不仅用来判定根的性质,而且作为一种解题方法,在代数式变形,解方程(组),解不等式,研究函数乃至几何、三角运算中都有非常广泛的应用。 韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和与积,求

初中数学中的“转化思想”

初中数学中的“转化思想” [摘要]:随着课程改革的深入展开,培养学生的能力越来越重要,数学学习更应重视数学思想方法的渗透和培养。本文从几方面论述了转化思想在数学学习中的重要作用:转化思想可以使学生经历探索的学习过程,改变学生的学习方式,转化思想能培养学生创新思维能力及逻辑思维能力,是一种很重要的思维方法;转化思想可以增强学生的数学应用意识,提高解决问题的能力,从而,大大加强学生学习数学的兴趣。 [关键词]:转化思想数学学习逻辑思维应用意识学习兴趣 [引言]:人们在长期的数学实践中总结了许多解决数学问题的方法,形成了许多光辉的数学思想,每种数学思想都有它一定的应用范围,但笔者在数学实践中体会到,在学生的数学学习过程中,决不能忽视转化数学思想所起的重要作用,在教学中必须重视转化思想的渗透和培养。 转化是解数学题的一种重要的思维方法,转化思想是分析问题和解决问题的一个重要的基本思想,不少数学思想都是转化思想的体现。就解题的本质而言,解题既意味着转化,既把生疏问题转化为熟习问题,把抽象问题转化为具体问题,把复杂问题转化为简单问题,把一般问题转化为特殊问题,把高次问题转化为低次问题;把未知条件转化为已知条件,把一个综合问题转化为几个基本问题,把顺向思维转化为逆向思维等,因此学生学会数学转化,有利于实现学习迁移,特别是原理和态度的迁移,从而可以较快地提高学习质量和数学能力。 数学转化思想、方法无处不在,它是分析问题、解决问题有效途径,它包含了数学特有的数、式、形的相互转换,又包含了心理达标的转换。转化的目的是不断发现问题,分析问题和最终解决问题。在数学中,很多问题能化复杂为简单,化未知为已知,化部分为整体,化一般为特殊,……等等,下面就“转化思想”在初中数学的应用通过举例作个简单归纳。

初中数学专题典型例题训练

第一讲:实数与代数专题典型例题讲解 一实数 1. 例:在14-和15 -之间,请写出两个有理数: . 2. 有理数2 2 3 1 2, (2), 2, 2 ---- 按从小到大的顺序排列是( ) A .322122< (2) 2-<--<-, B . 223 12< (2) 22 -<--<- C . 22312< (2) 22-<--<-, D . 232 12< 2(2)2 -<--<- 3. 将一刻度尺如图所示放在数轴上 (数轴的单位长度是1CM ),刻度尺上的“0cm ”和 “15cm ”分别对应数轴上的-3.6和x ,则( ) A .9<x <10; B .10<x <11; C .11<x <12; D .12<x <13; 4. 下列说法正确的是( ) A .互为相反数的两个数一定不相等; B .互为倒数的两个数一定不相等; C .互为相反数的两个数的绝对值相等; D .互为倒数的两个数的绝对值相等; 5. 若3x -和7x -是某个实数的平方根,则x = . 6. 若函数()f x 、()g x 满足()()0f x g x +=,当2()f x x x =-+,则函数()g x 的最小值为: 7. 有理数A 、B 、C 在数轴上的位置如图所示,则式子|A |+|B |+|A +B |+|B -C |化简结果为.[ ]. .A .2A +3B -C...B .3B -C..C .B +C....D .C -- 8. 若|A -2|=2-A ,求A 的取值范围。 9. 已知:|x -2|+x -2=0,.求:(1)x +2的最大值; 10. 单项式3x y π - 的系数是_______,次数是_____。 11. 如果21 13 m n a b +--与5 4a b 的同类项,则M =_____,N =_________。 12. 如图.在正方形ABCD 的边长为3,以A 为圆心,2为半径作圆弧.以D 为圆心, 3为半径作圆弧.若图中阴影部分的面积分为S 1、S 2.则S 1-S 2= . 13. 以Rt △ACB 两条直角边为直径向外作半圆,如图,其面积分别为1S 和2S ,若△ABC 的面积为S ,则12,S S 与S 的关系为 . 14. 若2 2(3)16x m x +-+是完全平方式,则m 的值为: . 15. 若m 2+m -1=0,求m 3+2m 2+2015的值. 16. 若0,0,x xy <<则15y x x y -+---=

化归思想在初中数学解题中的应用

化归思想在初中数学解题中的应用 向阳乡初级中学 周红林 【摘要】化归思想是中学数学最重要的思想方法之一。本文从化归的功能,化归的原则,化归的思维模式以及中学数学中化归的基本形式,化归的特点等内容出发,力求比较全面地体现化归思想在初中数学解题中的作用和地位。 【关键词】化归思想 化归的原则 教学策略 化归思想要点 新课程标准指出:“数学为其他科学提供了语言、思想和方法,是一切重大技术发展的基础。”“教师应激发学生的学习积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探究和合作交流的过程中真正理解和掌握基本的数学知识和技能、数学思想和方法,获得广泛的数学活动经验。”从中我们可以看出新课程标准下的数学教学更加突出培养学生的数学思想的重要性,而数学思想同样离不开数学方法的支持。 数学是一门演绎推理的学科。它的任一分支在其内容展开过程中,都有形或无形地存在着如下的结论链: 从中我们可以发现,在解决某一个具体问题时,不必都从原始概念开始,而只要把待解决的问题转化为结论链中的某一环节即可。所以,初中数学中,化归思想的运用尤为突出,本文结合自己的工作实际对化归思想提出了一些自己的看法。

一、化归思想的涵义和作用 化归思想,又称转换思想或转化思想,是一种把待解决或未解决的问题,通过某种转化过程归结到一类已经能解决或比较容易解决的问题中去,最终求得问题解答的数学思想。化归法和数形结合方法是转化思想在数学方法论上的体现,是数学中普遍适用的重要方法。 二、化归思想的基本原则 数学中的化归有其特定的方向,一般为:化复杂为简单;化抽象为具体;化生疏为熟悉;化难为易;化一般为特殊;化特殊为一般;化“综合”为“单一”;化“高维”为“低维”等。 为更好地把握化归方向,我们必须遵循一些化归的基本原则,化归思想的基本原则主要有熟悉化原则、简单化原则、具体化原则、极端化原则、和谐化原则。 ⒈熟悉化原则 熟悉化就是把我们所遇到的“陌生”问题转化为我们较为“熟悉”的问题,以便利用已有的知识和经验,使问题得到解决。这也是我们常说的通过“旧知”解决“新知”。学习是新旧知识相互联系、相互影响的过程。奥苏伯尔说,影响学习的最重要的因素是学生已知的内容。在教学的应用策略中,他提出了设计“先行组织者”的做法,也就是在学生“已经知道的知识”和“需要知道的知识”之间架起桥梁。这样有利于学生解决问题。 ⒉简单化原则 简单化原则就是把比较复杂的问题转化为比较简单的易于确定

(完整版)初一年级数学经典例题

数学天地: 初一年级数学核心题目赏析 有理数及其运算篇 【核心提示】 有理数部分概念较多,其中核心知识点是数轴、相反数、绝对值、乘方. 通过数轴要尝试使用“数形结合思想”解决问题,把抽象问题简单化.相反数看似简单,但互为相反数的两个数相加等于0这个性质有时总忘记用..绝对值是中学数学中的难点,它贯穿于初中三年,每年都有不同的难点,我们要从七年级把绝对值学好,理解它的几何意义.乘方的法则我们不仅要会正向用,也要会逆向用,难点往往出现在逆用法则方面. 【核心例题】 例1计算:2007 20061 ......431321211?+ +?+?+? 分析 此题共有2006项,通分是太麻烦.有这么多项,我们要有一种“抵消”思想,如能把一些项抵消了,不就变得简单了吗?由此想到拆项,如第一项可拆 成 2 1 11211-=?,可利用通项 ()11111+-=+?n n n n ,把每一项都做如此变形,问题会迎刃而解. 解 原式=)20071 20061(......413131212111-++-+-+-)()()( =20071 20061......41313121211- ++-+-+- =20071 1- =2007 2006 例2 已知有理数a 、b 、c 在数轴上的对应点 分别为A 、B 、C(如右图).化简b c b a a -+-+. 分析 从数轴上可直接得到a 、b 、c 的正负性,但本题关键是去绝对值,所以应判断绝对值符号内表达式的正负性.我们知道“在数轴上,右边的数总比左边的数大”,大数减小数是正数,小数减大数是负数,可得到a-b<0、c-b>0. 解 由数轴知,a<0,a-b<0,c-b>0 所以,b c b a a -+-+= -a-(a-b)+(c-b)= -a-a+b+c-b= -2a+c 例3 计算:?? ? ??-??? ??-????? ??-??? ??-??? ??-211311 (9811991110011)

初中数学变式教学的运用

龙源期刊网 https://www.doczj.com/doc/768708866.html, 初中数学变式教学的运用 作者:赖秀芬 来源:《中学教学参考·理科版》2015年第07期 [摘要]初中数学教学中采用变式教学的模式,可以在一定程度上提高学生学习数学的效率.变式数学是一种根据教学目的,对相关命题进行合理转化的教学模式.变式教学必须从一个或 几个原则进行重点考虑:有效原则、目标指导原则、创新性原则.主要分析了对初中数学变式 教学的认识与研究,为数学教学提供参考. [关键词]初中数学变式数学应用分析 [中图分类号] G633.6 [文献标识码] A [文章编号] 16746058(2015)200011 数学是一门最基础的学科,到了初中,学生对这门课程早已经不陌生了.它可以开拓学生 的思维,使学生的逻辑性更强,思维更宽广.然而,数学也是一门很枯燥的学科,学生学习数 学时并没有什么兴趣.因此,在初中数学教学过程中,应适当地采用一些合理有效的方式来提 高学生学习数学的效率.经过专家的不懈努力,变式教学的模式应运而生,并且在实际教学中 的应用得到了广大师生的肯定.可仍然有教师在数学教学中对变式教学模式不是很熟悉,没有 真正地去理解变式教学的具体含义和教学方式,在数学教学中没有充分发挥出变式教学模式的作用.因此,本文将探讨变式教学模式在初中数学教学中的应用研究,使其能更好地得到推广. 一、数学变式教学的含义 以往的数学教学工作,总是完全围绕课本或教学大纲进行.现如今,在新课程标准的引导下,数学的教学模式发生了改变,数学不再是完全局限在一个封闭的课本知识领域,而是让学生在对所学知识有了一定的理解后,运用变式教学的方法,进一步深化学习.这里所说的变 式,指的是教师要有目的地对数学概念和例题进行合理的转化,在保留概念或例题的本质内容的情况下,教师将其进行不断的变换.如变换内容、形式和结果等,从而让学生既学习、掌握 了该数学的概念,又让学生更好地掌握它的本质内容. 二、变式教学的分类应用 数学概念有很多,初中数学教学的秩序一般都是先从概念入手.教师进行概念的讲解,学 生学好数学的关键就是能否正确地理解数学的概念.所以,变式教学在数学概念教学中的应用 相对还是比较常见的.将变式教学方式运用到数学的概念教学中,学生的想象空间会更宽泛.学生明白了数学概念的同时,还可以与数学的变式知识联系到一起,这样学生在做数学题时的思维会更开放,对解数学题有很好的帮助,从而达到实现变式教学,提高初中生学习数学的兴趣和效率的目的.数学的魅力就在于难题被解开的那一瞬间,学生获得的成就感,这种成就感可 以增强学生的自信.对学生提高数学学习能力也是一种帮助.

第2讲-整体思想在初中数学中的应用

第二讲:整体思想在初中数学中的应用 【写在前面】 整体思想,就是在研究和解决有关数学问题时,通过研究问题的整体形式、整体结构、整体特征,从而对问题进行整体处理的解题方法.从整体上去认识问题、思考问题,常常能化繁为简、变难为易,同时又能培养学生思维的灵活性、敏捷性.整体思想的主要表现形式有:整体代入、整体加减、整体代换、整体联想、整体补形、整体改造等等.在初中数学中的数与式、方程与不等式、函数与图象、几何与图形等方面,整体思想都有很好的应用,因此,每年的中考中涌现了许多别具创意、独特新颖的涉及整体思想的问题,尤其在考查高层次思维能力和创新意识方面具有独特的作用. 【例题精讲】 一.数与式中的整体思想 例1.已知114a b -=,则2227a ab b a b ab ---+的值等于( ) A.6 B.6- C.125 D.27- 分析:根据条件显然无法计算出a ,b 的值,只能考虑在所求代数式中构造出11a b -的形式,再整体代入求解. 解:112242b 6112272(4)7 2()7a ab b a a b ab b a ------===-+?-+-+ 说明:本题也可以将条件变形为4b a ab -=,即4a b ab -=-,再整体代入求解. 例2.已知代数式25342 ()2x ax bx cx x dx ++++,当1x =时,值为3,则当1x =-时,代数式的值为 解:因为当1x =时,值为3,所以 231a b c d +++=+,即11a b c d ++=+,从而,当1x =-时,原式()21211a b c d -++=+=-+=+ 例3.已知2002007a x =+,2002008b x =+,2002009c x =+,求多项式222a b c ab bc ac ++---的值. 分析:要求多项式的值,直接代入计算肯定不是最佳方案,注意到222a b c ab bc ac ++---2221()()()2 a b b c c a ??=-+-+-??,只要求得a b -,b c -,c a -这三个整体的值,本题的计算就显得

初中数学知识要点及典型例题

初中数学知识要点及典型例题 第一章实数 第一讲实数的有关概念 【回顾与思考】 知识点:有理数、无理数、实数、非负数、相反数、倒数、数的绝对值 课标要求: 1.使学生复习巩固有理数、实数的有关概念. 2.了解有理数、无理数以及实数的有关概念;理解数轴、相反数、绝对值等概念,了解数的绝对值的几何意义。 3.会求一个数的相反数和绝对值,会比较实数的大小 4.画数轴,了解实数与数轴上的点一一对应,能用数轴上的点表示实数,会利用数轴比较大小。 考查重点: 1.有理数、无理数、实数、非负数概念; 2.相反数、倒数、数的绝对值概念; 3.在已知中,以非负数a2、|a|、 a (a≥0)之和为零作为条件,解决有关问题。 实数的有关概念

(1)实数的组成 {} ?????????????????????????????????正整数整数零负整数有理数有尽小数或无尽循环小数正分数实数分数负分数正无理数无理数无尽不循环小数 负无理数 (2)数轴:规定了原点、正方向和单位长度的直线叫做数轴(画数轴 时,要注童上述规定的三要素缺一个不可),实数与数轴上的点是一 一对应的。数轴上任一点对应的数总大于这个点左边的点对应的数, (3)相反数 实数的相反数是一对数(只有符号不同的两个数,叫做互为相反 数,零的相反数是零). 从数轴上看,互为相反数的两个数所对应的点关于原点对称. (4)绝对值 ?? ???<-=>=)0()0(0)0(||a a a a a a 从数轴上看,一个数的绝对值就是表示这个数的点与原点的距离 (5)倒数 实数a(a ≠0)的倒数是a 1(乘积为1的两个数,叫做互为倒数); 零没有倒数. 【例题经典】 理解实数的有关概念

中考数学思想方法专题之整体思想

初中数学思想之整体思想 整体思想,就是在研究和解决有关数学问题时,通过研究问题的整体形式、整体结构、整体特征,从而对问题进行整体处理的解题方法.从整体上去认识问题、思考问题,常常能化繁为简、变难为易,同时又能培养学生思维的灵活性、敏捷性.整体思想的主要表现形式有:整体代入、整体加减、整体代换、整体联想、整体补形、整体改造等等.在初中数学中的数与式、方程与不等式、函数与图象、几何与图形等方面,整体思想都有很好的应用,因此,每年的中考中涌现了许多别具创意、独特新颖的涉及整体思想的问题,尤其在考查高层次思维能力和创新意识方面具有独特的作用. 一.数与式中的整体思想 【例1】 已知代数式3x 2-4x+6的值为9,则2463x x -+的值为 ( ) A .18 B .12 C .9 D .7 【例2】.已知114a b -=,则2227a ab b a b ab ---+的值等于( ) A.6 B.6- C. 125 D.27- 【例3】已知2002007a x =+,2002008b x =+,2002009c x =+,求多项式222a b c ab bc ac ++---的值. 二.方程(组)与不等式(组)中的整体思想 【例4】已知24122x y k x y k +=+?? +=+? ,且03x y <+<,则k 的取值范围是 【例5】已知关于x ,y 的二元一次方程组3511x ay x by -=??+=?的解为56 x y =??=?,那么关于x , y 的二元一次方程组3()()5()11x y a x y x y b x y +--=??++-=? 的解为为 【例6】.解方程 22523423x x x x +-=+ 三.函数与图象中的整体思想 【例7】已知y m +和x n -成正比例(其中m 、n 是常数)(1)求证:y 是x 的一次函数;(2)如果y =-15时,x =-1;x =7时,y =1,求这个函数的解析式 四.几何与图形中的整体思想

初中数学几何证明经典题(含答案)

初中几何证明题 经典题(一) 1、已知:如图,O是半圆的圆心,C、E是圆上的两点,CD⊥AB,EF⊥AB,EG⊥CO. 求证:CD=GF.(初二) .如下图做GH⊥AB,连接EO。由于GOFE四点共圆,所以∠GFH=∠OEG, 即△GHF∽△OGE,可得EO GF = GO GH = CO CD ,又CO=EO,所以CD=GF得证。 2、已知:如图,P是正方形ABCD内点,∠PAD=∠PDA=150. 求证:△PBC是正三角形.(初二) .如下图做GH⊥AB,连接EO。由于GOFE四点共圆,所以∠GFH=∠OEG, 即△GHF∽△OGE,可得EO GF = GO GH = CO CD ,又CO=EO,所以CD=GF得证。 .如下图做GH⊥AB,连接EO。由于GOFE四点共圆,所以∠GFH=∠OEG, 即△GHF∽△OGE,可得EO GF = GO GH = CO CD ,又CO=EO,所以CD=GF得证。 A P C D B A F G C E B O D

3、如图,已知四边形ABCD 、A 1B 1C 1D 1都是正方形,A 2、B 2、C 2、D 2分别是AA 1、BB 1、 CC 1、DD 1的中点. 求证:四边形A 2B 2C 2D 2是正方形.(初二) 4、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC 的延长线交MN 于E 、F . 求证:∠DEN =∠F . 经典题(二) 1、已知:△ABC 中,H 为垂心(各边高线的交点),O (1)求证:AH =2OM ; (2)若∠BAC =600,求证:AH =AO .(初二) D 2 C 2 B 2 A 2 D 1 C 1 B 1 C B D A A 1 B

“转化思想”在初中数学中的应用和作用

“转化思想”在初中数学中的应用和作用 □许记花 数学思想方法是数学的灵魂和精髓,是指导我们探索问题、研究问题和解决问题的尚方宝剑,它常常隐含于数学知识的发生、发展过程中。而“转化思想”是数学思想方法中最基本、也是最重要的一种方法,“转化思想”在初中数学中的应用之广,作用之大,是无法用语言形容的,理解并掌握了这种方法,许许多多的数学问题都能迎刃而解。 一、“转化思想”初中代数中的应用和作用 1、进入初中,我们学习了用数轴上的点来表示有理数,因而计算一个数的绝对值就转化为求数轴上的点到原点的距离,这是数与形的转化。 2、两个负数大小的比较,绝对值大的反而小,这是把负数大小的比较通过取绝对值转化为正数大小的比较。这是数与数之间的转化。 3、根据减法法则,减去一个数可以转化为加上这个数的相反数,从而把有理数的减法运算转化为有理数的加法运算。这是运算与运算之间的转化。 4、类似地,除以一个不为0的数可以转化为乘以这个数的倒数,把有理数的除法运算转化为有理数的乘法运算,这是运算与运算之间转化。像这样,把复杂问题转化为简单问题,把陌生的未知问题转化为已知的学过的知识去解决,把新的问题转化为已知的或已解决的问题,这就是我们学习数学解决问题的一种常用的数学思想——转化思想。 5、而解一元一次方程的过程实质也是一种转化,是将复杂的方程逐步转化为最简单的方程。例如: 解方程: 解:去分母,得5(3x+1)-20=(3x-2)-2(2x+3) ① 去括号,得15x+5-20=3x-2-4x-6 …② 移项,得15x-3x+4x=-2-6-5+20 …③

合并同类项,得16x=7 .…④ 系数化为1,得x …⑤ 大家都知道一元一次方程的解的基本表达形式是x=a,它是一元一次方程中形式最简单的方程,而我们研究一元一次方程起点便是从这里开始的.学习了等式的基本性质,我们可以探索形如方程②、③、④形式的解法;学习了去括号法则之后,又可以探索形如方程①形式的解法;最后,学习了含分母的一元一次方程的解法。从此不难发现:我们课本知识是由浅显、简单到较难、较复杂是逐步展开的,而上述解方程的过程正好是我们课本知识展开过程的逆过程,正好符合我们解方程的数学思维过程,即把复杂的问题,逐步转化为简单的问题,把陌生的问题逐步转化为熟悉的问题,从而求得问题的解。 二、“转化思想”在初中几何中的应用和作用 学习几何知识,用几何知识分析问题、探索问题、研究问题和解决更离不开“转化思想”,几何题的解答、几何题的证明、多数定理的证明,公式的推导,也都用到“转化思想”,转化思想在数学中的应用之广,作用之大是无法测量的。例如: 1、如图:求∠A+∠B+∠C+∠D+∠E的度数。 用三角形的一个外角等于和它不相邻的两个内角和,把求∠A+ ∠B+∠C+∠D+∠E五个角的度数转化为一个三角形的内角和等于180°来解决的。这是角与角之间的转化。 2、多边形的内角和公式(n-2)×180°推导:利用添加辅助线的方法把n边形转化为(n-2)个三角形,利用三角形的内角和等于180°。这是图形与图形之间、角与角之间的转化。 3、直线、抛物线、双曲线可以用方程(即解析式)来表示,这是形与式的转化。直线、抛物线、双曲线交点问题,可以用求方程组解来解决,这是形、式、数之间的转化。 4、如图:△ABC中,A、B、C三点的坐标分别为(-2,-1)、(3,-3)、(1,3),求△ABC 的面积。

中学数学中常见的数学思想有哪些

中学数学中常见的数学思想有 哪些(总4页) -CAL-FENGHAI.-(YICAI)-Company One1 -CAL-本页仅作为文档封面,使用请直接删除

中学数学中常见的数学思想有哪些? 答题内容: 1、化归的思想方法: 所谓化归思想方法又叫转换思想方法、也叫转换思想方法、也叫转化思想方法,是一种把未解决的问题或特解决的问题,通过某种方式的转化,归化到一类已经能解决或比较容易解决的问题,最终得原问题的解答的思想方法.化归思想方法的三要素:化归谁(化归对象)、化归到哪(化归目标)、怎样化归(化归方法).常见的化归方式有:已知与未知的化归、特殊与一般的化归、动与静的化归、抽象与具体的化归等. 化归思想方法的特点:是实际问题的规范化、简单化、熟悉化、模式化、直观化、正难侧反思化、以便应用已知的理论、方法和技巧到解决问题的目的.其形式如图所示: 例如方程问题转化为不等式问题:已知关于,的方程组,的解满足 ,求的取值范围. 解析:先解关于,的方程组,再把用表示的,的代数式代入不等式组中,解关于的不等式组. 2、数形结合的思想方法 所谓数形结合的思想方法是指把数学问题用数量关系与图形结合起来解答数学问题. 数形结合的思想方法的特点:数→形→问题的解答;形→数→问题的解答;数形,问题的解答. 例如:如图所示、在数轴上的位置,请化简 + 的结果是: 3、分类讨论的思想方法 所谓分类讨论的思想方法是指根据所研究的问题的某种相同性和差异性将它们分类来进行研究的思想方法. 分类讨论的思想方法的特点:分类不能重复也不能遗漏;同一次分类时,标准须相同;分类须有一定的范围,不能超范围. 例如:三角形按边分类方法:三角形可分为不等边三角形、等腰三角形,等腰三角形又可分为等边三角形、底边和腰不相等的等腰三

初中数学最值问题典型例题(含答案分析)

中考数学最值问题总结 考查知识点:1、“两点之间线段最短”,“垂线段最短”,“点关于线对称”,“线段的平移”。 (2、代数计算最值问题3、二次函数中最值问题) 问题原型:饮马问题造桥选址问题(完全平方公式配方求多项式取值二次函数顶点)出题背景变式:角、三角形、菱形、矩形、正方形、梯形、圆、坐标轴、抛物线等。 解题总思路:找点关于线的对称点实现“折”转“直” 几何基本模型: 条件:如下左图,A、B是直线l同旁的两个定点. 问题:在直线l上确定一点P,使PA PB +的值最小. 方法:作点A关于直线l的对称点A',连结A B'交l于 点P,则PA PB A B' +=的值最小 例1、如图,四边形ABCD是正方形,△ABE是等边三 角形,M为对角线BD(不含B点)上任意一点,将BM绕点B逆时针旋转60°得到BN,连接EN、AM、CM. (1)求证:△AMB≌△ENB; (2)①当M点在何处时,AM+CM的值最小; ②当M点在何处时,AM+BM+CM的值最小,并说明理由; (3)当AM+BM+CM的最小值为 时,求正方形的边长。 A B A' ′ P l

例2、如图13,抛物线y=ax2+bx+c(a≠0)的顶点为(1,4),交x轴于A、B,交y轴于D,其中B点的坐标为(3,0) (1)求抛物线的解析式 (2)如图14,过点A的直线与抛物线交于点E,交y轴于点F,其中E点的横坐标为2,若直线PQ为抛物线的对称轴,点G为PQ上一动点,则x轴上是否存在一点H,使D、G、F、H四点围成的四边形周长最小.若存在,求出这个最小值及G、H的坐标;若不存在,请说明理由. (3)如图15,抛物线上是否存在一点T,过点T作x的垂线,垂足为M,过点M作直线M N∥BD,交线段AD于点N,连接MD,使△DNM∽△BMD,若存在,求出点T的坐标;若不存在,说明理由.

初中数学典型例题100道

初中数学典型例题100道(二) 选择填空题150道 一.选择题: 7,如图,直线,点A1坐标为(1,0),过点A1作x的垂线交直线于点B1,以原点O为圆心,OB1长为半径画弧交x轴于点A2;再过点A2x的垂线交直线于点B2,以原点O为圆心,OB2长为半径画弧交x轴于点A3,…,按此做法进行下去,点A5的坐标为(,). 8,在Rt△ABC中,∠C=90°,∠A=30°,BC=2.若将此直角三角形的一条直角边BC或AC与x轴 重合,使点A或点B刚好在反比例函数(x>0)的图象上时,设△ABC在第一象限部分的面 积分别记做S1、S2(如图1、图2所示)D是斜边与y轴的交点,通过计算比较S1、S2的大小. 9,若不论k为何值,直线y=k(x﹣1)﹣与抛物线y=ax2+bx+c有且只有一个公共点,求a、b、c的值。 10,如图是二次函数y=ax2+bx+c的图象的一部分,对称轴是直线x=1. ①b2>4ac; ②4a﹣2b+c<0; ③不等式ax2+bx+c>0的解集是x≥3.5; ④若(﹣2,y1),(5,y2)是抛物线上的两点,则y1<y2. 上述4个判断中,正确的是()

A.①②B.①④C.①③④ D.②③④ 二,解答题 4,如图,在平面直角坐标系中,将直线y=kx沿y轴向下平移3个单位长度后恰好经过B(﹣3,0)及y轴上的C点.若抛物线y=﹣x2+bx+c与x轴交于A、B两点(点A在点B的右侧),且经过点C,其对称轴与直线BC交于点E,与x轴交于点F. (1)求直线BC及抛物线的解析式; (2)设抛物线的顶点为D,点P在抛物线的对称轴上,若∠APD=∠ACB,求点P的坐标; (3)在抛物线上是否存在点M,使得直线CM把四边形EFOC分成面积相等的两部分?若存在,请求出直线CM的解析式;若不存在,请说明理由. 5,如图,在平面直角坐标系中,抛物线y=ax2﹣3ax﹣4a的图象经过点C(0,2),交x轴于点A、B(A点在B点左侧),顶点为D. (1)求抛物线的解析式及点A、B的坐标; (2)将△ABC沿直线BC对折,点A的对称点为A′,试求A′的坐标; (3)抛物线的对称轴上是否存在点P,使∠BPC=∠BAC?若存在,求出点P的坐标;若不存在,请说明理由.

初中数学变式教学原则及策略研究

初中数学变式教学原则及策略研究 发表时间:2013-09-06T15:48:43.543Z 来源:《素质教育》2013年7月总第124期供稿作者:刘传辉 [导读] 进行变式教学的主要目的不是为了节省时间,而在于提高学生的逻辑思维能力。 刘传辉贵州省贵阳市第十八中学550002 摘要:数学教学的主要目标是培养学生独立思考、分析以及解决问题的能力,为了达到这个目标,就不能仅仅局限于课本知识,个别的题型。在变式教学中通过多个思维角度的思考分析,能够让学生在“变”的过程中体会到知识的实质,扩展知识结构,加深对知识的理解,从而养成好的科学思维习惯,达到举一反三、触类旁通的效果。下面本文作者根据个人教学实践,谈谈初中数学变式教学的原则和策略。关键词:初中数学变式教学原则策略 随着教育体制的改革,变式教学在数学教学中越来越重要。因此,要提高初中数学课堂的教学效率,必须采用变式教学的方法。变式教学就是指要从不同的角度、不同的情形以及不同的背景对待一个数学问题,以找出问题的实质特点,找出不同数学知识点之间的内在联系,从而顺利解决数学问题的教学方法。在初中数学课堂中实施变式教学,不仅能够帮助学生学到很多数学知识,还能够培养他们的数学思维能力,改善学生的思维质量。 一、初中数学变式教学原则 1.循序渐进原则。由于学生的认知能力都要经过一个从低到高的过程,而初中数学知识的逻辑结构也是如此,由浅入深,由简单到复杂,所以教师在变式教学中要根据学生实际的认知水平以及教学内容,层层推进,为学生创造合适的问题情境。 2.主动参与原则。在变式教学课堂中,要鼓励全班学生主动参与到教学活动中来,充分发挥学生的主体地位,鼓励学生积极地用脑、口、手等,使他们以主动的态度,去获取新知。同时,变式问题的设计要符合学生的认知水准、心理特点等,以适应他们的接受能力。 3.启发性原则。进行变式教学的主要目的不是为了节省时间,而在于提高学生的逻辑思维能力。这就要求教师要精心设置问题情境,把遇到的各个数学问题作为展开教学活动的出发点,在学生遇到解题困惑时,及时地进行引导启发,使学生自己能够一步一步地发现问题、找出问题的关键所在,进而顺利解决问题。 4.创新的原则。教师在变式教学过程中,一定要深入挖掘教材内容,寻找新的教学方法,提高学生对数学这门学科的学习兴趣。对教学过程中遇到的新型问题,鼓励学生进行自主研究探索,并进行适度的创新。 二、初中数学变式教学策略 在新课改的背景下,要让所有的学生学会学习,必须学习,就要对课本的例题、习题等进行简单的变式处理,从而提高学生的学习兴趣和学习能力。例如:在下面这一道数学例题中,BD长为120m,CD为60m,CE为50m,求出AB的长度(AB两点中间隔一条河)。如图1所示。 在这道题中主要利用的数学知识是相似三角形的性质,已知三边的长度求出第四边的长度。该题设计的主要目的是让学生复习相似三角形的判断方法,掌握相似三角形的性质,巩固所学知识。认真分析这道题,我们可以通过改变题干的条件,设计出新的数学情境,重新假设,进而引导学生从多个角度理解相似三角形的判定方法以及性质,进一步提高学生的数学素养。 1.模仿的教学策略 模仿的方法是指对这道数学题题干中的条件或者结论进行稍微的改变,或是从其它角度设置,问题的整体情境不改变,从而使学生对核心知识能够重复训练,掌握学习过的基础知识和基本的技能。如图2所示,假设AB∥CE, BD长为120m,CD为60m,CE为50m,求AB的长度。 在这个变式中,把上述数学题的条件AB⊥BC,EC⊥BC模仿变成了AB∥CE,这样的变式对利用相似三角形的性质,给出了三边长度,求出第四条边的长度的数学知识进行了重复训练,可以促使学生更好地学习数学基本知识,掌握基本技能。 2.互换条件和结论的教学策略 把上述数学题(图1)中的条件和结论进行部分调换,例如:BC长为110m,CE为50m,AB为100m,其它条件如上图一所示,求BD 与CD的长度。这道题和上述例题是紧密联系的,但是比例题稍微有一些难度,需要学生利用已经学过的方程知识来解决问题,但是学生在解题的过程中,能够明显地察觉到例题和下面两道模仿、变换的题型具有“同源性”。 3.变换条件的教学策略 把上述例题的条件稍加变动,进而得到以后总解答数学问题的方法。如图3所示。例如:点B、C、E位于同一条直线上面,且 AB⊥BC,DC⊥BC, AE⊥ED,求△AEB∽DEC。 条件和结论相互交换的策略和交换条件的策略虽然二者的改变策略中都涉及到条件,但是二者也要区别,前者是关于条件和结论之间的组合问题,和数学概念中的逆命题关系紧密,而后者是纯粹的条件与条件之间的交换问题,是选择条件的问题。通过这两种方法的细微

相关主题
文本预览
相关文档 最新文档