当前位置:文档之家› 漏泄同轴电缆的介绍

漏泄同轴电缆的介绍

漏泄同轴电缆的介绍
漏泄同轴电缆的介绍

漏泄同轴电缆简介

漏泄同轴电缆是具有信号传输作用又具有天线功能通过对处导体开口的控制可将受控的电磁波能量沿线路均匀的辐射出去及接收进来实现对电磁场盲区的覆盖已达到移动通信畅通的目的。

绝缘采用高物理发泡的均匀细密封闭的微泡结构不仅较之传统的空气绝缘结构在特性阻抗、驻波系数、衰减等传输参数更加均匀稳定而且可抵御在潮湿环境中潮气对电缆的侵入可能传输性能的下降或丧失免除了充气维护的烦恼大大提高了产品的使用寿命和稳定可靠性是当今世界上最先进的射频和漏泄同轴电缆结构。

选用漏泄同轴电缆的依据选择适当的漏泄同轴电缆要看其应用的需要选择最合适的漏泄同轴电缆类型和规格由系统的设计和所有相关参数如使用频率、传输距离等决定。选择漏泄同轴电缆有两个重要指标传输衰减和耦合损耗,漏泄同轴电缆的系统损耗就是指传输衰减和耦合损耗的总和,传输衰减也叫介入损耗主要指传输线路的线性损耗随频率而变化以分贝/100米表示。

耦合损耗是指通过开槽外导体从电缆散发出的电磁波在漏泄同轴电缆和移动接收机之间的路径损耗或信号衰减。因此系统损耗可以说是整个漏泄同轴电缆的损耗。

因此在实际应用中只要传输衰减能满足操作容限或链路容量的要求就没必要选择那些传输衰减最低的漏泄同轴电缆但对耦合损耗的要求会更严格一点。

在设计时要计算链路容量就得把所有发射器和接收机之间的增益和损耗加在一起它还必须包括任何其他因素引起的损耗。如果计算结果为正值那就表示有足够的容限允许环境发生变化而系统仍可正常运行。

对漏泄同轴电缆而言耦合损耗设计一般在5585分贝之间。

在狭长系统如隧道或地铁内因为隧道或地铁本身能帮助提高漏泄同轴电缆的耦合性能因此耦合损耗设计一般为7585分贝在这种条件下把传输衰减减到最小非常重要。

在建筑楼宇内漏泄同轴电缆耦合损耗设计一般在5565分贝之间因为楼内漏泄同轴电缆单向长度在50100米之间因此传输衰减就不那么重要了更重要的指

标是漏泄同轴电缆能尽量多地发射信号并穿透周围地区。

一个准备扩展的系统可以选择传输衰减较小的漏泄同轴电缆。

比如在办公楼内有一根顺电梯上行的漏泄同轴电缆几个楼面共用一个接头在这种情况下若选择传输衰减低的漏泄同轴电缆今后就可以提供更高频率上的服务或扩大服务覆盖区。

在特定区域内增加线路可以扩大覆盖面。

在较高频率上增加服务则会产生较高的损耗所以选择漏泄同轴电缆时应考虑在各种频率上均能降低损耗的漏泄同轴电缆。

有些宽带漏泄同轴电缆覆盖了几乎所有主要的频率从900MHz上的蜂窝系统到1900MHz上的PCS服务包括用于应急服务的超高频系统。

这些系统可以通过组合器或者交叉波段耦合器把信号组合到一根漏泄同轴电缆线上。

漏泄同轴电缆通常有较高的带宽并能在同一根电缆上在完全不同的波段上和所有距离内提供各种服务。

在实际应用中频率反应和带宽非常重要。

一个带宽中每个信道仅20千赫的系统可以使用任一种电缆或天线。

现在新的PCS系统带有象CDMA这样的解调配置要求1.2兆赫的带宽这时选择漏泄同轴电缆就要注意带宽应与解调配置相匹配。

在长达23公里的隧道中应每隔一定距离安装同轴的双向放大器把信号放大到合理的程度。

总的原则是电缆信号下降20分贝时放大器就应介入补偿20分贝的损耗。

在装有蜂窝系统的大楼楼顶天线与楼内放大器连接可放大信号2530分贝。漏泄同轴电缆可从这个放大器一直铺设到要求的覆盖区那儿另外安装一个放大器将信号提高2530分贝。

在实际应用中一个或两个放大器都可以只要足以补偿路径损耗就行。

远程监测用来跟踪无人值守的大系统对许多放大器都可以进行远程监测。

在远程站点一台PC机和一个软件程序往往同时监测几个系统这在安装多台放大器和其他设备的隧道内尤其实用。

由于系统能及时发现问题所在故可以在短时间内修复系统不会影响正常的

运行。

射频同轴电缆的电压驻波比很重要但对漏泄同轴电缆而言并不是决定性的因素。市面上的漏泄同轴电缆电压驻波比大多数在1.3以上使用在现今的系统上已经足够了。

专用频带漏泄同轴电缆与宽频带漏泄同轴电缆的比较专用频带漏泄同轴电缆与宽频带漏泄同轴电缆相比它是一种特别设计的漏泄同轴电缆通过特别设计外导体上开槽的形状、大小和节距以实现漏泄同轴电缆在某一频率具有非常稳定的系统损耗简单地说通过特别设计漏泄同轴电缆纵向传输的衰减可以通过增加耦合损耗来补偿补偿效果是使漏缆性能优化至使用频率。

专用频带漏泄同轴电缆与宽频带漏泄同轴电缆相比有以下不同点宽频带漏泄同轴电缆的特点是宽带性能在任何单一频率均能维持最佳有密集的狭孔极受环境影响。

专用频带漏泄同轴电缆的特点是在特定的频率下运作性能极佳相对少受环境因素影响在平行于漏泄同轴电缆方向交叉极化较低因此当使用数字通信系统时误码率较低当使用模拟通信系统时将信号的扭曲最小化并且传输损耗很小。

在垂直于漏泄同轴电缆方向相邻极化信号具有非常平的频率响应在整个频段内波动非常小。

避免了过多的交叉极化因此不会产生“双线效应”或反射交叉极化减少了损耗。

减少了多径效应产生的问题。

可优化于几段系统频率在这些频率上与宽带漏泄同轴电缆相比具有更加优化的电气性能。

选用漏泄同轴电缆的理论根据漏泄同轴电缆在系统设计时需要考虑的主要因素有漏泄同轴电缆的系统损耗、各种接插件及跳线的插损、环境条件影响所必须考虑的设计裕量、设备的输出功率、中继器的增益以及设备的最低工作电平。

其中漏泄同轴电缆的系统损耗由漏泄同轴电缆本身的传输衰减和耦合损耗两部分组成对于指定的工作频率其大小主要由漏泄同轴电缆的规格大小来确定规格大的漏泄同轴电缆系统损耗较小传输距离相对长。

在设计时首先考虑到移动终端的输出功率相对于固定设备较低所以一般以

移动终端的发射功率来确定漏泄同轴电缆的最大覆盖长度。

根据设备的最大输出功率电平手机为2W和系统要求的最低场强典型值85dBm----105dBm确定出系统所允许的最大衰耗值αmax. 。

第二选定漏泄同轴电缆的耦合损耗值Lc同时计算出某一规格的漏泄同轴电缆在指定工作频率上的某一长度L所对应的传输衰减α×L α为该漏泄同轴电缆的衰减常数。

工程中对漏泄同轴电缆的选用既要考虑到工程敷设的环境因素又要兼顾使用的设备参数以及工程系统扩展的需要然后理论计算选用比较实用的漏泄同轴电缆规格这样既能满足工程系统要求又能节约工程成本。

漏泄同轴电缆的敷设施工工艺标准

漏泄同轴电缆的敷设施工工艺标准 1.施工准备 1.1 劳动组织 1.2 工机具

1.3 材料

2.操作程序 2.1 工艺流程 2.2 操作要点 2.2.1 施工准备 在施工准备阶段,详细调查隧道内漏缆挂设位置及电力线、回流

线的高度、侧别及安全距离是否能够满足布缆的设计要求,隧道外架挂区段地形情况,核实中继器、天线杆塔、接头的位置及中继段的长度。 2.2.2 单盘测试 包括编写盘号、核对规格型号及数量,外观检查及验气工作,环阻、绝缘电阻和电气绝缘强度的测试,稳气。 (1)电桥测量漏缆环阻 把漏缆一侧的外导体和内导体短接,另一侧用直流电桥测量其环阻,测试连接见下图。 其测试标准:应小于4Ω/Km。 (2)利用500V兆欧表对漏缆内外导体间的绝缘电阻进行测量,测试连接见下图。 其测试标准:应不低于1000MΩ·KM, (3)绝缘耐压 漏缆内外导体间的高压耐压标准是:工频3KV电压2分钟不击穿。

(4)单盘稳气 漏缆充气压不得大于100±10kpa;稳气气压为90—100kpa(24小时),利用热可缩帽进行封堵充气。 2.2.3 配盘 (1)根据设计文件及现场调查的实际情况,采用分级补偿的办法进行配盘。 (2)通过几种不同耦合损耗规格的漏缆(90dB,80dB,70dB,65dB)依次串联,用逐渐减小耦合损耗的办法来补偿由于漏缆传输损耗引起的电平下降,从而使列车在全线运行中能收到较平稳的信号电平。 (3)按照每种耦合损耗规格漏缆的长度,进行合理配置,最大限度的利用出厂单盘漏缆,尽量减少剩余短段漏缆和接头数目。 2.2.4 隧道内漏泄电缆的架挂 (1)隧道内电缆支架的安装 ①电缆支架孔的位置,距离钢轨面高度一般为4.8—4.9m. ②用冲击钻在洞壁预定位置钻一个Ф19mm的孔,孔深为70±3mm。孔应平直不可成喇叭状。 ③将胀管及螺杆装在一起放入Ф19mm孔内,用木锤打入洞内,要注意保护螺杆螺纹。 ④支架安装时,将垫圈螺母拧好固定,夹板固定要统一,以使电缆与洞壁之间的距离保持一致。 ⑤洞内吊夹每隔2.5—5m安装一个,如环境条件的影响,可做适当的调整。

漏泄同轴电缆选用探讨

漏泄同轴电缆选用探讨 1.引言 漏泄同轴电缆可以实现任何地方的无线通信,甚至在有电磁波干扰或没有电磁波的地方都可以,例如:隧道、矿山、地铁、建筑大楼和大型、复杂的象展览馆或机场那样的场所。因为漏泄同轴电缆能保证信号覆盖的不间断性。 2.选用漏泄同轴电缆的依据 选择适当的漏泄同轴电缆要看其应用的需要,选择最合适的漏泄同轴电缆类型和规格由系统的设计和所有相关参数如使用频率、传输距离等决定。 选择漏泄同轴电缆有两个重要指标:传输衰减和耦合损耗。漏泄同轴电缆的系统损耗就是指传输衰减和耦合损耗的总和。传输衰减,也叫介入损耗,主要指传输线路的线性损耗,随频率而变化,以分贝/100米表示。耦合损耗是指通过开槽外导体从电缆散发出的电磁波在漏泄同轴电缆和移动接收机之间的路径损耗或信号衰减。因此系统损耗可以说是整个漏泄同轴电缆的损耗。因此在实际应用中,只要传输衰减能满足操作容限或链路容量的要求,就没必要选择那些传输衰减最低的漏泄同轴电缆,但对耦合损耗的要求会更严格一点。 在设计时要计算链路容量就得把所有发射器和接收机之间的增益和损耗加在一起,它还必须包括任何其他因素引起的损耗。如果计算结果为正值,那就表示有足够的容限允许环境发生变化,而系统仍可正常运行。 对漏泄同轴电缆而言,耦合损耗设计一般在55~85分贝之间。在狭长系统如隧道或地铁内,因为隧道或地铁本身能帮助提高漏泄同轴电缆的耦合性能,因此耦合损耗设计一般为75~85分贝,在这种条件下,把传输衰减减到最小非常重要。在建筑楼宇内,漏泄同轴电缆耦合损耗设计一般在55~65分贝之间,因为楼内漏泄同轴电缆单向长度在50~100米之间,因此传输衰减就不那么重要了,更重要的指标是漏泄同轴电缆能尽量多地发射信号,并穿透周围地区。 一个准备扩展的系统,可以选择传输衰减较小的漏泄同轴电缆。比如在办公楼内有一根顺电梯上行的漏泄同轴电缆,几个楼面共用一个接头,在这种情况下,若选择传输衰减低的漏泄同轴电缆,今后就可以提供更高频率上的服务或扩大服务覆盖区。

同轴电缆技术规范书

同轴电缆技术规范书 中国电信集团公司内蒙古网络资产分公司 二OO九年三月

同轴电缆技术规范书一、概述 同轴电缆分为细缆RG-58 和粗缆RG-11两种。本次招标主要应用于机房2M线。 粗缆(RG-11)的直径为1.27厘米,最大传输距离达到500米。由于直径相当粗,因此它的弹性较差,而且RG-11连接头的制作方式也相对要复杂许多。由于粗缆的强度较强,最大传输距离也比细缆长。粗缆的阻抗是75Ω。视频同轴电缆英文简称SYV,常有的有75-7,75-5,75-3,75-1等型号,特性阻抗都是75欧姆,以适应不同的传输距离。 二、参数指标 1、主要电气参数 (1)同轴电缆的特性阻抗同轴电缆的平均特性阻抗为50±2Ω,沿单根同轴电缆的阻抗的周期性变化为正弦波,中心平均值±3Ω,其长度小于2米。 (2)同轴电缆的衰减指500米长的电缆段的衰减值。当用10MHz的正弦波进行测量时,它的值不超过8.5db(17db/公里);而用5MHz的正弦波进行测量时,它的值不超过6.0db(12db/公里)。 (3)同轴电缆的传播速度需要的最低传播速度为0.77C(C为光速)。 (4)同轴电缆直流回路电阻电缆的中心导体的电阻与屏蔽层的电阻之和不超过10毫欧/米(在20℃下测量)。 2、同轴电缆的物理参数同轴电缆是由中心导体、绝缘材料层、网状织物构成的屏蔽层以及外部隔离材料层组成.同轴电缆具有足够的可柔性,能支持254mm(10英寸)的弯曲半径。中心导体是直径为 2.17mm±0.013mm的实芯铜线。绝缘材料必须满足同轴电缆电气参数。屏蔽层是由满足传输阻抗和ECM规范说明的金属带或薄片组成,屏蔽层的内径为 6.15mm,外径为8.28mm。外部隔离材料一般选用聚氯乙烯(如PVC)或类似材料。 3、对同轴电缆进行测试的主要参数 (1)导体或屏蔽层的开路情况。(2)导体和屏蔽层之间的短路情况。(3)导体接地情况。(4)在各屏蔽接头之间的短路情况。 三、规格型号 本次招标主要针对SYV-75-2类型,必须包含但不仅限于以下几种: SYV-75-2-1 SYV-75-2-1*2 SYV-75-2-2 SYV-75-2-2*8 1

同轴电缆的电气参数计算

同轴电缆的一个回路是同轴对,它是对地不对称的.在金属圆管(称为外导体)配置另一圆形导体(称为导体),用绝缘介质使两者相互绝缘并保持轴心重合,这样所构成的线对称同轴对。同轴电缆可用于开通多路栽波通信或传输电视节目,也可用同轴电缆传输高数码的数据信息(如UL2919屏幕线) 1.一次传输参数: 同轴电缆的一次传输参数主要随电流的频率及电缆结构尺寸D/d变化而变化. (1).有效电阻,随频率的增大而增大.而与外导体直径比没直接的关系. (2).电感随频率的增大而减小,随外导体直径比增大而增大. (3).电容与频率无关,随直径比的增大而减小. (4).电导与频率基本上成正比,随直径的增大而减小. 具体计算公式如下: 1.1.有效电阻: 同轴电缆的有效电阻包括导体的有效电阻及外导体的有效电阻,当外导体都是铜导体时,总的有效电阻为: 1.2有效电感: 同轴回路的电感由.外导体的电感和外导体之间的外电感组成,当外导体都是铜时,回路的电感为: 1.3同轴电缆电容﹕ 同于同轴电缆无外部电场,所以同轴对的工作电容就等于同轴对外导体间的部分电容,电容计算可按圆柱形电容器的电容公式来计算:

Dw-外导体结构的修正系数(理想外导体Dw=0,非理想外导体Dw=编织外导体中的单线直径) K1-导体结构的修正系数, D1-同轴线外导体径(mm) 1.4绝缘电导: 同轴对的绝缘导体G由两部分组成: 一是由绝缘介质极化作用引起的交流电导G~,另一个部分是由于绝缘不完善而引起的直流电导G0: G=G0+G~ 2.二次传输参数: 二次传输参数是用以表征传输线的特性参数,它包括特性阻抗ZC,衰减常数α,及相移常数. 2.1.同轴电缆特性阻抗﹕ 2.1.1.对于斜包,铝箔纵包可近似看作是理想外导体,计算如下:

漏泄同轴电缆的介绍

漏泄同轴电缆简介 漏泄同轴电缆是具有信号传输作用又具有天线功能通过对处导体开口的控制可将受控的电磁波能量沿线路均匀的辐射出去及接收进来实现对电磁场盲区的覆盖已达到移动通信畅通的目的。 绝缘采用高物理发泡的均匀细密封闭的微泡结构不仅较之传统的空气绝缘结构在特性阻抗、驻波系数、衰减等传输参数更加均匀稳定而且可抵御在潮湿环境中潮气对电缆的侵入可能传输性能的下降或丧失免除了充气维护的烦恼大大提高了产品的使用寿命和稳定可靠性是当今世界上最先进的射频和漏泄同轴电缆结构。 选用漏泄同轴电缆的依据选择适当的漏泄同轴电缆要看其应用的需要选择最合适的漏泄同轴电缆类型和规格由系统的设计和所有相关参数如使用频率、传输距离等决定。选择漏泄同轴电缆有两个重要指标传输衰减和耦合损耗,漏泄同轴电缆的系统损耗就是指传输衰减和耦合损耗的总和,传输衰减也叫介入损耗主要指传输线路的线性损耗随频率而变化以分贝/100米表示。 耦合损耗是指通过开槽外导体从电缆散发出的电磁波在漏泄同轴电缆和移动接收机之间的路径损耗或信号衰减。因此系统损耗可以说是整个漏泄同轴电缆的损耗。 因此在实际应用中只要传输衰减能满足操作容限或链路容量的要求就没必要选择那些传输衰减最低的漏泄同轴电缆但对耦合损耗的要求会更严格一点。 在设计时要计算链路容量就得把所有发射器和接收机之间的增益和损耗加在一起它还必须包括任何其他因素引起的损耗。如果计算结果为正值那就表示有足够的容限允许环境发生变化而系统仍可正常运行。 对漏泄同轴电缆而言耦合损耗设计一般在5585分贝之间。 在狭长系统如隧道或地铁内因为隧道或地铁本身能帮助提高漏泄同轴电缆的耦合性能因此耦合损耗设计一般为7585分贝在这种条件下把传输衰减减到最小非常重要。 在建筑楼宇内漏泄同轴电缆耦合损耗设计一般在5565分贝之间因为楼内漏泄同轴电缆单向长度在50100米之间因此传输衰减就不那么重要了更重要的指

国产同轴电缆的型号和含义

国产同轴电缆的型号和含义 视频信号传输一般采用直接调制技术、以基带频率(约8MHz 带宽)的形式,最常用的传输介质是同轴电缆。同轴电缆是专门设计用来传输视频信号的,其频率损失、图像失真、图像衰减的幅度都比较小,能很好的完成传送视频信号的任务。 视频信号传输线有同轴电缆(不平衡电缆)、平衡对称电缆(电话电缆)、光缆。平衡对称电缆和光缆一般用于长距离传输,对于宾馆酒店等建筑一般采用同轴电缆传输视频基带信号的传输方式。当采用75-5同轴电缆时,一般传输距离在300m 时,应考虑使用电缆补偿器。如采用75-9同轴电缆时,摄像机和监视器间的距离在500m 以内可不加电缆补偿器。 国产通信电缆的型号采用拼音字母和阿拉伯数字组成,他的排列次序和含义如下: 选用同轴电缆时,要选用频率特性好、电缆衰减小、传输稳定、防水性能好的电缆。 国内生产的同轴电缆可分为实芯和藕芯两种。芯线一般用铜线,外导体有铝管和铜网加铝箔。绝缘外套分为单护套和双护套两种。国产同轴电缆型号统一标准的格式如下: 特性阻抗 例如:SYV-75-3-1型电缆表示同轴射频电缆,用聚乙烯绝缘,用聚氯乙烯做护套,特性阻抗为75Ω,芯线绝缘外经为3mm ,结构序号为1。

常用同轴电缆型号的规格和主要参数 电缆型号绝缘形式芯线外经 mm 绝缘外经 mm 电缆外经 mm 特性阻抗 Ω 衰减常数(dB/100m) 30(MHz) 200(MHz) 800(MHz) SYKV-75-5 藕芯式 1.10 4.7 7.3 75±3 4.1 11 22 SYKV-75-12 藕芯式 2.60 11.5 15.0 75±2.5 1.6 4.5 10 SSYKV-75-9 藕芯式 1.90 9.0 13.0 75±3 2.1 5.1 11 SIOV-75-5 藕芯式 1.13 5.0 7.4 75±3 3.5 8.5 17 SIZV-75-5 竹节式 1.20 5.0 7.3 75±3 4.5 11 22 SYDV-75-9 竹节式 2.20 9.0 11.4 75±3 1.7 4.5 9.2 SYDV-75-12 竹节式 3.00 11.5 14.4 75±2 1.2 3.4 7.1 SDVC-75-7 藕芯式 1.60 7.3 10.0 75±2.5 2.6 7.1 15.2 SDVC-75-12 藕芯式 2.60 11.5 14.4 75±2.5 1.7 4.5 10

漏泄同轴电缆施工工法-secret要点演示教学

漏泄同轴电缆施工工法 一前言 为了解决铁路在山区、弯道、隧道内等弱场强或无场强区段的无线列调通信工程问题,目前采用在这些区段沿铁路线一定距离架设漏缆,安装隧道中继器和中继器天线的方式使无线电信号电波沿漏缆传输并均匀向外漏泄,使这些区段内场强达到一定要求而保证无线列调通信畅通、可靠。我们公司于1993年承担了某无线列调通信工程连江口至广州段的施工,在无施工规范和技术标准的情况下,我们在施工过程中边学习,边实践,边总结,用较短的时间,质量良好地完成了该段的施工任务。在完成任务的同时,锻炼了一支技术熟练、工艺精良的施工队伍。为了更好地指导今后同类工程的施工,我们在总结实践的基础上,编写了400MHz漏泄电缆的施工工法。期望本工法在今后指导同类工程施工实践的同时,不断地进行补充和完善,以取得更大的经济和社会效益。 二工法特点及适用范围 2.1本工法有如下特点: 2.1.1漏缆架设前要进行严格的单盘测试及合理的配盘。 2.1.2漏缆须架设在铁路旁距轨道线路中心3~15米范围内,其高度须距轨面4.5~4.8米。 2.1.3漏缆的漏泄槽应朝铁路一侧。 2.1.4漏缆接续按漏缆的型号不同须配用不同的连接器件,为控制电缆的耦合损耗,还须根据不同类型的电缆,确定其连接器的安装位置。 2.2本工法适用于山区、隧道传输信号,整个铁路系统及地下铁路,厂矿等漏泄电缆组成的无线通信系统工程的施工,同时也适用于从事漏缆维修人员进行维修工作。 三工艺原理

本工法是无线列调通信系统中的部分设备——漏泄电缆的施工工艺,其原理可从以下三个方面来说明: 3.1漏缆既是无线信号电波的传输线,又可视为无线信号的天线。 调度、车站值班员、机车司机互相通话,一般情况下,是靠车站电台通过天线向空间发射信号电波,在铁路沿线的空间产生一定的场强,并通过机车电台的天线耦合接收来实现的。而在弯道、山区、隧道内无线电波被阻挡、反射、吸收,使得该区段通信困难或无法通信。漏缆沿铁路架设,通过中继器和中继器天线,将车站电台发射的信号电波接收,经中继器放大加强,沿漏缆传输并均匀向外漏泄信号电波,使这些弱场强和无场强区段的铁路沿线具有一定大小的场强分布,以便在这些区段运行的机车电台能正常接收信号。同样,机车电台发射的信号电波也通过漏缆耦合,传输到中继器放大加强后送到中继器天线发射,被车站电台接收,从而实现调度、车站、机车的通信。因此,漏缆起到了传输、漏泄(天线)两方面的作用,成为山区、弯道、隧道内等弱场强或无场强区实现无线通信的关键设备之一。 3.2采用分级补偿的原则,从而使列车收到平稳的电平信号,同时与采用单一的漏缆相比,能延长通信距离。下面举一例说明: 3.2.1漏缆特性 型号 耦合损耗 传输损耗 149 80 dB/Km 25 dB/Km 148 70 dB/Km 27 dB/Km 147 65 dB/Km 36 dB/Km 3.2.2中继段的漏缆配置方法:在电波信号正向传输方向上,漏缆的配置顺序原则是 中继段漏缆配置图1 耦合损耗由大到小,传输损耗由小到大,以确保机车接收电平的曲线斜率最大限度最小,呈 Ⅰ 型 中继器 Ⅱ 型 中继器 DCX LCX 400m 400m 400m 147型 148型 149型 正向传播方向 A B C D

同轴电缆的信号传输特性分析

同轴电缆的信号传输特性分析关键词:同轴电缆 传输损耗 屏蔽衰减 深圳市西艾特电子技术有限公司 总工程师 Heml 一、概述 在当今的信息社会,通过同轴电缆传输信号得到了广泛的应用。因此,它 有待于人们对它进行更加深入和全面的了解。自从美国贝尔实验室1929年发明同轴电缆以来,已经过了数十年历史。在这期间,同轴电缆通过了多次改进。第一代电缆采用实芯材料作为填充介质,由于它对高频衰减大,现在通常主要把它用于传输视频信号。后来人们把聚乙烯采用化学方法发泡作为填充介质。其发泡度可达30%,高频传输特性有所提高。我们把这称为第二代电缆。80年代,第三代纵孔藕芯电缆出现,它的高频衰减达到目前新型电缆的水平。但化学发泡电缆和纵孔藕芯电缆的防潮特性都不好。90年代初,市场推出了物理发泡电缆和竹节电缆。我们称为第四代电缆。 竹节电缆虽然能防潮和高频损耗低,但介质具有不均匀性,在高频有反射点。后来无人使用。物理发泡电缆的发泡度可达80%。介质主要成分是氮气,气泡之间是相互隔离的。因此,它具有防潮和低损耗的特点,是目前综合特性最好 的同轴电缆。图一

二、电缆结构与信号传输特性 同轴电缆的结构如上图,在中心内导体外包围一定厚度的绝缘介质,在介质外是管状外导体,外导体表面再用绝缘塑料保护。它是一种非对称传输线,电流的去向和回向导体轴是相互重合的。在信号通过电缆时,所建立的电磁场是封闭的,在导体的横切面周围没有电磁场。因此,内部信号对外界基本没有影响。电缆内部电场建立在中心导体和外导体之间,方向呈放射状。而磁场则是以中心导体为圆心,呈多个同心圆。 这些场的方向和强弱随信号的方向和大小变化。、、同轴电缆对传输信号的损耗 同轴电缆在传输信号过程中,会对信号不断地损耗,从而造成信号到达终点后幅度减小,有时可能达不到正常工作要求。影响信号损耗的因素主要有电缆的电阻损耗、介质损耗、失配损耗。同时泄漏损耗在低质电缆工作于高频时,也是一个不可忽略的问题。我们下面分别对这些损耗进行分析。 电阻损耗电阻损耗是电缆所具有的直流电阻和导体高频感应所产生的涡流对信号能量的消耗。电阻值的大小与电缆使用的材料和生产工艺有关。同时它会随传输频率的改变而改变,原因是导体在传输交流信号中,具有趋肤效应。随着频率的增加,有效电阻会不断加大。见图 2(a)图2

漏泄同轴电缆技术规范

1漏泄同轴电缆技术规 1.1.适用围 本技术规书适用于客运专线GSM-R系统漏泄同轴电缆的购置、安装、调试、开通、质量保证期及质量保证期满后的相关技术服务。 1.2.总体要求 ★及安装附件的设计、制造及安装应符合下列中华人民国相关现行标准:★铁路通信漏泄同轴电缆(TB/T 3201-2008)标准。 铁路通信工程质量评定验收标准(TB10418-2000)。 国际电联ITU-T及ITU-R的相关建议。 IEC相关标准。 其他未详尽部分均按中华人民国相关现行标准执行。 以上标准如有更新,按最新标准执行。 ★制造厂生产的Ⅲ型漏缆应具有在客运专线铁路GSM-R系统良好的运行业绩,能提供铁路局或铁路(集团)公司电务处的GSM-R漏缆用户报告。 1.3.漏泄同轴电缆主要技术要求 1.3.1.电气性能 采用《铁路通信漏泄同轴电缆》(TB/T 3201-2008)规定的Ⅲ型漏缆。 导体的连续性:电缆的导体、外导体应分别沿电缆长度连续。 频率围:900MHz; ★漏泄同轴电缆电气性能指标

(2)机械性能 漏泄同轴电缆机械性能指标

注:表中温湿度围可根据现场情况适当调整。 (3)结构要求 满足《通信电缆-物理发泡聚乙烯绝缘漏泄同轴电缆》(YD/T1120-2001)的要求。 应有隧道外设置的防火措施。 导体直径:15-20mm 外导体直径:45-50mm 最小弯曲半径:700mm 重量:≤1200kg/km 电缆护套采用低烟、无卤、阻燃、防日晒、老化材料 电缆的使用寿命在30年以上 发泡绝缘结构 (4)环境要求 温度:-40--+650C

相对湿度:95%(在35o C时)能可靠工作 敷设最低温度:-1O o C 1.3. 2.漏缆配件 投标人应提供与LCX相配套的接头、终端负载、直流隔断器、固定接头以及必要的避雷器、隧道外安装的漏泄电缆固定系统卡具(普通卡具和防火卡具)、接地套件、防雷套件、防水套件等配套设备,配套设备均应包含在总价中。所有配件均应能满足列车时速350km/h以上时的运营环境需求,并应有相关部门的检测报告。 1.3. 2.1.漏缆固定系统卡具主要技术要求: 为保证350Km/h高速铁路的行车安全,供应商提供的漏泄电缆固定系统卡具必须拥有350km/h高速铁路300公里的使用业绩,并对隧道漏泄电缆固定系统卡具做如下技术要求: (1)隧道漏缆固定系统应采用金属锚栓,相关固定配件符合隧道固定漏缆要求。 (2)金属锚栓应采用螺杆式自紧锚栓。锚栓表面热浸镀锌,镀锌层厚度应不小于45微米。为保证锚栓受力可靠,应提供锚栓的抗拉抗剪测试报告,锚栓的抗拉与抗剪同时满足隧道安全使用要求。锚栓系统必须具有耐火承载力,应提供依据DIN4102-2进行的耐火承载力测试报告。 (3)锚栓与卡具之间应采用金属连接件进行连接。 (4)为保证漏缆的紧固安装,尼龙卡座应具有双卡座双盖板结构。尼龙卡座要求提供抗拔出力测试报告,并应满足不小于150N的抗拔出力要求,以保证在振动条件下漏缆不发生轴向滑移。

同轴电缆的信号传输特性分析(精)

同轴电缆的信号传输特性分析关键词:同轴电缆传输损耗屏蔽衰减 深圳市西艾特电子技术有限公司总工程师 heml 一、概述 在当今的信息社会,通过同轴电缆传输信号得到了广泛的应用。因此,它有待于人们对它进行更加深入和全面的了解。 自从美国贝尔实验室 1929年发明同轴电缆以来,已经过了数十年历史。在这期间, 同轴电缆通过了多次改进。第一代电缆采用实芯材料作为填充介质, 由于它对高频衰减大, 现在通常主要把它用于传输视频信号。后来人们把聚乙烯采用化学方法发泡作为填充介质。其发泡度可达 30%, 高频传输特性有所提高。我们把这称为第二代电缆。 80年代,第三代纵孔藕芯电缆出现,它的高频衰减达到目前新型电缆的水平。但化学发泡电缆和纵孔藕芯电缆的防潮特性都不好。 90年代初, 市场推出了物理发泡电缆和竹节电缆。我们称为第四代电缆。竹节电缆虽然能防潮和高频损耗低, 但介质具有不均匀性, 在高频有反射点。后来无人使用。物理发泡电缆的发泡度可达 80%。介质主要成分是氮气, 气泡之间是相互隔离的。因此,它具有防潮和低损耗的特点,是目前综合特性最好的同轴电缆。

图一 二、电缆结构与信号传输特性 同轴电缆的结构如上图,在中心内导体外包围一定厚度的绝缘介质,在介质外是管状外导体, 外导体表面再用绝缘塑料保护。它是一种非对称传输线, 电流的去向和回向导体轴是相互重合的。 在信号通过电缆时,所建立的电磁场是封闭的,在导体的横切面周围没有电磁场。因此, 内部信号对外界基本没有影响。电缆内部电场建立在中心导体和外导体之间,方向呈放射状。而磁场则是以中心导体为圆心,呈多个同心圆。这些场的方向和强弱随信号的方向和大小变化。 1、同轴电缆对传输信号的损耗

同轴电缆原理说明

一、概述 1、基带同轴电缆 同轴电缆以硬铜线为芯,外包一层绝缘材料。这层绝缘材料用密织的网状导体环绕,网外又覆盖一层保护性材料。有两种广泛使用的同轴电缆。一种是50欧姆电缆,用于数字传输,由于多用于基带传输,也叫基带同轴电缆;另一种是75欧姆电缆,用于模拟传输,即下一节要讲的宽带同轴电缆。这种区别是由历史原因造成的,而不是由于技术原因或生产厂家。 同轴电缆的这种结构,使它具有高带宽和极好的噪声抑制特性。同轴电缆的带宽取决于电缆长度。1km的电缆可以达到1Gb/s~2Gb/s的数据传输速率。还可以使用更长的电缆,但是传输率要降低或使用中间放大器。目前,同轴电缆大量被光纤取代,但仍广泛应用于有线电视和某些局域网。 2、宽带同轴电缆 使用有限电视电缆进行模拟信号传输的同轴电缆系统被称为宽带同轴电缆。“宽带”这个词来源于电话业,指比4kHz宽的频带。然而在计算机网络中,“宽带电缆”却指任何使用模拟信号进行传输的电缆

网。 由于宽带网使用标准的有线电视技术,可使用的频带高达300MHz (常常到450MHz);由于使用模拟信号,需要在接口处安放一个电子设备,用以把进入网络的比特流转换为模拟信号,并把网络输出的信号再转换成比特流。 宽带系统又分为多个信道,电视广播通常占用6MHz信道。每个信道可用于模拟电视、CD质量声音(1.4Mb/s)或3Mb/s的数字比特流。电视和数据可在一条电缆上混合传输。 宽带系统和基带系统的一个主要区别是:宽带系统由于覆盖的区域广,因此,需要模拟放大器周期性地加强信号。这些放大器仅能单向传输信号,因此,如果计算机间有放大器,则报文分组就不能在计算机间逆向传输。为了解决这个问题,人们已经开发了两种类型的宽带系统:双缆系统和单缆系统。 1)双缆系统 双缆系统有两条并排铺设的完全相同的电缆。为了传输数据,计算机通过电缆1将数据传输到电缆数根部的设备,即顶端器(head-end),随后顶端器通过电缆2将信号沿电缆数往下传输。所有的计算机都通

漏泄同轴电缆技术规范

1漏泄同轴电缆技术规范 1.1.适用范围 本技术规范书适用于客运专线GSM-R系统漏泄同轴电缆的购置、安装、调试、开通、质量保证期及质量保证期满后的相关技术服务。 1.2.总体要求 ★及安装附件的设计、制造及安装应符合下列中华人民共和国相关现行标准: ★铁路通信漏泄同轴电缆(TB/T 3201-2008)标准。 铁路通信工程质量评定验收标准(TB10418-2000)。 国际电联ITU-T及ITU-R的相关建议。 IEC相关标准。 其他未详尽部分均按中华人民共和国相关现行标准执行。 以上标准如有更新,按最新标准执行。 ★制造厂生产的Ⅲ型漏缆应具有在客运专线铁路GSM-R系统良好的运行业绩,能提供铁路局或铁路(集团)公司电务处的GSM-R漏缆用户报告。 1.3.漏泄同轴电缆主要技术要求 1.3.1.电气性能 采用《铁路通信漏泄同轴电缆》(TB/T 3201-2008)规定的Ⅲ型漏缆。 导体的连续性:电缆的内导体、外导体应分别沿电缆长度连续。 频率范围:900MHz; ★漏泄同轴电缆电气性能指标

(2)机械性能 漏泄同轴电缆机械性能指标

注:表中温湿度范围可根据现场情况适当调整。 (3)结构要求 满足《通信电缆-物理发泡聚乙烯绝缘漏泄同轴电缆》(YD/T1120-2001)的要求。 应有隧道内外设置的防火措施。 内导体直径:15-20mm 外导体直径:45-50mm 最小弯曲半径:700mm 重量:≤1200kg/km 电缆护套采用低烟、无卤、阻燃、防日晒、老化材料 电缆的使用寿命在30年以上 发泡绝缘结构 (4)环境要求

温度:-40--+650C 相对湿度:95%(在35o C时)能可靠工作 敷设最低温度:-1O o C 1.3. 2.漏缆配件 投标人应提供与LCX相配套的接头、终端负载、直流隔断器、固定接头以及必要的避雷器、隧道内外安装的漏泄电缆固定系统卡具(普通卡具和防火卡具)、接地套件、防雷套件、防水套件等配套设备,配套设备均应包含在总价中。所有配件均应能满足列车时速350km/h以上时的运营环境需求,并应有相关部门的检测报告。 1.3. 2.1.漏缆固定系统卡具主要技术要求: 为保证350Km/h高速铁路的行车安全,供应商提供的漏泄电缆固定系统卡具必须拥有350km/h高速铁路300公里的使用业绩,并对隧道内漏泄电缆固定系统卡具做如下技术要求: (1)隧道内漏缆固定系统应采用金属锚栓,相关固定配件符合隧道内固定漏缆要求。 (2)金属锚栓应采用螺杆式自紧锚栓。锚栓表面热浸镀锌,镀锌层厚度应不小于45微米。为保证锚栓受力可靠,应提供锚栓的抗拉抗剪测试报告,锚栓的抗拉与抗剪同时满足隧道内安全使用要求。锚栓系统必须具有耐火承载力,应提供依据DIN4102-2进行的耐火承载力测试报告。 (3)锚栓与卡具之间应采用金属连接件进行连接。 (4)为保证漏缆的紧固安装,尼龙卡座应具有双卡座双盖板结构。尼龙卡座要求提供抗拔出力测试报告,并应满足不小于150N的抗拔出力要求,以保证在

射频电缆概述

射频电缆概述 射频电缆组件的正确选择除了频率范围,驻波比,插入损耗等因素外,还应考虑电缆的机械特性,使用环境和应用要求,另外,成本也是一个永远不变的因素。在本文中,详细讨论了射频电缆的各种指标和性能,了解电缆的性能对于选择一条最佳的射频电缆组件是十分有益的。射频电缆组件的基本选择原则 射频同轴电缆是用于传输射频和微波信号能量的。它是一种分布参数电路,其电长度是物理长度和传输速度的函数,这一点和低频电路有着本质的区别。射频同轴电缆大致可分为半刚和半柔电缆、柔性编织电缆和物理发泡电缆等几大类,不同的应用场合应选择不同类型的电缆。半刚和半柔电缆一般用于设备内部的互联;在测试和测量领域,应采用柔性电缆;发泡电缆常用于基站天馈系统。 半刚性电缆顾名思义,这种电缆不容易被轻易弯曲成型,其外导体是采用铝管或者铜管制成,其射频泄漏非常小(小于-120dB),在系统中造成的信号串扰可以忽略不计。 这种电缆的无源互调特性也是非常理想的。如果要弯曲到某种形状,需要专用的成型机或者手工的模具来完成。如此麻烦的加工工艺换来的是非常稳定的性能,半刚性电缆采用固态的聚四氟乙烯材料作为填充介质,这种材料具有非常稳定

的温度特性,尤其在高温条件下,具有非常良好的相位稳定性。半刚性电缆的成本高于半柔性电缆,大量应用于各种射频和微波系统中。 图1. 半刚性电缆半柔性电缆半柔性电缆是半刚性电缆的替代品,这种电缆的性能指标接近于半刚性电缆,而且可以手工成型。但是其稳定性比半刚性电缆略差些,由于其可以很容易的成型,同样的也容易变形,尤其在长期使用的情况下。图2. 半柔性电缆柔性编织电缆柔性电缆是一种“测试级”的 电缆。相对于半刚性和半柔性的电缆,柔性电缆的成本十分昂贵,这是因为柔性电缆在设计时要顾及的因素更多。柔性电缆要易于多次弯曲而且还能保持性能,这是作为测试电缆的最基本要求。柔软和良好的电指标是一对矛盾,也是导致造价昂贵的主要原因。柔性射频电缆组件的选择要同时考虑各种因素,而这些因素之间有些的相互矛盾的,如单股内导体的同轴电缆比多股的具有更低的插入损耗和弯曲时的幅 度稳定性,但是相位稳定性能就不如后者。所以一条电缆组件的选择,除了频率范围,驻波比,插入损耗等因素外,还应考虑电缆的机械特性,使用环境和应用要求,另外,成本也是一个永远不变的因素。 图3. 柔性编织电缆特性阻抗 射频同轴电缆由内导体,介质,外导体和护套组成,见下图4。“特性阻抗”是射频电缆,接头和射频电缆组件中最常提到

漏泄同轴电缆的配置及接续技术

漏泄同轴电缆的配置及接续技术 在铁路无线列车调度通信系统中,为解决铁路多弯处、大弯处、隧道群、长大隧道及山区地带等弱场强或无场强盲区的场强覆盖率问题,采用了450MHz单双工兼容无线列调,架设漏泄同轴电缆(LCX)和隧道中继器的方式。现对该系统施工中的LCX的配置、接续技术及其有关问题的处理,进行介绍。 1漏泄同轴电缆的配置 漏泄同轴电缆的施工中,一般一个标准中继段(1.2km)是由3种型号的漏泄同轴电缆组成。在中继器的正向传播方向上,第1个中继段是由4种电缆配置组成(DCX为非漏泄同轴电缆有1种;LCX有3种型号)。LCX的配置原则是:在正向传播方向上,配置的电缆耦会损耗由大到小,传输损耗由小到大。这样的配置,可通过计算得知其优点如下。 1.可使机车台接收电平的曲线斜率(最大限度)最小。 2.保证无线信号在整个漏泄电缆系统中传输。3可使信号传输距离最大,减少中继器,节约投资。 在施工中,一般采用SLDY-75-37-148(147、146)型漏泄同轴电缆。该电缆在450MHz时的损耗指标见表1。2漏泄同轴电缆的接续技术2.1注意事项 漏泄同轴电缆的通信质量,与连接器的安装有直接关系,所以在施工中,接续时应注意以下事项。 1.由于连接器多而复杂,型号不同,又不能互相替换,故应熟悉所安装连接器的作用及安装顺序; 2.严格按规程操作; 3.注意内、外导体的牢固性和密封性; 4.注意安装过程的清洁。 2.2接续步骤 1.对安装连接器的电缆部位用酒精进行清洗,去掉承力索约300mm,剥去漏泄同轴电缆的外护套、外导体、绝缘套管和绝缘螺旋体,露出内导体铜管17mm。在此应注意:电缆切口必须是没有糟口的位置,以保证无线信号传输的质量。 2.卸开连接器插座,按照尾螺母、垫圈、密封圈、垫圈、密封圈、垫圈、扁螺母和压环的顺序套在电线上。在此应注意零件的顺序和扁螺母与压环的方向。 3.采用滚压法安装内导体芯子。注意在液压精道过程中,多滚压,少进刀。 4.安装外导体接触套。在剥开电缆护套及外导体时,应注意保护好外导体,不可弄断或损伤。 5.装上带孔绝缘子。应注意清洁。 6.旋进带插孔的内导体,安装压环和尾螺母。注意务必旋紧。 7.安装好外壳组件。注意螺旋器件必须旋紧,整个结构必须密封。 8.在连接器上缠绕B粘胶带,外层加缠电工胶带。注意均匀与美观。 9.承力索的成端。注意成端后的长度。3存在的问题及接续技术的改进 3.1绝缘问题 漏泄同轴电缆一般是采用架空安装方式,而且大部分是安装于山区及隧道内,往往在工程竣工后的短时间内(特别在南方初夏至仲秋时期,一般在2个月后),线路绝缘大幅度下降,从千兆欧下降到几百兆欧,甚至几十兆欧,严重时为零。这主要是由温差所引起。因为电缆中存在的气体不可能达到100%的干噪,白天受太阳的烈晒,温度比较高,电线内部的气体就往温度低的一端流动;到了夜里,气温下降(由于山区白天与夜里的温差大),

漏泄同轴电缆安装技术交底书教学提纲

漏泄同轴电缆安装技术交底书表格编号 1310 项目名称第 1 页 共 16 页交底编号 工程名称 设计文件图号 工程部位隧道漏泄同轴电缆 交底日期 技术交底内容 一、说明 适用于通信系统隧道漏缆敷设施工。 二、施工准备 1.开工前组织技术人员认真学习实施性施工组织设计,阅读、审核施工图纸,澄清有关技术问题,熟悉规范和技术标准。制定施工安全保证措施,提出应急预案。对施工人员进行技术交底、岗前技术培训。 2.根据施工图纸提供的漏缆架设径路进行现场复测,确定图纸所给漏缆长度、径路、防护是否相符。 3.检查径路上的隧道壁、避车洞、杆路、过轨预留等是否具备敷设条件,确定敷设位置。 三、技术要求 3.1 隧道内LCX支架安装要求 1.LCX固定件应采用膨胀螺栓方式固定,使用专用卡具安装漏缆; 2.采用吊夹固定LCX时,吊夹间距为1m,防火夹间隔10m; 3.支架孔的高度应符合设计要求,孔距宜为0.8~1.5m; 4.支架孔的直径、孔深应符合设计要求;孔应平直,不得成喇叭状; 3.2 隧道内LCX敷设要求 1.LCX吊挂应在隧道侧壁,槽口朝向线路侧;

电气特性检验报告。 3) 直流特性检验 用直流电桥测试漏缆内、外导体直流电阻,用耐压表测试绝缘介电强度,用绝缘电阻测试仪测试漏缆最小绝缘电阻,测试数值符合规范及设计要求,形成测试记录。 测试完毕,切除漏缆、射频缆开剥部分,用热缩帽缩封漏缆、射频缆两端。技术人员用油漆在合格的缆盘进行标注,标注内容包括:缆线型号、测试长度、自编号。将缆线端头固定在缆盘上,对缆盘外包装进行恢复。 5.2 隧道内漏缆卡具安装 1.画线 根据设计规定的安装位置及高度要求,进行画线;距钢轨面的高度应为4.5m。画线应在接触网回流线的另侧。不得已在同侧时,与回流线、接地母线的距离不应小于600mm,与牵引供电设备带电部分的距离不得小于2m。画出的线保持与轨面平行。 2.钻孔 孔应打在所画线上,孔距宜为1m;距隧道口最里侧垂直引下线2米处打第一个眼孔,钻孔的直径及孔深应满足设计及卡具安装要求,孔眼要求平直,不得成喇叭状,用吹灰器清除干净孔内粉尘。隧道内无衬砌面时,可采用钢丝承力索或者角钢支架吊挂电缆方式;钢丝绳宜采用7×φ2.2mm,固定支架的膨胀螺丝应采用与夹具同一厂家产品。 3.卡具安装 隧道内卡具安装要牢固,注意卡具的方向性,并采用特制膨胀螺栓,膨胀螺栓紧固后的普通高速吊夹孔深满足卡具安装要求,防火吊夹间距应符合设计要求。 卡具安装示意图 5.3隧道外漏缆吊挂件安装 1.支撑杆安装

信号在同轴电缆中的传输特性2007

信号在同轴电缆中的传输特性2007-11-20 09:14 分类:技术讨论 字号:大中小 信号在同轴电缆中的传输特性 一、概述 在当今的信息社会,通过同轴电缆传输信号得到了广泛的应用。因此,它有待于人们对它进行更加 深入和全面的了解。 自从美国贝尔实验室1929 年发明同轴电缆以来,已经过了数十年历史。在这期间,同轴电缆通过了多次改进。第一代电缆采用实芯材料作为填充介质,由于它对高频衰减大,现在通常主要把它用于传输视频信号。后来人们把聚乙烯采用化学方法发泡作为填充介质。其发泡度可达30%,高频传输特性有所提高。我们把这称为第二代电缆。80 年代,第三代纵孔藕芯电缆出现,它的高频衰减达到目前新型电缆的水平。但化学发泡电缆和纵孔藕芯电缆的防潮特性都不好。90年代初,市场推出了物理发泡电缆和竹节电缆。我们称为第四代电缆。竹节电缆虽然能防潮和高频损耗低,但介质具有不均匀性,在高频有反射点。后来无人使用。物理发泡电缆的发泡度可达80%。介质主要成分是氮气,气泡之间是相互隔离的。因此,它具有防潮和低损耗的特点,是目前综合特性最好的同轴电缆。图一 二、电缆结构与信号传输特性 同轴电缆的结构如上图,在中心内导体外包围一定厚度的绝缘介质,在介质外是管状外导体,外导体表面再用绝缘塑料保护。它是一种非对称传输线,电流的去向和回向导体轴是相互重合的。 在信号通过电缆时,所建立的电磁场是封闭的,在导体的横切面周围没有电磁场。因此,内部信号对外界基本没有影响。电缆内部电场建立在中心导体和外导体之间,方向呈放射状。而磁场则是以中心导体为圆心,呈多个同心圆。这些场的方向和强弱随信号的方向和大小变化。 1、同轴电缆对传输信号的损耗 同轴电缆在传输信号过程中,会对信号不断地损耗,从而造成信号到达终点后幅度减小,有时可能达不到正常工作要求。影响信号损耗的因素主要有电缆的电阻损耗、介质损耗、失配损耗。同时泄漏损耗在低质电缆工作于高频时,也是一个不可忽略的问题。我们下面分别对这些损耗进行分析。 电阻损耗:电阻损耗是电缆所具有的直流电阻和导体高频感应所产生的涡流对信号能量的消耗。电阻值的大小与电缆使用的材料和生产工艺有关。同时它会随传输频率的改变而改变,原因是导体在传输交流信号中,具有趋肤效应。随着频率的增加,有效电阻会不断加大。 见图2(a)

半柔软同轴电缆概述-26页文档资料

半柔软同轴电缆概述 一,前言 现代通信向越来越高的传输频率和传输速率方向发展,要求通信信道传输的 带宽更宽、传输的频率更高。这将要求作为通信信道传输主要媒介的电缆——射频同 轴电缆,在微波传输领域具有更低衰减和更好的屏蔽性能。同时随着通信设备的小型化,要求电缆尺寸小型化并具有更好的机械性能,例如柔软性、弯曲成形性能和端接 性能,以适应个人通信业务、无线移动蜂窝基站等紧密布线系统的电缆敷设使用。为 适应这种需求,在射频同轴电缆领域,一种替代半硬射频同轴电缆的新型电缆——半 柔软射频同轴电缆应运而生,近年来获得推广使用。 半柔软同轴电缆兼有半硬同轴电缆优越的电性能和柔软同轴电缆柔软、易弯曲 的特点。半柔软电缆具有优秀的电性能和独特的机械优势,它的结构是基于标准的PTFE 绝缘半硬同轴电缆的相同设计,但它采用浸(涂)锡编织(tin-soaked copper braid,coverange100%)屏蔽外导体,改善了半硬电缆铜管外导体不易弯曲、柔软性 差的缺点,从而使它既具有半硬电缆优越的电气性能,又具有结构柔软,有良好的手 工成形能力,它的弯曲半径小,便于包装、运输和安装等等一系列优点。 二,半柔软同轴电缆的特色和优点 半柔软同轴电缆由于它是半硬和柔软同轴电缆间二者性能的兼顾,从而使它具有以下特色和优点: 1,优异的电性能: ◆低衰减,可以使电缆使用于更高的频率范围直到20GHz甚至更高的工作频 率; ◆高屏蔽性能(效率),使电缆具有更好的抗串音、抗干扰的能力;由于它是 具有如半硬型铜管外导体的无缝(密封)编织浸锡屏蔽外导体(tin-soaked copper braid,coverange100%),实现了整体全封闭式屏蔽,获得高屏蔽 性能;同时它的屏蔽结构形式,消除和减小了编织导体电通路路径上形成 的无数点接触,也就是消除和减小无源交调失真产生的源头; ◆高温使用,性能稳定;

同轴电缆结构与材料.

同轴电缆结构与材料 2006-11-22 11:15 选择某一用途的同轴电缆的主要技术依据是其电气性能、机械性能和环境特性等。 电缆最重要的电气性能是衰减低、阻抗均匀、回波损耗高,对于漏泄电缆还有很关键的一点是其最佳的耦合损耗。电缆的主要作用是传输信号,因此,应使电缆结构和材料保证在电缆整个使用期限内都有很好的传输特性,这一点非常重要. 1、内导体 铜是内导体的主要材料,可以是以下形式:退火铜线、退火铜管、铜包铝线。通常,小电缆内导体是铜线或铜包铝线,而大电缆用铜管,以减少电缆重量和成本。对大电缆外导体进行轧纹,这样可获得足够好的弯曲性能。 内导体对信号传输影响很大,因为衰减主要是内导体电阻损耗引起的。其电导率,尤其是表面电导率,应尽可能高,一般要求是58MS/m(+20℃),因为在高频下,电流仅在导体表面的一个薄层内传输,这种现象称为趋肤效应,电流层的有效厚度称为趋肤深度。表1表示铜管和铜包铝线作为内导体时在特定频率下的趋肤深度值。 内导体用的铜材质量要求很高,要求铜材应无杂质,表面干净、平整、光滑。内导体直径应稳定且公差很小。直径的任一变化都会降低阻抗均匀性和回波损耗,因此应精确控制制造工艺。 2、外导体 外导体有两个基本的作用:第一是回路导体的作用,第二起屏蔽作用。漏泄电缆的外导体还决定了其漏泄性能。同轴馈线电缆和超柔电缆的外导体是由轧纹铜管焊接而成的,这些电缆的外导体完全封闭,不允许电缆有任何辐射。 外导体通常由铜带纵向包覆而成。在外导体层上,开有纵向或横向的槽口或小孔。 外导体开槽在轧纹型电缆中比较常见。通过沿轴向方向对轧纹波峰进行等距离切削开槽形成。削去的部分所占比例很小,且槽孔间距远远小于传输的电磁波长。 显然,将非漏泄型电缆按以下方法加工可制成漏泄电缆:以120度夹角对非漏泄型电缆中常见的普通皱纹型电缆的外导体波峰进行切削,获得一组合适的槽孔结构。漏泄电缆的外形、宽度及槽孔结构决定了其性能指标。 外导体用的铜材也应质量很好,导电率高,无杂质。外导体尺寸应严格控制在公差范围内,以保证均匀的特征阻抗和高的回波损耗。 3、绝缘介质 射频同轴电缆介质远不只是起绝缘作用,最终的传输性能主要是在绝缘之后才确定的,因此介质材料的选择和其结构非常重要。所有重要的性能,如衰减、阻抗和回波损耗,都与绝缘关系很大。对绝缘最重要的要求有: 相对介电常数低,介质损耗角因子小,以保证衰减小 结构一致,以保证阻抗均匀,回波损耗大 机械性能稳定以保证寿命长 防水防潮 物理高发泡绝缘可以达到以上所有要求。用先进的挤塑和注气工艺及特殊的材料,发泡度可以达到80%以上,这样的电气性能与空气绝缘电缆比较接近。注气方法中,氮气直接注入挤塑机内的介质材料中,该工艺也称为物理发泡方法。与此相对的化学发泡方法,其发泡度只能达到50%左右,介质损耗较大。注气法得到的发泡结构一致,意味着其阻抗均匀,回波损耗大。

相关主题
文本预览
相关文档 最新文档