当前位置:文档之家› 应用EXCEL实现最小二乘法计算的方法

应用EXCEL实现最小二乘法计算的方法

应用EXCEL实现最小二乘法计算的方法

应用EXCEL实现最小二乘法计算的方法有:利用EXCEL函数、利用数据分析工具、添加趋势线等。

⑴表格与公式编辑

将最小二乘法计算过程,应用电子表格逐步完成计算,得到结果。

⑵应用EXCEL的统计函数

A、LINEST()

使用最小二乘法对已知数据进行最佳直线拟合,然后返回描述此直线的数组。也可以将LINEST 与其他函数结合以便计算未知参数中其他类型的线性模型的统计值,包括多项式、对数、指数和幂级数。因为此函数返回数值数组,所以必须以数组公式的形式输入。

B、SLOPE()

返回根据known_y's和known_x's中的数据点拟合的线性回归直线的斜率。斜率为直线上任意两点的重直距离与水平距离的比值,也就是回归直线的变化率。

C、INTERCEPT()

利用现有的x值与y值计算直线与y轴的截距。截距为穿过已知的known_x's和known_y's数据点的线性回归线与y轴的交点。当自变量为0(零)时,使用INTERCEPT函数可以决定因变量的值。

D、CORREL()

返回单元格区域array1和array2之间的相关系数。使用相关系数可以确定两种属性之间的关系。

⑶添加趋势线

添加趋势线的应用较其他方法直观,可以用来完成直线回归,也可以用来完成非线性回归。具体方法不再赘述。

⑷数据分析工具

“回归”分析工具通过对一组观察值使用“最小二乘法”直线拟合来执行线性回归分析。本工具可用来分析单个因变量是如何受一个或几个自变量的值影响的。

“回归分析”对话框

Y值输入区域在此输入对因变量数据区域的引用。该区域必须由单列数据组成。

X值输入区域在此输入对自变量数据区域的引用。Microsoft Office Excel 将对此区域中的自变量从左到右进行升序排列。自变量的个数最多为16。

标志如果数据源区域的第一行或第一列中包含标志项,请选中此复选框。如果数据源区域中没有标志项,请清除此复选框,Excel将在输出表中生成适当的数据标志。

置信度如果需要在汇总输出表中包含附加的置信度,请选中此选项。在框中,输入所要使用的置信度。默认值为95%。

常数为零如果要强制回归线经过原点,请选中此复选框。

输出区域在此输入对输出表左上角单元格的引用。汇总输出表至少需要有七列,其中包括方差分析表、系数、y 估计值的标准误差、r2值、观察值个数以及系数的标准误差。

新工作表单击此选项可在当前工作簿中插入新工作表,并从新工作表的A1 单元格开始粘贴计算结果。若要为新工作表命名,请在框中键入名称。

新工作簿单击此选项可创建新工作簿并将结果添加到其中的新工作表中。

残差如果需要在残差输出表中包含残差,请选中此复选框。

标准残差如果需要在残差输出表中包含标准残差,请选中此复选框。

残差图如果需要为每个自变量及其残差生成一张图表,请选中此复选框。

线性拟合图如果需要为预测值和观察值生成一张图表,请选中此复选框。

正态概率图如果需要生成一张图表来绘制正态概率,请选中此复选框。

用最小二乘法求一个形如

1. 2 y a bx =+. 解:1010654542.80a b a ε?=+-=?,1065414748998738643.00a b b ε?=+-=?,解方程得 4.00955,0.0471846a b ==,均方误差13.0346ε=。 2.下述矩阵能否分解为LU (其中L 为单位下三角阵,U 为上三角阵)?若能分解,那么分解是否唯一? .461561552621,133122111,764142321??????????=??????????=??????????=C B A 解: 按高斯消去法,A 无法进行第二次消去,换行后可以分解,B 第二次消去可乘任意系数,分解不唯一,C 可唯一分解。 3.设方程组 ?????=+-=++--=++3103220241225321321321x x x x x x x x x (a) 考察用雅可比迭代法,高斯-塞德尔迭代法解此方程组的收敛性; (b) 用雅可比迭代法,高斯-塞德尔迭代法解此方程组,要求当4)()1(10||||-∞+<-k k x x 时迭代终止. 解: (a) Jacobi 迭代矩阵 ????? ??--=+=-03.02.05.0025.02.04.00)(1U L D B 特征方程为 0055.021.0||3=-+=-λλλB I 特征根均小于1,Jacobi 迭代法收敛。 Gauss-Seidel 迭代矩阵 ????? ??=-=-17.004.007.04.002.04.00)(1U L D G 特征方程为 0096.057.0||23=+-=-λλλλG I 特征根均小于1,Gauss-Seidel 迭代法收敛。 (b) Jacobi 迭代格式为 1)()1(f BX X k k +=+ 其中B 如上,T b D f )3.052.1(11-==-, 迭代18次得

最小二乘法求线性回归方程

数学必修3测试题 说明:全卷满分100分,考试时间120分钟,交卷时只需交答题卷,考试时不能使用计算器. 参考:用最小二乘法求线性回归方程系数公式x b y a x n x y x n y x b n i i n i i i -=-?-= ∑∑==, 1 2 21 一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四处备选项中,只有一项是符合 题目要求的. 1 ”可用于( ) A 、输出a=10 a=10 C 、判断a=10 D 、输入a=10 2、已知甲、乙两名同学在五次数学测验中的得分如下:甲:85,91,90,89,95; 乙:95,80,98,82,95。则甲、乙两名同学数学学习成绩( ) A 、甲比乙稳定 B 、甲、乙稳定程度相同 C 、乙比甲稳定 D 、无法确定 3、下列程序语句不正确... 的是( ) A 、INPUT “MA TH=”;a+b+c B 、PRINT “MA TH=”;a+b+c C 、c b a += D 、1a =c b - 4、 在调查分析某班级数学成绩与 物理成绩的相关关系时,对数据进行 统计分析得到散点图(如右图所示), 用回归直线?y bx a =+近似刻画 其关系,根据图形,b 的数值最有 可能是( ) A 、 0 B 、 1.55 C 、 0.85 D 、 —0.24 5、用秦九韶算法求n 次多项式011 1)(a x a x a x a x f n n n n ++++=-- ,当0x x =时,求)(0x f 需要算 乘方、乘法、加法的次数分别为( ) A 、 n n n n ,,2 ) 1(+ B 、n,2n,n C 、 0,2n,n D 、 0,n,n 6、为了在运行下面的程序之后得到输出16,键盘输入x 应该是( ) INPUT x IF x<0 THEN y=(x+1)*(x+1) ELSE y=(x-1)*(x-1) END IF 第4题

应用EXCEL实现最小二乘法计算的方法

应用EXCEL实现最小二乘法计算的方法有:利用EXCEL函数、利用数据分析工具、添加趋势线等。 ⑴表格与公式编辑 将最小二乘法计算过程,应用电子表格逐步完成计算,得到结果。 ⑵应用EXCEL的统计函数 A、LINEST() 使用最小二乘法对已知数据进行最佳直线拟合,然后返回描述此直线的数组。也可以将LINEST 与其他函数结合以便计算未知参数中其他类型的线性模型的统计值,包括多项式、对数、指数和幂级数。因为此函数返回数值数组,所以必须以数组公式的形式输入。 B、SLOPE() 返回根据known_y's和known_x's中的数据点拟合的线性回归直线的斜率。斜率为直线上任意两点的重直距离与水平距离的比值,也就是回归直线的变化率。 C、INTERCEPT() 利用现有的x值与y值计算直线与y轴的截距。截距为穿过已知的known_x's和known_y's数据点的线性回归线与y轴的交点。当自变量为0(零)时,使用INTERCEPT函数可以决定因变量的值。 D、CORREL() 返回单元格区域array1和array2之间的相关系数。使用相关系数可以确定两种属性之间的关系。 ⑶添加趋势线 添加趋势线的应用较其他方法直观,可以用来完成直线回归,也可以用来完成非线性回归。具体方法不再赘述。 ⑷数据分析工具 “回归”分析工具通过对一组观察值使用“最小二乘法”直线拟合来执行线性回归分析。本工具可用来分析单个因变量是如何受一个或几个自变量的值影响的。 “回归分析”对话框 Y值输入区域在此输入对因变量数据区域的引用。该区域必须由单列数据组成。 X值输入区域在此输入对自变量数据区域的引用。Microsoft Office Excel 将对此区域中的自变量从左到右进行升序排列。自变量的个数最多为16。 标志如果数据源区域的第一行或第一列中包含标志项,请选中此复选框。如果数据源区域中没有标志项,请清除此复选框,Excel将在输出表中生成适当的数据标志。 置信度如果需要在汇总输出表中包含附加的置信度,请选中此选项。在框中,输入所要使用的置信度。默认值为95%。 常数为零如果要强制回归线经过原点,请选中此复选框。 输出区域在此输入对输出表左上角单元格的引用。汇总输出表至少需要有七列,其中包括方差分析表、系数、y 估计值的标准误差、r2值、观察值个数以及系数的标准误差。 新工作表单击此选项可在当前工作簿中插入新工作表,并从新工作表的A1 单元格开始粘贴计算结果。若要为新工作表命名,请在框中键入名称。 新工作簿单击此选项可创建新工作簿并将结果添加到其中的新工作表中。 残差如果需要在残差输出表中包含残差,请选中此复选框。 标准残差如果需要在残差输出表中包含标准残差,请选中此复选框。 残差图如果需要为每个自变量及其残差生成一张图表,请选中此复选框。 线性拟合图如果需要为预测值和观察值生成一张图表,请选中此复选框。 正态概率图如果需要生成一张图表来绘制正态概率,请选中此复选框。

数值计算_第6章 曲线拟合的最小二乘法

第6章曲线拟合的最小二乘法 6.1 拟合曲线 通过观察或测量得到一组离散数据序列,当所得数据比较准确时,可构造插值函数逼近客观存在的函数,构造的原则是要求插值函数通过这些数据点,即。此时,序列与 是相等的。 如果数据序列,含有不可避免的误差(或称“噪音”),如图6.1 所示;如果数据序列无法同时满足某特定函数,如图6.2所示,那么,只能要求所做逼近函数最优地靠近样点,即向量与的误差或距离最小。按与之间误差最小原则作为“最优”标准构造的逼近函数,称为拟合函数。 图6.1 含有“噪声”的数据 图6.2 一条直线公路与多个景点 插值和拟合是构造逼近函数的两种方法。插值的目标是要插值函数尽量靠近离散点;拟合的目标是要离散点尽量靠近拟合函数。 向量与之间的误差或距离有各种不同的定义方法。例如: 用各点误差绝对值的和表示: 用各点误差按模的最大值表示: 用各点误差的平方和表示: 或(6.1)

其中称为均方误差,由于计算均方误差的最小值的方法容易实现而被广泛采用。按 均方误差达到极小构造拟合曲线的方法称为最小二乘法。本章主要讲述用最小二乘法构造拟合曲线的方法。 在运筹学、统计学、逼近论和控制论中,最小二乘法都是很重要的求解方法。例如,它是统计学中估计回归参数的最基本方法。 关于最小二乘法的发明权,在数学史的研究中尚未定论。有材料表明高斯和勒让德分别独立地提出这种方法。勒让德是在1805年第一次公开发表关于最小二乘法的论文,这时高斯指出,他早在1795年之前就使用了这种方法。但数学史研究者只找到了高斯约在1803年之前使用了这种方法的证据。 在实际问题中,怎样由测量的数据设计和确定“最贴近”的拟合曲线?关键在选择适当的拟合曲线类型,有时根据专业知识和工作经验即可确定拟合曲线类型;在对拟合曲线一无所知的情况下,不妨先绘制数据的粗略图形,或许从中观测出拟合曲线的类型;更一般地,对数据进行多种曲线类型的拟合,并计算均方误差,用数学实验的方法找出在最小二乘法意义下的误差最小的拟合函数。 例如,某风景区要在已有的景点之间修一条规格较高的主干路,景点与主干路之间由各具特色的支路联接。设景点的坐标为点列;设主干路为一条直线 ,即拟合函数是一条直线。通过计算均方误差最小值而确定直线方程(见图6.2)。 6.2线性拟合和二次拟合函数 线性拟合 给定一组数据,做拟合直线,均方误差为 (6.2) 是二元函数,的极小值要满足 整理得到拟合曲线满足的方程:

最小二乘法公式

最小二乘法公式 ∑(X--X平)(Y--Y平) =∑(XY--X平Y--XY平+X平Y平) =∑XY--X平∑Y--Y平∑X+nX平Y平 =∑XY--nX平Y平--nX平Y平+nX平Y平 =∑XY--nX平Y平 ∑(X --X平)^2 =∑(X^2--2XX平+X平^2) =∑X^2--2nX平^2+nX平^2 =∑X^2--nX平^2 最小二乘公式(针对y=ax+b形式) a=(NΣxy-ΣxΣy)/(NΣx^2-(Σx)^2) b=y(平均)-ax(平均) 最小二乘法 在我们研究两个变量(x, y)之间的相互关系时,通常可以得到一系列成对的数据(x1, y1),(x2, y2).. (xm , ym);将这些数据描绘在x -y直角坐标系中(如图1), 若发现这些点在一条直线附近,可以令这条直线方程如(式1-1)。 Y计= a0 + a1 X (式1-1) 其中:a0、a1 是任意实数 为建立这直线方程就要确定a0和a1,应用《最小二乘法原理》,将实测值Yi与利用(式1-1)计算值(Y计=a0+a1X)的离差(Yi-Y计)的平方和〔∑(Yi - Y计)²〕最小为“优化判据”。 令: φ = ∑(Yi - Y计)² (式1-2) 把(式1-1)代入(式1-2)中得: φ = ∑(Yi - a0 - a1 Xi)2 (式1-3) 当∑(Yi-Y计)²最小时,可用函数φ 对a0、a1求偏导数,令这两个偏导数等于零。

(式1-4) (式1-5) 亦即 m a0 + (∑Xi ) a1 = ∑Yi (式1-6) (∑Xi ) a0 + (∑Xi2 ) a1 = ∑(Xi, Yi) (式1-7) 得到的两个关于a0、 a1为未知数的两个方程组,解这两个方程组得出: a0 = (∑Yi) / m - a1(∑Xi) / m (式1-8) a1 = [∑Xi Yi - (∑Xi ∑Yi)/ m] / [∑Xi2 - (∑Xi)2 / m)] (式 1-9) 这时把a0、a1代入(式1-1)中, 此时的(式1-1)就是我们回归的元线性方程即:数学模型。 在回归过程中,回归的关联式是不可能全部通过每个回归数据点(x1, y1、 x2, y2...xm,ym),为了判断关联式的好坏,可借助相关系数“R”,统计量“F”,剩余标准偏差“S”进行判断;“R”越趋近于 1 越好;“F”的绝对值越大越好;“S”越趋近于 0 越好。 R = [∑XiYi - m (∑Xi / m)(∑Yi / m)]/ SQR{[∑Xi2 - m (∑Xi / m)2][∑Yi2 - m (∑Yi / m)2]} (式1-10) * 在(式1-1)中,m为样本容量,即实验次数;Xi、Yi分别任意一组实验X、Y的数值。微积分应用课题一最小二乘法 从前面的学习中, 我们知道最小二乘法可以用来处理一组数据, 可以从一组测定的数据中寻求变量之间的依赖关系, 这种函数关系称为经验公式. 本课题将介绍最小二乘法的精确定义及如何寻求与之间近似成线性关系时的经验公式. 假定实验测得变量之间的个数据, , …, , 则在平面上, 可以得到个点 , 这种图形称为“散点图”, 从图中可以粗略看出这些点大致散落在某直线近旁, 我们认为与之间近似为一线性函数, 下面介绍求解步骤. 考虑函数 , 其中和是待定常数. 如果在一直线上, 可以认为变量之间的关系为 . 但一般说来, 这些点不可能在同一直线上. 记 , 它反映了用直线来描述 , 时, 计算值与实际值产生的偏差. 当然要求偏差越小越好, 但由于可正可负, 因此不能认为总偏差时, 函数就很好地反

普通最小二乘法(OLS)

普通最小二乘法(OLS ) 普通最小二乘法(Ordinary Least Square ,简称OLS ),是应用最多的参数估计方 法,也是从最小二乘原理出发的其他估计方法的基础,是必须熟练掌握的一种方法。 在已经获得样本观测值 i i x y ,(i=1,2,…,n )的情况下 (见图2.2.1中的散点),假如模型(2.2.1)的参数估计量 已经求得到,为^0β和^ 1β,并且是最合理的参数估计量,那 么直线方程(见图2.2.1中的直线) i i x y ^ 1^0^ββ+= i=1,2,…,n (2.2.2) 应该能够最好地拟合样本数据。其中 ^ i y 为被解释变量的估计值,它是由参数估计量和解释 变量的观测值计算得到的。那么,被解释变量的估计值与观测值应该在总体上最为接近,判断的标准是二者之差的平方和最小。 ),()(102 2101ββββQ u x y Q i i n i i ==--=∑∑= ()() ),(min ????1 02 1 102 12?,?1 1 ββββββββQ x y y y u Q n i i n i i i =--=-==∑∑∑== (2.2.3) 为什么用平方和?因为二者之差可正可负,简单求和可能将很大的误差抵消掉,只有平方和才能反映二者在总体上的接近程度。这就是最小二乘原则。那么,就可以从最小二乘原则和样本观测值出发,求得参数估计量。 由于 2 1 ^ 1^01 2 ^ ))(()(∑∑+--=n i i n i i x y y y Q ββ= 是 ^ 0β、^ 1β的二次函数并且非负,所以其极小值总是存在的。根据罗彼塔法则,当Q 对^ 0β、 ^ 1β的一阶偏导数为0时,Q 达到最小。即

用最小二乘法计算拟合曲线系数

用最小二乘法计算拟合曲线系数的MATLAB 程序 (1) 输入数据点m k y x k k ,,2,1),,( = 选择逼近函数类:)}(,),(),({10x x x span D n ??? = (2)求解法方程y A Ac A T T =* (3)得出拟合函数)()(0* *x c x n j j j ∑==?? clear all %% 清除了所有的变量,包括全局变量global load('F:\XX\XXX\datafile.mat') %%加载数据(mat 数据格式是matlab 的数据存储的标准格式) [r,c]=size(data); %%data 数据第一列为点序号,第二列为x 坐标,第三列为y 坐标 m=20; %%假设其运行次数 for n=1:m; for i=1:r/2 %%用数据的前半部分计算系数 x1=data(i,2); %%把数据的第i 行第2列赋值给x1 y1=data(i,3); %%把数据的第i 行第3列赋值给y1 for j=1:n; B1(i,j)=x1^(j-1); %%B1矩阵计算 end l(i,1)=y1; %%l 矩阵 end X=inv(B1'*B1)*B1'*l; %%系数矩阵 V=B1*X-l; [r1,c1]=size(B1); m0(n,1)=sqrt((V'*V)/(r1-c1)); %%单位权中误差 if n>2&&m0(n,1)>=m0(n-1,1); %%判断单位权中误差 disp(n) xsgs=n-1; %%单位权中误差最小时其系数的个数 zgcs=n-2; %%单位权中误差最小时其x 的最高次数 break %%如果找到了最优值时跳出循环 end end for i=1:r x2=data(i,2); y2=data(i,3); for k=1:xsgs; B2(i,k)=x2^(k-1); end

最小二乘法

浅谈加权最小二乘法及其残差图 ——兼答孙小素副教授 何晓群 刘文卿 ABSTRACT The paper introduces some problems in relation to weighted least square regression ,and answers a question about weighted residual plots. 关键词:异方差;加权最小二乘法;残差图;SPSS 一、引言 好几年没有翻《统计研究》了。最近,有一同行朋友打电话告诉我《统计研究》2005年第11期上刊登了一篇有关我与刘文卿合作编著的《应用回归分析》(2001.6.中国人民大学出版社)教材的文章。赶紧找到这期的《统计研究》,看到其中孙小素副教授的文章《加权最小二乘法残差图问题探讨——与何晓群教授商榷》一文,以下简称《孙文》。认真拜读后感触良多。首先衷心感谢孙小素副教授阅读了我们《应用回归分析》拙作的部分章节,同时感谢《统计研究》给我们提供这样一个好的机会,使我们能够借助贵刊对加权最小二乘法的有关问题谈谈更多的认识。 《孙文》谈到《应用回归分析》教材中有关加权最小二乘法残差图的问题。摆出了与加权最小二乘法相关的三类残差图,指出第三类残差图的局限性。直接的问题是三类残差图的作用,而更深层的原因应该是对加权最小二乘法统计思想的理解和认识上的差异。 二、对加权最小二乘法的认识 1. 加权最小二乘估计方法 拙作《应用回归分析》中对加权最小二乘法有详尽的讲述,这里仅做简要介绍。多元线性回归方程普通最小二乘法的离差平方和为: ∑=----=n i ip p i i p x x y Q 1 211010)(),,,(ββββββ (1) 普通最小二乘估计就是寻找参数p βββ,,,10 的估计值p βββ?,,?,?10 使式(1)的离差平方和Q 达极小。式(1)中每个平方项的权数相同,是普通最小二乘回归参数估计方法。在误差项i ε等方差不相关的条件下,普通最小二乘估计是回归参数的最小方差线性无偏估计。 然而在异方差的条件下,平方和中的每一项的地位是不相同的,误差项i ε的方差2i σ大的项,在式(1)平方和中的取值就偏大,在平方和中的作用就大,因而普通最小二乘估计 的回归线就被拉向方差大的项,方差大的项的拟合程度就好,而方差小的项的拟合程度就差。 由式(1)求出的p βββ?,,?,?10 仍然是p βββ,,,10 的无偏估计,但不再是最小方差线性无偏估计。 加权最小二乘估计的方法是在平方和中加入一个适当的权数i w ,以调整各项在平方和

最小二乘法--计算方法

生活中的计算方法应用实例——— 最小二乘法,用MATLAB实现1. 数值实例 下面给定的是某市最近1个月早晨7:00左右(新疆时间)的天气预报所得到的温度 天数 1 2 3 4 5 6 7 8 9 10 温度9 10 11 12 13 14 13 12 11 9 天数11 12 13 14 15 16 17 18 19 20 温度10 11 12 13 14 12 11 10 9 8 天数21 22 23 24 25 26 27 28 29 30 温度7 8 9 11 9 7 6 5 3 1 下面用MATLAB编程对上述数据进行最小二乘拟合,按照数据找出任意次曲线拟合方程和它的图像。 2、程序代码 x=[1:1:30]; y=[9,10,11,12,13,14,13,12,11,9,10,11,12,13,14,12,11,10,9,8,7,8,9,11,9,7, 6,5,3,1]; a1=polyfit(x,y,3) %三次多项式拟合% a2= polyfit(x,y,9) %九次多项式拟合% a3= polyfit(x,y,15) %十五次多项式拟合% b1= polyval(a1,x) b2= polyval(a2,x) b3= polyval(a3,x) r1= sum((y-b1).^2) %三次多项式误差平方和% r2= sum((y-b2).^2) %九次次多项式误差平方和% r3= sum((y-b3).^2) %十五次多项式误差平方和% plot(x,y,'*') %用*画出x,y图像% hold on plot(x,b1, 'r') %用红色线画出x,b1图像% hold on plot(x,b2, 'g') %用绿色线画出x,b2图像% hold on plot(x,b3, 'b:o') %用蓝色o线画出x,b3图像% 3、数值结果 不同次数多项式拟合误差平方和为: r1=67.6659

EXCEL最小二乘法拟合直线

最小二乘法处理数据 直线拟合求最佳经验公式的一种数据处理方法是最小二乘法(又称作一元线性回归),它可克服用作图法求直线公式时图线的绘制引入的误差,结果更精确,在科学实验中得到了广泛的应用。 1.最小二乘法的理论基础: 若两物理量x、y满足线性关系,并由实验等精度地测得一组实验数据 ,且假定实验误差主要出现在上,设拟合直线公式为,当所测各值与拟合直线上各估计值之间偏差的平方和最小,即 时,所得拟合公式即为最佳经验公式。 2.用最小二乘法求最佳经验公式: 设由实验数据求得最佳经验公式为y=a+bx,根据最小二乘法原理有: 即: 化为: 其解为: 将得出的、代入即可得最佳经验公式。 、的不确定度与很多因素有关,如实验数据的多少、实验数据之间的关系与直线关系的符合程度(即以下介绍的相关系数)、实验数据的分散度等等,在此不作介绍。

3.直线拟合的相关系数: 对任何两个变量x、y的一组实验数据都可按上述计算方法拟合一条直线,但必须指出只有当x和y之间存在线性关系时,拟合的直线才有意义,为此我们引入一个参量:相关系数,它定义为: ,其中 表示两变量之间的函数关系与线性的符合程度,,绝对值越接近于1,x和y 的线性关系越好;如果接近于0,可以认为x和y之间不存在线性关系。物理实验中r绝对值如能达到0.999以上(3个9以上)就表示实验数据线性良好。 最小二乘法直线拟合时除给出截距a、斜率b外,还要给出相关系数r值。 4.最小二乘法的推广应用: 物理实验中,有很多情况下两物理量x、y之间满足的是曲线方程,我们可以通过变量变换使一些特殊的曲线拟合问题转化为直线拟合的问题来求解(但应注意原来等精度的实验点变换后可能会不等精度,需要用到加权拟合),举例如下: 令 令 转化为直线拟合问题:

偏最小二乘法基本知识

偏最小二乘法(PLS)简介-数理统计 偏最小二乘法partial least square method是一种新型的多元统计数据分析方法,它于1983年由伍德(S.Wold)和阿巴诺(C.Albano)等人首次提出。近几十年来,它在理论、方法和应用方面都得到了迅速的发展。 偏最小二乘法 长期以来,模型式的方法和认识性的方法之间的界限分得十分清楚。而偏最小二乘法则把它们有机的结合起来了,在一个算法下,可以同时实现回归建模(多元线性回归)、数据结构简化(主成分分析)以及两组变量之间的相关性分析(典型相关分析)。这是多元统计数据分析中的一个飞跃。 偏最小二乘法在统计应用中的重要性体现在以下几个方面: 偏最小二乘法是一种多因变量对多自变量的回归建模方法。偏最小二乘法可以较好的解决许多以往用普通多元回归无法解决的问题。 偏最小二乘法之所以被称为第二代回归方法,还由于它可以实现多种数据分析方法的综合应用。 主成分回归的主要目的是要提取隐藏在矩阵X中的相关信息,然后用于预测变量Y的值。这种做法可以保证让我们只使用那些独立变量,噪音将被消除,从而达到改善预测模型质量的目的。但是,主成分回归仍然有一定的缺陷,当一些有用变量的相关性很小时,我们在选取主成分时就很容易把它们漏掉,使得最终的预测模型可靠性下降,如果我们对每一个成分进行挑选,那样又太困难了。 偏最小二乘回归可以解决这个问题。它采用对变量X和Y都进行分解的方法,从变量X和Y 中同时提取成分(通常称为因子),再将因子按照它们之间的相关性从大到小排列。现在,我们要建立一个模型,我们只要决定选择几个因子参与建模就可以了

基本概念 偏最小二乘回归是对多元线性回归模型的一种扩展,在其最简单的形式中,只用一个线性模型来描述独立变量Y与预测变量组X之间的关系: Y= b0 + b1X1 + b2X2 + ... + bpXp 在方程中,b0是截距,bi的值是数据点1到p的回归系数。 例如,我们可以认为人的体重是他的身高、性别的函数,并且从各自的样本点中估计出回归系数,之后,我们从测得的身高及性别中可以预测出某人的大致体重。对许多的数据分析方法来说,最大的问题莫过于准确的描述观测数据并且对新的观测数据作出合理的预测。 多元线性回归模型为了处理更复杂的数据分析问题,扩展了一些其他算法,象判别式分析,主成分回归,相关性分析等等,都是以多元线性回归模型为基础的多元统计方法。这些多元统计方法有两点重要特点,即对数据的约束性: 1.变量X和变量Y的因子都必须分别从X'X和Y'Y矩阵中提取,这些因子就无法同时表示变量X和Y的相关性。 2.预测方程的数量永远不能多于变量Y跟变量X的数量。 偏最小二乘回归从多元线性回归扩展而来时却不需要这些对数据的约束。在偏最小二乘回归中,预测方程将由从矩阵Y'XX'Y中提取出来的因子来描述;为了更具有代表性,提取出来的预测方程的数量可能大于变量X与Y的最大数。 简而言之,偏最小二乘回归可能是所有多元校正方法里对变量约束最少的方法,这种灵活性让它适用于传统的多元校正方法所不适用的许多场合,例如一些观测数据少于预测变量数时。并且,偏最小二乘回归可以作为一种探索性的分析工具,在使用传统的线性回归模型之前,先对所需的合适的变量数进行预测并去除噪音干扰。

最小二乘法拟合的MATLAB和Excel实现

最小二乘法拟合的MATLAB和Excel实现 摘要:生活生产中我们会遇到各种各样的数据处理,然而这些数据并不像理想实验中得到的数据,有的是一元或多元函数的分布,有的是一次或多次函数的分布,这就需要我们首先观察数据的散点图,进而选择合理的选择函数进行拟合,同时分析计算该拟合得到的误差,找出最优的拟合方式。本文从数学上对最小二乘法原理进行了阐述,并通过MATLAB和Excel 完成数据的拟合,在进行数据拟合中使用的一次函数拟合和多项式拟合,并对不同的拟合方式进行了比较,到了不同拟合方式下的拟合函数和拟合误差。同时对MATLAB和Excel数据拟合方式进行了对比。 关键字:最小二乘法 MATLAB Excel 数据拟合 Abstract:we will encounter a variety of data processing in production life .However these data is not the data as we expect in ideal experiment;some distribution is a univariate or multivariate functions, some is one or more times function.So we should observe the scatter data chart,and then choose the reasonable selection function fitting, make an error analysis and find out the best way of fitting. This paper expound the principle of least square mathematically,complete data fitting by MATLAB and Excel,and use a function fitting and polynomial fitting.we also compare the different fitting methods,the fitting function and fitting error by the way of MATLAB and Excel. Keywords: Least squares MATLAB Excel Data fitting 引言 工程试验中我们常常遇到这样的问题,试验中我们会得到各种各样的数据,不同的数据之间存在着这样那样的关系,如何把得到的试验数据用函数关系式来得到不同组数据之间的关系,并且在经过数据处理后得到的函数能够客观准确的描述数据与数据数据之间的关系。如何选择数据的拟合方式,是线性拟合还是非线性拟合?是一次还是多次拟合?如何使相关系数R2接近1?通常我们用最小二乘法来确定拟合曲线和和该数据的经验公式。本文从数学角度给出最小二乘法的推导过程,从现实生活中给出曲线拟合的实际应用,同时用MATLAB和Excel两种不同的方法对数据进行曲线拟合的实现。 1 最小二乘法原理

最小二乘法拟合

4.最小二乘法线性拟合 我们知道,用作图法求出直线的斜率a 和截据b ,可以确定这条直线所对应的经验公式,但用作图法拟合直线时,由于作图连线有较大的随意性,尤其在测量数据比较分散时,对同一组测量数据,不同的人去处理,所得结果有差异,因此是一种粗略的数据处理方法,求出的a 和b 误差较大。用最小二乘法拟合直线处理数据时,任何人去处理同一组数据,只要处理过程没有错误,得到的斜率a 和截据b 是唯一的。 最小二乘法就是将一组符合Y=a+bX 关系的测量数据,用计算的方法求出最佳的a 和b 。显然,关键是如何求出最佳的a 和b 。 (1) 求回归直线 设直线方程的表达式为: bx a y += (2-6-1) 要根据测量数据求出最佳的a 和b 。对满足线性关系的一组等精度测量数据(x i ,y i ),假定自变量x i 的误差可以忽略,则在同一x i 下,测量点y i 和直线上的点a+bx i 的偏差d i 如下: 111bx a y d --= 222bx a y d --= n n n bx a y d --= 显然最好测量点都在直线上(即d 1=d 2=……=d n =0),求出的a 和b 是最理想的,但测量点不可能都在直线上,这样只有考虑d 1、d 2、……、d n 为最小,也就是考虑d 1+d 2+……+d n 为最小,但因d 1、d 2、……、d n 有正有负,加起来可能相互抵消,因此不可取;而|d 1|+ |d 2|+……+ |d n |又不好解方程,因而不可行。现在采取一种等效方法:当d 12+d 22+……+d n 2 对a 和b 为最小时,d 1、d 2、……、d n 也为最小。取(d 12+d 22+……+d n 2 )为最小值,求a 和b 的方法叫最小二乘法。 令 ∑== n i i d D 1 2=21 1 2][i i n i n i i b a y d D --== ∑∑== (2-6-2) D 对a 和b 分别求一阶偏导数为: ][211∑∑==---=??n i i n i i x b na y a D ][21 2 11∑∑∑===---=??n i i n i i n i i i x b x a y x b D

普通最小二乘法

普通最小二乘法(OLS) 普通最小二乘法(Ordinary Least Square,简称OLS),是应用最多的参数估计方法,也是从最小二乘原理出发的其他估计方法的基础,是必须熟练掌握的一种方法。 在已经获得样本观测值(i=1,2,…,n)的情况下(见图 2.2.1中的散点),假如模型(2.2.1)的参数估计量已经求得到,为和,并且是最合理 的参数估计量,那么直线方程(见图2.2.1中的直线) i=1,2,…,n (2.2.2) 应该能够最好地拟合样本数据。其中为被解释变量的估计值,它是由参数估计量和解释变量的观测值计算得到的。那么,被解释变量的估计值与观测值应该在总体上最为接近,判断的标准是二者之差的平方和最小。 (2.2.3) 为什么用平方和?因为二者之差可正可负,简单求和可能将很大的误差抵消掉,只有平方和才能反映二者在总体上的接近程度。这就是最小二乘原则。那么,就可以从最小二乘原则和样本观测值出发,求得参数估计量。 由于 是、的二次函数并且非负,所以其极小值总是存在的。根据罗彼塔法则,当Q对、的一阶偏导数为0时,Q达到最小。即

(2.2.4) 容易推得特征方程: 解得: (2.2.5) 所以有: (2.2.6) 于是得到了符合最小二乘原则的参数估计量。 为减少计算工作量,许多教科书介绍了采用样本值的离差形式的参数估计量的计算公式。由于现在计量经济学计算机软件被普遍采用,计算工作量已经不是什么问题。但离差形式的计算公式在其他方面也有应用,故在此写出有关公式,不作详细说明。记 (2.2.6)的参数估计量可以写成

(2.2.7) 至此,完成了模型估计的第一项任务。下面进行模型估计的第二项任务,即求随机 误差项方差的估计量。记为第i个样本观测点的残差,即被解释变量的估计值与观测值之差。则随机误差项方差的估计量为 (2.2.8) 在关于的无偏性的证明中,将给出(2.2.8)的推导过程,有兴趣的读者可以参考有关资料。 在结束普通最小二乘估计的时候,需要交代一个重要的概念,即“估计量”和“估计值”的区别。由(2.2.6)给出的参数估计结果是由一个具体样本资料计算 出来的,它是一个“估计值”,或者“点估计”,是参数估计量和的一个具体数值;但从另一个角度,仅仅把(2.2.6)看成和的一个表达式,那么,则是的函数,而是随机变量,所以和也是随机变量,在这个角度上,称之为“估计量”。在本章后续内容中,有时把和作为随机变量,有时又把和作为确定的数值,道理就在于此。

最小二乘法多项式拟合

最小二乘法多项式拟合 对于给定的数据点N i y x i i ≤≤1),,(,可用下面的n 阶多项式进行拟合,即 为了使拟合出的近似曲线能尽量反映所给数据的变化趋势,要求在所有数据点上的残差 都较小。为达到上述目标,可以令上述偏差的平方和最小,即 称这种方法为最小二乘原则,利用这一原则确定拟合多项式)(x f 的方法即为最小二乘法多项式拟合。 确定上述多项式的过程也就是确定)(x f 中的系数n k a k ≤≤0,的过程,根据最小二乘原则,则偏差平方和应该是这些系数的函数,即 为使上式取值最小,则其关于n k a k ≤≤0,的一阶导数应该为零,即有 将上面各等式写成方程组的形式可有 写成矩阵形式有 上述方程组可以通过克莱姆法则来计算,从而解出各系数n k a k ≤≤0,得到拟合方程。 考虑到一般情况提高拟合多项式的阶数并不能提高拟合精度,所以常用的多项拟合阶数为一阶和二阶,即线性拟合和二次拟合。两者的计算公式如下: 关于线性拟合,除上面按克莱姆法则来计算外,还可以有另一思路,下面对此进行说明。由于是线性拟合,最后得到的是一条直线,因此,直线可以由斜率和截距两个参数来确定,因此,求出这两个参数即可。首先对克莱姆法的求解结果进行展开可以得到 下面考虑先计算斜率再计算截距的方法,从下图可见,斜率计算与坐标系的位置无关,所以可以将坐标原点平移到样本的i x 和i y 坐标的均值所在点上 图中 则在新的坐标系),(y x ''下斜率的计算公式与前面1a 的计算公式相同,将其中的坐标),(y x 换成),(y x ''即可得到下面的计算公式 由样本在新坐标系下的坐标i x '和i y '的均值为零,或者由下面推导可知 x '

用最小二乘法求线性回归方程

最小二乘法主要用来求解两个具有线性相关关系的变量的回归方程,该方法适用于求 解与线性回归方程相关的问题,如求解回归直线方程,并应用其分析预报变量的取值等.破解此类问题的关键点如下: ①析数据,分析相关数据,求得相关系数r,或利用散点图判断两变量之间是 否存在线性相关关系,若呈非线性相关关系,则需要通过变量的变换转化构造 线性相关关系. ②建模型.根据题意确定两个变量,结合数据分析的结果建立回归模型. ③求参数.利用回归直线y=bx+a的斜率和截距的最小二乘估计公式,求出b,a,的值.从而确定线性回归方程. ④求估值.将已知的解释变量的值代入线性回归方程y=bx+a中,即可求得y 的预测值. 注意:回归直线方程的求解与应用中要注意两个方面:一是求解回归直线方程时,利用样本点的中心(x,y)必在回归直线上求解相关参数的值;二是回归直线 方程的应用,利用回归直线方程求出的数值应是一个估计值,不是真实值. 经典例题: 下图是某地区2000年至2016年环境基础设施投资额(单位:亿元)的折线图.

为了预测该地区2018年的环境基础设施投资额,建立了与时间变量的两个线 性回归模型.根据2000年至2016年的数据(时间变量的值依次为1,2.,……,17)建立模型①:y=-30.4+13.5t;根据2010年至2016年的数据(时间变 量的值依次为)建立模型②:y=99+17.5t. (1)分别利用这两个模型,求该地区2018年的环境基础设施投资额的预测值; (2)你认为用哪个模型得到的预测值更可靠?并说明理由. 思路分析:(1)两个回归直线方程中无参数,所以分别求自变量为2018时所对应的函数值,就得结果,(2)根据折线图知2000到2009,与2010到2016是两个有明显区别的直线,且2010到2016的增幅明显高于2000到2009,也高于模型1的增幅,因此所以用模型2更能较好得到2018的预测. 解析:(1)利用模型①,该地区2018年的环境基础设施投资额的预测值为 =–30.4+13.5×19=226.1(亿元). 利用模型②,该地区2018年的环境基础设施投资额的预测值为 =99+17.5×9=256.5(亿元). (2)利用模型②得到的预测值更可靠.理由如下: (i)从折线图可以看出,2000年至2016年的数据对应的点没有随机散布在 直线y=–30.4+13.5t上下,这说明利用2000年至2016年的数据建立的线性 模型①不能很好地描述环境基础设施投资额的变化趋势.2010年相对2009年的环境基础设施投资额有明显增加,2010年至2016年的数据对应的点位于一条直线的附近,这说明从2010年开始环境基础设施投资额的变化规律呈线性 增长趋势,利用2010年至2016年的数据建立的线性模型=99+17.5t可以较 好地描述2010年以后的环境基础设施投资额的变化趋势,因此利用模型②得 到的预测值更可靠. (ii)从计算结果看,相对于2016年的环境基础设施投资额220亿元,由模 型①得到的预测值226.1亿元的增幅明显偏低,而利用模型②得到的预测值的 增幅比较合理,说明利用模型②得到的预测值更可靠. 以上给出了2种理由,考生答出其中任意一种或其他合理理由均可得分.

各类最小二乘法比较

---------------------------------------------------------------最新资料推荐------------------------------------------------------ 各类最小二乘法比较 最小二乘法(LS)最小二乘是一种最基本的辨识方法,最小二乘法可以用于线性系统,也可以用于非线性系统;可用于离线估计和在线估计。 在随机情况下,利用最小二乘法时,并不要求观测数据提供其概率统计方法的信息,而其估计结果,却有相当好的统计特性。 但它具有两方面的缺陷: 一是当模型噪声是有色噪声时,最小二乘估计不是无偏、一致估计;二是随着数据的增长,将出现所谓的数据饱和现象。 针对这两个问题,出现了相应的辨识算法,如遗忘因子法、限定记忆法、偏差补偿法、增广最小二乘、广义最小二乘、辅助变量法、二步法及多级最小二乘法等。 广义最小二乘法(GLS)广义最小二乘法(GLS)广义最小二乘法的基本思想在于引入一个所谓成形滤波器(白化滤波器),把相关噪声转化成白噪声。 优: 能够克服当存在有色噪声干扰时,基本最小二乘估计的有偏性,估计效果较好,在实际中得到较好的应用。 缺: 1、计算量大,每个循环要调用两次最小二乘法及一次数据滤波, 2、求差分方程的参数估值,是一个非线性最优化问题,不一定总能 1 / 3

保证算法对最优解的收敛性。 广义最小二乘法本质上是一种逐次逼近法。 对于循环程序的收敛性还没有给出证明。 3、GLS 算法的最小二乘指标函数 J 中可能存在一个以上局部极小值,(特别在信噪比不大时,J 可能是多举的)。 GLS 方法的估计结果往往取决于所选用参数的初始估值。 参数估计初值应选得尽量接近优参数。 在没有验前信息的情况下,最小二乘估值被认为是最好的初始条件。 4、广义最小二乘法的收敛速度不是很高。 递推最小二乘法(RLS)递推最小二乘法(RLS)优点: 1、无需存储全部数据,取得一组观测数据便可估计一次参数,而且都能在一个采样周期中完成,所需计算量小,占用的存储空间小。 2、具有一定的实时处理能力辅助变量法(IV、RIV)计算较简单,估计是无偏估计,但计算精度较低辅助变量法、增广矩阵法能保证精度和收敛,算法简单,可同时得到参数和噪声模型的估计,工程应用效果很好但计算量也较大。 RIV 总收敛于参数真值。 加权最小二乘法加权最小二乘法可对不同置信度的测量值采用加权的办法分别对待,置信度加权高的,权重取得大些;置信度低的,权重取的小些。 但加权最小二乘法仅能用于事先能估计方程误差对参数估计的影

如何在Excel中应用最小二乘法

利用EXCEL实现最小二乘法的计算 共有三种选择一EXCEL函数二利用数据分析工具三添加趋势线 1 表格与公式编辑 将最小二乘法计算过程,应用电子表格逐步完成计算,得到结果。 2 应用EXCEL的统计函数 A、LINEST() 使用最小二乘法对已知数据进行最佳直线拟合,然后返回描述此直线的数组。也可以将LINEST与其他函数结合以便计算未知参数中其他类型的线性模型的统计值,包括多项式、对数、指数和幂级数。因为此函数返回数值数组,所以必须以数组公式的形式输入。 B、SLOPE() 返回根据known_y's和known_x's中的数据点拟合的线性回归直线的斜率。斜率为直线上任意两点的重直距离与水平距离的比值,也就是回归直线的变化率。 C、INTERCEPT() 利用现有的x值与y值计算直线与y轴的截距。截距为穿过已知的known_x's和known_y's数据点的线性回归线与y轴的交点。当自变量为0(零)时,使用INTERCEPT函数可以决定因变量的值。 D、CORREL() 返回单元格区域array1和array2之间的相关系数。使用相关系数可以确定两种属性之间的关系。 3添加趋势线 添加趋势线的应用较其他方法直观,可以用来完成直线回归,也可以用来完成非线性回归。具体方法不再赘述。 4 数据分析工具 “回归”分析工具通过对一组观察值使用“最小二乘法”直线拟合来执行线性回归分析。可用来分析单个因变量是如何受一个或几个自变量的值影响的。 “回归分析”对话框

Y值输入区域在此输入对因变量数据区域的引用。该区域必须由单列数据组成。X值输入区域在此输入对自变量数据区域的引用。Microsoft Office Excel 将对此区域中的自变量从左到右进行升序排列。自变量的个数最多为16。 标志如果数据源区域的第一行或第一列中包含标志项,请选中此复选框。如果数据源区域中没有标志项,请清除此复选框,Excel将在输出表中生成适当的数据标志。 置信度如果需要在汇总输出表中包含附加的置信度,请选中此选项。在框中,输入所要使用的置信度。默认值为95%。 常数为零如果要强制回归线经过原点,请选中此复选框。 输出区域在此输入对输出表左上角单元格的引用。汇总输出表至少需要有七列,其中包括方差分析表、系数、y 估计值的标准误差、r2 值、观察值个数以及系数的标准误差。 新工作表单击此选项可在当前工作簿中插入新工作表,并从新工作表的A1 单元格开始粘贴计算结果。若要为新工作表命名,请在框中键入名称。 新工作簿单击此选项可创建新工作簿并将结果添加到其中的新工作表中。 残差如果需要在残差输出表中包含残差,请选中此复选框。 标准残差如果需要在残差输出表中包含标准残差,请选中此复选框。 残差图如果需要为每个自变量及其残差生成一张图表,请选中此复选框。 线性拟合图如果需要为预测值和观察值生成一张图表,请选中此复选框。 正态概率图如果需要生成一张图表来绘制正态概率,请选中此复选框。

相关主题
文本预览
相关文档 最新文档