当前位置:文档之家› 单芯电缆接地

单芯电缆接地

单芯电缆接地
单芯电缆接地

随着我国电网改造的深入,大量的架空线被电力电缆取代。电力电缆跟架空线不同,它被埋在地下,运行维护较困难,正确使用电缆,是降低工程投资,保证安全可靠供电的重要条件。在城市配电网络中,应用最广的是10 kV的电力电缆,一般是使用交联聚乙烯铠装三芯电缆,这种电缆金属护套一般只需直接接地即可。而单芯电缆金属护套的接地和三芯电缆不同。现从单芯电缆使用过程中经常被忽略的金属护套的感应电动势,现分析一起变电所单芯电力电缆金属护套错误接地引起的故障,并介绍实用的接地措施。

1 单芯电缆金属护套过电压和环流的产生

单芯电力电缆的导体中通过交流电流时,其周围产生的磁场会与金属护套交链,在金属护套上会产生感应电动势。感应电动势的大小与导体中的电流大小、电缆的排列和电缆长度有关。对三相等边三角形排列的电缆,如果将金属护套两端直接接地,就会在金属护套中形成环流,环流的大小与电缆相应的长度,导体中电流大小有关。出于经济安全考虑,在一些电缆不长,导体中电流不大的场合,环流很小,对电缆载流量影响也不大,是可以将金属护套的两端直接接地的。

如果仅将电缆的金属护套一端直接接地,在正常运行时,电缆的金属护套另一端感应电压应不超过50 V(或有安全措施时不超过100 V),否则应划分适当的单元设置绝缘接头。在发生短路故障时,导体中有很大的电流,可能会在金属护套上产生很高的过电压,危及护层绝缘,因此在电缆线路单相接地时,在电缆的未接地端,应加装过电压保护器接地。

2 单芯电缆金属护套的连接与接地

为了解决电缆金属护套两端同时接地存在环流,和一端直接接地,在另一端会出现过电压矛盾的问题,电缆金属护套应针对电缆长度和导体中电流大小采取不同的接地形式。

电缆线路不长时,电缆金属护套应在线路一端直接接地,另一端经过电压保护器接地,如图1所示。电缆越长,电缆非直接接地端产生的感应电压越高,为保证人身安全,电缆在正常运行时,非直接接地端感应电压应限制在50 V以内,在短路等故障情况下,金属护套绝缘的冲击耐压和过电压保护器在冲击电流作用下的残压,配合系数不小于1.4。因此,一端直接接地的接线方式适用的电缆不能太长。

电缆金属护套中间直接接地、两端经过电压保护器接地,是一端直接接地的引伸,可以把一端直接接地电缆的最大长度增加一倍,接线方式和原理与一端直接接地一样。

电缆线路很长时,即使采用金属护套中间接地,也会有很高的感应电压。这时,可以采用金属护套交叉互联。如图2所示。

如果三相电流对称,那么电缆末端金属护套感应电压就是零,可以直接将其接地,而不会在金属护套中出现环流。感应电压最高的地方出现在绝缘接头处,因此在此处应装设过电压保护器,同样,在短路等故障情况下,金属护套绝缘的冲击耐压和过电压保护器在冲击电流作用下的残压配合系数不小于1.4。如果把这样一个交叉互联接地,看作是一个单元,由于该单元金属护套是两端直接接地,所以任何长度的电缆,都可以分成若干个单元,理论上这种接线方式适用于各种长度的电缆。

以上两种方式都需要装过电压保护器,因此会增加运行维护工作。如果电缆线路很短,传输容量有较大的裕度,金属护套上的感应电压极小,可以采用金属护套两端直接接地。金属护套中的环流很小,造成的损耗不显著,对电缆载流量影响不大,运行维护工作较少。

3 接地方式的实施和运行效果

浙江余杭供电局110 kV闲林变电站#2主变35 kV电缆,电缆单相长度80 m,电缆一端接于110 kV闲林变电站#2主变35 kV侧、另一端接于#2主变电站35 kV断路器侧,分相敷设于沟体中。该电缆金属护层为钢丝铠装结构,与铜屏蔽同时在电缆两端直接接地。电缆投运于2003年1月。2006年6月13日,110 kV闲林变电站#2主变35 kV电缆A相,靠近主变侧屏蔽线发热达到73 ℃,其余两相为34 ℃,靠近35 kV断路器侧C相屏蔽线发热达71 ℃,其余两相32 ℃。检修人员对该电缆屏蔽线进行了仔细检查,未发现异常情况,初步怀疑为电缆两端的钢丝铠装护层与电缆内部铜屏蔽、以及主接地线之间接触不良,金属护层中感应电流遇到高电阻后引起发热所致。检修人员将接头处加强接触,并增加引下的铜接地线,投入运行后发现,电缆靠主变压器侧屏蔽线A相97 ℃,B相64 ℃,C相110 ℃。超过电缆允许最高运行温度,被迫将该主变压器停运。

从故障过程来看,电缆发热主要是由于金属护套感应电压形成的环流引起的。该电缆线路虽然较短,但是工作电流较大,正常情况达到300 A左右。所以采取两端直接接地的方式是不妥当的,金属护套中的环流会引起电缆发热,由于在接头处电阻较大,所以在发热较严重,温升较大。故障处理方式也不妥当,接头处加强接触,减少了整个回路的电阻,增大了回路的电流,所以屏蔽线发热,不但不降温反而温度有所上升。

经过分析,检修人员再次进行缺陷处理,将该电缆原先的两端屏蔽线直接接地方式,改为仅靠主变侧单端屏蔽线直接接地,对靠近35 kV断路器侧的屏蔽线采取保持一定距离,分层截断后,进行绝缘带包扎的处理方式,6月15日2时20分闲林变电站2#主变再次投入运行。经测量,金属护套无发热现象,正常运行时的感应电压也在正常范围内。

故障的处理方式虽然解决了发热故障,但是为以后的安全运行带来了隐患,在故障情况下,可能在未直接接地端感应出很高的过电压,危及金属护套的绝缘。鉴于此,随后安排停电,加装了过电压保护器。即采取了一端直接接地,另外一端经过电压保护器接地的接地方式。该电缆运行至今,没有发现异常。

电缆金属护套的接地直接影响电缆运行,金属护套采取合适的联接和接地方式,不仅可以提高电缆载流量,降低工程造价,而且对今后设备的运行维护都是非常重要,因此在电缆线路

设计施工中,应特别注意金属护套的接地。此外,对于单芯电缆,为减少涡流,不应采用未经磁化处理的金属铠装护层。110 kV闲林变电站#2主变35 kV电缆选用钢丝铠装是不恰当的,通过改正为金属护套的接地方式,电缆发热量已经控制在允许的范围内,所以未对电缆本身进行更换。

电力安全规程规定:电气设备非带电的金属外壳都要接地,因此电缆的铝包或金属屏蔽层都要接地。通常35kV及以下电压等级的电缆都采用两端接地方式,这是因为这些电缆大多数是三芯电缆,在正常运行中,流过三个线芯的电流总和为零,在铝包或金属屏蔽层外基本上没有磁链,这样,在铝包或金属屏蔽层两端就基本上没有感应电压,所以两端接地后不会有感应电流流过铝包或金属屏蔽层。但是当电压超过35kV时,大多数采用单芯电缆,单芯电缆的线芯与金属屏蔽的关系,可看作一个变压器的初级绕组。当单芯电缆线芯通过电流时就会有磁力线交链铝包或金属屏蔽层,使它的两端出现感应电压。感应电压的大小与电缆线路的长度和流过导体的电流成正比,电缆很长时,护套上的感应电压叠加起来可达到危及人身安全的程度,在线路发生短路故障、遭受操作过电压或雷电冲击时,屏蔽上会形成很高的感应电压,甚至可能击穿护套绝缘。此时,如果仍将铝包或金属屏蔽层两端三相互联接地,则铝包或金属屏蔽层将会出现很大的环流,其值可达线芯电流的50%--95%,形成损耗,使铝包或金属屏蔽层发热,这不仅浪费了大量电能,而且降低了电缆的载流量,并加速了电缆绝缘老化,因此单芯电缆不应两端接地。[个别情况(如短电缆或轻载运行时)方可将铝包或金属屏蔽层两端三相互联接地。]

然而,当铝包或金属屏蔽层有一端不接地后,接着带来了下列问题:当雷电流或过电压波沿线芯流动时,电缆铝包或金属屏蔽层不接地端会出现很高的冲击电压;在系统发生短路时,短路电流流经线芯时,电缆铝包或金属屏蔽层不接地端也会出现较高的工频感应电压,在电缆外护层绝缘不能承受这种过电压的作用而损坏时,将导致出现多点接地,形成环流。因此,在采用一端互联接地时,必须采取措施限制护层上的过电压,安装时应根据线路的不同情况,按照经济合理的原则在铝包或金属屏蔽层的一定位置采用特殊的连接和接地方式,并同时装设护层保护器,以防止电缆护层绝缘被击穿。

据此,高压电缆线路安装时,应该按照GB50217-1994《电力工程电缆设计规程》的要求,单芯电缆线路的金属护套只有一点接地时,金属护套任一点的感应电压不应超过50-100V(未采取不能任意接触金属护套的安全措施时不大于50V;如采取了有效措施时,不得大于100V),并应对地绝缘。如果大于此规定电压时,应采取金属护套分段绝缘或绝缘后连接成交*互联的接线。为了减小单芯电缆线路对邻近辅助电缆及通信电缆的感应电压,应尽量采用交*互联接线。对于电缆长度不长的情况下,可采用单点接地的方式。为保护电缆护层绝缘,在不接地的一端应加装护层保护器。

由此可见,高压电缆线路的接地方式有下列几种:

1.护层一端直接接地,另一端通过护层保护接地----可采用方式;

2.护层中点直接接地,两端屏蔽通过护层保护接地---常用方式;

3.护层交*互联----常用方式;

4.电缆换位,金属护套交*互联---效果最好的接地方式;

5.护套两端接地---不常用,仅适用于极短电缆和小负载电缆线路。

中低压电缆附件产品有哪些主要种类?

中低压电缆附件目前使用得比较多的产品种类主要有热收缩附件、预制式附件、冷缩式附件。它们分别有以下特点:

(1) 热收缩附件

所用材料一般为以聚乙烯、乙烯-醋酸乙烯(EVA)及乙丙橡胶等多种材料组分的共混物组成。

该类产品主要采用应力管处理电应力集中问题。亦即采用参数控制法缓解电场应力集中。主要优点是轻便、安装容易、性能尚好。价格便宜。

应力管是一种体积电阻率适中(1010-1012Ω?cm),介电常数较大(20--25)的特殊电性参数的热收缩管,利用电气参数强迫电缆绝缘屏蔽断口处的应力疏散成沿应力管较均匀的分布。这一技术只能用于35kV及以下电缆附件中。因为电压等级高时应力管将发热而不能可*工作。

其使用中关键技术问题是:

要保证应力管的电性参数必须达到上述标准规定值方能可*工作。

另外要注意用硅脂填充电缆绝缘半导电层断口出的气隙以排除气体,达到减小局部放电的目的。

交联电缆因内应力处理不良时在运行中会发生较大收缩,因而在安装附件时注意应力管与绝缘屏蔽搭盖不少于20mm,以防收缩时应力管与绝缘屏蔽脱离。

热收缩附件因弹性较小,运行中热胀冷缩时可能使界面产生气隙,因此密封技术很重要,以防止潮气浸入。

(2) 预制式附件

所用材料一般为硅橡胶或乙丙橡胶。

主要采用几何结构法即应力锥来处理应力集中问题。

其主要优点是材料性能优良,安装更简便快捷,无需加热即可安装,弹性好,使得界面性能得到较大改善。是近年来中低压以及高压电缆采用的主要形式。

存在的不足在于对电缆的绝缘层外径尺寸要求高,通常的过盈量在2-5mm(即电缆绝缘外径要大于电缆附件的内孔直径2-5mm),过盈量过小,电缆附件将出现故障;过盈量过大,电缆附件安装非常困难。特别在中间接头上问题突出,安装既不方便,又常常成为故障点。

此外价格较贵。

其使用中关键技术问题是:

附件的尺寸与待安装的电缆的尺寸配合要符合规定的要求。

另外也需采用硅脂润滑界面,以便于安装,同时填充界面的气隙。

预制附件一般*自身橡胶弹力可以具有一定密封作用,有时可采用密封胶及弹性夹具增强密封。

3) 冷缩式附件

所用材料一般为硅橡胶或乙丙橡胶。

冷缩式附件一般采用几何结构法与参数控制法来处理电应力集中问题。几何结构法即采用应力锥缓解电场集中分布的方式要优于参数控制法的产品.

与预制式附件一样,材料性能优良、无需加热即可安装、弹性好,使得界面性能得到较大改善,与预制式附件相比,它的优势在如安装更为方便,只需在正确位置上抽出电缆附件内衬芯管即可安装完工。所使用的材料从机械强度上说比预制式附件更好,对电缆的绝缘层外径尺寸要求也不是很高,只要电缆附件的内径小于电缆绝缘外径2mm就完全能够满足要求。因此冷缩式附件已成为中低压以及高压电缆采用的主要形式。

其最大特点是安装工艺更方便快捷,安装到位后,其工作性能与预制式附件一样。

价格与预制式附件相当,比热收缩附件略高,是性价比最合理的产品。

其使用中关键技术问题与预制式附件相同

另外,冷缩式附件产品从扩张状况还可分为工厂扩张式和现场扩张式两种,一般35kV 及以下电压等级的冷缩式附件多采用工厂扩张式,其有效安装期在6个月内,最长安装期限不得超过两年,否则电缆附件的使用寿命将受到影响。66kV及以上电压等级的冷缩式附件则多为现场扩张式,安装期限不受限制,但需采用专用工具进行安装,专用工具一般附件制

造厂均能提供,安装十分方便,安装质量可*。

在制作10KV电缆头(端头和接头)时,为什么在电缆端部将主绝缘层削“铅笔头”形状?不削会有什么害处?----镇海鲍先生问

答:在制作终端头时,可以不削铅笔头。但是,如电缆绝缘端部与接线金具之间需包绕密封带时,为保证密封效果,通常将绝缘端部削成锥体,以保证包绕的密封带与绝缘能很好的粘合。

在制作中间接头时,如果所装接头为预制型结构(含预制接头、冷缩接头),绝缘端部不要削成锥体,因为这种类型的接头,在接头内部中间部分都有一根屏蔽管,该屏蔽管的长度只比铜或铝连接管稍长,如电缆绝缘削成锥体,锥体的根部将离开屏蔽管,连接管部分的空隙将不会被屏蔽,从而影响到接头的性能,造成接头在中部击穿。如果所装接头为热缩型或绕包型结构时,绝缘端部必须削成锥体,即制成反应力锥,同时必须将锥面用砂带抛光,因为锥面的长度远大于绝缘端部直角边的长度,故而沿着锥面的切向场强远小于绝缘直角边的切向场强,沿锥面击穿的可能性大大降低,从而提高了接头的性能。

电缆附件中应力管和应力疏散胶主要用于缓和分散电应力的作用,能否介绍一下应力管和应力疏散胶的材质构成,应力管和应力疏散胶中是否含有半导体成分?----镇海鲍先生问

答:应力管和应力疏散胶的材质构成都是由多种高分子材料共混或共聚而成,一般基材是极性高分子,再加入高介电常数的填料等等。应力管和应力疏散胶中是否含有半导体成分这就要看生产厂家的材料配方了,有可能有,也可能没有。

高压电缆接地的问题

浅谈高压电缆接地的问题 高压电力电缆的铜屏蔽和钢铠一般都需要接地,两端接地和一端接地有什么区别?制作电缆终端头时,钢铠和铜屏蔽层能否焊接在一块?制作电缆中间头时,钢铠和铜屏蔽层能否焊接在一块?35KV高压电缆多为单芯电缆,单芯电缆在通电运行时,在屏蔽层会形成感应电压,如果两端的屏蔽同时接地,在屏蔽层与大地之间形成回路,会产生感应电流,这样电缆屏蔽层会发热,损耗大量的电能,影响线路的正常运行,为了避免这种现象的发生,通常采用一端接地的方式,当线路很长时还可以采用中点接地和交叉互联等方式。 在制作电缆头时,将钢铠和铜屏蔽层分开焊接接地,是为了便于检测电缆内护层的好坏,在检测电缆护层时,钢铠与铜屏蔽间通上电压,如果能承受一定的电压就证明内护层是完好无损。如果没有这方面的要求,用不着检测电缆内护层,也可以将钢铠与铜屏蔽层连在一起接地(我们提倡分开引出后接地)。 为什么高压单芯交联聚乙烯绝缘电力电缆要采用特殊的接地方式? 电力安全规程规定:35kV 及以下电压等级的电缆都采用两端接地方式,这是因为这些电缆大多数是三芯电缆,在正常运行中,流过三个线芯的电流总和为零,在铝包或金属屏蔽层外基本上没有磁链,这样,在铝包或金属屏蔽层两端就基本上没有感应电压,所以两端接地后不会有感应电流流过铝包或金属屏蔽层。但是当电压超过35kV 时,大多数采用单芯电缆,单芯电缆的线芯与金属屏蔽的关系,可看作一个变压器的初级绕组。当单芯电缆线芯通过电流时就会有磁力线交链铝包或金属屏蔽层,使它的两端出现感应电压。 感应电压的大小与电缆线路的长度和流过导体的电流成正比,电缆很长时,护套上的感应电压叠加起来可达到危及人身安全的程度,在线路发生短路故障、遭受操作过电压或雷电冲击时,屏蔽上会形成很高的感应电压,甚至可能击穿护套绝缘。 此时,如果仍将铝包或金属屏蔽层两端三相互联接地,则铝包或金属屏蔽层将会出现很大的环流,其值可达线芯电流的50%--95%,形成损耗,使铝包或金属屏蔽层发热,这不仅浪费了大量电能,而且降低了电缆的载流量,并加速

高压单芯电缆接地方式

高压单芯电缆接地 电力安全规程规定:电气设备非带电的金属外壳都要接地,因此电缆的铝包或金属屏蔽层都要接地。 通常35kV及以下电压等级的电缆都采用两端接地方式,这是由于这些电缆大多数是三芯电缆,在正常运行中,流过三个线芯的电流总和为零,在铝包或金属屏蔽层外基本上没有磁链,这样,在铝包或金属屏蔽层两端就基本上没有感应电压,所以两端接地后不会有感应电流流过铝包或金属屏蔽层。 但是当电压超过35kV时,大多数采用单芯电缆,单芯电缆的线芯与金属屏蔽的关系,可看作一个变压器的低级绕组。当单芯电缆线芯通过电流时就会有磁力线交链铝包或金属屏蔽层,使它的两端出现感应电压。感应电压的大小与电缆线路的长度和流过导体的电流成正比,电缆很长时,护套上的感应电压叠加起来可达到危及人身安全的程度,在线路发生短路故障、遭受操纵过电压或雷电冲击时,屏蔽上会形成很高的感应电压,甚至可能击穿护套尽缘。此时,假如仍将铝包或金属屏蔽层两端三相互联接地,则铝包或金属屏蔽层将会出现很大的环流,其值可达线芯电流的50%--95%,形成损耗,使铝包或金属屏蔽层发热,这不仅浪费了大量电能,而且降低了电缆的载流量,并加速了电缆尽缘老化,因此单芯电缆不应两端接地。 [个别情况(如短电缆或轻载运行时)方可将铝包或金属屏蔽层两端三相互联接地。] 然而,当铝包或金属屏蔽层有一端不接地后,接着带来了下列题目: 当雷电流或过电压波沿线芯活动时,电缆铝包或金属屏蔽层不接地端会出现很高的冲击电压;在系统发生短路时,短路电流流经线芯时,电缆铝包或金属屏蔽层不接地端也会出现较高的工频感应电压,在电缆外护层尽缘不能承受这种过电压的作用而损坏时,将导致出现多点接地,形成环流。因此,在采用一端互联接地时,必须采取措施限制护层上的过电压,安装时应根据线路的不同情况,按照经济公道的原则在铝包或金属屏蔽层的一定位置采用特殊的连接和接地方式,并同时装设护层保护器,以防止电缆护层尽缘被击穿。 据此,高压电缆线路安装时,应该按照GB50217-1994《电力工程电缆设计规程》的要求,单芯电缆线路的金属护套只有一点接地时,金属护套任一点的感应电压不应超过50-100V(未采取不能任意接触金属护套的安全措施时不大于50V;如采取了有效措施时,不得大于100V),并应对地尽缘。 假如大于此规定电压时,应采取金属护套分段尽缘或尽缘后连接成交叉互联的接线。为了减小单芯电缆线路对邻近辅助电缆及通讯电缆的感应电压,应尽量采用交叉互联接线。对于电缆长度不长的情况下,可采用单点接地的方式。为保护电缆护层尽缘,在不接地的一端应加装护层保护器。 由此可见,高压电缆线路的接地方式有下列几种: 1.护层一端直接接地,另一端通过护层保护接地----可采用方式; 2.护层中点直接接地,两端屏蔽通过护层保护接地---常用方式; 3.护层交叉互联----常用方式; 4.电缆换位,金属护套交叉互联---效果最好的接地方式; 5.护套两端接地---不常用,仅适用于极短电缆和小负载电缆线路。

研究35KV单芯电缆金属护套接地方式及重要性分析

研究35KV单芯电缆金属护套接地方式及重要性分析 摘要:基于35KV单芯电缆金属护套接地方式及重要性分析,工作人员首先要分 析事故情况,然后阐述35KV单芯电缆金属护套的接地方式,最后进行重要性分析,为热电厂的安全运营提供有利的基础和重要保障。 关键词:单芯电缆;金属护套;接地方式 2012年6月7日下午14:40分大成热电电气主控室电脑后台发降压站甲变中压侧3U0接 地报警信号,说明35kV电缆线路出现接地故障,15:51分成农线过流一段保护动作,成农线73开关跳闸,导致大成农药总厂全部停电。现对单芯电缆金属护套的接地方式及重要性进行 分析。 1 事故情况分析 针对此事故进行分析,工作人员接到通知后,动力分厂立刻派相关人员赶到事故现场, 在开发区东大化工北墙外,华光化工厂南门斜对过,发现敷设在东大院墙外电缆桥架上的电 缆有爆燃现象,现场已无明火。动力分厂厂长立即电话通知电厂电气车间将成农线73开关 断电并做好安全措施(合接地刀)。 通过分析电厂电脑后台事故记录发现,引起此事故的最初原因为一相电缆爆燃首先单相 接地(甲变中压侧3U0接地报警),继而燃烧引起另外两相电缆燃烧导致相间短路(成农线 过流一段保护动作)。从事故现场分析,本次单相接地是因为一相电缆爆燃引起,发生爆燃 首先有热源,事发后,从电厂后台查到成农线当时电流为56A,35kV单芯240电缆载流量为630A,所以导体不存在发热问题[1]。但是此电缆屏蔽层两头都接地,应有感应环流电流存在。这也会造成电缆发热,从现场看屏蔽层已经变色。 2 单芯电缆的接地方式选择 该线路为35kV单芯电缆线路,当单芯电缆在交变的电压下运行时,线芯中通过的交变电流必然会产生交变的磁场,磁场产生的磁链不仅和线芯相链,也和金属屏蔽层相链,必然会 在金属屏蔽上产生感应电动势和感应电流。 2.1 运行中单芯电缆金属护套的感应电压 工作人员要明确单芯电缆的导线与金属护套的关系,然后将其当做一个变压器的初次级 绕组。一旦电缆的导线通过交流电,就会造成周围产生屏蔽层铰链。分析屏蔽层出现的感应 电压,其大小与电缆线路成正比。 2.2 单芯电缆金属护套内感应电压及环流的危害 单芯电缆在运行中其金属护套上的感应电压、电缆线路的长度以及流过导体的电流有一 定比例。例如电缆线路较长时,金属护套上感应的电压比较大,相加可能会危及人们的生命 安全[2]。如果在这种情况下,出现短路或是其他故障,金属护套上会产生更大的感应电压。 2.3 单芯电缆金属护套接地方式 高压单芯电缆金属护套并不像三芯电缆一样两端直接接地,而是需要根据实际的运行情况、线路长度以及电压等级进行考虑。在高压单芯电缆线路安装中,要遵守相关规范,确保 其在运行情况下,任意位置的电缆屏蔽层的最大电压都不会超过50V,防止其损坏电缆。主 要的接地方式有以下五种: 1)金属屏蔽层一端直接接地,另一端通过护层保护器接地; 2)金属屏蔽层中点直接接地,两端通过护层保护器接地; 3)金属屏蔽层一端直接接地,电缆中间护层交叉互联接地,另一端通过护层保护器接地; 4)金属屏蔽层一端直接接地,若干个护层交叉互联接地,金属屏蔽层中点直接接地,若 干个护层交叉互联接地,另一端金属屏蔽层直接接地; 5)金属屏蔽层两端直接接地。 3 35KV单芯电缆金属护套接地的重要性分析 该线路采取了两端直接接地的方式,接地端和大地形成闭合回路产生环流(该环流包括 电缆正常运行时的感应电流和非正常运行时的感应电流),环流产生的热量聚集在电缆屏蔽 层危及线路的安全运行。

电力电缆护层接地电流故障分析方法

电力电缆护层接地电流故障分析方法 发表时间:2018-01-26T18:23:49.060Z 来源:《电力设备》2017年第28期作者:王子韬 [导读] 摘要:当前社会技术飞速发展,电力技术也在不断的演变,同时全球的用电量也在不断的增加,我们国家已经成为了一个用电大国,因此对于用电安全提出了更高的要求,而电力电缆的护层接地电流故障是电力系统中常见的故障之一。 (呼和浩特供电局内蒙古呼和浩特 010000) 摘要:当前社会技术飞速发展,电力技术也在不断的演变,同时全球的用电量也在不断的增加,我们国家已经成为了一个用电大国,因此对于用电安全提出了更高的要求,而电力电缆的护层接地电流故障是电力系统中常见的故障之一。当线路出现故障的时候,我们应该对其进行检修和维护,否则就可能会影响电力的正常使用。在这个电缆的使用过程中,我们可以借助故障检测的方式对线路的故障点进行分析,准确定位,进行最快的检修。避免造成更多的损失,全面提高电力系统的安全性。 关键词:电力电缆;护层接地电流;故障分析 引言 我们国家正在全面的对电网进行改造,同时国家也给予了大力支持,改革的进度也十分迅速。但是在这个改造的过程中,很多电力方面的问题也逐渐显露出来。一般情况下高压电力电缆通常选择单芯电缆来作为主要的材料,因为单芯电缆的一端可以接地,同时将电压释放出来。对于金属屏蔽的问题可以有效的躲避开,避免意外的金属环流情况发生,同时还能够有效的解决电力电缆护层传输过程中的电流故障。通常在多点接地的时候,我们会选择能够承受高电压,而且出现护层现象能够进行承担的单心电缆。因为电缆的质量和安装直接影响到用电的安全,如果质量出现问题、安装出现遗漏或者是原来的高压线路老化,这些都能够影响电力电缆的安全,甚至是引发事故。 一、电力电缆中护层接地电流故障的原因 在电缆实际运行的过程中,出现单相的接地电流故障主要原因是以下几种情况:(1)导线出现断线情况,落地了;(2)导线的绝缘子被击穿;(3)导线和树木进行接触,导致了树木短路;(4)配电的变压器,其高压的绕组出现单相绝缘被击穿或接地现象;(5)由雷击或者是其他原因导致的线路接地故障。前三种是导致线路故障的主要原因。 当线路出现接地故障时,线路会产生谐波电压,此电压的大小是正常电压的几倍,一旦不能够及时的进行处理,那么就会对外部造成危害。首先接地电流故障有可能会导致电气火灾的发生,其次,接地故障时产生的接地电流会对来往的行人以及巡视人员造成不必要的伤害,甚至会引起死亡事故。而且出现线路故障接地的情况时,会影响线路的供电,对用户的用电稳定情况造成影响,进而给电力公司也造成不必要的损失。 二、护层接地电流计算方法 我们通过对型号为XLPE一1×400mm2的110kV交联电缆进行分析:相关的参数主要是:绝缘层的直径是65。8毫米;绝缘屏蔽层的直径是68.8毫米;电缆的直径为24。1毫米,电缆的屏蔽层直径是26.6毫米;衬带层的直径是73毫米;金属护套层的直径是85毫米;PVC的外护套层直径是95毫米。 一旦交叉互联的单元当中,出现一个接头断开,那么这个在接头两侧的金属护壳就会处于悬空状态,我们把导体屏蔽以及绝缘屏蔽,还有金属护套和石墨外电极之间形成的两个电容值分别设为同轴柱形的Cl和Q,那么C1和Q就会形成一个电容的分压器,在电容极板上,金属护层与每一个点位值都相等,接电压U2是Cl、Q的线芯电压Un的分压。 我们把XIPE的介电常数取值为£r.=2.3,PVC相对介质常数是£r.=5.5,我们假设电缆的外电极完好同时做好了充分接地,可这样可以计算出金属护层的电压u2: C1=2π×£l×£0[l/In(R2/R1)]=2π×2.3×8.85[l/In(32.9/13.3)]=1411(pF) C2=2π×£2×£0[1/In(R4/R3)]=2π×5.5×8.85[1/In(47.5/42..5)] =27501(pF) U2=U0C1/(Cl+C2)=64×103×[1411/(1411+27501)]=3121(V) 通过计算我们得出电缆的金属护层接地电流的监测十分重要,如果发现不够及时,不仅会损坏设备,同时也会影响维护人员的生命安全。 三、针对电缆护层接地电流在线监测手段 (一)分析护层的绝缘检测手段 首先,通常是借助断电模式对电力电缆进行检测和分析,之后再通过护层的绝缘电阻对线路的故障点进行检测。另外一种方法就是钳形的电流模式,主要指借助于测量层的循环电流对线路进行监测和分析,找到故障点。现在,随着技术的不断进步和发展,电力电缆的传输线路安全性也越来越高,在高压电缆中物理方面的电源故障也比较少见了。面对我们现在的复杂环境以及电力电缆的故障现象,已经无法用传统的手动测量方式来解决电缆护层的电流故障问题。我们举例来算计一下,某电力局有69条环形的高压电缆埋在地下,想要完成这些电缆的铺设,需要安装100多个直接的接地箱,还得安装100个叉连接地箱,这些箱子通常是放在塔中以及连接井内,面对这样大数量的箱体,传统的检测技术会耗费大量的物力、人力以及财力。因此,我们需要研究一个智能护套绝缘检测系统,借助于这套先进的系统,可以有效的检测和排除故障,同时还可以防患于未然。 (二)监测电力电缆的护层方法 2。1在线监测局部放电的方法 本文所说的局部放电实际上就是在电缆的绝缘护层上打孔,之后进行信号放电,这样的微孔放电技术可以作为高压电缆的在线监测方式,同时也比较方便。我们对过对绝缘介质外信号频率的差别来判断电缆的故障问题。当放电的信号频率在300KHz以上时,电信号就会处于电缆的屏蔽层,所以高频率的电信号会与电缆外屏蔽的电流互感器产生耦合,之后借助于超声波i数对局部放电的电缆进行监测。在一段电缆中,声信号的传输速度是比较缓慢的,因此外边的噪声信号也会比较少,同时对于电缆来说局部放电可以在现场进行检测。 2。2在线监测接地电流的方法 通常我们会觉得大于110kV的电压用到的电缆就是高压电缆,电缆我们一般采用单芯电缆,但是用单芯电缆的话,在金属护层与线芯之间会产生一种铰链的磁力线现象,此现象对线缆的感应电压会造成影响。为了能够避免这些意外的出现,我们需要进行接地操作对

为什么高压单芯电缆要采用特殊的接地方式

为什么高压单芯电缆要采用特殊的接地方式? 电力安全规程规定:35kV及以下电压等级的电缆都采用两端接地方式。 这是因为这些电缆大多数是三芯电缆,在正常运行中,流过三个线芯的电流总和为零,在铅包或金属屏蔽层外基本上没有磁链。这样,在铅包或金属屏蔽层两端就基本上没有感应电压,所以两端接地后不会有感应电流流过铅包或金属屏蔽 层。 但是当电压超过35kV时,绝大多数采用单芯电缆供电,情况就不一样了。单芯电缆的导体线芯与金属屏蔽层的关系,可看作一个变压器的初级绕组。当单芯电缆线芯通过电流时就会有磁力线交链铅包(或铝包)或金属屏蔽层,使它的两 端出现感应电压。 感应电压的大小与电缆线路的长度和流过导体的电流成正比,电缆很长时,护套上的感应电压叠加起来可达到危及人身安全的程度,当线路发生短路故障、遭受操作过电压或雷电电压冲击时,电缆的金属屏蔽层上会形成很高的感应电压, 甚至可能击穿护套绝缘。 此时,如果仍将铝包或金属屏蔽层两端三相互联接地,则铝包或金属屏蔽层将会出现很大的环流,其值可达线芯电流的50%--95%,形成损耗,使铝包或金属屏蔽层发热,这不仅浪费了大量电能,而且降低了电缆的载流量,并加速了电缆绝缘老化,严重情况会导致电缆的护套着火,因此单芯电缆不应两端接地。个别情况(如短电缆小于100M或轻载运行时) 方可将铝包或金属屏蔽层两端三相互联接地。 然而,当铝包或金属屏蔽层有一端不接地后,接着带来了下列问题: (1)当雷电流或过电压波沿线芯流动时,电缆铝包或金属屏蔽层不接地端就会出现很高的感应性冲击电压; (2)在系统发生短路时,短路电流流经线芯时,电缆铝包或金属屏蔽层不接地端也会出现较高的工频感应电压,在电缆外护层绝缘不能承受这种过电压的作用而损坏时,将导致出现电缆的金属护层多点接地,并在电缆的长度方向上形成 多处环流。 因此,在采用一端互联接地时,必须采取措施限制护层上的过电压,安装时应根据线路的不同情况,按照经济合理的原则在铝包或金属屏蔽层的一定位置采用特殊的连接和接地方式,并同时装设护层保护器,以防止电缆护层绝缘被击穿。 据此,高压电缆线路安装时,应该按照GB50217-1994《电力工程电缆设计规程》的要求,单芯电缆线路的金属护套只有一点接地时,金属护套任一点的感应电压不应超过50-100V(未采取不能任意接触金属护套的安全措施时不大于50V;如采取了有效措施时,不得大于100V),并应对地绝缘。如果大于此规定电压时,应采取金属护套分段绝缘或绝缘后连接成交叉互联的接线。为了减小单芯电缆线路对邻近辅助电缆及通信电缆的感应电压,应尽量采用交叉互联接线。对于电缆长度不长的情况下,可采用单点接地的方式。为保护电缆护层绝缘,在不接地的一端应加装护层保护器。 由此可见,高压电缆线路的接地方式有下列几种: 1.护层一端直接接地,另一端通过护层保护接地--可采用方式; 2.护层中点直接接地,两端屏蔽通过护层保护接地--常用方式; 3.护层交叉互联--常用方式; 4.电缆换位,金属护套交叉互联--效果最好的接地方式; 5.护套两端接地--不常用,仅适用于极短电缆和小负载电缆线路。

浅谈高压电力电缆金属护层保护接地的应用

浅谈高压电力电缆金属护层保护接地的应用 发表时间:2018-10-14T10:24:19.560Z 来源:《电力设备》2018年第19期作者:陈华杰[导读] (郑州中原铁道工程有限责任公司电务分公司河南郑州 450000) 高压单芯电缆在使用时内部金属护套如何接地?我觉得我们首先应该了解,高压单芯电缆金属护套为什么需要接地?这是因为高压单芯电缆的线芯与金属屏蔽的关系,可看作一个变压器的初级绕组。当高压单芯电缆线芯通过电流时就会有磁力线与电缆金属屏蔽层交链,使它的两端出现感应电压。感应电压的大小与电缆线路的长度和流过导体的电流成正比,电缆较长时,护套上的感应电压叠加起来可达到 危及人身安全的程度;而在线路发生短路故障,遭受操作过电压或雷电冲击时,屏蔽层会形成很高的感应电压,甚至可能击穿护套绝缘。故应在金属护套的一定位置采用特殊的接地方式,同时安装护层保护器。以防止电缆护层绝缘发生击穿现象,保障电缆线路的安全运行。 高压单芯电缆金属护套主要是由保护电缆的钢铠和屏蔽层组成。钢铠主要是保护电缆不受外界机械损伤。屏蔽层主要由铜、铝等非磁性材料制成,并且厚度很薄;屏蔽层的效果主要不是由于金属体本身对电场、磁场的反射、吸收而产生的,而是由于屏蔽层的接地产生的。接地的形式不同将直接影响屏蔽效果。对于电场、磁场屏蔽层的接地方式不同,其屏蔽效果也大不相同。 高压单芯电缆金属护套通常采用以下几种接地方式。 一、金属护套一端接地,另一端保护接地电缆线路较短时(500m以内),金属护套通常采用一端直接接地,另一端通过保护器接地,其他部位对地绝缘没有构成回路,可以减少及消除环流,有利于提高电缆的传输容量及电缆的安全运行。根据《电力工程电缆设计规范》GB 50217— 94要求:非直接接地一端金属护套中的感应电压不超过5O V;若采取不能任意接触金属护套的安全措施,该电压可提高到1O0 V。采用金属护套一端接地的电缆线路在与架空线路连接时,直接接地一般装设在与架空线路相接的一端,保护器装设在另一端,这样可以降低金属护套上的冲击过电压。在直接接地端接地线应先互联后再接地。如图1 图1金属护套一端接地,另一端通过保护器接地 二、金属护套中点接地,两端保护接地电缆线路较长时(1 000m以内),若电缆线路采用一端接地,其金属护套感应电压将不满足设计规范要求,可以在电缆线路的中点将电缆的金属护套进行单点互联接地,而电缆金属护套的2个终端通过保护器接地,且保证电缆金属护套感应电压不超过5O V,因此,中点接地安装方式的电缆线路可看作2个一端接地电缆线路连接在一起安装方式(见图2)。 图2金属护套中点接地当采用中点接地方式时,根据实际情况,若电缆长度、运输及敷设能满足要求时,在施工中可选用单根电缆敷设安装,在电缆中点部位仅破开电缆的外护套,直接在钢铠护套上安装接地装置;在安装后要做好外护层与金属护套防水处理工作(见图3)。该安装方式优点:电缆未安装中间接头,避免在安装接头过程中产生绝缘薄弱环节,同时电缆线路本体无畸变的电场,有利于提高电缆使用寿命及载流量;减少运行维护工作量及故障点,有利于电缆安全运行。 图3金属护套中点接地方式安装图 三、金属护套的交叉互联;当电缆线路很长时(超过1 000 m),电缆金属护套可以采用交叉互联方式安装。交叉互联是将电缆线路分成3个等长小段,在每小段之间安装绝缘接头,金属护套在绝缘接头处用同轴电缆引出并经互联箱进行交叉互联后,通过电缆护层保护器接地,电缆2个终端的金属护套直接接地,这样形成1个互联段位。电缆线路更长时,可以通过若干个互联段位连接形成1个多段互联。每个互联段位之间安装直线接头,金属护套互联直接接地(见图4)。采用交叉互联方式可以减少金属护套感应电压及环流,有利于提高电缆传输容量。

单芯电缆接地

随着我国电网改造的深入,大量的架空线被电力电缆取代。电力电缆跟架空线不同,它被埋在地下,运行维护较困难,正确使用电缆,是降低工程投资,保证安全可靠供电的重要条件。在城市配电网络中,应用最广的是10 kV的电力电缆,一般是使用交联聚乙烯铠装三芯电缆,这种电缆金属护套一般只需直接接地即可。而单芯电缆金属护套的接地和三芯电缆不同。现从单芯电缆使用过程中经常被忽略的金属护套的感应电动势,现分析一起变电所单芯电力电缆金属护套错误接地引起的故障,并介绍实用的接地措施。 1 单芯电缆金属护套过电压和环流的产生 单芯电力电缆的导体中通过交流电流时,其周围产生的磁场会与金属护套交链,在金属护套上会产生感应电动势。感应电动势的大小与导体中的电流大小、电缆的排列和电缆长度有关。对三相等边三角形排列的电缆,如果将金属护套两端直接接地,就会在金属护套中形成环流,环流的大小与电缆相应的长度,导体中电流大小有关。出于经济安全考虑,在一些电缆不长,导体中电流不大的场合,环流很小,对电缆载流量影响也不大,是可以将金属护套的两端直接接地的。 如果仅将电缆的金属护套一端直接接地,在正常运行时,电缆的金属护套另一端感应电压应不超过50 V(或有安全措施时不超过100 V),否则应划分适当的单元设置绝缘接头。在发生短路故障时,导体中有很大的电流,可能会在金属护套上产生很高的过电压,危及护层绝缘,因此在电缆线路单相接地时,在电缆的未接地端,应加装过电压保护器接地。 2 单芯电缆金属护套的连接与接地 为了解决电缆金属护套两端同时接地存在环流,和一端直接接地,在另一端会出现过电压矛盾的问题,电缆金属护套应针对电缆长度和导体中电流大小采取不同的接地形式。 电缆线路不长时,电缆金属护套应在线路一端直接接地,另一端经过电压保护器接地,如图1所示。电缆越长,电缆非直接接地端产生的感应电压越高,为保证人身安全,电缆在正常运行时,非直接接地端感应电压应限制在50 V以内,在短路等故障情况下,金属护套绝缘的冲击耐压和过电压保护器在冲击电流作用下的残压,配合系数不小于1.4。因此,一端直接接地的接线方式适用的电缆不能太长。 电缆金属护套中间直接接地、两端经过电压保护器接地,是一端直接接地的引伸,可以把一端直接接地电缆的最大长度增加一倍,接线方式和原理与一端直接接地一样。 电缆线路很长时,即使采用金属护套中间接地,也会有很高的感应电压。这时,可以采用金属护套交叉互联。如图2所示。

电力电缆金属护套或屏蔽的接地作用

电力电缆金属护套或屏蔽的接地作用 1.概述 接地用以:防止人身受到电击,确保电力系统正常运行,保护线路和设备免遭损坏,还可防止电气火灾,防止雷击和静电危害等。 电缆金属护套或屏蔽的接地的作用有: (1)电缆线芯双屏蔽和金属护套的电容电流有一回路流入大地; (2)当电缆对金属护套或屏蔽发生短路时,短路电流可流入地下; (3)电缆线芯绝缘损伤后发生相间短路发展至接地故障时,故障电流通过接地线流入地中; (4)电缆中的不平衡电流引起的感应电压、通过地线与大地形成短路,防止电缆对接地支架存在电位差而放电闪络。 现在大量使用的交联电缆,分相屏蔽,屏蔽层分金属(铜带)层和半导电层。半导电层中含有胶质碳,可起到均匀电场的作用;同时碳能吸收电缆本体细小间隙中因空气电离产生的败坏物,均匀电场,以保护电缆绝缘。 金属屏蔽层的作用: 第一:保持零电位,使缆芯之间没有电位差; 第二:在短路时承载短路电流,以免因短路引起电缆温升过高而损坏绝缘层,同时屏蔽层也可以防止周围外界强电场对电缆内传输电流的干扰; 第三:屏蔽层可以有效地将电缆产生的强电场限制在屏蔽层内,由于屏蔽层接地,外部便不存在电缆产生的强电场,不会对周围的弱电线路及仪表,产生强电干扰 或危及人身安全。 在配电系统中:电源电缆的起始端与发电厂的接地网接通,末端与变电所接地网连通;变电所馈出电缆接地与各用户连通;低压电缆的PEN线与电缆铠甲接地后可与高压电缆接地等电位;重要用户的电源电缆又来自独立的电源。这样,高低压电缆接地线的互相联结,又与接地网连在一起。因此,电缆接地成了接地系统总体的重要组成部分,对电网安全运行有重要作用。 3.2保证接地线截面和质量 交联电缆接头制作中,铜屏蔽层、铠甲层应分别连接不得中断,两者还应加以绝缘分隔,恢复铜屏蔽应采用软质铜编织线连接;确保与各相绝缘外屏蔽接触良好。两端与铜屏蔽层焊接,铠甲用镀锡地线恢复跨接,分别焊在两边的铠甲上。 电缆接地线的规格,严格要求应按电缆线路的接地电流大小而定。但在实际施工中,往往缺乏这方面的资料, 一般120㎜2以下电缆选用16 m㎡铜线; 150㎜2~240㎜2电缆选用25 m㎡铜线; 300 ㎜2以上电缆接地线不应小于35㎜2; 橡塑电缆的接地线必须采用镀锡软铜编织线。接地线与铜屏蔽层和金属护套焊接工艺、焊接面积均应符合要求。电缆接地线应直接接于接地网,不得串接,接地线必须压接的接线端子,以保证连接可靠及检测拆卸方便。 美国3M公司的游丝卡紧法和法国梅兰日兰公司的卡扣捆扎法,不仅能方便可靠地进行接地连接,而且还能避免烙铁灼伤电缆绝缘的危险,值得借鉴。

高压电缆接地—同轴接地电缆的使用

高压电缆接地—同轴接地电缆的使用 1定义 同轴电缆也叫做同轴接地电缆。该同轴接地电缆包括内导体、绝缘层、外导体、外保护套;绝缘层采用交联聚乙烯材质,耐受温度高;外导体采包括内外相邻的第一层导体和第二层导体;外保护套采用阻燃交联聚乙烯材料,阻燃防爆,具有良好的化学稳定性、憎水性和密封性。使用时,同轴接地电缆的一端可以与高压电力电缆金属护层连接,另一端与接地保护装置连接,可将高压电力电的缆金属护层端的过电压导入接地保护装置从而有效地保护高压电力电缆的正常运行。一般来讲10kV的单芯电缆也是可以的,采用屏蔽的同轴电缆优点更明显。同轴电缆内外导体连接方式合理,方便,使用可靠.。结构上讲,这些是属于双铜芯电缆,外铜芯铜丝是屏蔽作用,内铜丝导电流。所有,这些10kV的同轴电缆的价格一般是普通10kV铜芯单芯电力电缆的双倍价格。 2型号 一般来讲同轴接地电缆电压等级为10kV;主要型号有VOV、YJOV和YOY三种型号,截面积从1×50~1×300mm2都有。正规的写法例如:YJOV-8.7/10-240/240。

(1)表示:YJ:交联聚乙稀绝缘;V:聚氯乙稀绝缘;Y:聚乙稀绝缘; (2)表示: O同轴电缆; (3)表示:PVC护套;V是聚氯乙稀护套,Y是氯乙稀护套 3使用范围 高压电缆,按照单回路、双回路甚至更多回路设计,如果单根的电缆长度越长,感应电势越大,没有保护装置的情况下最好不要超过50V,即50伏的电压。如果有保护装置,例如回流线、同轴电缆等,不应超过300V,如果超过,对超高压电缆外护套,其他动植物的安全,人的安全都是有一定影响的,对电缆的影响也是有的。同轴电缆的作用可见一斑。同轴接地电缆一般用于避雷器引线和防雷接地线,交联电缆线路护层绝缘保护装置的接地箱相连接线,因为雷电或浪涌电压对地泄放时间极短,就要求电缆需要具有低阻抗,同轴接地电缆对于瞬态具有低阻抗特性。 VOV(YOV、YJOV)一般用于高压电缆交叉互联的,用来减小金属护套的感应电势的。用于110kV~220kV交联电缆线路护层绝

35kV及以下电压等级的电力电缆接地方式

35kV及以下电压等级的电力电缆接地方式 35kV及以下电压等级的电力电缆接地方式 电力安全规程规定:35kV及以下电压等级的电缆都采用两端接地方式,这是因为这些电缆大多数是三芯电缆,在正常运行中,流过三个线芯的电流总和为零,在铝包或金属屏蔽层外基本上没有磁链,这样,在铝包或金属屏蔽层两端就基本上没有感应电压,所以两端接地后不会有感应电流流过铝包或金属屏蔽层。但是当电压超过35kV 时,大多数采用单芯电缆,的线芯与金属屏蔽的关系,可看作一个变压器的初级绕组。当单芯电缆线芯通过电流时就会有磁力线交链铝包或金属屏蔽层,使它的两端出现感应电压。感应电压的大小与电缆线路的长度和流过导体的电流成正比,电缆很长时,护套上的感应电压叠加起来可达到危及人身安全的程度,在线路发生短路故障、遭受操作过电压或雷电冲击时,屏蔽上会形成很高的感应电压,甚至可能击穿护套绝缘。此时,如果仍将铝包或金属屏蔽层两端三相互联接地,则铝包或金属屏蔽层将会出现很大的环流,其值可达线芯电流的50%--95%,形成损耗,使铝包或金属屏蔽层发热,这不仅浪费了大量电能,而且降低了电缆的载流量,并加速了电缆绝缘老化,因此单芯电缆不应两端接地。个别情况(如短电缆或轻载运行时)方可将铝包或金属屏蔽层两端三相互联接地。gwsd_re 然而,当铝包或金属屏蔽层有一端不接地后,接着带来了下列问题:当雷电流或过电压波沿线芯流动时,电缆铝包或金属屏蔽层不

接地端会出现很高的冲击电压;在系统发生短路时,短路电流流经线芯时,电缆铝包或金属屏蔽层不接地端也会出现较高的工频感应电压,在电缆外护层绝缘不能承受这种过电压的作用而损坏时,将导致出现多点接地,形成环流。因此,在采用一端互联接地时,必须采取措施限制护层上的过电压,安装时应根据线路的不同情况,按照经济合理的原则在铝包或金属屏蔽层的一定位置采用特殊的连接和接地方式,并同时装设护层保护器,以防止电缆护层绝缘被击穿。 据此,高压电缆线路安装时,应该按照GB50217-1994《电力工程电缆设计规程》的要求,单芯电缆线路的金属护套只有一点接地时,金属护套任一点的感应电压不应超过50-100V(未采取不能任意接触金属护套的安全措施时不大于50V;如采取了有效措施时,不得大于100V),并应对地绝缘。如果大于此规定电压时,应采取金属护套分段绝缘或绝缘后连接成交叉互联的接线。为了减小单芯电缆线路对邻近辅助电缆及通信电缆的感应电压,应尽量采用交叉互联接线。对于电缆长度不长的情况下,可采用单点接地的方式。为保护电缆护层绝缘,在不接地的一端应加装护层保护器

GB50169-92_接地装置施工及验收规范

附录C-4 GB50169-92 接地装置施工及验收规范 第二章电气装置的接地 第一节一般规定 第2.1.1条电气装置的下列金属部分,均应接地或接零: 一、电机、变压器、电器、携带式或移动式用电器具等的金属底座和外壳。 二、电气设备的传动装置。 三、屋内外配电装置的金属或钢筋混凝土构架以及靠近带电部分的金属遮栏和金属门。 四、配电、控制、保护用的屏(柜、箱)及操作台等的金属框架和底座。 五、交、直流电力电缆的接头盒、终端头和膨胀器的金属外壳和电缆的金属护层、可触及的电缆金属保护管和穿线的钢管。 六、电缆桥架、支架和井架。, 七、装有避雷线的电力线路杆塔。 八、装在配电线路杆上的电力设备。 九、在非沥青地面的居民区内,无避雷线的小接地电流架空电力线路的金属杆塔和钢筋混凝土杆塔。 十、电除尘器的构架。 十一、封闭母线的外壳及其他裸露的金属部分。 十二、六氟化硫封闭式组合电器和箱式变电站的金属箱体。 十三、电热设备的金属外壳。 十四、控制电缆的金属护层。· 第2.1.2条电气装置的下列金属部分可不接地或不接零:· 一、在木质、沥青等不良导电地面的干燥房间内,交流额定电压为380V及以下或直流额定电压为440V及以下的电气设备的外壳;但当有可能同时触及上述电气设备外壳和已接地的其他物体时,则仍应接地。. 二、在干燥场所,交流额定电压为127V及以下或直流额定电压为1iOV及以下的电气设备的外壳。 三、安装在配电屏、控制屏和配电装置上的电气测量仪表、继电器和其他低压电器等的外壳,以及当发生绝缘损坏时,在支持物上不会引起危险电压的绝缘子的金属底座等。 四、安装在已接地金属构架上的设备,如穿墙套管等。 五、额定电压为220V及以下的蓄电池室内的金属支架。 六、由发电厂、变电所和工业、企业区域内引出的铁路轨道。 七、与已接地的机床、机座之间有可靠电气接触的电动机和电器的外壳。 第2.1.3条需要接地的直流系统的接地装置应符合下列要求: 一、能与地构成闭合回路且经常流过电流的接地线应沿绝缘垫板敷设,不得与金属管道、建筑物和设备的构件有金属的连接。 二、在土壤中含有在电解时能产生腐蚀性物质的地方,不宜敷设接地装置,必要时可采取外引式接地装置或改良土壤的措施。 三、直流电力回路专用的中性线和直流两线制正极的接地体、接地线不得与自然接地体有金属连接;当无绝缘隔离装置时,相互间的距离不应小于lm。 四、三线制直流回路的中性线宜直接接地。 第2.1.4条接地线不应作其他用途。 第二节接地装置的选择 第2.2.1条交流电气设备的接地可以利用下列自然接地体。

01单芯电缆线路接地系统的 处理及感应电势计算

单芯电缆线路接地系统的处理及感应电势计算 1 概述 一般情况下,高压电力电缆和截面较大的中压电力电缆常常制造成单芯结构。在单芯电缆线路的敷设过程中,常常要涉及到电缆的接地方式及电缆金属屏蔽的感应电势计算。 单芯电缆的导线与金属屏蔽的关系,可看作一个变压器的初级绕组与次级绕组。当电缆的导线通过交流电流时,其周围产生的一部分磁力线将与屏蔽层铰链,使屏蔽层产生感应电压,感应电压的大小与电缆线路的长度和流过导体的电流成正比,电缆很长时,护套上的感应电压叠加起来可达到危及人身安全的程度,在线路发生短路故障、遭受操作过电压或雷击冲击时,屏蔽上会形成很高的感应电压,甚至可能击穿护套绝缘。如果屏蔽两端同时接地使屏蔽线路形成闭合通路,屏蔽中将产生环形电流,电缆正常运行时,屏蔽上的环流与导体的负荷电流基本上为同一数量级,将产生很大的环流损耗,使电缆发热,影响电缆的载流量,减短电缆的使用寿命。因此,电缆屏蔽应可靠、合理的接地,电缆外护套应有良好的绝缘。 2 几种常用的接地方式 以下是单芯电缆线路接地线路的几种常用接地方式: 2.1 屏蔽一端直接接地,另一端通过护层保护接地 当线路长度大约在500~700m及以下时,屏蔽层可采用一端直接接地(电缆终端位置接地),另一端通过护层保护器接地。这种接地方式还

须安装一条沿电缆线路平行敷设的回流线,回流线两端接地。敷设回流线时应使它与中间一相电缆的距离为0.7s(s为相邻电缆间的距离),并在线路一半处换位。见图1: 图1

1、电缆 2、终端 3、电缆金属屏蔽(护套)接地线 4、护层保护器 5、接地保护箱 6、回流线 7、接地箱 2.2 屏蔽中点接地 当线路长度大约在1000~1400m时,须采用中点接地方式。 在线路的中间位置,将屏蔽直接接地,电缆两端的终端头的屏蔽通过护层保护器接地。中间接地点一般需安装一个直通接头。见图2:

电缆金属护套层的接地

电缆金属护套的接地 10 kV的电力电缆,一般是使用交联聚乙烯铠装三芯电缆,这种电缆金属护套一般只需直接接地即可。 而单芯电缆金属护套的接地和三芯电缆不同。现从单芯电缆使用过程中经常被忽略的金属护套的感应电动势,现分析一起变电所单芯电力电缆金属护套错误接地引起的故障,并介绍实用的接地措施。 1 单芯电缆金属护套过电压和环流的产生 单芯电力电缆的导体中通过交流电流时,其周围产生的磁场会与金属护套交链,在金属护套上会产生感应电动势。感应电动势的大小与导体中的电流大小、电缆的排列和电缆长度有关。对三相等边三角形排列的电缆,如果将金属护套两端直接接地,就会在金属护套中形成环流,环流的大小与电缆相应的长度,导体中电流大小有关。出于经济安全考虑,在一些电缆不长,导体中电流不大的场合,环流很小,对电缆载流量影响也不大,是可以将金属护套的两端直接接地的。 如果仅将电缆的金属护套一端直接接地,在正常运行时,电缆的金属护套另一端感应电压应不超过50 V(或有安全措施时不超过100 V),否则应划分适当的单元设置绝缘接头。在发生短路故障时,导体中有很大的电流,可能会在金属护套上产生很高的过电压,危及护层绝缘,因此在电缆线路单相接地时,在电缆的未接地端,应加装过电压保护器接地。 2 单芯电缆金属护套的连接与接地 为了解决电缆金属护套两端同时接地存在环流,和一端直接接地,在另一端会出现过电压矛盾的问题,电缆金属护套应针对电缆长度和导体中电流大小采取不同的接地形式。 电缆线路不长时,电缆金属护套应在线路一端直接接地,另一端经过电压保护器接地,如图1所示。电缆越长,电缆非直接接地端产生的感应电压越高,为保证人身安全,电缆在正常运行时,非直接接地端感应电压应限制在50 V以内,在短路等故障情况下,金属护套绝缘的冲击耐压和过电压保护器在冲击电流作用下的残压,配合系数不小于1.4。因此,一端直接接地的接线方式适用的电缆不能太长。

高压电缆金属护套分段、接地方式及应用

高压电缆金属护套分段、接地方式及应用 [摘要]包有金属护套的单芯或每根芯线包有金属护套的三芯高压电缆,其金属护套上都会产生感应电压,当电压超过一定限值时,将会影响电缆的安全运行。一般设计会根据电缆长度选择适当的接地方式,或者将电缆金属护套在电气上进行分段,以此降低护套感应电压。本文通过汇集各文献所述观点和作者多年电缆设计的经验,并结合电缆实际运行情况,分析各种金属护套接地方式和不同护套分段形式对于降低护套感应电压的作用,以及在实际工程中的应用,以期能够为高压电缆线路设计提供有用的参考和经验。 【关键词】电缆;金属护套;感应电压;分段;接地;应用 当高压电缆为单芯并包有金属护套或者是每根芯线上有金属护套的三芯电缆时,这种结构的电缆可以被看作是延长的变压器,导线作为一次绕组,金属护套作为二次绕组,一般高压电缆均为这种结构。这样在以交变电流或三相电流运行时产生交变磁场,在金属护套上产生感应电势,该电势值与导线电流、频率、导线和金属护套间的互感量、电缆长度,直接成正比。当金属护套上的感应电压达到一定值时将危及人身安全。电力生产安全规程规定:电气设备非带电部分的金属外壳都要接地。因此金属护套要采取适当的接地措施。本文以下将介绍各种护套分段及接地形式和应用条件。 一、两端直接接地 此接地方式也叫做全接地,就是将电缆金属护套在两端终端头处分别并联接地,这样护套内就产生环流。在35kV以上高压电缆中若采用此种接地形式后,产生的环流可占到电缆工作电流的50%左右,甚至更高至80%以上。从而由于环流的存在造成附加损耗,使护套发热,降低电缆的输送容量。因此110kV及以上高压电缆金属护套较少采用这种接地方式,一般应用在电缆利用小时低,裕度大,长度仅几十米的短35kV以上高压电缆或者是35kV及以下电缆线路,由于其阻抗值不像35kV以上电缆那么小,环流尚不过分显著,只占工作电流的10%以下,尚可以接受。 在电缆采用了此种接地方式后一般以接触式三角形敷设,这样可以避免过分的护套损耗,因为这种排列是电气上平衡的方式,该方式下护套的阻抗及损耗在所有三相中是相等的。另外其要求接地电阻应不大于2Ω。 二、单点直接接地 1、首端接地 首端接地是单点接地方式的一种,就是将电缆线路一端的金属护套互联后直接接地,另一端经互层保护器后互联接地。这样在正常运行条件下金属护套和大地之间形不成回路,不会形成环流,但是对于相同长度的电缆线路来说,首端接

110kV电缆线路护层接地方式及护层保护措施

110kV电缆线路护层接地方式及护层保护措施 发表时间:2018-01-10T10:10:50.130Z 来源:《电力设备》2017年第27期作者:田浩宇1 钟泽宇2 [导读] 摘要:近年来,随着城市改造建设的加速、电网网架结构的改善,城区110kV电缆线路大量投入运行。 (12国网太原供电公司山西太原 030012) 摘要:近年来,随着城市改造建设的加速、电网网架结构的改善,城区110kV电缆线路大量投入运行。110kV电缆线路以其设计寿命长、受外界自然条件影响小、日常维护工作量相对较小、不影响城市景观等优点得到了肯定。文章对110kV电缆护层接地方式及护层保护的措施进行了分析。 关键词:110kV电缆线路;护层保护;接地方式;电网网架结构;电力系统 当过电压在击穿电缆外护层的绝缘部分之后,便会造成电缆金属护层多个位置上出现故障问题,进而使得环流及热损耗增强,甚至会使得电力电缆无法得到正常工作,并会对其使用年限造成不利影响。同时在故障出现之后,无法通过测寻、修复来进行解决,更无法通过停电检修来进行解决,因此需要做好护层保护工作。 1 常见护层接地方式 1.1 单端接地 电缆的线路长度低于500m时,通常终端部分都是采取电缆金属护套来实现将其中的一端直接接地,并把另外一侧通过非线性的电阻保护器,从而完成间接接地处理,促使金属护套对地处于绝缘状态,进而防止有回路的问题产生。 1.2 交叉互联 将电缆线路划分成多个大段,并且再将每一个大段,划分成均等的各个小段,在每个小段间,应当采取绝缘接头的方式,使各个小段能够连接,并且对于绝缘接头上的金属护套三相间,采用同轴电缆作为材料,同时借助接地箱连接片来做到换位连接,此外对于绝缘接头来说,应当做好接地箱的安装工作。同时需要完成护层保护器的安装工作,对于各个大段来说,其两端对应的护套应当做到互联接地。 1.3 护套两端接地 对于电缆线路来说,若是距离相对较短,并且传输功率不足时,那么对于金属护套来说,能够出现的感应电压便相对有限,所造成的损耗也十分微弱,从而不会对载流量产生较多的影响。在护套当中存在的中点接地,真实情况是单端接地。对于电缆线路来说,当距离比较长时,需要在电缆线路内借助金属护套来做到接地,并且在电缆两端的位置上要做到对地绝缘,同时还要做好护层保护器的配置工作。 1.4 电缆换位金属护套交叉互联 金属护套若是存在交叉互联,那么就应当采用三相电缆作为材料来使得连续换位得以保证,从而使得三相电缆哪怕不是以水平形式排列,也能够通过每个小段的换位来实现每个大段的全换位,使得感应电压的相量之和,得出的数值为零,就是代表基本上不存在环流。然而这一类型的连接方式只能够在电缆换位空间内加以运用与开展。 2护层保护及限制护层过电压的相关措施 2.1 110kV以上电缆通道的规划与设计 对于110kV及其以上电压等级的电缆通道,在规划与设计时不仅需要满足对应要求,还应当满足电缆埋设区域特征。通常需要在地势上有所注重,避免地势较低造成的积水问题出现,同时也要防止安装在存在隐患或是施工的区域,从而避免存在破坏。在白蚁灾害较为严重的地区,还应当在防水、防腐、防火的同时,做好防蚁工作,从而防止出现破坏问题。 2.2 对电缆分段长度做到合理设计与计算 对于电缆来说,在分段时长度不应当太长,需要结合实际状况与感应电压得出的值来做出划分。在交流系统当中,只有使电缆金属护层感应电压处于正常值,方可完成单芯电力电缆的配置工作。同时在电缆截面选择时,应当结合工作电流在进行原则。对于没有按照品字结构,来对单芯电力电缆做出配置,当一条通路配置大于两个以上时,需要在感应电压计算出相互之间存在的影响。 2.3 提升护层感应电压的设计与验算结果 当护层感应电压处于故障与正常工作两种不同情况时,得出的结果有着很大的差别。当处于正常工作电流的时候,虽然护层感应电压是满足标准要求的,但依旧需要通过验算来查看当故障问题出现之后是否有损坏问题出现。 2.4 符合电缆设计规范前提下采用新型外护套 为了能够使电缆护层的厚度满足技术层面的需求,在合理的情况下,应当适当地对新型外护套加以使用。目前认为是,当电缆外护套的厚度达到4.0mm时,它的绝缘水平可以在长时间内处于一个稳定状态。对于所用到的材质来说,目前在江西这边所用到的电缆材质大多数为PE或者为PVC材质,同时在外面会涂上一层石墨。对于PE材质来说,其制作出来的护套有着较高的硬度,并且受到环境温度变化的影响较小,而对于PVC材质来说,其制作出来的护套硬度不强,同时会受到环境温度变大所造成的影响。另外,还有其他多种形式的电缆外护套可以在施工中得到选择与应用。 2.5 按照规范来对电缆外护层实施检测保护 电缆牵引力与测压力,需要控制在既定范围之内,然后结合电缆通道的走向来完成施工方案的制定工作,并在敷设路径上完成滑轮的布置。继而再根据图纸开展施工工作,这时电缆排列方式、分段长度需符合设计标准;铺设后需进行回填细沙,并做好耐压试验的开展工作,如果出现损坏等问题需要及时发现并做好处理工作。 2.6 通道允许时应用回流线 回流线增添之后,对于单相短路回流电流来说,不会流经大地,而是会通过回流线得到返回。回流线的应用,在单相接地当中,会使外护层绝缘与保护器所受到的工频过电压,会与电网电位之间缺乏关联性,对于回流线的磁通,会抵消接地电流时所产生的一部分磁通,进而使得电压值可以得到降低。对于回流线当中的阻抗,与两端接地的电阻来说,应当和系统中最大零序电流与回流线感应电压进行匹配。 2.7 使地阻能够达到标准要求 电力电缆线路保護接地,能够对电力电缆线路在运行时提供安全保障。对于电力电缆线路来说,不管是在工作与运行当中,还是发生内部过电压、雷电过电压以及出现接地故障,都应当以大地为回路,并运用电位钳来对接地电位实施控制。接地电位和接地装置所对应的

相关主题
文本预览
相关文档 最新文档