当前位置:文档之家› “隐圆”最值问题

“隐圆”最值问题

“隐圆”最值问题
“隐圆”最值问题

B

M

C

D

A

E F

D C

B

A

B

E

D

C

F A

“隐圆”最值问题

教学目标:让学生掌握各类隐藏圆的最值求法

教学重难点:分析题目条件发现题目中的隐藏圆,并利用一般的几何最值求解方法来解决问题

【例1】在平面直角坐标系中,直线y = - x + 6分别与x 轴、y 轴交于点A 、B 两点,点C 在y 轴的左边,且∠ACB = 90°,则点C 的横坐标x C 的取值范围是__________.

分析:在构造圆的前提下 考虑90°如何使用。直角对直径所以以AB 为直径画圆。使用垂径定理即可得到3-20c x ≤<3

【练】(2013-2014·六中周练·16)如图,已知Rt △ABC 中,∠ACB = 90°,AC = 3,BC = 4,点D 是AB 的中点,E 、F 分别是直线AC 、BC 上的动点,∠EDF = 90°,则EF 长度的最小值是______

25

6

____.

分析:过D 点作DE 垂直AB 交AC 于点M 可证△FBD ∽△ECD 即可 求出最小值

【例2】如图,在Rt △ABC 中,∠ACB = 90°,D 是AC 的中点, M 是BD 的中点,将线段AD 绕A 点任意旋转(旋转过程中始 终保持点M 是BD 的中点),若AC = 4,BC = 3,那么在旋转 过程中,线段CM 长度的取值范围是_______________.

分析:将线段AD 绕A 点任意旋转隐藏着以A 为圆心AD 为半径的圆构造 出来。接下来考虑重点M 的用途即可。中点的用法可尝试下倍长和中位线。 此题使用中位线。答案是

3722

c x ≤≤

【练】已知△ABC 和△ADE 都是等腰直角三角形,∠ACB =∠ADE = 90°,AC = 22,AD = 1,F 是BE 的中点,若将△ADE 绕点A

旋转一周,则线段AF 长度的取值范围是4242

22

AC -+≤≤. 分析:同例题

【例3】如图,已知边长为2的等边△ABC,两顶点A、B分别在平面直角

坐标系的x轴、y轴的正半轴上滑动,点C在第一象限,连接OC,则OC

长的最大值是()

A.2 B.1 C.1 +3D.3

分析:取AB中点M连接OM、CM。因为OM=1,CM=3,所以

OC=1 +3

【练1】如图,在矩形ABCD中,AB = 2,BC =3,两顶点A、B分别在平面

直角坐标系的x轴、y轴的正半轴上滑动,点C在第一象限,连接OC,则OC

长的最大值为_______3___.

分析:取AB中点M,方法同例题

【练2】(2013·武汉中考·16)如图,E、F是正方形ABCD的边AD上两个动点,

满足AE = DF,连接CF交BD于点G,连接BE交AG于点H,若正方形的边

-____.

长为2,则线段DH长度的最小值是______51

分析:取AB中点M,方法同例题

【例4】如图,∠XOY = 45°,一把直角三角尺ABC的两个顶点A、B分别在

OX、OY上移动,其中AB = 10,那么点O到AB的距离的最大值为__________.

分析:构造△ABO的外接圆。点O可以在圆上任意动,利用垂径定理即可得到

+

O到AB的最大距离为:552

【练1】(2013-2014·二中、七一九上期中·16)已知线段AB = 4,在线段AB上取一点P,在AB的同侧作等边△APC和等边△BPD,则线段CD的最小值为____2______.

分析:可构造一个以CD为斜边的水平的直角三角形,快速得到当AP=BP时最小,CD最小

【练2】如果满足∠ABC = 60°,AC = 12,BC = k 的△ABC 恰有一个,那么k 的取值范围是____012k <≤______.

分析:画出△ABC 的外接圆,观察动点B 在弧上面的运动即可

【例5】已知A (2,0),B (4,0)是x 轴上的两点,点C 是y 轴上的动点,当∠ACB 最大时,则点C 的坐标为__________.

分析:画出△ABC 的外接圆M 。要保证∠ACB 最大,即圆周角最大,只要圆心角最大即可。所以在等腰△MAB 中只要半径最小即可,半径什么时候最小呢?只要圆与Y 轴相切即可所以得答案为:(0,22)±

【练】当你站在博物馆的展厅中时,你知道站在何处观赏最理想吗?

如图,设墙壁上的展品最高点P 距底面2.5米,最低点Q 距底面 2米,观察者的眼睛E 距底面1.6米,当视角∠PEQ 最大时,站 在此处观赏最理想,则此时E 到墙壁的距离为( B )

A .1米

B .0.6米

C .0.5米

D .0.4米

分析:只要△PQE 的外接圆与人眼所在的水平线相切即可,通过垂径定理可得答案是B

【课外提升】

1.(2010·河南)如图,Rt △ABC 中,∠C = 90°,∠ABC = 30°,AB = 6,

点D 在AB 边上,点E 是BC 边上一点(不与点B 、C 重合),且DA = DE ,则AD 的取值范围是( )

A .2 < AD < 3

B .2 ≤ AD < 3

C .2 ≤ A

D ≤ 3 D .1 ≤ AD < 2

A

D

C

B

O

y x

N

M

B

Q

C

P A 2.(2012·济南)如图,矩形ABCD 中,AB = 2,AD = 1,当A 、B 两点 分别在x 轴正半轴和y 轴正半轴上移动时,矩形ABCD 的形状不变,则 OD 的最大值为( )

A .2+ 1

B .5

C .

145

5 D .52

3.(2013-2014·黄陂区九上期中·10)在△ABC 中,∠ACB = 90°,∠ABC

= 30°,将△ABC 绕顶点C 顺时针旋转,旋转角为θ(0° < θ < 180° ),得 到△MNC ,P 、Q 分别是AC 、MN 的中点,AC = 2t ,连接PQ ,则旋转时

PQ 长度的最大值是( )

A .26t

B .23t

C .6t

D .3t

4.已知点A 、B 的坐标分别是(0,1)、(0,3),点C 是x 轴正半轴上一动点,当∠ACB 最大时,点C 的坐标为__________.

隐圆最值问题

隐圆最值问题 公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]

B M C D A E F D C B A B D C F A “隐圆”最值问题 分析题目条件发现题目中的隐藏圆,并利用一般的几何最值求解方法来解决问题。 【例1】在平面直角坐标系中,直线y = - x + 6分别与x 轴、y 轴交于点A 、B 两点,点C 在y 轴的左边,且∠ACB = 90°,则点C 的横坐标x C 的取值范围是 __________. 【练】(2013-2014·六中周练·16)如图,已知Rt△ABC 中,∠ACB = 90°,AC = 3,BC = 4,点D 是AB 的中点,E 、F 分别是直线AC 、BC 上的动点,∠EDF = 90°,则EF 长度的最小值是__________. 【例2】如图,在Rt△ABC 中,∠ACB = 90°,D 是AC 的中点, M 是BD 的中点,将线段AD 绕A 点任意旋转(旋转过程中始 终保持点M 是BD 的中点),若AC = 4,BC = 3,那么在旋转 过程中,线段CM 长度的取值范围是_______________. 【练】已知△ABC 和△ADE 都是等腰直角三角形,∠ACB =∠ADE = 90°,AC 2AD = 1,F 是BE 的中点,若将△ADE 绕点A 旋转一周,则线段AF 长度的取值范围是 . 【例3】如图,已知边长为2的等边△ABC ,两顶点A 、B 分别在平面直角 坐标系的x 轴、y 轴的正半轴上滑动,点C 在第一象限,连接OC ,则OC 长的最大值是( ) A .2 B .1 C .3 D .3 【练1】如图,在矩形ABCD 中,AB = 2,BC 3A 、B 分别在平面

“中考数学专题复习 圆来如此简单”经典几何模型之隐圆专题(含答案)

经典几何模型之隐圆”“圆来如此简单” 一.名称由来 在中考数学中,有一类高频率考题,几乎每年各地都会出现,明明图形中没有出现“圆”,但是解题中必须用到“圆”的知识点,像这样的题我们称之为“隐圆模型”。 正所谓:有“圆”千里来相会,无“圆”对面不相逢。“隐圆模型”的题的关键突破口就在于能否看出这个“隐藏的圆”。一旦“圆”形毕露,则答案手到擒来! 二.模型建立 【模型一:定弦定角】 【模型二:动点到定点定长(通俗讲究是一个动的点到一个固定的点的距离不变)】 【模型三:直角所对的是直径】 【模型四:四点共圆】 ` 三.模型基本类型图形解读 【模型一:定弦定角的“前世今生”】 【模型二:动点到定点定长】

【模型三:直角所对的是直径】 【模型四:四点共圆】 四.“隐圆”破解策略 牢记口诀:定点定长走圆周,定线定角跑双弧。 直角必有外接圆,对角互补也共圆。五.“隐圆”题型知识储备

3 六.“隐圆”典型例题 【模型一:定弦定角】 1.(2017 威海)如图 1,△ABC 为等边三角形,AB=2,若P 为△ABC 内一动点,且满足 ∠PAB=∠ACP,则线段P B 长度的最小值为_ 。 简答:因为∠PAB=∠PCA,∠PAB+∠PAC=60°,所以∠PAC+∠PCA=60°,即∠APC=120°。因为A C定长、∠APC=120°定角,故满足“定弦定角模型”,P在圆上,圆周角∠APC=120°,通过简单推导可知圆心角∠AOC=60°,故以AC 为边向下作等边△AOC,以O 为圆心,OA 为半径作⊙O,P在⊙O 上。当B、P、O三点共线时,BP最短(知识储备一:点圆距离), 此时B P=2 -2 2.如图1所示,边长为2的等边△ABC 的原点A在x轴的正半轴上移动,∠BOD=30°,顶点A 在射线O D 上移动,则顶点C到原点O的最大距离为。

“隐圆”最值问题习题

B M C D A E F D C B A B E D C F A “隐圆”最值问题 重难点:分析题目条件发现题目中的隐藏圆,并利用一般的几何最值求解方法来解决问题 【例1】在平面直角坐标系中,直线y = - x + 6分别与x 轴、y 轴交于点A 、B 两点,点C 在y 轴的左边,且∠ACB = 90°,则点C 的横坐标x C 的取值范围是__________. 分析:在构造圆的前提下 考虑90°如何使用。直角对直径所以以AB 为直径画圆。使用垂径定理即可得到3-20c x ≤<3 【练】(2013-2014·六中周练·16)如图,已知Rt △ABC 中,∠ACB = 90°,AC = 3,BC = 4,点D 是AB 的中点,E 、F 分别是直线AC 、BC 上的动点,∠EDF = 90°,则EF 长度的最小值是__________. 分析:过D 点作DE 垂直AB 交AC 于点M 可证△FBD ∽△ECD 即可 求出最小值 【例2】如图,在Rt △ABC 中,∠ACB = 90°,D 是AC 的中点, M 是BD 的中点,将线段AD 绕A 点任意旋转(旋转过程中始 终保持点M 是BD 的中点),若AC = 4,BC = 3,那么在旋转 过程中,线段CM 长度的取值范围是_______________. 分析:将线段AD 绕A 点任意旋转隐藏着以A 为圆心AD 为半径的圆构造 出来。接下来考虑重点M 的用途即可。中点的用法可尝试下倍长和中位线。 此题使用中位线。答案是 3722 c x ≤≤ 【练】已知△ABC 和△ADE 都是等腰直角三角形,∠ACB =∠ADE = 90°,AC = 22,AD = 1,F 是BE 的中点,若将△ADE 绕点A 旋转一周,则线段AF 长度的取值范围是 4242 22 AC -+≤≤. 分析:同例题 【例3】如图,已知边长为2的等边△ABC ,两顶点A 、B 分别在平面直角

“隐圆”最值问题演示教学

“隐圆”最值问题

B M C D A E F D C B A B D C F A “隐圆”最值问题 分析题目条件发现题目中的隐藏圆,并利用一般的几何最值求解方法来解决问题。 【例1】在平面直角坐标系中,直线y = - x + 6分别与x 轴、y 轴交于点A 、B 两点,点C 在y 轴的左边,且∠ACB = 90°,则点C 的横坐标x C 的取值范围是__________. 【练】(2013-2014·六中周练·16)如图,已知Rt △ABC 中,∠ACB = 90°,AC = 3,BC = 4,点D 是AB 的中点,E 、F 分别是直线AC 、BC 上的动点,∠EDF = 90°,则EF 长度的最小值是__________. 【例2】如图,在Rt △ABC 中,∠ACB = 90°,D 是AC 的中点, M 是BD 的中点,将线段AD 绕A 点任意旋转(旋转过程中始 终保持点M 是BD 的中点),若AC = 4,BC = 3,那么在旋转 过程中,线段CM 长度的取值范围是_______________. 【练】已知△ABC 和△ADE 都是等腰直角三角形,∠ACB =∠ADE = 90°,AC = 22,AD = 1,F 是BE 的中点,若将△ADE 绕点A 旋转一周,则线段AF 长度的取值范围是 . 【例3】如图,已知边长为2的等边△ABC ,两顶点A 、B 分别在平面直角 坐标系的x 轴、y 轴的正半轴上滑动,点C 在第一象限,连接OC ,则OC 长的最大值是( ) A .2 B .1 C .3 D .3 【练1】如图,在矩形ABCD 中,AB = 2,BC 3,两顶点A 、B 分别在平面 直角坐标系的x 轴、y 轴的正半轴上滑动,点C 在第一象限,连接OC ,则OC

“隐圆”最值问题

B M C D A E F D C B A B E D C F A “隐圆”最值问题 教学目标:让学生掌握各类隐藏圆的最值求法 教学重难点:分析题目条件发现题目中的隐藏圆,并利用一般的几何最值求解方法来解决问题 【例1】在平面直角坐标系中,直线y = - x + 6分别与x 轴、y 轴交于点A 、B 两点,点C 在y 轴的左边,且∠ACB = 90°,则点C 的横坐标x C 的取值范围是__________. 分析:在构造圆的前提下 考虑90°如何使用。直角对直径所以以AB 为直径画圆。使用垂径定理即可得到3-20c x ≤<3 【练】(2013-2014·六中周练·16)如图,已知Rt △ABC 中,∠ACB = 90°,AC = 3,BC = 4,点D 是AB 的中点,E 、F 分别是直线AC 、BC 上的动点,∠EDF = 90°,则EF 长度的最小值是______ 25 6 ____. 分析:过D 点作DE 垂直AB 交AC 于点M 可证△FBD ∽△ECD 即可 求出最小值 【例2】如图,在Rt △ABC 中,∠ACB = 90°,D 是AC 的中点, M 是BD 的中点,将线段AD 绕A 点任意旋转(旋转过程中始 终保持点M 是BD 的中点),若AC = 4,BC = 3,那么在旋转 过程中,线段CM 长度的取值范围是_______________. 分析:将线段AD 绕A 点任意旋转隐藏着以A 为圆心AD 为半径的圆构造 出来。接下来考虑重点M 的用途即可。中点的用法可尝试下倍长和中位线。 此题使用中位线。答案是 3722 c x ≤≤ 【练】已知△ABC 和△ADE 都是等腰直角三角形,∠ACB =∠ADE = 90°,AC = 22,AD = 1,F 是BE 的中点,若将△ADE 绕点A 旋转一周,则线段AF 长度的取值范围是4242 22 AC -+≤≤. 分析:同例题

【公开课教案】“隐形圆”的探析

“圆”形毕露(二) 考纲要求: 江苏省高考考试说明中圆的方程是C 级考点,近几年在各地模考和高考中出现频率较高,在题设中没有明确给出圆的相关信息,而是隐含在题目中的,要通过分析、转化,发现圆(或圆的方程),从而最终利用圆的知识来求解,我们称这类问题为“隐形圆”问题. 考点解读: 在平面上给定相异两点B A ,,设点P 在同一平面上且满足λ=?(或22PB PA +是定值),则点P 的轨迹是个圆. 小题热身 (1)平面内到原点距离为1的点的轨迹方程为 . (2)从圆1:22=+y x O 外一点P 向圆引两条切线,切点分别是A 、B ,使得∠APB =60°,则点P 的轨迹方程为 . (3)已知两点)0,2(),0,2(B A ,若存在点P ,使得∠APB =90°,则点P 的轨迹方程为 . (4)已知两点),0,2(),0,2(B A -若存在点P ,使得 20AP BP λ+=,则点P 的轨迹方程为 . (5)已知两点),0,2(),0,2(B A -若存在点P ,使得1022=+PB PA ,则点P 的轨迹方程为 . 题型一 利用圆的定义(到定点的距离等于定长的点的轨迹)确定隐形圆

例 1(1)如果圆(x -2a )2+(y -a -3)2=4上总存在两个点到原点的距离为1,则实数a 的取值范围是 .05 6<-m m B m A ,若圆上存在点P , 使得∠APB =90°,则m 的取值范围是 . 题型三 两定点B A ,,动点P 满足λ=?PB PA 确定隐形圆 例 3 (2017南通密卷3)已知点)3,2(A ,点)3,6(B 点P 在直线 3430x y -+=上, 若满足等式 20AP BP λ+=的点P 有两个,则实数λ的取值范围是 . 题型四 两定点B A ,,动点P 满足22PB PA +是定值确定隐形圆

隐圆及其几何最值训练题

B y C x A O 隐圆及几何最值训练题 一、利用“直径是最长的弦”求最值 1.如图,在等腰Rt △ABC 中,∠C=90°,AC=BC=4,D 是AB 的中点,点E 在AB 边上运动(点E 不与点A 重合),过A 、D 、E 三点作⊙O ,⊙O 交AC 于另一点F ,在此运动变化的过程中,线段EF 长度的最小值为( ) . 2.如图,在△ABC 中,∠ABC=90°,AB=6,BC=8,D 为AC 的中点,过点D 作DE ⊥DF ,DE 、DF 分别交射线AB 、AC 于点E 、F ,则EF 的最小值为 . 二、利用“定点定长存隐圆”求最值 3.(2012年武汉市中考)在坐标系中,点A 的坐标为(3,0),点B 为y 轴正半轴上的一点,点C 是第一象限内一点,且AC=2.设tan ∠BOC=m ,则m 的取值范围是_________. 4.如图,在Rt △ABC 中,∠ACB=90°,AC=4,BC=3,点D 是平面内的一个动点,且AD=2,M 为BD 的中点,在D 点运动过程中,线段CM 长度的取值范围是. 5.正方形ABCD 中,BC=4,E ,F 分别为射线BC ,CD 上两个动点,且满足BE=CF ,设AE ,BF 交于G ,则DG 的最小值为( )。 D F G C D E

6.(2013年武汉市中考)如图, E 、 F 是正方形ABCD 的边AD 上两个动点,满足AE =DF ,连接CF 交BD 于点 G ,连接BE 交AG 于点 H ,若正方形的边长为2,则线段DH 长度的最小值是 7.(2015年武汉中考)如图,△ABC 、△EFG 均是边长为2的等边三角形,点D 是边BC 、EF 的中点, 直线AG 、FC 相交于点M .当△EFG 绕点D 旋转时,线段BM 长的最小值是( ) 8.如图,在边长为2的菱形ABCD 中,∠A =60°,M 是AD 边的中点,N 是沿MN 所在的直线翻折得到△A 'MN ,连接A 'C ,则A 'C 长度的最小值是. 9.(2013年武汉中考)如图,圆A 与圆B 外切于点D ,PC 、PD 、PE 分别是圆的切线,C 、D 、E 是切 点,若∠CDE =x °,∠ECD =y °,⊙B 的半径为R ,则弧DE 的长度是( ) A.90 )90(R x -π B. 90 )90(R y -π C. 180 )180(R x -π D. 180 )180(R y -π 10.在平面直角坐标系中,O 为原点,点A (-2,0),点B (0,2),点E ,点F 分别为OA ,OB 的中点.若正方形OEDF 绕点O 顺时针旋转,得正方形OE ’D ’F ’,若直线AE ’与直线BF ’相交于点P. (1)求∠PAO 的最大值 (2)点P 运动的路径长 M F E G D C A B E C A B D P x y P F' D'D E G A o F E' 第16题图 N M A' D C B A

2020年九年级数学中考专题复习:隐形圆求最值问题(含答案)

隐形圆问题 一、确定动点轨迹是圆 【例题 1】如图,已知圆 C 的半径为 3,圆外一定点 O 满足OC=5,点 P 为圆C 上一动点, 经过点 O 的直线 l 上有两点 A ,且 OA=OB ,∠APB=90°,l 不过点 C ,则 AB 的最小值为 【举一反三】 1、如图,在边长为 2的菱形 ABCD 中,∠ A=60°, M 是 AD 边的中点, N 是 AB 边上的一动 点,将△ AMN 沿 MN 所在直线翻折得到△ A'MN,连接 A'C ,则 A'C 长度的最小值是 3、如图,已知等边 △ABC 的边长为 8,点 P 是 AB 边上的一个动点 (与点 A 、B 不重合 ).直线 l 是经过点 P 的一条直线, 把△ABC 沿直线 l 折叠,点 B 的对应点是点 B'.当PB=6时,在直 线 l 变化过程中,则 △ ACB '面积的最大值是 . 4、如图,矩形 ABCD 中,AB =4,BC=8,P 、Q 分別是直线 BC 、AB 上的两个动点, AE =2, △AEQ 沿 EQ 翻折形成△ FEQ ,连接 PF 、PD ,则 PF+PD 的最小值是 2、如图,在 Rt △ABC 中, ∠C=90°,AC =6, 为边 BC 上的动点,将 △ CEF 沿直线 EF 翻折, 小值是 BC=8,点 F 在边 AC 上,并且 CF = 2,点 E 点 C 落在点 P 处,则点 P 到 边 AB 距离的最 第 2

二、定边对直角 知识回顾 :直径所对的圆周角是直角 构造思路 :一条定边所对的角始终为直角,则直角顶点轨迹是以定边为直径的圆或圆弧 图形释义 : 【例题 1】已知正方形 ABCD 边长为 2,E 、F 分别是 BC 、CD 上的动点,且满足 BE = CF , 连接 AE 、 BF ,交点为 P 点,则 PC 的最小值为 【举一反三】 1、如图, E 、F 是正方形 ABCD 的边 AD 上的两个动点,满足 AE =DF ,连接 CF 交 BD 于 点 G ,连接 BE 交 AG 于点 H ,若正方形边长为 2,则线段 DH 长度的最小值是 2、如图,Rt △ABC 中,AB ⊥BC ,AB=6,BC =4,P 是△ABC 内部的一个动点, 且满足 ∠PAB =∠ PBC ,则线段 CP 长的最小值是 若 AB 是一条定线段,且 ∠APB-90 °, 则 P 点轨迹是以 AB 为直径的圆

隐圆与几何最值训练题

隐圆及几何最值训练题 一、利用“直径是最长的弦”求最值 1.如图,在等腰Rt △ABC 中,∠C=90°,AC=BC=4,D 是AB 的中点,点E 在AB 边上运动(点E 不与点A 重合),过A 、D 、E 三点作⊙O ,⊙O 交AC 于另一点F ,在此运动变化的过程中,线段EF 长度的最小值为( ) . 2.如图,在△ABC 中,∠ABC=90°,AB=6,BC=8,D 为AC 的中点,过点D 作DE ⊥DF ,DE 、DF 分别交射线AB 、AC 于点E 、F ,则EF 的最小值为 . 二、利用“定点定长存隐圆”求最值 3.(2012年市中考)在坐标系中,点A 的坐标为(3,0),点B 为y 轴正半轴上的一点,点C 是第一象限一点,且AC=2.设tan ∠BOC=m ,则m 的取值围是_________. 4.如图,在Rt △ABC 中,∠ACB=90°,AC=4,BC=3,点D 是平面的一个动点,且AD=2,M 为BD 的中点,在D 点运动过程中,线段CM 长度的取值围是. 5.正方形ABCD 中,BC=4,E ,F 分别为射线BC ,CD 上两个动点,且满足BE=CF ,设AE ,BF 交于G ,则DG 的最小值为( )。 E

6.(2013年市中考)如图,E 、F 是正方形ABCD 的边AD 上两个动点,满足AE =DF ,连接CF 交BD 于点G ,连接BE 交AG 于点H ,若正方形的边长为2,则线段DH 长度的最小值是 7.(2015年中考)如图,△ABC 、△EFG 均是边长为2的等边三角形,点D 是边BC 、EF 的中 点,直线AG 、FC 相交于点M .当△EFG 绕点D 旋转时,线段BM 8.如图,在边长为2的菱形ABCD 中,∠A =60°,M 是AD 将△AMN 沿MN 所在的直线翻折得到△A 'MN ,连接A 'C ,则A 'C 长度的最小值是 . 9.(2013年中考)如图,圆A 与圆B 外切于点D ,PC 、PD 、PE 分别是圆的切线,C 、D 、E 是切点,若∠CDE =x °,∠ECD =y °,⊙B 的半径为R ,则弧DE 的长度是( ) A. 90 )90(R x -π B. 90 )90(R y -π C.180)180(R x -π D.180 )180(R y -π 10.在平面直角坐标系中,O 为原点,点A (-2,0),点B (0,2),点E ,点F 分别为OA ,OB 的中点.若正方形OEDF 绕点O 顺时针旋转,得正方形 OE ’D ’F ’,若直线AE ’与直线BF ’相交于点P. (1)求∠PAO 的最大值 (2)点P 运动的路径长 B 第16题图 N M A' D C B A

利用隐圆解决几何问题1

利用“隐圆”解决几何问题 光谷实验中学江芳 几何定值与最值问题,一般都是置于动态背景下,动与静是相对的,我们可以研究问题中的变量,考虑当变化的元素运动到特定的位置,使图形变化为特殊图形时,研究的量取得定值与最值. 在一个平面内,线段OA绕它的一个固定的端点O旋转一周,另一个端点A所形成的图形叫做圆。从画圆的过程可以看出: (1)圆上各点到定点(圆心O)的距离都等于定长(半径r); (2)到定点的距离等于定长的点都在同一个圆上。 根据圆的定义,在解决几何问题中,只要观察出几个点到同一个定点的距离相等,这里常常隐藏了一个圆,我们就可以以这个定点为圆心,以这个距离为半径作出这个隐藏的圆,从而帮助我们解决问题。因为这个圆没有画出,因此我们把它称为“隐圆”。笔者谈一谈利用“隐圆”解决几何中的一些常见的问题。 一.利用“隐圆”求几何的最值 几何中的最值近年广泛出现于中考中,成为中考的热点问题.这是由于这类问题具有很强的探索性(目标不明确),解题时需要运用动态思维、数形结合、特殊与一般相结合、逻辑推理与合情想象相结合等思想方法. 几何中的最值问题是指在一定的条件下,求平面几何图形中某个确定的量(如线段长度、角度大小、图形面积)等的最大值或最小值,求几何最值问题的基本方法有:1.极端位置法; 2.几何定理(公理)法; 3.“三角函数”法等. 例1.(武汉市2013年中考第16题)如图,E、F是正方形ABCD的边AD上两个动点,满足AE=DF,连接CF交BD与点G, 连接BE交AG与点H,若正方形的边长为2,则线段DH 长度的最小值是________. 思路点拨:易证⊿ABE≌⊿DCF, ⊿ABG≌⊿CBG 则∠EBC=∠FCB=∠BAG=∠AEB,可证∠AHB=900,取AB的中点O,有OH=OA=OB,故H点在以AB为直径的圆O上,当H点在DO与圆O的交点时取得最小值 5 -1. 注:本题求最值是应用的极端位置法。D点是 定点,H点是动点,主要是找H点运动的极端 位置,直线DO与圆O的交点是H点的 极端位置。

最新中考数学专题训练 隐形圆问题大全

中考数学复习隐形圆问题大全 一定点+定长 1.依据:到定点的距离等于定长的点的集合是以定点为圆心定长为半径的圆。 2.应用: (1)如图,四边形ABCD中,AB=AC=AD=2,BC=1,AB∥CD,求BD的长。 简析:因AB=AC=AD=2,知B、C、D在以A为圆2为半径的圆上,由AB∥CD 得DE=BC=1,易求BD=15。 (2)如图,在矩形ABCD中,AB=4,AD=6,E是AB边的中点,F是线段BC 边上的动点,将△EBF沿EF所在直线折叠得到△EB′F,连接B′D,则B′D的最小值是.

简析:E为定点,EB′为定长,B′点路径为以E为圆心EB′为半径的圆,作穿心线DE得最小值为210。 (3)ΔABC中,AB=4,AC=2,以BC为边在ΔABC外作正方形BCDE,BD、CE 交于点O,则线段AO的最大值为. 简析:先确定A、B点的位置,因AC=2,所以C点在以A为圆心,2为半径的圆上;因点O是点C以点B为中心顺时针旋转45度并1:√2缩小而得,所以把圆A旋转45度再1:2缩小即得O点路径。如下图,转化为求定点A到定圆F的最长路径,即AF+FO=32。

二定线+定角 1.依据:与一条定线的两端夹角一定的动点路径是以定线为弦,定角为圆周角的弧。 2.应用: (1)矩形ABCD中,AB=10,AD=4,点P是CD上的动点,当∠APB=90°时求DP的长. 简析:AB为定线,∠APB为定角(90°),P点路径为以AB为弦(直径)的弧,如下图,易得DP为2或8。 (2)如图,∠XOY = 45°,等边三角形ABC的两个顶点A、B分别在OX、OY上移动,AB = 2,那么OC的最大值为.

定隐圆之弦定角最值问题

定弦定角最值问题 【定弦定角题型的识别】 有一个定弦,一个主动点,一个从动点,定弦所对的张角固定不变。 【题目类型】 图形中一般求一个从动点到一个定点线段长度最值问题,一般涉及定弦定角最值问题 【解题原理】 同弧所对的圆周角相等,定弦的同侧两个圆周角相等,则四点共圆,因此动点的轨迹是圆。 (线段同侧的两点对线段的张角相等,则这两点以及线段的两个端点共圆。) 【一般解题步骤】 ①让主动点动一下,观察从动点的运动轨迹,发现从动点的运动轨迹是一段弧。 ②寻找不变的张角(这个时候一般是找出张角的补角,这个补角一般为45°、60°或者一个确定的三角函数的对角等) ③找张角所对的定弦,根据三点确定隐形圆。 ④确定圆心位置,计算隐形圆半径。 ⑤求出隐形圆圆心至所求线段定点的距离。 ⑥计算最值:在此基础上,根据点到圆的距离求最值(最大值或最小值)。

1.(2016·新观察四调模拟1)如图,△ABC中,AC=3,BC=2 4,∠ACB=45°,D为△ABC内一动点,⊙O为△ACD的外接圆,直线BD交⊙O于P点,交BC 于E点,弧AE=CP,则AD的最小值为() A.1 B.2 C.2D.2 41- 4 2.如图,AC=3,BC=5,且∠BAC=90°,D为AC上一动点,以AD为直径作圆,连接BD交圆于E点,连CE,则CE的最小值为() 16 A.2 13-B.2 13+C.5 D. 9 3.(2015·江汉中考模拟1)如图,在△ABC中,AC=3,BC=2 4,∠ACB=45°,AM∥BC,点P在射线AM上运动,连BP交△APC的外接圆于D,则AD的最小值为() A.1 B.2 C.2D.3 4- 2

“与圆有关的最值问题”教案(最新)

“与圆有关的最值问题”教学案例 余浩平 教学背景: 本节课是与圆有关的一节复习课,由于在初中学习中接触过圆的一些基本知识,因而课前安排了两道有关圆的最值问题让学生练,为后面的教学奠定了基础。在随后的教学中,采取变式教学、一题多解、自主探索的教学方式,培养学生研究性学习。 教学目标: 从学生的实际出发,依据数学思维规律,提出恰当的富于启发性的问题,去启迪和引导学生积极思维,同时采用多种方法,引导学生通过观察、试验、分析、猜想、归纳、类比、联想等思想方法,主动地发现问题和提出问题。 重点与难点: 学生通过观察、分析、猜想、类比等思想方法主动地发现问题和解决问题。 教学过程: 一、 引入新课 练习: 已知圆0122822=+--+y x y x 内一点)0,3(A ,求经过点A 的最长弦和最短弦所在的直线方程。 二、 新课 例: 已知圆的方程222=+y x 及一点P(2,4),求圆上的动点与点P 连线斜率 的最值? 题变: 将上面例题中的点P(2,4)改为)4,0(P ,则圆上的动点与点P 连线斜率的 最值是否存在?若存在求出最值,若不存在,请说明理由。 讨论问题1: 已知圆的方程222=+y x 及一点P(2,4) 试试看: 根据以上条件,你还能设计出哪些与圆有关的最值问题? 讨论问题2: 已知圆的方程422=+y x 及一条直线05=--y x 试试看: 根据以上条件,你能设计出哪些与圆有关的最值问题? 三、 练习 1、 从直线y=3上找一点,向圆1)2()2(22=+++y x 作切线,切线长度的最 小的值是多少?

2、 实数满足01422=+-+y y x ,求(1)x y 的取值范围。 (2)x y 2-的取值范围 四、 小结 最值问题常见的解法有两种:几何法和代数法. 若题目的条件和结论能明显体现几何特征及意义, 则考虑利用图形来解决,这就是几何法——数形结合的方法; 若题目的条件和结论能体现一种明确的函数关系, 则可首先建立目标函数,再求这个函数的最值. 五、 思考题 过点M (3,0)作直线l 与圆1622=+y x ,交于A,B 两点, 求: 直线l 的倾斜角θ,使△AOB 面积最大,并求此最大值(O 为坐标原点)。

中考数学复习突破与提升专题练习最值问题(瓜豆原理与隐形圆问题专题练习)(无答案)

中考数学复习突破与提升专题练习最值问题 (瓜豆原理与隐形圆问题专题练习) 1.如图,点P (3,4),圆P 半径为2,A ( 2.8,0),B (5.6,0),点M 是圆P 上的动点,点C 是MB 的中点,则AC 的最小值是_______. 2. 如图,在等腰Rt △ABC 中,AC =BC =P 在以斜边AB 为直径的半圆上,M 为PC 的中点,当半圆从点A 运动至点B 时,点M 运动的路径长为________. 3. 如图,正方形ABCD 中,AB O 是BC 边的中点,点E 是正方形内一动点,OE =2,连接DE ,将线段DE 绕点D 逆时针旋转90°得DF ,连接AE 、CF .求线段OF 长的最小值. 4. △ABC 中,AB =4,AC =2,以BC 为边在△ABC 外作正方形BCDE ,BD 、CE 交于 O A B C D E F

点O ,则线段AO 的最大值为_____________. 5. 如图,在等边△ABC 中,AB =10,BD =4,BE =2,点P 从点E 出发沿EA 方向运动,连结PD ,以PD 为边,在PD 的右侧按如图所示的方式作等边△DPF ,当点P 从点E 运动到点A 时,点F 运动的路径长是________. 6. 如图,已知点A 是第一象限内横坐标为的一个定点,AC ⊥x 轴于点M ,交直线y =-x 于点N ,若点P 是线段ON 上的一个动点,∠APB =30°,BA ⊥PA ,则点P 在线段ON 上运动时,A 点不变,B 点随之运动.求当点P 从点O 运动到点N 时,点B 运动的路径长是________. 7. 如图,在平面直角坐标系中,A (-3,0),点B 是y 轴正半轴上一动点,点C 、D 在x 正半轴上,以AB 为边在AB 的下方作等边△ABP ,点B A B C D E O A

微专题《隐含圆的解三角形最值问题》教学设计

微专题《隐含圆的解三角形最值问题》教学设计 教学内容:《隐含圆的解三角形最值问题》 课型:复习课 设计理念:以学生发展为本,体现学生主体地位;以学科素养为根,培养数学运算能力。 一、教学内容分析 本节课是在系统复习《解三角形》之后进行的微专题教学,主要针对解三角形中的最值问题,是对《解三角形》的进一步深化、提升。爱因斯坦曾说:提出一个问题往往比解决一个问题更为重要。本节课将以两类隐藏圆的三角形为背景设置最值问题,从试题编拟的视角进行演绎并呈现于课堂,从中总结、归纳解三角形中求最值的常见思路、方法.通过本节课的学习可以从命题的角度居高临下地认识解三角形最值问题,从而让学生学会在制高点处思考、解题.同时,本节课也将渗透逻辑推理、数学建模、直观想象、数学运算等数学素养.因此,学好本节课将有利于学生形成规律性的知识网络和提高数学思维能力. 二、学习者特征分析 学生已经系统复习并掌握了三角函数的性质、三角恒等变换及解三角形等知识,为微专题《解三角形的最值问题》的复习奠定了基础。同时,学生的思维普遍活跃,对进一步探索解三角形中的最值问题有了比较浓厚的兴趣,有了较强的求知欲望.但学生的学习仅仅停留于解题,往往只能就题论题,且从未曾以命题者的角度研究过试题,未能迅速洞察问题的本质。 三、教学目标设计 本着教学内容的特点和高三学生的认知能力与数学思维特征,设定的教学目标为:能较熟练地应用正余弦定理解三角形;能较熟练应用三角函数的性质、基本不等式、导数等求解最值问题。在经历解题视角的变换中,突破成规,感受数学的系统特征、辩证特征、开放特征;在经历编制试题的过程中,培养勇于创新,多方位审视问题的创造技巧,从而树立科学的治学态度。并通过例题与变式题的解题训练,使数学解题意志、习惯和个性素养得以发展。 四、教学重难点设计 基于教材内容的地位、课程标准的要求、根据学生的认知水平和学习经验,确定本节课的学习重难点:正余弦定理的应用,求最值的几种常见方法。

“隐圆”最值问题习题

隐圆”最值问题 重难点:分析题目条件发现题目中的隐藏圆,并利用一般的几何最值求解方法来解决问题 【例1】在平面直角坐标系中,直线y = - x + 6分别与x轴、y轴交于点A、B两点,点C 在y轴的左边,且/ ACB = 90 °贝U点C的横坐标xc的取值范围是_____________ . 分析:在构造圆的前提下考虑90°如何使用。直角对直径所以以AB为直径画圆。使用垂径定理即可得到3-3辽乞X c :::O 【练】(2013-2014六中周练16)如图,已知Rt△ ABC中,/ ACB = 90 ° AC = 3, BC = 4,点D是AB的中点,E、F分别是直线AC、BC 上的动点,/ EDF = 90 °贝U EF长度的最小值是____________ . 分析:过D点作DE垂直AB交AC于点M可证△ FBDECD即可 F 求出最小值 【例2]如图,在Rt△ ABC中,/ ACB = 90 ° D是AC的中点, M是BD的中点,将线段AD绕A点任意旋转(旋转过程中始 终保持点M是BD的中点),若AC = 4 , BC = 3,那么在旋转 过程中,线段CM长度的取值范围是__________________ . 分析:将线段AD绕A点任意旋转隐藏着以A为圆心AD为半径的圆构造出来。 接下来考虑重点M的用途即可。中点的用法可尝试下倍长和中位线。 【练]已知△ ABC和厶ADE都是等腰直角三角形,/ ACB = / ADE =90 ° AC = 2 丁2 , AD = 1 , F 是BE 的中点,若将△ ADE 绕点A 4 -J3 4 +筋 旋转一周,则线段AF长度的取值范围是- 2 空AC乞 4 2 . 2 2 分析:同例题 【例3]如图,已知边长为2的等边△ ABC,两顶点A、B分别在平面直角坐标系的x轴、y轴的正半轴上滑动,点C在第一象限,连接OC,则OC 长的最大值是( ) A . 2 B. 1 C. 1 + .3 D . 3分析:取AB中点M连接OM、CM。因为OM=1 , CM= 3,所以 OC=1 + 3 【练1]如图,在矩形ABCD中,AB = 2 , BC = ?. 3,两顶点A、B分别在平面 B < J ? 3 7 此题使用中位线。答案是尹X,7 A E C

(完整word版)隐圆及几何最值训练题

B y C x A O 隐圆及几何最值训练题 一、利用“直径是最长的弦”求最值 1.如图,在等腰Rt △ABC 中,∠C=90°,AC=BC=4,D 是AB 的中点,点E 在AB 边上运动(点E 不与点A 重合),过A 、D 、E 三点作⊙O ,⊙O 交AC 于另一点F ,在此运动变化的过程中,线段EF 长度的最小值为( ) . 2.如图,在△ABC 中,∠ABC=90°,AB=6,BC=8,D 为AC 的中点,过点D 作DE ⊥DF ,DE 、DF 分别交射线AB 、AC 于点E 、F ,则EF 的最小值为 . 二、利用“定点定长存隐圆”求最值 3.(2012年武汉市中考)在坐标系中,点A 的坐标为(3,0),点B 为y 轴正半轴上的一点,点C 是第一象限内一点,且AC=2.设tan ∠BOC=m ,则m 的取值范围是_________. 4.如图,在Rt △ABC 中,∠ACB=90°,AC=4,BC=3,点D 是平面内的一个动点,且AD=2,M 为BD 的中点,在D 点运动过程中,线段CM 长度的取值范围是. 5.正方形ABCD 中,BC=4,E ,F 分别为射线BC ,CD 上两个动点,且满足BE=CF ,设AE ,BF 交于G ,则DG 的最小值为( )。 D F G C D E

6.(2013年武汉市中考)如图,E 、F 是正方形ABCD 的边AD 上两个动点,满足AE =DF ,连接CF 交BD 于点G ,连接BE 交AG 于点H ,若正方形的边长为2,则线段DH 长度的最小值是 7.(2015年武汉中考)如图,△ABC 、△EFG 均是边长为2的等边三角形,点D 是边BC 、EF 的中点, 直线AG 、FC 相交于点M .当△EFG 绕点D 旋转时,线段BM 长的最小值是( ) 8.如图,在边长为2的菱形ABCD 中,∠A =60°,M 是AD 边的中点,N 是沿MN 所在的直线翻折得到△A 'MN ,连接A 'C ,则A 'C 长度的最小值是. 9.(2013年武汉中考)如图,圆A 与圆B 外切于点D ,PC 、PD 、PE 分别是圆的切线,C 、D 、E 是切 点,若∠CDE =x °,∠ECD =y °,⊙B 的半径为R ,则弧DE 的长度是( ) A.90 )90(R x -π B. 90 )90(R y -π C. 180 )180(R x -π D. 180 )180(R y -π 10.在平面直角坐标系中,O 为原点,点A (-2,0),点B (0,2),点E ,点F 分别为OA ,OB 的中点.若正方形OEDF 绕点O 顺时针旋转,得正方形OE ’D ’F ’,若直线AE ’与直线BF ’相交于点P. (1)求∠PAO 的最大值 (2)点P 运动的路径长 M F E G D C A B E C A B D P x y P F' D'D E G A o F E' 第16题图 N M A' D C B A

隐圆最值问题教案

隐圆最值问题 教学目标:灵活运用圆的一些重要定理、圆中的基本图形解决隐圆中的最值问题. 教学重点难点:隐圆问题,三角形底边、顶角不变和外接圆相关问题(正弦定理模型) 【例1】在△ABC 中,∠ABC=60°,AC=6,求△ABC 面积的最大值. 分析:求面积最大值,AC 底边确定,只需找高的最大值,即B 到AC 的距离的最大值。 B 点在三角形ABC 的外接圆上运动。当三角形ABC 为等边三角形时高最大 11 622 ABC S AC BD =?=??= 【例2】如图,Rt △ACB 中,∠ACB=90°,AC=4,BC=3,E 、F 分别在CB 、AB 上,且AE ⊥CF 于G ,连BG .则GB 的最小值是_______. A 分析:求GB 的最小值,B 点是定点,关键找出G 点的运动轨迹。G 点怎么来的呢? AE ⊥CF 于G 点,即90AGC ∠=?。可得G 在以AC 为直径的圆上运动。取AC 的中点 O 连接OB 与圆O 的交点即为最小值时的 G 点。 22GB OB OG ∴=-= 【例3】如图,E 、F 是正方形ABCD 的边AD 上两个动点,满足AE =DF .连 接CF 交BD 于G ,连接BE 交AG 于点H .若正方形的边长为2,则线段DH 长度的最小值 是 . 第16题图 H G F E D C B A 分析: 推出 90AHB ∠=? 是关键。再回到上一题思路 总结:定弦定角的隐圆问题

【反馈练习】 1.如图,∠XOY = 45°,一把直角三角尺ABC 的两个顶点A 、B 分别在OX 、OY 上移动,其中AB = 10,那么点O 到AB 的距离的最大值为__________. 2.如图正方形ABCD ,AB=10,E 、F 分别为CD 、AD 上动点,且始终有CE=DF ,连接CF 、BE 交于O 点,连接AO ,求△AOB 面积的最小值 F O E D C B A

隐圆及几何值训练题

隐圆及几何值训练题

————————————————————————————————作者:————————————————————————————————日期:

B y C x A O 隐圆及几何最值训练题 一、利用“直径是最长的弦”求最值 1.如图,在等腰Rt△ABC中,∠C=90°,AC=BC=4,D是AB的中点,点E在AB边上运动(点E不与点A重合),过A、D、E三点作⊙O,⊙O交AC于另一点F,在此运动变化的过程中,线段EF长度的最小值为(). 2.如图,在△ABC中,∠ABC=90°,AB=6,BC=8,D为AC的中点,过点D作DE⊥DF,DE、DF分别交射线AB、AC于点E、F,则EF的最小值为 . 二、利用“定点定长存隐圆”求最值 3.(2012年武汉市中考)在坐标系中,点A的坐标为(3,0),点B为y轴正半轴上的一点,点C 是第一象限内一点,且AC=2.设tan∠BOC=m,则m的取值范围是_________. 4.如图,在Rt△ABC中,∠ACB=90°,AC=4,BC=3,点D是平面内的一个动点,且AD=2,M为BD 的中点,在D点运动过程中,线段CM长度的取值范围是. 5.正方形ABCD中,BC=4,E,F分别为射线BC,CD上两个动点,且满足BE=CF,设AE,BF交于G,则DG的最小值为()。 E D B C A F G F B C A D E

6. (2013年武汉市中考)如图,E 、F 是正方形ABCD 的边AD 上两个动点,满足AE =DF ,连接CF 交BD 于点G ,连接BE 交AG 于点H ,若正方形的边长为2,则线段DH 长度的最小值是 7.(2015年武汉中考)如图,△ABC 、△EFG 均是边长为2的等边三角形,点D 是边BC 、EF 的中点, 直线AG 、FC 相交于点M .当△EFG 绕点D 旋转时,线段BM 长的最小值是( ) 8.如图,在边长为2的菱形ABCD 中,∠A =60°,M 是AD 边的中点,N 是AB 边上一动点,将△AMN 沿MN 所在的直线翻折得到△A 'MN ,连接A 'C ,则A 'C 长度的最小值是. 9.(2013年武汉中考)如图,圆A 与圆B 外切于点D ,PC 、PD 、PE 分别是圆的切线,C 、D 、E 是切 点,若∠CDE =x °,∠ECD =y °,⊙B 的半径为R ,则弧DE 的长度是( ) A.90 )90(R x -π B. 90 )90(R y -π C. 180 )180(R x -π D. 180 )180(R y -π 10.在平面直角坐标系中,O 为原点,点A (-2,0),点B (0,2),点E ,点F 分别为OA ,OB 的中点.若正方形OEDF 绕点O 顺时针旋转,得正方形OE ’D ’F ’,若直线AE ’与直线BF ’相交于点P. (1)求∠PAO 的最大值 (2)点P 运动的路径长 M F E G D C A B E C A B D P x y P F' D'D E G A o F E' 第16题图 N M A' D C B A

2019中考数学真题复习 利用隐圆求最大或最小值 最值大全

隐圆求最值几何最值问题大全(将军饮马、造桥选址、胡不归、阿波罗尼斯圆等) 例1在坐标系中,点A的坐标为(3,0),点B为y轴正半轴上的一点,点C是第一象限内一点,且AC=2.设tan∠BOC=m,则m的取值范围是_________. 例2如图, E、F是正方形ABCD的边AD上两个动点, 满足AE=DF. 连接CF交BD于G, 连接BE交AG于点H. 若正方形的边长为2, 则线段DH长度的最小值是. 例3、如图, △ABC中, ∠ABC=90°, AB=6, BC=8, O为AC的中点, 过O作OE⊥OF, OE、OF分别交射线AB、BC于E、F, 则EF的最小值为. 练习 1、如图, Rt△ABC中, ∠C=90°, ∠ABC=30°, AB=6, 点D在AB边上, 点E是BC边上 一点 (不与点B、C重合), 且DA=DE, 则AD的取值范围是.

2、如图, 已知边长为2的正△ABC, 两顶点A、B分别在直角∠MON的两边上滑动, 点C在 ∠MON内部, 则OC的长的最大值为. 3、如图, ∠xOy=45°, 一把直角三角尺△ABC的两个顶点A、B分别在Ox、Oy上移动, 其 中AB=10, 那么点O到顶点A的距离最大值为, 点O到AB的距离的最大值为. 补充练习 1、如图,在Rt△ABC中,∠ACB=90°,AC=4,BC=3,点D是平面内的一个动点,且AD=2,M为BD的中点,在D点运动过程中,线段CM长度的取值范围是 . 2、如图,在Rt△ABC中,∠C=90°,AC=6,BC=8,D为AB边上一点, 过点D作CD的垂线交直线BC于点E,则线段CE长度的最小值是 .

相关主题
文本预览
相关文档 最新文档