当前位置:文档之家› 混凝土裂缝深度检测技术

混凝土裂缝深度检测技术

混凝土裂缝深度检测技术
混凝土裂缝深度检测技术

混凝土裂缝深度检测技术

目录

1测试的意义 (2)

2测试方法和原理 (3)

2.1标准测试方法 (3)

2.2独创测试方法(表面波法) (6)

2.3裂缝延伸方向的测试 (8)

3模型、现场验证 (9)

3.1基础试验(1998-2006) (9)

3.2现场验证(1998-2006) (11)

4特点和适用范围 (14)

4.1特点 (14)

4.2适用范围 (14)

4.3影响因素 (14)

4.4与超声波方法相比的优越性 (15)

1测试的意义

混凝土结构是最重要的土木、建筑结构,在社会基础设施中占据举足轻重的地位。然而,由于各种原因(如干燥收缩、温度应力、外荷载、基础变形等),裂缝是混凝土结构中最常见的缺陷或损伤现象。

由于裂缝的成因、状态、发展以及在结构中的位置等的不同,对结构的危害性也有很大的区别。严重的裂缝可能危害结构的整体性和稳定性,对结构的安全运行产生很大影响。另一方面,也有些裂缝,如表面温度变化或干燥收缩引起的浅裂缝则无大的影响。此外,根据大量的观测资料,在混凝土结构物中出现的裂缝,大多数在竣工后1-2年内已产生。如果这些裂缝处于稳定状态,其对结构的影响程度要小得多。此外,对于裂缝的修补,如裂缝充填(往裂缝中注入水泥砂浆或者环氧树脂等充填材料,以防内部钢筋锈蚀)和裂缝补强(裂缝表面粘贴钢板等)都需要在明确裂缝的状态、成因的基础上才能合理、有效地进行。

因此,为了确定裂缝的状态、发展和成因,以及合理评价裂缝对结构物的影响,选择适当的修补方案和时机,掌握其深度与其长度、宽度都是非常重要的。所不同的是,裂缝的深度测试较之长度和宽度测试要困难得多,通常需要采用钻孔取样的方法加以直接测试。但是,钻孔取样的方法除费时费力,对结构也有一定的损害以外,对深裂缝由于取样困难往往难以测试。同时,对于裂缝的发展也难以监测,因此,采用合理的无损检测方法是非常必要的。

裂缝深度的无损检测方法有多种,长期以来,研究人员开发了多种测试方法,大致可以分为:

1)基于超声波的检测方法;

2)基于冲击弹性波的检测方法

然而,由于混凝土结构及裂缝的特殊性,使得裂缝深度的无损检测变得非常困难。同时,目前常用的裂缝深度的无损检测技术大多是从金属材料的裂缝深度检测中发展而来,在应用于混凝土结构中会遇到各种问题,使得测试结果常常较实际深度偏浅很多,因此难以在实际工程中推广应用。当然,对裂缝深度方向的发展的监测迄今尚无有效的手段。

混凝土裂缝深度测试仪SCE-CDT

2测试方法和原理

我们自1997年开始,针对这一问题,在基于表面波的测试技术基础上,建立相对严密完整的理论体系。并在此基础上开发了独创的“表面波法”。同时,我们还集成了目前国内外其他几种方法以便相互印证,从而尽可能地提高测试精度。

下表为在本系统中集成的主要测试方法,其分别对应于我国、日本和英国的相关检测规程。

表2-2-1 裂缝深度测试项目一览表

2.1标准测试方法

标准测试方法包括相位反转法和传播时间差法。这2种方法均采用接收信号的初始部分的特性,为目前较为通用的测试方法。

1)相位反转法

当激发的弹性波(包括声波、超声波)信号在混凝土内传播,穿过裂缝时,在裂缝端点处产生衍射,其衍射角与裂缝深度具有一定的几何关系。相位反转法正是根据衍射角与裂缝深度的几何关系,来对裂缝深度进行快速测试的。将激振点与接收点沿裂缝对称配置,从近到远逐步移动。当激振点与裂缝的距离与裂缝深度相近时,接收信号的初始相位会发生反转。

该方法只须移动冲击锤或换能器,确定首波相位反转临界点,就可确定混凝土的裂缝深度。与其它混凝土裂缝深度检测方法相比,具有无需通过公式计算,简单直观的特点,有一定的实用价值。

图2-2-1 相位反转法的概念

2)传播时间差法

该方法适合混凝土结构物中的开口裂缝。其测试原理是激励产生的弹性波遇到裂缝时,波被直接隔断,并在裂缝端部衍射通过。本方法实质就是通过测试波在有裂缝位置和没有裂缝健全部位传播的时间差来推定裂缝深度的。裂缝深度越大,传播时间差也越长。

图2-2-2 传播时间差法概念

传播时间差法又可以分为Delta法、BS法等子方法。我们在BS法的基础上提出的修正BS法采用3点回归的方法,无需测试波速,还能够推测裂缝的延伸方向。具有测试优点明显,测试理论严密,在狭小场所也可测试等优点。

3)标准测试方法的局限

这两种类型的方法都利用传播的波的初动成分(到达时间或者是初始相位)。尽管在金属探伤技术中有广泛应用,但在测试混凝土裂缝时,却会遇到很大的困难:

⑴接触面/充填物的影响

受裂缝的接触面(紧密程度或压力情况)或充填物(水、灰尘)的影响,导致波会提前通过,测试的传播时间变短,测试结果会比裂缝实际深度要浅。

图2-2-3 接触充填的影响

⑵接受信号能量的影响

若混凝土结构物中的裂缝比较深,那么在裂缝端衍射的弹性波能量会降低,衍射的信号会很变弱,这对接收波初始时刻的判断不利。极端的例子是:若混凝土结构物中的裂缝是贯通的,那么几乎不会有衍射波通过。

图2-2-4 接受信号能量的影响

⑶初始波成分(类型)不明的影响

对于没有裂缝、或裂缝比较浅的时候,接收波的初始成分主要是表面波和SV波。而裂缝比较深的时候,信号又很微弱,这对初始信号的判断带来困难。

因此,由于裂缝面的接触、钢筋、水分以及信号衰减的影响,使得标准测试方法得到的裂缝深度往往较实际值偏浅,特别是对于深裂缝,其测试误差更大。

图2-2-5 初始信号不明的影响

2.2独创测试方法(表面波法)

针对现有技术的不足,我们开发了一种新的裂缝深度探测技术(简称“表面波法”)。该方法采用冲击弹性波中的瑞利波(表面波的一种)的衰减特性来测试混凝土构造物中的裂缝深度。该方法测试范围大,受充填物、钢筋、水分的影响小,特别适合测试较深的裂缝。

1)表面波法的基本原理

瑞利波是由于P波和S波在媒体边界面上相互作用而形成,其传播速度比S波稍慢,并主要集中的媒体表面和浅层部分,其特性非常适合于探测裂缝的深度。

⑴瑞利波在媒体表面受冲击所产生的弹性波中,能量最大,信号采集容易;

⑵依存于材料的剪切力学特性,从而对裂缝更为敏感;

⑶瑞利波大部分能量主要集中在从表面开始的1倍波长的范围内。

瑞利波在传播过程中所发生的几何衰减和材料衰减。可以通过系统补正,而保持其振幅不变。但是,瑞利波在遇到裂缝时,其传播在某种程度上被遮断,在通过裂缝以后波的能量

和振幅会减少。因此,根据裂缝前后的波的振幅的变化(振幅比),便可以推算其深度。

图2-2-6 “表面波法”的概念

2) 关键测试技术

“表面波法”最早于上世纪60年代被提出,但一直未能得到实用。其原因在于对能量衰减的测试误差较大,为此我们开发了基于“双方向激振技术”的高精度能量衰减测试技术(已获得国家发明专利,专利号:ZL200510021851.5),从而大大提高了“表面波法”的测试精度和实用性。

3) 表面波法的特点

表面波法测试裂缝的范围很大,可达几米,受充填物、水分的影响较小。特别是对贯穿裂缝精度非常高。但该方法属于半理论半经验的方法,理论不是特别严密。

对于坝面等近似于半无限平面体,非常适合表面波法测试。但不适合狭窄结构,因为表面波受边界条件(侧壁、边角等)的影响较大。

利用双方向发振回归技术降低了测试误差,提高了测试精度。

选择测区希望避免剥离的地方,可提高其测试精度。因为有剥离的场合,会引起板波和振动,导入测试误差大。

表2-2-2 裂缝深度测试方法比较

较大衰减 有衰减

图2-2-7

裂缝深度的测试概念

2.3 裂缝延伸方向的测试

隧道天顶的塌落危险评估、以及结构内力分别的推算等均需要掌握裂缝的方向。本系统可以较方便地推算裂缝的延伸方向。

相位反转法

传播时间差法

图2-2-7 利用自振频率的变化测试

图2-2-8 根据R 波速度的变化测试

此外,我们开发的修正BS 法不仅可以测试裂缝的速度,还可以测试裂缝的方向。但该方法属于传播时间差法,其测试深度均较浅,测试精度也不十分理想。

3 模型、现场验证

3.1 基础试验(1998-2006)

1) 混凝土块试验(开口裂缝)

利用大型混凝土试验块,对开口裂缝(裂缝宽2mm ,无填充物)进行了验证试验。结果表明,对于开口裂缝,

⑴ 各测试方法的测试结果均很理想;

⑵ 表面波法的测试离散度相对较大。

照片2-3-1 试验场景

图2-3-1 验证结果

2) 混凝土块试验(裂缝面压力)

在很多情况下,裂缝面上有可能受到压缩应力。对此,我们在试验室做了大型试验,来验证在受压应力条件下表面波法的测试精度。

照片2-3-2 试验场景

可以看出:

0.1

0.2

0.3

0.4

0.5

0.6

00.20.40.6测试深度(m)

⑴ 随着压力的增加,测试的裂缝结果逐渐变浅;

⑵ 传播时间法在受到微小应力时,已无法测试裂缝的深度;

⑶ 裂缝面上的应力在5MPa 以上时,表面波法也无法检测出裂缝的存在。

3.2 现场验证(1998-2006)

我们对隧道、挡土墙、基础等钢筋混凝土结构以及大坝中的各类裂缝,进行了无损检测以及钻孔取样验证。

1) 钢筋混凝土结构物

照片2-3-3 现场测试场景 照片2-3-4 钻孔验证

图2-3-2 验证结果比较图(裂缝深度比较)

图2-3-3 验证结果比较图(离散程度比较)

表2-3-1 裂缝深度相对误差一览表(钢筋混凝土)

根据验证试验的结果,可以得到如下结论:

⑴ 表面波法基本上可以准确地测试出裂缝的深度,经验证的最大测试深度为

100cm ;

⑵ 采用P 波初始时间的方法(如传播时间法,相位反转法)则过浅地测试了裂缝

深度。该类方法的最大测试深度一般不超过20cm ,往往测试了钢筋保护层厚

度。

2) 无钢筋混凝土结构物

照片2-3-6 钻孔验证场景照片2-3-7 钻孔结果

各测试方法的验证结果及离散程度如表3-3-1~3-3-3,图3-3-3~3-3-4所示。

图2-3-4 无筋混凝土中的验证结果

图2-3-5 裂缝深度测试相对误差一览(无筋混凝土)

表2-3-2 验证结果一览

综上所述:

⑴无论是对于钢筋混凝土还是无钢筋混凝土结构物,利用表面波法都可以得到比

较满意的结果;

⑵根据50多个现场钻孔试验的验证,表面波法的测试结果的标准偏差大约为28%

左右;

⑶利用P波的传播时间法和相位反转法,均只能测试裂缝的开口深度;

⑷在裂缝受压的条件下,表面波法得到的测试结果也有偏浅的趋势。并且其偏浅

的程度与裂缝面上的压缩应力有相关关系;

⑸为了更全面地得到裂缝的信息,在条件许可的前提下,尽可能采用多种方法对

比测试。

4特点和适用范围

4.1特点

1)集成度高、测试精度好

在本套测试设备SCE-MATS中,集成了多种裂缝测试技术,各种测试技术可相互补充、印证,从而尽可能地提高了测试精度。

2)测试范围广

本技术可测试深达2米的裂缝。

3)可测试裂缝延伸方向

4.2适用范围

1)各种钢筋混凝土和素混凝土结构、沥青混凝土;

2)土石坝、岩体:

4.3影响因素

1)裂缝面的压力

其对裂缝深度检测的影响很大。当裂缝面上作用的压应力超过50KPa时,各种方法均难以检测裂缝深度。

2)测试对象的位置和形状

“表面波法”对测试对象的位置和形状要求较高,一般要求平坦,具有一定的厚度并距边界一定的距离。而“传播时间差法”的要求较少。

3)测试对象的材质

本设备不仅可以测试普通混凝土、钢筋混凝土,还可以测试沥青混凝土、岩石等。

4)外界温度

温度对测试结果的影响体现在裂缝面上的压力。一般来说,温度低时裂缝容易张开,因此在测试裂缝深度时,通常选取气温较低的季节或时间段(如早、晚)进行。

5)钢筋、水分和填充物

对“表面波法”的影响较小,而对“相位反转法”和“传播时间差法”的影响较大。

4.4与超声波方法相比的优越性

目前,超声波是测试裂缝深度最常用的技术。特别是在金属制品的裂缝深度测试中,超声波技术得到了普遍的认可。然而,由于混凝土与金属是完全不同的材料(下表所示),使得超声波在混凝土裂缝的检测时,存在很大的局限。

同时,由于超声波一般采用P波,所采用的方法也只能是现有的标准方法(如相位反转法和传播时间差法),因此尽管超声波测试模型裂缝(均为开口裂缝)的精度较高,但在实际混凝土结构的测试中,测试值往往会远远低于实际的裂缝深度。

特别需要指出的是,超声波测试的深度大幅偏浅,是偏于危险方面的,有可能误导对结构安全的判断。

表2-5-1 金属结构与混凝土结构的比较

表2-5-2 超声波测试设备与本设备的比较

裂缝原因分析和处理报告

xxxxxx工程 裂 缝 评 估 报 告 xxxx检验站二O一二年九月

xxx工程裂缝评估报告 报告编号:xxxx 报告编制: 审核: 主检: 批准: xxxxx检验站 二O一二年九月

第一章概述 1.2检测评定手段及目的 (1)外观检查:检测顶板裂缝宽度,评定顶板外观质量; (2)超声波法:检测裂缝深度。 1.3评估依据 本项目研究所依据的相关规范、规程以及相关文件主要有: (1)《超声法检测混凝土缺陷技术规程》(CECS 21:2000)。 (2)《混凝土结构设计规范》(GB 50010—2010)。 第二章外观检查、裂缝宽度和深度检测 2.1概述 在现场检测期时,对xxxxx箱涵左顶板外观进行了详细的检测,检测内容包括裂缝宽度、桥墩外观质量、裂缝深度检测等。 现场检测发现桥墩墩身出现纵向裂缝。裂缝宽度检测测采用KON-KF(B)裂缝宽度监测仪(见附图)。裂缝深度检测采用KON-FSY裂缝深度测试仪。 xxxxx箱涵共分三块施工,左块于2012年9月16日16点左右施工,右块于9月16日2点左右施工,中块于9月17日施工。只有在顶板左块于浇筑第二天出现了20多起纵向裂缝,少量横向裂缝。裂缝最长1.2m,80%的裂缝长度30-50mm;裂缝间间距80%为20-30mm;裂缝宽度为0.35-2.44mm;裂缝深度为9-51mm,其中85%的裂缝深度为25-30mm,其中2条裂缝深度为51mm。 图1 裂缝分布示意图

2.2原因分析 顶板裂缝:顶板裂缝形成原因多样复杂,一般以下几方面原因较突出。 (1)混凝土浇筑振捣后,粗骨料沉落挤出水分、空气,表面呈现泌水而形成竖向体积缩小沉落,造成表面砂浆层,它比下层混凝土有较大的干缩性能,待水分蒸发后(如爆晒、风吹),易形成干缩裂缝。 (2)模板浇筑混凝土之前洒水不够,过于干燥,则模板吸水量大,引起混凝土的塑性收缩,产生裂缝。 (3)混凝土浇捣后在初凝前后没有进行抹平压光和养护不当也易引起裂缝。 (4)顶板浇注后,上人上料过早,上料集中,也易造成裂缝。 (5)混凝土过量使用外加剂,或水灰比、坍落度过大 结合工程调查和检测分析,裂缝产生的原因可能为①混凝土坍落度过大;②初凝前后没有进行抹平压光,造成表面水分蒸发后,表面砂浆层干缩大于下层混凝土,易形成干缩裂缝;③顶板左板混凝土浇筑后初凝在晚上8点左右,终凝在晚上2点左右,这时内外温差最大,且混凝土在刚失去塑性,强度很低,这也加大了表面收缩开裂。 第三章结论和建议 3.1结论 xxxxx顶板出现的裂缝进行超声波分析和外观检测,综合分析各类测试结果,结论如下: (1)xxxxx工程k0+628箱涵左顶板的纵向裂缝宽度在0.35-2.44mm之间, 大于《混凝土结构设计规范》(GB 50010—2010)规定的裂缝宽度容许值]=0.3mm。此类裂缝属混凝土表面收缩引起的干缩裂缝。 [W lim (2)通过非金属超声波分析仪对检测点检测,结果表明:裂缝深度在85%在25mm-30mm之间,裂缝开展深度值大部分在混凝土保护层内。 综合分析该裂缝对结构无显明影响,但影响结构的整体性和耐久性。 3.2建议 (1)加强对顶板的裂缝观测:观察其宽度和长度是否有加深加长的趋势。 (2)对于顶板裂缝进行有效的封闭处理。(详见第四章) 总之,xxxx顶板裂缝按上述建议进行有效处理后,结构的整体性和耐久

超声波法检测混凝土试验报告

哈尔滨工程大学 实验报告 实验名称:超声波法检测混凝土实验 班级:212 学号:05 姓名:纪强 合作者:黄昊、张艳慧 成绩:____________________________ 指导教师:梁晓羽 实验室名称:工程测试与检测技术实验室

目录 一.试验目的 二.试验仪器和设备 三.原理及试验装置 四.试验步骤 五.试验数据记录表格 六.注意事项 七.试验结果分析 八.问题讨论

一.试验目的 检测混凝土裂缝宽度,检测裂缝尺寸从而确定混凝土结构安全性。对混凝土裂缝超声检测进行实验研究,对预先设置在混凝土试件中的裂缝进行超声检测,将得到的检测数据与相应的理论值进行对比分析,讨论裂缝超声检测中存在的问题,对裂缝的检测方法提出建议。 二.试验仪器和设备 GTJ—F800 混凝土裂缝综合检测仪器,8500~11000RMB。 三.原理及试验装置 混凝土裂缝宽度检测试验原理:通过摄像头拍摄裂缝图像并放大显示在显示屏上,然后对裂缝图像进行图像处理和识别,执行特定的算法程序自动判读出裂缝宽度,仪器采用新型高精度、高灵敏度的光电转换器件进行图像采集,利用DSP 系统实现图像分析与处理,通过特征提取与优化算法自动判读裂缝宽度,同时在液晶屏上实时显示裂缝图像和裂缝宽度的测试结果。

裂缝深度检测试验原理:超声波在不同介质中传播时,将发生反射、折射、绕射和衰减等现象,表现为接收换能器上接收的超声波信号的声时、振幅、波形和频率发生相应变化,对这些变化分析处理就可以判定结构内部裂缝的深度。图中, H为试件高度;h为构造裂缝度 ;L1为射换能器距构造裂缝的水平距离;L2 为接收换能器距构造裂缝的水平距离。 四.试验步骤 制作带裂缝混凝土试件:该试件长0·6m,宽0·5m,高0·4m,混凝土强度C25,采用石子粒径30mm左右,裂缝深度90~100mm,缝宽 0~10mm。

混凝土裂缝深度超声波检测方法

混凝土裂缝深度超声波检测方法 林维正 1 原来裂缝深度检测方法 对混凝土浅裂缝深度(50cm以下)超声法检测主要有以下几种方法,如图1所示的t c-t0法,图2所示的英国标准BS-4408法等,“测缺规程”推荐使用t c-t0法[2,3]。 上述方法中,声通路测距BS-4408法以二换能器的边到边计算,而t c-t0法则以二换能器的中到中计算,实际上声通路既不是二换能器的边到边距离,也不是中到中距离,“测缺规程”中介绍了以平测“时距”坐标图中L轴的截矩,即直线议程回归系数的常数项作为修正值,修正后的测距提高了t c-t0法测试精度,但增加了检测工作量,实际操作较麻烦,且复测时,往往由于二换能器的耦合状态程度及其间距的变化,使检测结果重复性不良。 应用BS-4408法时,当二换能器跨缝间距为60cm,发射换能器声能在裂缝处产生很大衰减,绕过裂缝传播到接收换能器的超声信号已很微弱,因此日本国提出了“修改BS-4408法”方案,此方案将换能器到裂缝的距离改为a1<10cm,这样就使二换能器跨缝最大间距缩短在40cm以内。 “测缺规程”的条文说明部分(表4.2.1)中,当边-边平测距离为20.25cm时,按t c-t0法计算的误差较大,表4.2.1中检测精度较高的数据处理判定值为舍弃了该两组数据后的平均值。条文说明第4.3.1条仅作了关于舍弃Lˊ<d c数据的提示,实际上当二换能器测距小于裂缝深度时,超声波接收波形产生了严重畸变,导致声时测读困难,这就是造成较大误差的直接原因。表4.2.1中未知数t c-t0法在现场检测中对错误测读数值的取舍是一个不易处理的问题。 “测缺规程”的条文说明第4.1.3条指出:当钢管穿过裂缝而又靠近换能器时,钢管将使声信号“短路”,读取的声时不反映裂缝深度,因此换能器的连线应避开主钢管一定距离a,a 应使绕裂缝而过的信号先于经钢管“短路”的信号到达接收换能器,按一般的钢管混凝土及探测距离L计算,a应大于等于1.5倍的裂缝深度。 根据a≥1.5d c这一要求,如国科3表示,表1给出了相邻钢管的间距S值。 表1 检测不受钢筋影响的相邻钢筋最小间距S值

混凝土裂缝深度检测技术

混凝土裂缝深度检测技术

目录 1测试的意义 (2) 2测试方法和原理 (3) 2.1标准测试方法 (3) 2.2独创测试方法(表面波法) (6) 2.3裂缝延伸方向的测试 (8) 3模型、现场验证 (9) 3.1基础试验(1998-2006) (9) 3.2现场验证(1998-2006) (11) 4特点和适用范围 (14) 4.1特点 (14) 4.2适用范围 (14) 4.3影响因素 (14) 4.4与超声波方法相比的优越性 (15)

1测试的意义 混凝土结构是最重要的土木、建筑结构,在社会基础设施中占据举足轻重的地位。然而,由于各种原因(如干燥收缩、温度应力、外荷载、基础变形等),裂缝是混凝土结构中最常见的缺陷或损伤现象。 由于裂缝的成因、状态、发展以及在结构中的位置等的不同,对结构的危害性也有很大的区别。严重的裂缝可能危害结构的整体性和稳定性,对结构的安全运行产生很大影响。另一方面,也有些裂缝,如表面温度变化或干燥收缩引起的浅裂缝则无大的影响。此外,根据大量的观测资料,在混凝土结构物中出现的裂缝,大多数在竣工后1-2年内已产生。如果这些裂缝处于稳定状态,其对结构的影响程度要小得多。此外,对于裂缝的修补,如裂缝充填(往裂缝中注入水泥砂浆或者环氧树脂等充填材料,以防内部钢筋锈蚀)和裂缝补强(裂缝表面粘贴钢板等)都需要在明确裂缝的状态、成因的基础上才能合理、有效地进行。 因此,为了确定裂缝的状态、发展和成因,以及合理评价裂缝对结构物的影响,选择适当的修补方案和时机,掌握其深度与其长度、宽度都是非常重要的。所不同的是,裂缝的深度测试较之长度和宽度测试要困难得多,通常需要采用钻孔取样的方法加以直接测试。但是,钻孔取样的方法除费时费力,对结构也有一定的损害以外,对深裂缝由于取样困难往往难以测试。同时,对于裂缝的发展也难以监测,因此,采用合理的无损检测方法是非常必要的。 裂缝深度的无损检测方法有多种,长期以来,研究人员开发了多种测试方法,大致可以分为: 1)基于超声波的检测方法; 2)基于冲击弹性波的检测方法 然而,由于混凝土结构及裂缝的特殊性,使得裂缝深度的无损检测变得非常困难。同时,目前常用的裂缝深度的无损检测技术大多是从金属材料的裂缝深度检测中发展而来,在应用于混凝土结构中会遇到各种问题,使得测试结果常常较实际深度偏浅很多,因此难以在实际工程中推广应用。当然,对裂缝深度方向的发展的监测迄今尚无有效的手段。

混凝土结构裂缝检测与处理

混凝土结构裂缝检测与处理 混凝土结构在建设和使用过程中出现不同程度、不同形式的裂缝,是相当普遍的现象。钢筋混凝土结构受力机制和大量实践经验都说明:混凝土结构的裂缝是不可避免的,裂缝是一种人们可以接受的材料特征。但过宽的裂缝在外观上,给人们以不安全感;在质量上,不符合耐久性要求,且结构的破坏和倒塌是从裂缝的扩展开始。 裂缝产生的原因很多,但归纳起来就两大类: 第一类:由荷载引起的裂缝,也称结构性裂缝。其裂缝与荷载有关,预示结构承载力可能不足或存在问题; 第二类:由变形引起的裂缝,也称非结构性裂缝。如温度变化、混凝土收缩、地基不均匀沉降等因素引起的变形,当变形得不到满足,在结构内部产生自应力,当此应力超过混凝土允许的拉应力时,混凝土就会出现裂缝。裂缝出现后,变形得到满足或部分满足,应力发生松弛,结构刚度下降。 根据调查资料表明,两类裂缝中,变形引起的裂缝占主导,约占总裂缝的80%,其中包括变形与荷载共同作用,但以变形为主引起的裂缝;荷载引起的裂缝约在20%,其中包括变形与荷载共同作用,但以荷载为主引起的裂缝[3]。 裂缝原因分析是为了弄清裂缝成因、性质和危害,为裂缝的处理提供依据。裂缝检测的目的是查明裂缝的分布特征、宽度、深度及发展情况,为裂缝的分析和后续处理提供依据。 裂缝检测应测定结构裂缝的分布位置和裂缝走向,并对需要观测的裂缝统一编号。如裂缝仍在发展,则每次裂缝分布特征描述应标明检测时间,便于分析裂缝变化趋势。 裂缝宽度沿其长度方向一般是不均匀的,宽度观测位置每条裂缝至少两处,一处应在裂缝的最宽处,另一处应在裂缝的末端。 测量裂缝宽度常用工具是裂缝比对卡和读数显微镜。裂缝比对卡上面有粗细不等并标注有宽度的平行线条,将其覆盖于裂缝上,可比较出裂缝的宽度;读数显微镜是配有刻度和游标的光学透镜,从镜中看到的是放大的裂缝,通过调节游标读出裂缝宽度。 如裂缝仍在发展,裂缝宽度值上应标明检测时间,便于分析裂缝变化。裂缝深度沿其长度方向一般也是不均匀的,检测一般只针对裂缝宽度最大处。 裂缝深度检测有凿开法和超声波法。采用凿开法,先用医用针管吸入红墨水,从缝口注入,然后局部凿开裂缝,测定红墨水深入深度即为裂缝深度。该方法由于是局部破损检测,不便于大面积使用,且适用裂缝深度也有一定限制,不适用于深度较大的裂缝。超声波法由于是无损检测,且对裂缝深度没有限制,有着广泛的应用。 超声波检测裂缝深度有三种方法:单面平测法、双面斜测法、钻孔对测法[5]。单面平测法适用于裂缝部位只有一个可测表面,估计裂缝深度不大于500mm的构件;双面斜测法适用于裂缝部位具有两个相互平行的测试表面的构件;钻孔对测

楼板裂缝鉴定报告(范文示范)

№J/D 11-030-00306鉴定报告 委托单位:重庆金港房地产开发有限公司 工程名称:重庆市黔江区金港·观山水一期D栋 鉴定内容:楼板结构安全性 报告日期:2011年9月23日

重庆市建设工程质量检验测试中心

委托单位:重庆金港房地产开发有限公司 设计单位:重庆市建筑工程设计院有限责任公司施工单位:江苏弘盛建设集团重庆分公司 监理单位:重庆新鲁班监理公司 鉴定: 审核: 批准: 鉴定单位:重庆市建设工程质量检验测试中心地址:重庆市渝中区人和街31号

联系电话:023-********,63621566,63607021 邮编:400015 本报告共8份,其中正本2份,副本6份。 目录 1工程概况 (1) 2. 鉴定的目的、内容及方法 (1) 2.1 目的 (1) 2.2 内容及方法 (2) 3 主要鉴定依据 (2) 4 主要检测设备 (3) 5结构现场检测情况 (3) 5.1 楼板混凝土强度检测 (3) 5.2 楼板厚度检测 (5) 5.3 楼板钢筋配置检测 (6) 5.4 楼板裂缝宽度、走向检测 (8) 6 鉴定结论及建议 (10)

7 附件 (10) 7.1 附件一:抽检楼板厚度测点位置示意图 (11) 7.2 附件二:抽检楼板裂缝特性示意图 (14) 7.3 附图三:二~三十一层平面布置示意图 (17)

重庆市黔江区金港·观山水一期D栋 楼板结构安全性鉴定 重庆市建设工程质量检验测试中心受重庆金港房地产开发有限公司的委托,对重庆市黔江区金港·观山水一期D栋楼板的结构安全性进行鉴定。接受委托后,我中心检测人员于2011年9月13日至15日在工程现场,依据“合同”内容和相关规范的技术规定对该栋住宅楼板进行了检测,经对搜集的技术资料、检测数据进行计算、整理及分析后,现提供报告如下: 1工程概况 金港·观山水一期D栋工程位于重庆市黔江区滨江路地段(黔江区植物油厂内),建筑用途住宅。该工程地上共34层,其中负一层为地下室,采用现浇钢筋混凝土剪力墙结构体系, 基础为人工挖孔桩;建筑总高为99米,建筑面积约27945㎡;建筑按丙类建筑,结构安全等级为二级;结构抗震设防烈度为6度,结构抗震等级为三级,合理使用年限为五十年。 该工程建筑单位为重庆金港房地产开发有限公司,设计单位为重庆市建筑工程设计院有限责任公司,施工单位为江苏弘盛建设集团重庆分公司,监理单位为重庆新鲁班监理公司。该工程于2009年5月开工建设,2011年4月竣工。 2. 鉴定的目的、内容及方法 2.1 目的 该栋住宅楼业主在接房及装修过程中,发现部分楼板存在贯穿性裂缝,这些裂缝是否会对楼板的安全使用造成影响,是业主普遍关心的问题,基于此目的,重庆金港房地产开发有限公司特委托我中心对该栋住宅部分的楼板结构安全性进行检测

裂缝深度检测意义与特点

裂缝深度检测的意义与特点(宁波升拓检测技术有限公司浙江宁波 NCIT) 对应的仪器:上图:混凝土多功能检测仪(SCE-MATS) 下图:混凝土超声波检测仪(SCU-PWT)

概述: 混凝土结构是最重要的土木、建筑结构,在社会基础设施中占据举足轻重的地位。然而在使用过程中,不可避免地出现各种老化、劣化现象(如裂缝、混凝土强度降低等)。同时,如果施工质量得不到很好的保证,会加速结构的劣化,从而造成社会经济的损失。为此,升拓检测历时10余年,与国内外相关机构合作开发了一整套针对混凝土的浇筑质量、结构的缺陷的综合解决方案和技术体系。该方案基于无损检测技术,具有测试效率高、可靠性好、对结构无损伤等特点,可以大大地提高混凝土材料及结构的质量。该技术体系的检测内容主要包括: 1) 裂缝深度; 2) 混凝土构件质量(强度及刚度); 3) 结构尺寸 4) 表面剥离、脱空及内部缺陷; 5) 岩体力学特性及分级测试 测试意义: 整个技术体系采用冲击弹性波作为测试媒介,并集成到测试设备中(混凝土多功能检测仪,SCE-MATS)。其测试精度和效率达到工程要求,已在国内外数百个各类工程中得到了实际应用。我们具有相关技术的全部知识产权,并申请和获得了多项国家发明专利,产品出口到日本等海外。 混凝土结构是最重要的土木、建筑结构,在社会基础设施中占据举足轻重的地位。然而,由于各种原因(如干燥收缩、温度应力、外荷载、基础变形等),裂缝是混凝土结构中最常见的缺陷或损伤现象。由于裂缝的成因、状态、发展以及在结构中的位置等的不同,对结构的危害性也有很大的区别。严重的裂缝可能危害结构的整体性和稳定性,对结构的安全运行产生很大影响。另一方面,也有些裂缝,如表面温度变化或干燥收缩引起的浅裂缝则无大的影响。此外,根据大量的观测资料,在混凝土结构物中出现的裂缝,大多数在竣工后1-2年内已产生。如果这些裂缝处于稳定状态,其对结构的影响程度要小得多。此外,对于裂缝的修补,如裂缝充填(往裂缝中注入水泥砂浆或者环氧树脂等充填材料,以防内部钢筋锈蚀)和裂缝补强(裂缝表面粘贴钢板等)都需要在明确裂缝的状态、成因的基础上才能合理、有效地进行。因此,为了确定裂缝的状态、发展和成因,以及合理评价裂缝对结构物的影响,选择适当的修补方案和时机,掌握其深度与其长度、宽度都是非常重要的。所不同的是,裂缝的深度测试较之长度和宽度测试要困难得多,通常需要采用钻孔取样的方法加以直接测试。但是,钻孔取样的方法除费时费力,对结构也有一定的损害以外,对深裂缝由于取样困难往往难以测试。同时,对于裂缝的发展也难以监测,因此,采用合理的无损检测方法是非常必要的。 裂缝种类允许最大宽度(mm)深度要求 例如,在《公路桥 梁养护技术规范》 (2004)中,对裂 缝深度做了如下规

裂缝检测报告范本

XXXX空心板外观检测报告

目录 一、项目概况 (1) 二、检测标准 (1) 三、检测方法 (2) 四、检测结果 (2) 4.1 裂缝测试结果 (2) 4.2 保护层厚度测试结果 (7) 4.3 混凝土强度测试结果 (10) 五、主要结论和建议 (10) 5.1 检测结论......................................................... 错误!未定义书签。 5.2 建议............................................................... 错误!未定义书签。附图I 桥梁检测照片.. (12)

XXXX空心板 外观检测报告 一、项目概况 桥中心桩号xxxx,上部结构为4跨16m预应力混凝土空心板桥,下部结构为桩柱式桥墩和桥台,钻孔灌注桩基础。该桥老桥修建于2007年,本次改建工程中在其两侧各增加两块空心板进行加宽,其中老空心板桥设计等级为公路II 级,加宽空心板设计等级为公路I级。 该桥施工完成后发现加宽空心板底板出现裂缝,受委托,我单位对该桥的裂缝情况进行现场检测。 二、检测标准 ●《公路桥梁技术状况评定标准》(JTG/T H21-2011) ●《公路桥梁承载能力检测评定规程》(JTG/T J21-2011) ●《公路桥涵养护规范》(JTG H11-2004) ●《混凝土中钢筋检测技术规程》(JGJ/T 152-2008) ●《建筑结构检测技术标准》(GB/T 50344-2004) ●《建筑结构检测技术标准》(GB/T 50344-2004) ●《混凝土结构工程施工质量验收规》(GB50204-2002) ●《回弹法检测混凝土抗压强度技术规程》(JGJ/T 23-2011)

创新技术-混凝土裂缝检测方法

升拓技术——混凝土裂缝检测方法 (四川升拓检测技术有限责任公司,四川成都610045)摘要:混凝土裂缝检测的创新技术——裂缝深度探测技术(简称“表面波法”)。该方法采用冲击弹性波中的瑞利波(表面波的一种)的衰减特性来测试混凝土构造物中的裂缝深度。该方法测试范围大,受充填物、钢筋、水分的影响小,特别适合测试较深裂缝。 关键词:混凝土裂缝检测,裂缝深度,表面波法,混凝土检测,混凝土裂缝深度测试仪 自1900年混凝土的使用引起了建材界的革命时起,混凝土就注定成为土木工程领域不可或缺的、改变世界景观的重要材料之一。因此,对其质量的重视不可忽视。今天我们先关注混凝土裂缝检测的相关问题。对裂缝深度采用什么样的方法检测也是我们探讨的重点。 由于各种原因(如干燥收缩、温度应力、外荷载、基础变形等),裂缝是混凝土结构中最常见的缺陷或损伤现象。但因裂缝的成因、状态、发展以及在结构中的位置等的不同,对结构的危害性也有很大的区别。严重的裂缝可能危害结构的整体性和稳定性,对结构的安全运行产生很大影响。另一方面,也有些裂缝,如表面温度变化或干燥收缩引起的浅裂缝则无大的影响。此外,根据大量的观测资料,在混凝土结构物中出现的裂缝,大多数在竣工后1-2年内已产生。如果这些裂缝处于稳定状态,其对结构的影响程度要小得多。此外,对于裂缝的修补,如裂缝充填(往裂缝中注入水泥砂浆或者环氧树脂等充填材料,以防内部钢筋锈蚀)和裂缝补强(裂缝表面粘贴钢板等)都需要在明确裂缝的状态、成因的基础上才能合理、有效地进行。 因此,为了确定裂缝的状态、发展和成因,以及合理评价裂缝对结构物的影响,选择适当的修补方案和时机,掌握其深度与其长度、宽度都是非常重要的。所不同的是,裂缝的深度测试较之长度和宽度测试要困难得多,通常需要采用钻孔取样的方法加以直接测试。但是,钻孔取样的方法除费时费力,对结构也有一定的损害以外,对深裂缝由于取样困难往往难以测试。同时,对于裂缝的发展也难以监测,因此,采用合理的无损

南水北调混凝土结构质量缺陷及裂缝技术规定

南水北调中线干线工程 混凝土结构质量缺陷及裂缝处理技术规定 (试行) 2007-02-14发布2007-02-14实施南水北调中线干线工程建设管理局发布

前言 为进一步规范南水北调中线干线工程混凝土结构质量缺陷和裂缝处理工作,参照水利、电力、工民建行业的相关规程、规范、标准、规定及南水北调工程建设的有关规定,并参考了国内多个已完工验收的水利工程的相关技术要求,制定本规定。 本规定主要内容包括:总则,主要术语,质量缺陷检查,质量缺陷分类,质量缺陷处理程序,质量缺陷处理及检查、验收。 本规定解释单位:南水北调中线干线工程建设管理局 本规定的主编单位:南水北调工程建设监管中心 南水北调中线干线工程建设管理局本规定主要起草人:曹为民刘世煌曹雪玲李舜才石红伟 朱健慰吴健韩黎明岳松涛刘杰 殷立涛孙卫军由国文蔡建平冯国一

目次 1总则............................................................. . . . (4) 1.1编制目的 (4) 1.2适用范围 (4) 1.3主要内容 (4) 1.4主要编制依据 (4) 1.5其他 (4) 2 主要术语 (5) 2.1混凝土结构 (5) 2.2混凝土结构质量缺陷 (5) 3 混凝土结构质量缺陷检查 (5) 3.1一般要求 (5) 3.2检查项目 (6) 4 混凝土结构质量缺陷原因分析........................................... ..7 4.1混凝土结构外部和内部质量缺陷原因分析...................... . (7) 4.2混凝土结构裂缝成因分析 (7) 4.3混凝土结构止水缺陷原因分析…………………………………. .8 5 混凝土结构质量缺陷分类..................................... .. (8) 5.1混凝土结构质量缺陷分类..................................... . (8) 5.2混凝土结构外观质量缺陷判别标准 (9) 5.3混凝土结构内部质量检查标准.................................. . (9) 5.4混凝土结构裂缝检查判别标准 (10) 5.5混凝土结构止水检查判别标准 (10) 6 混凝土结构质量缺陷处理程序 (10) 6.1Ⅰ类质量缺陷 (10) 6.2Ⅱ类质量缺陷 (10)

混凝土裂缝限制标准

混凝土裂缝限制标准[1] 混凝土的裂缝是不可避免的,其微观裂缝是本身物理力学性质决定的, 但它的有害程度是可以控制的,有害程度的标准是根据使用条件决定的。目前世界各国的规定不完全一致,但大致相同。如从结构耐久性要求、承载力要求及正常使用要求,最严格的允许裂缝宽度为0.1mm。近年来,许多国家已根据大量试验与泵送混凝土的经验将其放宽到0.2mm。当结构所处的环境正常,保护层厚度满足设计要求,无侵蚀介质,钢筋混凝土裂缝宽度可放宽至0.4mm;在湿气及土中为0.3mm;在海水及干湿交替中为0.15mm。沿钢筋的顺筋裂缝有害程度高,必须处理。 近年来预应力混凝土应用范围逐渐推广到更多的结构领域,如大跨超长、超厚及超静定框架结构,其混凝土强度等级必须提高至C50。在采用泵送条件下,其收缩与水化热大大增加,约束应力裂缝很难避免,张拉前开裂,张拉后又不闭合,裂缝控制的难度更加困难。预应力结构裂缝允许宽度是严格的,预应力筋腐蚀属“应力腐蚀”并有可能脆性断裂,预兆性较小,裂缝扩展速度快。裂缝深度h与结构厚度H的关系如下:h≤0.1H表面裂缝;0.1H<h<0.5H 浅层裂缝;0.5H≤h<1.0H纵深裂缝;h=H贯穿裂缝。 应当尽量避免贯穿性及纵深裂缝,如出现该种裂缝应采取化学灌浆处理来保证强度,即贯缝抗拉强度必须超过混凝土抗拉强度。 早期裂缝一般出现在一个月之内,中期裂缝约在6个月之内,其后1~2年或更长时间属于后期裂缝。 混凝土裂缝原因分析 在修补裂缝前应全面考虑与之相关的各种影响因素,仔细研究产生裂缝的原因,裂缝是否已经稳定,若仍处于发展过程,要估计该裂缝发展的最终状态。在日本混凝土协会“混凝土裂缝的调查和修补指南”中,对调查的原则、普查、详查方法均作了详细规定,主要有: 裂缝的现状调查(裂缝类型和宽度);有无病害(漏水、钢筋锈蚀);产生裂缝的经过(发生时间和过程);设计书的检查;施工记录的检查;根据混凝土钻芯检查构件的强度、厚度;荷载调查;中性化试验;钢筋调查(钢筋位置、细筋数量及有无锈蚀);地基调查;混凝土分析;荷载试验;振动试验。 混凝土裂缝的处理 1.表面处理法:包括表面涂抹和表面贴补法 表面涂抹适用范围是浆材难以灌入的细而浅的裂缝,深度未达到钢筋表面的发丝裂缝,不漏水的缝,不伸缩的裂缝以及不再活动的裂缝。表面贴补(土工膜或其它防水片)法适用于大面积漏水(蜂窝麻面等或不易确定具体漏水位置、变形缝)的防渗堵漏 2.填充法 用修补材料直接填充裂缝,一般用来修补较宽的裂缝(〉0.3mm),作业简单,费用低。宽度小于0.3mm,深度较浅的裂缝、或是裂缝中有充填物,用灌浆法很难达到效果的裂缝、以及小规模裂缝的简易处理可采取开V型槽,然后作填充处理。 3.灌浆法 此法应用范围广,从细微裂缝到大裂缝均可适用,处理效果好。 4.结构补强法 因超荷载产生的裂缝、裂缝长时间不处理导致的混凝土耐久性降低、火灾造成的裂缝等影响结构强度可采取结构补强法。包括断面补强法、锚固补强法、预应力法等混凝土裂缝处理效果的检查包括修补材料试验;钻心取样试验;压水试验;压气试验等。 参考文献:

超声波测缝检测报告

武汉岩联工程技术有限公司 混凝土裂缝检测记录 YLQ/D00-173-2016 编号: 批准:审核:检验:

混凝土裂缝深度 检测报告 工程名称:模拟试验工程 工程地点:武汉市青年城 委托单位:/ 检测日期: 报告总页数:7页(含此页) 报告编号: 武汉岩联工程技术有限公司 2016年9月15日

模拟试验工程 混凝土裂缝检测报告 检测人员: 报告编写: 审核人: 批准人: 声明: 1. 本报告涂改、错页、换页、漏页无效; 2. 检测单位名称与检测报告专用章名称不符者无效; 3. 本报告无我单位相关技术资格证书章无效; 4. 本报告无检测、审核、授权签字人签字无效; 5.未经书面同意不得部分复制或作为他用; 6.如对本检测报告有异议或需要说明之处,可在报告发出后15 天内向本检测单位书面提出,本单位将于5日内给予答复。 检测单位:武汉岩联工程技术有限公司 地址:武汉市江夏区经济开发区阳光大道紫昕科技园1号楼 邮编:430023 电话: 传真: 联系人:

超声法测混凝土裂缝检测报告 目录 一、项目概况 (4) 二、测试构件状况 (4) 三、检测情况 (4) 四、检测仪器设备、检测原理和标准 (5) 1、检测仪器设备 (5) 2、检测原理 (5) 3、检测依据标准及代号: (5) 五、检测结果 (6) 六、检测结论 (6) 七、附图表 (6)

超声法测混凝土裂缝检测报告 一、项目概况 该项目位于武汉市青年城,受建设方委托,我公司于2016年9月15日对蓄水池裂缝进行了混凝土裂缝深度、宽度检测。根据施工单位提供的基础资料,该项目基本情况如表1所示 二、测试构件状况 该构件为蓄水池挡土墙,由于侧土压力导致墙体变形开裂。 三、检测情况 我公司于2016年9月15日进场并完成现场的检测工作。 根据委托单位提供的设计及施工资料,各构件的情况见表2,本报告中构件号按设计图纸编写,测区号见分布图。

混凝土开裂原因及处理方法

混凝土开裂原因及处理方法 导读 1、普通混凝土裂缝产生的原因 2、普通混凝土裂缝的处理方法 3、大体积混凝土裂缝产生的原因 4、大体积混凝土有害、无害裂缝判别标准 5、无害裂缝处理方法 6、有害裂缝处理方法 一、普通混凝土裂缝产生的原因 01

混凝土在常规静、动荷载及次应力下产生的裂缝称荷载裂缝,归纳起来主要有直接应力裂缝、次应力裂缝两种。直接应力裂缝是指外荷载引起的直接应力产生的裂缝, 次应力裂缝是指由外荷载引起的次生应力产生裂缝。 荷载裂缝特征依荷载不同而异呈现不同的特点。这类裂缝多出现在受拉区、受剪区或振动严重部位。但必须指出,如果受压区出现起皮或有沿受压方向的短裂缝,往往是结构达到承载力极限的标志,是结构破坏的前兆,其原因往往是截面尺寸偏小。 02 温度变化引起的裂缝 混凝土具有热胀冷缩性质,当外部环境或结构内部温度发生变化,混凝土将发生变形,若变形遭到约束,则在结构内将产生应力,当应力超过混凝土抗拉强度时即产生温度裂缝。在某些大跨径桥梁中,温度应力可以达到甚至超出活载应力。温度裂缝区别其它裂缝最主要特征是将随温度变化而扩张或合拢。 03

在实际工程中,混凝土因收缩所引起的裂缝是最常见的。在混凝土收缩种类中,塑性收缩和缩水收缩(干缩)是发生混凝土体积变形的主要原因,另外还有自生收缩和炭化收缩。 塑性收缩。发生在施工过程中、混凝土浇筑后4~5小时左右,此时水泥水化反应激烈,分子链逐渐形成,出现泌水和水分急剧蒸发,混凝土失水收缩,同时骨料因自重下沉,因此时混凝土尚未硬化,称为塑性收缩。塑性收缩所产生量级很大,可达1%左右。在骨料下沉过程中若受到钢筋阻挡,便形成沿钢筋方向的裂缝。在构件竖向变截面处如T梁、箱梁腹板与顶底板交接处,因硬化前沉实不均匀将发生表面的顺腹板方向裂缝。为减小混凝土塑性收缩,施工时应控制水灰比,避免过长时间的搅拌,下料不宜太快,振捣要密实,竖向变截面处宜分层浇筑。 缩水收缩(干缩)。混凝土结硬以后,随着表层水分逐步蒸发,湿度逐步降低,混凝土体积减小,称为缩水收缩(干缩)。因混凝土表层水分损失快,内部损失慢,因此产生表面收缩大、内部收缩小的不均匀收缩,表面收缩变形受到内部混凝土的约束,致使表面混凝土承受拉力,当表面混凝土承受拉力超过其抗拉强度时,便产生收缩裂缝。混凝土硬化后收缩主要就是缩水收缩。如配筋率较大的构件(超过3%),钢筋对混凝土收缩的约束比较明显,混凝土表面容易出现龟裂裂纹。

议超声平测法检测混凝土裂缝深度

议超声平测法检测混凝土裂缝深度 议超声平测法检测混凝土裂缝深度当混凝土结构的裂缝部位只有一个可测表面,估计裂缝深度又不大于50毫米时,采 用单面平测法。测试方法是分别检测跨缝和不跨缝的声时和测距后,计算出裂缝深度。其基本原理是根据在同一测距 下,不跨缝声波是直线传播,而跨缝声波需绕过裂缝末端形成折线传播,传播声时延长,在认为跨缝与不跨缝测试的混 凝土声速基本一致的条件下,根据其传播声时的差别计算出裂缝的深度。(一)存在的问题在实际测试中,经常碰到 在同一个裂缝深度部位,用不同的测距,由所测声时计算出的裂缝深度差异较大,造成这种(裂缝)测试值离散大的主 要原因是1、 平测法计算缝深中采用的声速是测量不跨缝条件下不同测距的声时,再以“时—距”法计算混凝土的平均声速,但由于混凝土是一种非均匀的弹塑性材料,即使是正常混凝土各点的声速值也必然存在差异;2、平测时如果发、收换能器 被邻近的钢筋“短路”,那么读取的声时就不对应裂缝部位混凝土的声速,更不能对应声波绕过裂缝末端的声时,造成声时 误差,尤其当裂缝较深时,首波信号微弱,更容易造成首波读数误差甚至丢波;3、混凝土由骨料、水泥和内部微小气 泡组成,混凝土在形成时内部就存在很多微细裂缝,这些裂缝是混凝土材料本身所固有的,属于无害裂缝,当由于各种 原因在混凝土内部产生拉应变,会造成有害裂缝,由于裂缝的形成原因和发展都很复杂,其分布和走向是不确定的,但 在平测法中以裂缝纵深走向垂直于混凝土表面且声波绕过裂缝末端为计算公式的物理模型,简化的物理模型与实际情况 之间有必然的差异。(二)改进的方法为了提高测试的准确度,在提高测试参量测试精度的同时,要有正确的测试方法 和数据处理方法,减少测试误差:1、布置测点时应避免换能器连线与邻近的钢筋平行,如能保持45°左右的夹角最好, 以避免钢筋对首波的“短路”;2、选择被测裂缝部位时,应选择测距范围内混凝土表面平整,无表面龟裂;3、与缝深相比 测距过小或过大时声时的测试误差较大,当测距与缝深相近时,测试较准,因此技术规程作出舍弃小于平均缝深的测距 点和舍弃大于3倍平均缝深的测距点的测距限制,并以首波反相作为判断测距与缝深相接近的判据。在计算缝深平均值 时要根据测试情况舍弃可能造成大误差的测量值,纠正测点越多其平均值越准确的认识误区。 NM-4型超声仪性能剖析 NM-4型超声仪性能剖析,NM-4与进口同类超声仪的比较自20世纪70年代,混凝土超声仪在我国研制生产和推广应用,历经模拟仪器、数字式仪器和智能型仪器三个阶段。20世纪70年代、80年代以小规模集成电路为核心元件的模拟式超声仪为主,80年代后期、90年代初期推出以Z80单板机为核心处理单元的数字式超声仪,90年代中期以后相继推出了以微电脑为核心处理单元的智能型超声仪,目前智能型超声仪已经成为混凝土超声仪的主流。NM-4超声仪与目前市场销售的进口混凝土超声仪比较,价位接近,但仪器的配置、性能、功能等诸方面却有本质的区别,NM-4以微电脑(386/486)为主控系统,进口同类超声仪器以单片机为主控系统,N M-4在运算速度、运算能力、内存容量等方面有明显优势,属于最新一代的智能型仪器。现抛开技术指标,仅从用户使用需求角度,将NM-4与进口同类超声仪器做简单比较:1、声参量测试: NM-4可以测试声时、幅度、(频率)、波形,进口同类超声仪只能测试声时。 2、 波形采集并显示: 波形在混凝土检测中十分重要,混凝土的内部缺陷将导致波形畸变,NM-4可以采集、存储、显示波形,进口同类超声仪无此功能。 NM-4对波形的高速实时动态显示功能是基于主控系统和信号采集系统(A/D)的高速采集和高速传输能力而实现的,在进口同类超声仪上是不可能实现的。3、 声参量的自动判读: NM-4与进口同类超声仪虽然都有声参量的自动判读功能,但方法有本质的区别,NM-4的声参量的自动判读方法可以保证声时判读精度,从根本上解决了丢波或误判问题,获中国发明专利。4、内存容量: NM-4与进口同类超声仪虽然都是芯片存储,但存储容量差别很大,NM-4存储量为MByte(兆字节)级(4M、16M、72M可选),而进口同类超声仪的存储量仅为KByte(千字节)级(1M=1024K),进口同类超声仪只存储数据,不存波形,而NM-4可以存储波形在3000条以上,存储数据就更多了。5、软件可扩展能力: NM-4的用户可以从康科瑞公司的网站上直接下载升级软件后在仪器上升级,进口同类超声仪无软件扩展能力6、后处理功能: NM-4的高速运算能力支持具有很强的数据处理能力,包括对波形的处理(数字滤波、指数放大、频谱分析等)和对数据的处理(依据规范进行强度、缺陷、裂缝等的计算),进口同类超声仪只能做简单的计算7、打印: NM-4可以支持打印,进口同类超声仪不直接支持打印8、屏幕显示: NM-4的屏幕显示是640*480LCD(半反半透式,在强光和弱光下都可清晰显示),清晰、分辨率高,而进口同类超声仪一般是

裂缝测深侧宽仪操作规程

BJQF-1型混凝土裂宽测深仪 1、开、机PDA 2、在桌面界面下,用手写笔点击屏幕我的设备图标,点开后运行裂缝仪程序,即可运行测量软件。 3、将PDA的探头连接好,打开探头和PDA的开关,选择自动测量,此时屏幕上自动显示当前裂缝的宽度,移动侧头可连续测量。当裂缝特别细小时,可点击工具的放大菜单对裂缝进行、缩小查看全部裂缝。当测量数据稳定后,点击保存。 BJCS-1裂缝测深仪操作规程 1、测点布置 每条裂缝布置一个或多个测点 1收发探头应跨缝布置于裂缝的两侧,他们之间的连线垂直于北侧裂缝,:并且收发探头应处在两根钢筋中间位置为宜。 2应避免探头连线与附近的钢筋在即距离范围内平行。 3置测点时,应尽量选择两探头连线方向的周边范围内混凝土表面大致平整部位。若不平整,可使用砂轮打磨到大致平整。 2、连接主机 测点布置好就可以连接主机,先把收发探头可靠的连接到主机上,接着把探头间距自动读取器牢固的连接到主机上。打开电源,主机启动后直接进入主界面。 3、参数设置

输入所测构件的详细信息按确定并保存返回。 4、裂缝测量 1必须使用耦合剂,以保证探头地面与混凝土表面均有良好的耦合,并且在探头移动过程中偶和良好。 2 探头的移动速度不能过快,并使收发探头道裂缝距离大致相等。 5、开始测试 把收发探头分别置于裂缝两侧边缘,,按测试键开始测试,发射探头将发出-哒-哒-的声音同时液晶屏将显示首波的相应状态,然后缓慢的同时等距离的向外移动收发探头,当主机一旦检测到首波相位有连续的+状态变成连续的-状态时,将自动接收发射,并计算显示出所实测裂缝深度。 6、一测测量完毕后,主机将提示你是否保存测量结果,按确定主机保存测量结果。

混凝土裂缝处理技术方法

混凝土裂缝处理技术方法 混凝土的裂缝有害程度的标准是根据使用条件决定的。目前世界各国的规定不完全一致,但大致相同。如从结构耐久性要求、承载力要求及正常使用要求,最严格的允许裂缝宽度为0.1mm。近年来,许多国家已根据大量试验与泵送混凝土的经验将其放宽到0.2mm。当结构所处的环境正常,保护层厚度满足设计要求,无侵蚀介质,钢筋混凝土裂缝宽度可放宽至0.4mm;在湿气及土中为0.3mm;在海水及干湿交替中为0.15mm。沿钢筋的顺筋裂缝有害程度高,必须处理。近年来预应力混凝土应用范围逐渐推广到更多的结构领域,其混凝土强度等级必须提高至C50。在采用泵送条件下,其收缩与水化热大大增加,约束应力裂缝很难避免,张拉前开裂,张拉后又不闭合,裂缝控制的难度更加困难。预应力结构裂缝允许宽度是严格的,预应力筋腐蚀属“应力腐蚀”并有可能脆性断裂,预兆性较小,裂缝扩展速度快。裂缝深度h与结构厚度H的关系如下:h≤0.1H表面裂缝; 0.1H<h<0.5H浅层裂缝;0.5H≤h<1.0H纵深裂缝;h=H贯穿裂缝。应当尽量避免贯穿性及纵深裂缝,如出现该种裂缝应采取化学灌浆处理来保证强度,即贯缝抗拉强度必须超过混凝土抗拉强度。早期裂缝一般出现在一个月之内,中期裂缝约在6个月之内,其后1~2年或更长时间属于后期裂缝。 混凝土裂缝原因分析 在修补裂缝前应全面考虑与之相关的各种影响因素,仔细研究产生裂缝的原因,裂缝是否已经稳定,若仍处于发展过程,要估计该裂缝发展的最终状态。调查的原则、普查、详查方法主要有:裂缝的现状调查(裂缝类型和宽度);有无病害(漏水、钢筋锈蚀);产生裂缝的经过(发生时间和过程);设计书的检查;施工记录的检查;根据混凝土钻芯检查构件的强度、厚度;荷载调查;中性化试验;钢筋调查(钢筋位置、细筋数量及有无锈蚀);地基调查;混凝土分析;荷载试验;振动试验。 混凝土裂缝处理方法 1.表面处理法:包括表面涂抹和表面贴补法。涂抹适用范围是浆材难以灌入的细而浅的裂缝,深度未达到钢筋表面的发丝裂缝,不漏水的缝,不伸缩的裂缝以及不再活动的裂缝。表面贴补(土工膜或其它防水片)法适用于大面积漏水(蜂窝麻面等或不易确定具体漏水位置、变形缝)的防渗堵漏 2.填充法:用修补材料直接填充裂缝,一般用来修补较宽的裂缝,作业简单,费用低。宽度小于0.3mm,深度较浅的裂缝、或是裂缝中有充填物,用灌浆法很难达到效果的裂缝、以及小规模裂缝的简易处理可采取开V型槽,然后作填充处理。 3.灌浆法:此法应用范围广,从细微裂缝到大裂缝均可适用,处理效果好。 4.结构补强法:因超荷载产生的裂缝、裂缝长时间不处理导致的混凝土耐久性降低、火灾造成的裂缝等影响结构强度可采取结构补强法。包括断面补强法、锚固补强法、预应力法等.

混凝土结构常用无损检测方法

混凝土结构常用无损检测方法 摘要:介绍了回弹法、超声波法、雷达法等各种混凝土无损检测方法的工作原理,分析了各自的特点及适用范围。在实际工程中,宜使用两种或两种以上方法进行检测,以互相验证,提高检测的效率及可靠性。? 无论是工业及民用建筑,还是公路、铁路、水利及水电工程等都广泛使用混凝土材料,混凝土的质量关系到整个工程的质量。传统的混凝土强度检验方法是在浇筑地点随机抽取试样,对试样进行抗压强度试验,由试验结果来评定混凝土的强度。由于试样的制作条件、养护环境及受力状态与原位混凝土均存在着明显的差异,试样的实验结果难以全面、准确地反映原位混凝土的质量状况,显然无损检测是获得原位混凝土真实质量的有效方法。早在20 世纪30 年代,人们就开始研究混凝土无损检测技术。1948 年,瑞士科学家施密特( E. Schmidt )研制成回弹仪;1949 年莱斯利(Leslie )等人用超声脉冲成功检测混凝土;60年代费格瓦洛(I. Facaoaru)提岀用声速、回弹综合法估算混凝土强度;80年代中期,美国的Mary Sansalone 等用机械波反射法进行混凝土无损检测;90 年代以来,随着科学技术的快速发展,涌现岀一批新的测试方法,如微波吸收、雷达扫描、红外线谱、脉冲回波等方法。我国从50年代开始引进瑞士、英国、波兰等国的超声波仪器和回弹仪,并结合工程应用开展了一定的研究工作;60 年代初我国研制成功多种型号的超声波仪器,随后广泛进行了混凝土无损检测技术的研究和应用;80 年代混凝土无损检测技术在我国得到快速发展,并取得了一定的研究成果,除了超声、回弹等无损检测方法外,还进行了钻芯法、后装拔岀法的研究;90 年代以来,雷达技术、红外成像技术、冲击回 波技术等进入实用阶段,同时超声波检测仪器也由模拟式发展为数字式,可将测试数据传入计算机进行各种数据处理,以进一步提高检测的可靠性。 混凝土无损检测的方法主要有回弹法、超声法、超声回弹综合法、雷达法、冲击回波法、红外成像法、钻芯法、拔岀法及超声波CT 法等,其中钻芯法和拔岀法属局部破损或半破损检测方法。以下就各种方法的工作原理、特点及适用范围作以述评。 各种无损检测方法工作原理及其特点述评 1.1 回弹法 回弹法是以在混凝土结构或构件上测得的回弹值和碳化深度来评定混凝土结构或构件强度的一种方法,它不会对结构或构件的力学性质和承载能力产生不利影响,在工程上已得到广泛应用。 回弹法使用的仪器为回弹仪,它是一种直射锤击式仪器,是用一弹击锤来冲击与混凝土表面接触的弹击杆,然后弹击锤向后弹回,并在回弹仪的刻度标尺上指示岀回弹数值。回弹值的大小取决于与冲击能量有关的回弹能量,而回弹能量则反映了混凝土表层硬度与混凝土抗压强度之间的函数关系,即可以在混凝土的抗压强度与回弹值之间建立起一种函数关系,以回弹值来表示混凝土的抗压强度。回弹法只能测得混凝土表层的质量状况,内部情况却无法得知,这便限制了回弹法的应用范围,但由于回弹法操作简便,价格低廉,在工程上还是得到了广泛应用。 回弹法的基本原理是利用混凝土强度与表面硬度之间的关系,通过一定动能的钢杆件弹击混凝土表 面,并测得杆件回弹的距离(回弹值),利用回弹值与强度之间的相关关系来推定混凝土强度。 通常采用试验的方法得到回弹值与强度之间的相关关系,即建立混凝土强度f c cu与回弹值R之间 的一元回归公式,或混凝土强度与回弹值R及主要影响因素(如碳化深度)之间的二元回归公式。回归 的公式可采用各种不同的函数方程形式,根据大量试验数据进行回归拟合,择其相关系数较大者作为实用经验公式。目常常用的形式主要有以下几种: 直线方程 f c cu A BR 幂函数方程 f c cu AR B

相关主题
文本预览
相关文档 最新文档