当前位置:文档之家› 椭圆性质总结及习题

椭圆性质总结及习题

椭圆性质总结及习题
椭圆性质总结及习题

椭 圆

一.考试必“背”

1 椭圆的两种定义:

①平面内与两定点F 1,F 2的距离的和等于定长()

212F F a >的点的轨迹,即点集M={P| |PF 1|+|PF 2|=2a ,2a >|F 1F 2|};(212F F a =时为线段21F F ,212F F a <无轨迹)。其中两定点F 1,F 2叫焦点,定点间的距离叫焦距。

②平面内一动点到一个定点和一定直线的距离的比是小于1的正常数的点的轨迹,即点集

M={P|

e d PF

=,0<e <1的常数

}。(1=e 为抛物线;1>e 为双曲线)

2 标准方程:

(1)焦点在x 轴上,中心在原点:122

22=+b

y a x (a >b >0);

焦点F 1(-c ,0), F 2(c ,0)。其中22b a c -=

(一个?Rt )

(2)焦点在y 轴上,中心在原点:122

22=+b

x a y (a >b >0);

焦点F 1(0,-c ),F 2(0,c )。其中22b a c -=

注意:①在两种标准方程中,总有a >b >0,22b a c -=

并且椭圆的焦点总在长轴上;

②两种标准方程可用一般形式表示:Ax 2+By 2=1 (A >0,B >0,A ≠B ),当A <

B 时,椭圆的焦点在x 轴上,A >B 时焦点在y 轴上。

3.参数方程 :椭圆122

22=+b

y a x )0(>>b a 的参数方程

??

?==θθ

s i n

c o s b y a x )(为参数θ 4.性质:对于焦点在x 轴上,中心在原点:12

2

22=+b

y a

x (a >b >0)有以下性质:

坐标系下的性质:

① 范围:|x|≤a ,|y|≤b ;

② 对称性:对称轴方程为x=0,y=0,对称中心为O (0,0); ③ 顶点:A 1(-a ,0),A 2(a ,0),B 1(0,-b ),B 2(0,b ),长轴|A 1A 2|=2a ,短轴|B 1B 2|=2b ;

(a 半长轴长,b 半短轴长);

④ 准线方程:c

a x 2±

=;或c

a y 2

±=

⑤ 焦半径公式:P (x 0,y 0)为椭圆上任一点。|PF 1|=左r =a+ex 0,|PF 2|=右r =a-ex 0;

|PF 1|=下r =a+ey 0,|PF 2|=上r =a-ey 0;c a PF c a PF -=+=min max

,

平面几何性质: ⑥ 离心率:e=

a

c

(焦距与长轴长之比)()1,0∈;e 越大越______,0=e 是_____。 ⑦ 焦准距c b p 2=;准线间距c

a 2

2=

二、焦点三角形

结论一:若1F 、2F 是椭圆)0(122

22>>=+b a b

y a x 的两个焦点,P 是椭圆上一点,且

θ=∠21PF F ,当点P 位于___________时θ最大,cos θ=______________.

|PF 1||PF 2|的最大值为______________. 2

tan

2

21θ

b S PF F =?

结论二:过椭圆焦点的所有弦中通径(垂直于焦点的弦)最短,通径为__________。

结论三:已知椭圆方程为),0(122

22>>=+b a b

y a x 两焦点分别为,,21F F 设焦点三角形

21F PF ,,,1221βα=∠=∠F PF F PF 则椭圆的离心率β

αβαsin sin )

sin(++=

e 。

结论四:四心的轨迹

(1)、)0(12222>>=+b a b y a x 焦点三角形内心的轨迹及其方程1)(22

22

22=++c a c b y c x .

(2)、)0(122

22>>=+b a b

y a x 焦点三角形重心的轨迹及其方程:

)0(19922

22>>=+b a b

y a x (3)、)0(122

22>>=+b a b

y a x 焦点三角形垂心的轨迹及其方程:

22y =

(4)、)0(122

22>>=+b a b

y a x 焦点三角形的外心的轨迹及其方程

2

sin 2sin 2b c y b

θθ=-(22

||2b c y b -≥

).

三.中点弦问题

AB 是椭圆22

221(0)x y a b a b

+=>>的一条弦,中点M 坐标为00(,)x y ,则直线的斜率

为 。

四.弦长问题.

(1)斜率为k 的直线与圆锥曲线相交于两点111(,)P x y ,222(,)P x y ,则所得的弦长 或 .

(2)当直线的斜率不存在时,可求出交点的坐标,直接运算;

(3)经过圆锥曲线的焦点的弦(也称为焦点弦)的长度问题,可利用圆锥曲线的定义,将其转化为利用 ,往往比利用弦长公式简单。 五.X 轴正半轴到椭圆的最短距离问题:

已知椭圆)0(122

22>>=+b a b

y a x ,则点(m ,O)到椭圆的最短距离为:_________________.

六.过椭圆上点切线问题

若000(,)P x y 在椭圆22

221x y a b +=上,则过0P 的椭圆的切线方程是00221x x y y a b +=.

习 题

1、已知椭圆方程19

252

2=+y x ,椭圆上点M 到该椭圆一个焦点的距离是2,N 是MF 1的中点,O

是椭圆的中心,那么线段ON 的长是( )

(A )2

(B )4

(C )8 (D )

2

3 2.点P 是椭圆上一点,F1,F2是椭圆的两个焦点,且△PF 1F 2的内切圆半径为1,当P 在第一象限时,P 点的纵坐标为_______________.

3.(2009年上海卷理)已知1F 、2F 是椭圆1

:22

22=+b y a x C (a >b >0)的两个焦点,P 为椭圆

C 上一点,且21PF PF ⊥.若21F PF ?的面积为9,则b =____________.

4.(2009北京文)椭圆22192x y +=的焦点为12,F F ,点P 在椭圆上,若1||4PF =,则

2||PF =

12

F PF ∠的大小为 .

4.已知椭圆19

162

2=+y x 的左、右焦点分别为1F 、F 2,点P 在椭圆上,若P 、F 1、F 2是一个直角三角形的三个顶点,则点P 到x 轴的距离为( )

(A )59 (B )3 (C )779 (D )49

5.椭圆1492

2=+y x 的焦点1F 、2F ,点P 为其上的动点,当∠1F P 2F 为钝角时,点P 横坐标的

取值范围是_______________. 。

6.椭圆的中心在原点,焦点在X 轴上,离心率√3/2,椭圆上各点到直线l 的最短距离为1,则该椭圆方程是?直线l 为x-y+5+2=0

7.设点P (x ,y )在椭圆19

y 16x 2

2=+,

(1)试求点P 到直线05y x =-+的距离d 的最大值和最小值。(2) 求x+2y 的最小值

8.已知椭圆的离心率为,过右焦点且斜率为的直线与相交于两点.若,则

(A )1 (B ) (C ) (D )2

9.已知点P 是椭圆方程x 2/3+y 2=1上的动点,M,N 是直线L :y=x 上的两个动点,且满足|MN|=t ,则

(1)存在实数t 使△MNP 为正三角形的点仅有一个 (2)存在实数t 使△MNP 为正三角形的点仅有两个 (3)存在实数t 使△MNP 为正三角形的点仅有三个 (4)存在实数t 使△MNP 为正三角形的点仅有四个 (5)存在实数t 使△MNP 为正三角形的点有无数个

上述命题中正确的序号是________________.

10.在平面直角坐标系中,点与点A (-1,1)关于原点O 对称,P 是动点,且直线AP 与BP 的斜率之积等于.

(Ⅰ)求动点P 的轨迹方程;

(Ⅱ)设直线AP 和BP 分别与直线=3交于点M,N ,问:是否存在点P 使得△PAB 与△PMN 的

面积相等?若存在,求出点P 的坐标;若不存在,说明理由(探究(面积))

11.(2007四川理)设1F 、2F 分别是椭圆1

422

=+y x 的左、右焦点.

(Ⅰ)若P 是该椭圆上的一个动点,求1PF ·2PF 的最大值和最小值;

(Ⅱ)设过定点)2,0(M 的直线l 与椭圆交于不同的两点A 、B ,且∠AOB 为锐角(其中O 为

坐标原点),求直线l 的斜率k 的取值范围.(最值、求取值范围) 12.(本小题共14分)

已知椭圆的中心在原点O ,焦点在x 轴上,点A (

)0,32-是其左顶点,点C 在椭圆上,且

0=?CO AC ,||||=.

(Ⅰ)求椭圆的方程;

(Ⅱ)若平行于CO 的直线l 和椭圆交于N M ,两个不同点,求CMN ?面积的最大值,并求此时

直线l 的方程.(最值)

13.(2009浙江文)(本题满分15分)已知抛物线C :2

2(0)x py p =>上一点(,4)A m 到其焦点

的距离为17

4. (I )求p 与m 的值;

(II )设抛物线C 上一点P 的横坐标为(0)t t >,过P 的直线交C 于另一点Q ,交x 轴于点

M ,过点Q 作PQ 的垂线交C 于另一点N .若MN 是C 的切线,求t 的最小值.

SJS14.(本题满分14分)

已知椭圆22

2

21(0)x y a b a b +=>>

的离心率为3,

长轴长为直线:l y kx m =+交椭圆于

不同的两点A ,B . (Ⅰ)求椭圆的方程;

(Ⅱ)若1m =,且0OA OB ?=,求k 的值(O 点为坐标原点);

(Ⅲ)若坐标原点O 到直线l

的距离为,求AOB ?面积的最大值.

FT15、(13分)在直角坐标系xOy 中,点M 到F

1

(、F

2

0)的距离之和是4,点M 的

轨迹C 与x 轴的负半轴交于点A ,不过点A 的直线l :y kx b =+与轨迹C 交于不同的两点P 和Q .

(1)求轨迹C 的方程; (2)当

0AP AQ ?=时,求k 与b 的关系,并证明直线l 过定点.

(过定点)

16.(12分)已知点)1,1(A 是椭圆)0(122

22>>=+b a b y a x 上的一点,1F ,2F 是椭圆的两个焦点,

且满足

4

21=+AF AF .

(Ⅰ)求椭圆的方程及离心率;

(Ⅱ)设点C ,D 是椭圆上的两点,直线AC ,AD 的倾斜角互补,试判断直线CD 的斜率是否为定值?并说明理由.(定值)

17 .(2010年高考天津卷理科20) (本小题满分12分)

已知椭圆(>>0)的离心率,连接椭圆的四个顶点得到的菱形的面积为4.

(Ⅰ)求椭圆的方程;

(Ⅱ)设直线与椭圆相交于不同的两点.已知点的坐标为(-,0),点(0,)在线段的垂直平分线上,且=4.求的值.

高中数学 命题知识点考点典型例题

高二数学选修1-1知识点 第一章:命题与逻辑结构 知识点: 1、命题:用语言、符号或式子表达的,可以判断真假的陈述句. 真命题:判断为真的语句. 假命题:判断为假的语句. 2、“若p ,则q ”形式的命题中的p 称为命题的条件,q 称为命题的结论. 3、对于两个命题,如果一个命题的条件和结论分别是另一个命题的结论和条件,则这两个命题称为互逆命题.其中一个命题称为原命题,另一个称为原命题的逆命题. 若原命题为“若p ,则q ”,它的逆命题为“若q ,则p ”. 4、对于两个命题,如果一个命题的条件和结论恰好是另一个命题的条件的否定和结论的否定,则这两个命题称为互否命题.中一个命题称为原命题,另一个称为原命题的否命题. 若原命题为“若p ,则q ”,则它的否命题为“若p ?,则q ?”. 5、对于两个命题,如果一个命题的条件和结论恰好是另一个命题的结论的否定和条件的否定,则这两个命题称为互为逆否命题.其中一个命题称为原命题,另一个称为原命题的逆否命题. 若原命题为“若p ,则q ”,则它的逆否命题为“若q ?,则p ?”. 6、四种命题的真假性:

例题:一个命题与他们的逆命题、否命题、逆否命题这4个命题中()A.真命题与假命题的个数相同 B.真命题的个数一定是偶数 C.真命题的个数一定是奇数 D.真命题的个数可能是奇数,也可能是偶数 答案(找作业答案--->>上魔方格) 一个命题与他们的逆命题、否命题、逆否命题这4个命题, 原命题与逆否命题具有相同的真假性, 否命题与逆命题具有相同的真假性, ∴真命题的若有事成对出现的, 四种命题的真假性之间的关系: ()1两个命题互为逆否命题,它们有相同的真假性; ()2两个命题为互逆命题或互否命题,它们的真假性没有关系. ?,则p是q的充分条件,q是p的必要条件. 7、若p q ?,则p是q的充要条件(充分必要条件). 若p q

椭圆知识点及经典例题

椭圆知识点及经典例题-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

椭圆知识点 知识要点小结: 知识点一:椭圆的定义 平面内一个动点P 到两个定点1F 、2F 的距离之和等于常)2(2121F F a PF PF >=+ ,这个动点P 的轨迹叫椭圆.这两个定点叫椭圆的焦点,两焦点的距离叫作椭圆的焦距. 注意:若)(2121F F PF PF =+,则动点P 的轨迹为线段21F F ; 若)(2121F F PF PF <+,则动点P 的轨迹无图形. 知识点二:椭圆的标准方程 1.当焦点在x 轴上时,椭圆的标准方程:122 22=+b y a x )0(>>b a ,其中 222b a c -= 2.当焦点在y 轴上时,椭圆的标准方程:122 22=+b x a y )0(>>b a ,其中 222b a c -=; 3.椭圆的参数方程)(sin cos 为参数??? ? ??==b y a x 注意:1.只有当椭圆的中心为坐标原点,对称轴为坐标轴建立直角坐标系时,才能得到椭圆的标准方程; 2.在椭圆的两种标准方程中,都有)0(>>b a 和 222b a c -=; 3.椭圆的焦点总在长轴上. 当焦点在x 轴上时,椭圆的焦点坐标为)0,(c , )0,(c -; 当焦点在y 轴上时,椭圆的焦点坐标为),0(c ,),0(c - 知识点三:椭圆的简单几何性质 椭圆:122 22=+b y a x )0(>>b a 的简单几何性质

(1)对称性:对于椭圆标准方程122 22=+b y a x )0(>>b a :说明:把x 换成x -、或把 y 换成y -、或把x 、y 同时换成x -、y -、原方程都不变,所以椭圆122 22=+b y a x 是 以x 轴、y 轴为对称轴的轴对称图形,并且是以原点为对称中心的中心对称图形,这个对称中心称为椭圆的中心。 (2)范围: 椭圆上所有的点都位于直线a x ±=和b y ±=所围成的矩形内,所以椭圆上点的坐标满足a x ≤,b y ≤。 (3)顶点:①椭圆的对称轴与椭圆的交点称为椭圆的顶点。 ②椭圆122 22=+b y a x )0(>>b a 与坐标轴的四个交点即为椭圆的四个顶点,坐标分 别为 )0,(1a A -,)0,(2a A ,),0(1b B -,),0(2b B ③线段21A A ,21B B 分别叫做椭圆的长轴和短轴,a A A 221=,b B B 221=。a 和 b 分别叫做椭圆的长半轴长和短半轴长。 (4)离心率: ①椭圆的焦距与长轴长度的比叫做椭圆的离心率,用e 表示,记作a c a c e == 22。 ②因为)0(>>c a ,所以e 的取值范围是)10(<

椭圆的几何性质知识点归纳及典型例题及练习(付答案)

(一)椭圆的定义: 1、椭圆的定义:平面内与两个定点1F 、2F 的距离之和等于定长(大于12||F F )的点的轨迹叫做椭圆。这两个定点 1F 、2F 叫做椭圆的焦点,两焦点的距离12||F F 叫做椭圆的焦距。 对椭圆定义的几点说明: (1)“在平面内”是前提,否则得不到平面图形(去掉这个条件,我们将得到一个椭球面); (2)“两个定点”的设定不同于圆的定义中的“一个定点”,学习时注意区分; (3)作为到这两个定点的距离的和的“常数”,必须满足大于| F 1F 2|这个条件。若不然,当这个“常数”等于| F 1F 2|时,我们得到的是线段F 1F 2;当这个“常数”小于| F 1F 2|时,无轨迹。这两种特殊情况,同学们必须注意。 (4)下面我们对椭圆进行进一步观察,发现它本身具备对称性,有两条对称轴和一个对称中心,我们把它的两条对称轴与椭圆的交点记为A 1, A 2, B 1, B 2,于是我们易得| A 1A 2|的值就是那个“常数”,且|B 2F 2|+|B 2F 1|、|B 1F 2|+|B 1F 1|也等于那个“常数”。同学们想一想其中的道理。 (5)中心在原点、焦点分别在x 轴上,y 轴上的椭圆标准方程分别为: 22 22 2222 x y y x 1(a b 0),1(a b 0),a b a b +=>>+=>> 相同点是:形状相同、大小相同;都有 a > b > 0 ,2 2 2 a c b =+。 不同点是:两种椭圆相对于坐标系的位置不同,它们的焦点坐标也不同(第一个椭圆的焦点坐标为(-c ,0)和(c ,0),第二个椭圆的焦点坐标为(0,-c )和(0,c )。椭圆的 焦点在 x 轴上?标准方程中x 2项的分母较大;椭圆的焦点在 y 轴上?标准方程中y 2 项的分母较大。 (二)椭圆的几何性质: 椭圆的几何性质可分为两类:一类是与坐标系有关的性质,如顶点、焦点、中心坐标;一类是与坐标系无关的本身固有性质,如长、短轴长、焦距、离心率.对于第一类性质,只 要22 22x y 1(a b 0)a b +=>>的有关性质中横坐标x 和纵坐标y 互换,就可以得出2222 y x 1(a b 0)a b +=>>的有关性质。总结如下:

高考数学椭圆与双曲线的经典性质技巧归纳总结

椭圆的定义、性质及标准方程 高三数学备课组 刘岩老师 1. 椭圆的定义: ⑴第一定义:平面内与两个定点12F F 、的距离之和等于常数(大于12F F )的点的轨迹叫做椭圆。这两个定点叫做椭圆的焦点,两焦点的距离叫做椭圆的焦距。 ⑵第二定义:动点M 到定点F 的距离和它到定直线l 的距离之比等于常数 )10(<>=+b a b y a x 中心在原点,焦点在x 轴上 )0(12 2 22>>=+b a b x a y 中心在原点,焦点在y 轴上 图形 范围 x a y b ≤≤, x b y a ≤≤, 顶点 ()()()() 12120000A a A a B b B b --,、,,、, ()()()() 12120000A a A a B b B b --,、,,、, 对称轴 x 轴、y 轴; 长轴长2a ,短轴长2b ; 焦点在长轴上 x 轴、y 轴; 长轴长2a ,短轴长2b ; 焦点在长轴上 焦点 ()()1200F c F c -,、, ()()1200F c F c -,、, 焦距 )0(221>=c c F F )0(221>=c c F F 离心率 )10(<<= e a c e )10(<<= e a c e 准线 2 a x c =± 2 a y c =±

椭圆知识点总结附例题

圆锥曲线与方程 椭 圆 知识点 一.椭圆及其标准方程 1.椭圆的定义:平面内与两定点F 1,F 2距离的和等于常数()212F F a >的点的轨迹叫做椭圆,即点集M={P| |PF 1|+|PF 2|=2a ,2a >|F 1F 2|=2c}; 这里两个定点F 1,F 2叫椭圆的焦点,两焦点间的距离叫椭圆的焦距2c 。 (212F F a =时为线段21F F ,212F F a <无轨迹)。 2.标准方程: 222c a b =- ①焦点在x 轴上:122 22=+b y a x (a >b >0); 焦点F (±c ,0) ②焦点在y 轴上:122 22=+b x a y (a >b >0); 焦点F (0, ±c ) 注意:①在两种标准方程中,总有a >b >0,并且椭圆的焦点总在长轴上; ②两种标准方程可用一般形式表示:22 1x y m n += 或者 mx 2+ny 2=1 二.椭圆的简单几何性质: 1.范围 (1)椭圆12222=+b y a x (a >b >0) 横坐标-a ≤x ≤a ,纵坐标-b ≤x ≤b (2)椭圆12222=+b x a y (a >b >0) 横坐标-b ≤x ≤b,纵坐标-a ≤x ≤a 2.对称性 椭圆关于x 轴y 轴都是对称的,这里,坐标轴是椭圆的对称轴,原点是椭圆的对称 中心,椭圆的对称中心叫做椭圆的中心

3.顶点 (1)椭圆的顶点:A 1(-a ,0),A 2(a ,0),B 1(0,-b ),B 2(0,b ) (2)线段A 1A 2,B 1B 2 分别叫做椭圆的长轴长等于2a ,短轴长等于2b ,a 和b 分别叫做椭 圆的长半轴长和短半轴长。 4.离心率 (1)我们把椭圆的焦距与长轴长的比 22c a ,即a c 称为椭圆的离心率, 记作e (10<

圆锥曲线经典性质总结及证明

圆锥曲线的经典结论 一、椭 圆 1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角.(椭圆的光学性质) 2. PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径 的圆,除去长轴的两个端点.(中位线) 3. 以焦点弦PQ 为直径的圆必与对应准线相离.以焦点半径PF 1为直径的圆必与以长轴为直 径的圆内切.(第二定义) 4. 若000(,)P x y 在椭圆22221x y a b +=上,则过0P 的椭圆的切线方程是00221x x y y a b +=.(求 导) 5. 若000(,)P x y 在椭圆22 221x y a b +=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切点 弦P 1P 2的直线方程是00221x x y y a b +=.(结合4) 6. 椭圆22 221x y a b += (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点 12F PF γ∠=,则椭圆的焦点角形的面积为122tan 2 F PF S b γ ?=.(余弦定理+面积公式+ 半角公式) 7. 椭圆22 221x y a b +=(a >b >0)的焦半径公式: 10||MF a ex =+,20||MF a ex =-(1(,0)F c -,2(,0)F c 00(,)M x y ).(第二定义) 8. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和 AQ 分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF

9. 过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF. MN 其实就在准线上,下面证明他在准线上 根据第8条,证毕 10. AB 是椭圆22 221x y a b +=的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则 2 2OM AB b k k a ?=-, 即0 20 2y a x b K AB -=。(点差法)

椭圆的简单几何性质(附练习题答案及知识点回顾)

椭圆的简单几何性质 基础卷 1.设a , b , c 分别表示同一椭圆的长半轴长、短半轴长、半焦距,则a , b , c 的大小关系是 (A )a >b >c >0 (B )a >c >b >0 (C )a >c >0, a >b >0 (D )c >a >0, c >b >0 2.椭圆的对称轴为坐标轴,若长、短轴之和为18,焦距为6,那么椭圆的方程为 (A ) 221916x y += (B )2212516x y += (C )2212516x y +=或2211625x y += (D )22 11625 x y += 3.已知P 为椭圆 22 1916 x y +=上一点,P 到一条准线的距离为P 到相应焦点的距离之比为 (A ) 54 (B )45 (C )4 17 (D ) 7 4 7 4.椭圆的两个焦点三等分它的准线间的距离,则椭圆的离心率为 (A ) 23 (B )33 (C )3 16 (D ) 6 1 6 5.在椭圆122 22=+b y a x 上取三点,其横坐标满足x 1+x 3=2x 2,三点顺次与某一焦点连接的线段长是r 1, r 2, r 3,则有 (A )r 1, r 2, r 3成等差数列 (B )r 1, r 2, r 3成等比数列 (C ) 123111,,r r r 成等差数列 (D )123 111 ,,r r r 成等比数列 6.椭圆 22 1925 x y +=的准线方程是 (A )x =± 254 (B )y =±165 (C )x =±165 (D )y =±25 4 7.经过点P (-3, 0), Q (0, -2)的椭圆的标准方程是 . 8.对于椭圆C 1: 9x 2 +y 2 =36与椭圆C 2: 22 11612 x y +=,更接近于圆的一个是 . 9.椭圆122 22=+b y a x 上的点P (x 0, y 0)到左焦点的距离是r = . 10.已知定点A (-2, 3),F 是椭圆22 11612 x y +=的右焦点,在椭圆上求一点M ,使|AM |+2|MF |取得最小值。

椭圆知识点总结及经典习题.docx

圆锥曲线与方程--椭圆 知识点 一?椭圆及其标准方程 1椭圆的定义:平面内与两定点Fι, F2距离的和等于常数2a ■ F1F21J的点的轨迹叫做椭圆,即点集M={P∣∣PF ι∣+∣PF 2∣=2a,2a>∣F1F2∣=2c}; 这里两个定点F i, F2叫椭圆的焦点,两焦点间的距离叫椭圆的焦距2c。 (2a = F1F2时为线段F i F2, 2a C RF?无轨迹)。 2 2 2 2?标准方程:c= a- b 2 2 χ+y _ 1 ①焦点在X轴上:盲TT = 1( a> b> 0);焦点F(± C, 0) a b 2 2 y X ②焦点在y轴上:—2 = 1(a>b>0);焦点F (0, ±C) a b 注意:①在两种标准方程中,总有a> b> 0,并且椭圆的焦点总在长轴上; 2 2 ②两种标准方程可用一般形式表示:X y =1或者mχ2+ny2=1 m n 二?椭圆的简单几何性质: 1. 范围 2 2 (1)椭圆X- y- =1 (a> b> 0)横坐标-a ≤x≤a ,纵坐标-b ≤X≤b a2b2 2 2 (2)椭圆-y2x2 =1 (a>b>0) 横坐标-b ≤X≤b,纵坐标-a ≤x≤a a2b2 2. 对称性 椭圆关于X轴y轴都是对称的,这里,坐标轴是椭圆的对称轴,原点是椭圆的对称 中心,椭圆的对称中心叫做椭圆的中心 3. 顶点 (1)椭圆的顶点:A (-a , 0), A (a, 0), B (0, -b), B- (0, b) (2)线段AA, BB分别叫做椭圆的长轴长等于2a,短轴长等于2b, a和b分别叫做椭

圆的长半轴长和短半轴长。 4 .离心率 (1) 我们把椭圆的焦距与长轴长的比 2c ,即E 称为椭圆的离心率, 2a a e = O 是圆; e 越接近于O (e 越小),椭圆就越接近于圆 e 越接近于1 ( e 越大),椭圆越扁; 注意:离心率的大小只与椭圆本身的形状有关,与其所处的位置无关 小结一:基本元素 (1) 基本量:a 、b 、c 、e 、(共四个量), 特征三角形 (2) 基本点:顶点、焦点、中心(共七个点) (3) 基本线:对称轴(共两条线) 5 ?椭圆的的内外部 2 2 x 2 y 2 亠 —x o + y o W 1 (1) 点 P(X O , Y O )在椭圆-2 -每=1(a b - 0)的内部 J 2 U2 1 a b a b 2 2 x 2 y 2 亠 X O * y O 彳 (2) 点 P(x 0, y 0)在椭圆-2 =1(a b 0)的外部 2 TT 1. a b a b 6. 几何性质 (1) 点P 在椭圆上, 最大角? F 1PF 2 max =∕F 1 B 2F 2, (2) 最大距离,最小距离 7. 直线与椭圆的位置关系 (1) 位置关系的判定:联立方程组求根的判别式; (2) 弦长公式: ________________________ (3) 中点弦问题:韦达定理法、点差法 记作 e ( 0 < e < 1),

椭圆性质总结及习题

椭 圆 一.考试必“背” 1 椭圆的两种定义: ①平面内与两定点F 1,F 2的距离的和等于定长() 212F F a >的点的轨迹,即点集M={P| |PF 1|+|PF 2|=2a ,2a >|F 1F 2|};(212F F a =时为线段21F F ,212F F a <无轨迹)。其中两定点F 1,F 2叫焦点,定点间的距离叫焦距。 ②平面内一动点到一个定点和一定直线的距离的比是小于1的正常数的点的轨迹,即点集 M={P| e d PF =,0<e <1的常数 }。(1=e 为抛物线;1>e 为双曲线) 2 标准方程: (1)焦点在x 轴上,中心在原点:122 22=+b y a x (a >b >0); 焦点F 1(-c ,0), F 2(c ,0)。其中22b a c -= (一个?Rt ) (2)焦点在y 轴上,中心在原点:122 22=+b x a y (a >b >0); 焦点F 1(0,-c ),F 2(0,c )。其中22b a c -= 注意:①在两种标准方程中,总有a >b >0,22b a c -= 并且椭圆的焦点总在长轴上; ②两种标准方程可用一般形式表示:Ax 2+By 2=1 (A >0,B >0,A ≠B ),当A < B 时,椭圆的焦点在x 轴上,A >B 时焦点在y 轴上。 3.参数方程 :椭圆122 22=+b y a x )0(>>b a 的参数方程 ?? ?==θθ s i n c o s b y a x )(为参数θ 4.性质:对于焦点在x 轴上,中心在原点:12 2 22=+b y a x (a >b >0)有以下性质: 坐标系下的性质: ① 范围:|x|≤a ,|y|≤b ; ② 对称性:对称轴方程为x=0,y=0,对称中心为O (0,0); ③ 顶点:A 1(-a ,0),A 2(a ,0),B 1(0,-b ),B 2(0,b ),长轴|A 1A 2|=2a ,短轴|B 1B 2|=2b ; (a 半长轴长,b 半短轴长); ④ 准线方程:c a x 2± =;或c a y 2 ±= ⑤ 焦半径公式:P (x 0,y 0)为椭圆上任一点。|PF 1|=左r =a+ex 0,|PF 2|=右r =a-ex 0; |PF 1|=下r =a+ey 0,|PF 2|=上r =a-ey 0;c a PF c a PF -=+=min max ,

公开课椭圆习题课教学设计

椭圆习题课 北京化工大学附属中学李爱惠 教材版本:高中数学人教A版选修2-1,第二章圆锥曲线与方程的第四节 一、教学背景分析 (1)学习内容分析: 已经学习了椭圆的定义、标准方程和几何性质这些基础知识,本节课在学习了这些基础知识和基本方法的前提下,以椭圆的焦点三角形为平台,进一步研究用定义和性质解决椭圆问题的方法,并了解与运用椭圆和其它知识点的联系。为后面学习双曲线、抛物线的概念打下良好的基础,学会利用圆锥曲线的定义来解决相关问题的一般性方法,让学生经历解析法解题的过程;本节椭圆习题课的学习是对其学习内容的进一步深化和提高。 (2)学生状况分析 1.学生水平:所任教的班级是普通理科班,有些学生思维水平相对较好,具有一定的分析、解决问题的能力。但因本班是我校的普通班,学生数学基础弱,计算能力弱,对试题的分析解决要在老师的引导下慢慢训练。 2.认知基础:学生在学习这节课之前,已掌握了椭圆的定义和标准方程,也具备自主利用椭圆定义和性质解决一些简单的椭圆问题,所以说从知识和学习方式上来说学生已具备了进一步自行探索和解决问题的基本能力。 3.可能存在的学习困难:等价转化有一定困难;同时代数运算方面有困难;椭圆与三角、不等式等其它知识点的联系存在困难。 二、教法和学法的选择 解析几何要体现用代数研究几何,要教会学生抓住焦点三角形中的不变量和变量,用定义建立运算关系解决几何问题。学生已经对椭圆的定义、性质有了一定的掌握,所以本节课我采用了“启发引导”式的教学方法,重点突出以下两点: (1)以老师引导与学生探究相结合作为本节的学习方法。 (2)教学过程中突出数形结合、方程等数学思想方法的渗透。 以信息技术演示与学生动手实际操作相结合为主要教学手段。

高中数学:椭圆知识点归纳总结及经典例题

椭 圆 1.椭圆的定义:把平面内与两个定点21,F F 的距离之和等于常数(大于21F F )的点的轨迹叫做椭圆.这两个定点叫做椭圆的焦点,两焦点的距离叫做焦距(设为2c). 2.椭圆的标准方程: 12222=+b y a x (a >b >0) 122 22=+b x a y (a >b >0) 焦点在坐标轴上的椭圆标准方程有两种情形,为了计算简便,可设方程为mx 2 +ny 2 =1(m>0,n>0)不必考虑焦点位置,求出方程 3.求轨迹方程的方法: 定义法、待定系数法、相关点法、直接法 . ,.2,,1的轨迹中点求线段段轴作垂线向从这个圆上任意一点半径为标原点已知一个圆的圆心为坐如图例M P P P P x P ''解:(相关点法)设点M(x, y),点P(x 0 , y 0 ), 则x =x 0, y = 2 0y 得x 0=x , y 0=2y. ∵x 02 +y 02 =4, 得x 2 +(2y)2 =4, 即.14 2 =+y x 所以点M 的轨迹是一个椭圆. 4.范围. x 2≤a 2,y 2≤b 2 ,∴|x|≤a ,|y|≤b . 椭圆位于直线x =±a 和y =±b 围成的矩形里. 5.椭圆的对称性 椭圆是关于y 轴、x 轴、原点都是对称的.坐标轴是椭圆的对称轴. 原点是椭圆的对称中心.椭圆的对称中心叫做椭圆的中心. 6.顶点 只须令x =0,得y =±b ,点B 1(0,-b)、B 2(0, b)是椭圆和y 轴的两个交点;令y =0,得x =±a ,点A 1(-a,0)、A 2(a,0)是椭圆和x 轴的两个交点.椭圆有四个顶点:A 1(-a, 0)、A 2(a, 0)、B 1(0, -b)、B 2(0, b).椭圆和它的对称轴的四个交点叫椭圆的顶点. 线段A 1A 2、B 1B 2分别叫做椭圆的长轴和短轴. 长轴的长等于2a. 短轴的长等于2b.a 叫做椭圆的 长半轴长.b 叫做椭圆的短半轴长. |B 1F 1|=|B 1F 2|=|B 2F 1|=|B 2F 2|=a . 在Rt △OB 2F 2中,|OF 2|2=|B 2F 2|2-|OB 2|2, 即c 2=a 2-b 2 . a A 1y O F 1F 2 x B 2 B 1 A 2c b y O F 1F 2x M c c x F 2 F 1 O y M c c y x P O P ' M

高中数学知识点总结_椭圆及其性质

椭圆及其性质 1.方程 12 2 =+ n y m x 表示椭圆?m >0,n >0,且m ≠n ;2 a 是m ,n 中之较大者,焦点 的位置也取决于m ,n 的大小。 [举例] 椭圆 14 2 2 =+ m y x 的离心率为 2 1,则m = 解析:方程中4和m 哪个大哪个就是2a ,因此要讨论;(ⅰ)若04,则,42=b m a =2 , ∴4-=m c , ∴e = m m 4 -= 21 ,得m =316 ;综上:m =3或m = 3 16 。 [巩固]若方程:x 2+ay 2=a 2 表示长轴长是短轴长的2倍的椭圆,则a 的允许值的个数是 A 1个 B .2个 C.4个 D.无数个 2.椭圆 12 22 2=+ b y a x 关于x 轴、y 轴、原点对称;P(x,y)是椭圆上一点,则|x|≤a,|y|≤b , a-c ≤|PF|≤a+c ,(其中F 是椭圆的一个焦点),椭圆的焦点到短轴端点的距离为a ,椭圆的焦准距为 c b 2 ,椭圆的通经(过焦点且垂直于长轴的弦)长为2 a b 2 ,通经是过焦点最短的弦。 [举例1] 已知椭圆 12 22 2=+ b y a x (a >0,b >0)的左焦点为F ,右顶点为A ,上顶点为B ,若 BF ⊥BA,则称其为“优美椭圆”,那么“优美椭圆”的离心率为 。 解析:|AB|2=a 2+b 2,|BF|=a ,|FA|=a +c ,在Rt ⊿ABF 中,(a +c )2=a 2+b 2+a 2 化简得: c 2+a c -a 2=0,等式两边同除以a 2得:012 =-+e e ,解得:e = 2 15-。 注:关于a ,b ,c 的齐次方程是“孕育”离心率的温床。 [举例2] 已知椭圆 12 22 2=+ b y a x (a >0,b >0)的离心率为 5 3,若将这个椭圆绕着它的右焦 点按逆时针方向旋转 2 π 后,所得的新的椭圆的一条准线的方程为y =3 16,则原来椭圆的方 程是 。 解析:原来椭圆的右焦点为新椭圆的上焦点,在x 轴上,直线y = 3 16为新椭圆的上准线, 故新椭圆的焦准距为3 16,∴原来椭圆的焦准距也为3 16,于是有: c b 2 =3 16 ①,

高二数学椭圆的知识点整理

第1讲 课题:椭圆 课 型:复习巩固 上课时间:2013年10月3日 教学目标: (1)了解圆锥曲线的来历; (2)理解椭圆的定义; (3)理解椭圆的两种标准方程; (4)掌握椭圆离心率的计算方法; (5)掌握有关椭圆的参数取值范围的问题; 教学重点:椭圆方程、离心率; 教学难点:与椭圆有关的参数取值问题; 知识清单 一、椭圆的定义: (1) 椭圆的第一定义:平面内与两定点21F F 、的距离和等于常数 ()a 2(大于21F F )的点的轨迹叫做椭圆. 说明:两个定点叫做椭圆的焦点; 两焦点间的距离叫做椭圆的焦距()c 2. (2) 椭圆的第二定义:平面上到定点的距离与到定直线的距离之 比为常数e ,当10<>=+F F a a PF PF ; (){} .02,22121>>=+=F F a a PF PF P M 三、椭圆的标准方程: 焦点在x 轴: ()0122 22>>=+b a b y a x ; 焦点在y 轴: ()0122 22>>=+b a b x a y . 说明:a 是长半轴长,b 是短半轴长,焦点始终在长轴所在的数轴上,且满足 .222c b a += 四、二元二次方程表示椭圆的充要条件 方程()B A C B A C By Ax ≠=+均不为零,且、、22表示椭圆的条件:

上式化为12 2=+C By C Ax ,122=+B C y A C x .所以,只有C B A 、、同号,且B A ≠时,方程表示椭圆;当 B C A C >时,椭圆的焦点在x 轴上;当B C A C <时,椭圆的焦点在y 轴上. 五、椭圆的几何性质(以()0122 22>>=+b a b y a x 为例) 1. 范围: 由标准方程可知,椭圆上点的坐标()y x ,都适合不等式 1,122 22≤≤b y a x ,即b y a x ≤≤,说明椭圆位于直线a x ±=和b y ±=所围成的矩形里(封闭曲线).该性质主要用于求最值、轨迹检验等问题. 2.对称性:关于原点、x 轴、y 轴对称,坐标轴是椭圆的对称轴,原点是椭圆的对称中心。 3.顶点(椭圆和它的对称轴的交点) 有四个: ()()()().,0B ,0B 0,0,2121b b a A a A 、、、-- 4. 长轴、短轴:21A A 叫椭圆的长轴,a a A A ,221=是长半轴长;21B B 叫椭圆的短轴,b b B B ,221=是短半轴长. 5.离心率 (1)椭圆焦距与长轴的比a c e = ,()10,0<<∴>>e c a (2)22F OB Rt ?,2 22 22 22OF OB F B +=, 即222c b a +=.这是椭圆的特征三角形,并且22cos B OF ∠的值是椭圆的离心率.(3)椭圆的圆扁程度由离心率的大小确定,与焦点所在的坐标轴无关.当e 接近于1时,c 越接近于a ,从而22c a b -=越小,椭圆越扁;当e 接近于0时,c 越接近于0,从而22c a b -=越大,椭圆越接近圆;当0=e 时,b a c ==,0,两焦点重合,图形是圆. 6.通径(过椭圆的焦点且垂直于长轴的弦),通径长为a b 2 2.

椭圆知识点及经典例题

椭圆知识点 知识要点小结: 知识点一:椭圆的定义 平面内一个动点P 到两个定点1F 、2F 的距离之和等于常)2(2121F F a PF PF >=+ ,这个动点P 的轨迹叫椭圆.这两个定点叫椭圆的焦点,两焦点的距离叫作椭圆的焦距. 注意:若)(2121F F PF PF =+,则动点P 的轨迹为线段21F F ; 若)(2121F F PF PF <+,则动点P 的轨迹无图形. 知识点二:椭圆的标准方程 1.当焦点在x 轴上时,椭圆的标准方程:12222=+b y a x )0(>>b a ,其中2 22b a c -= 2.当焦点在y 轴上时,椭圆的标准方程:12222=+b x a y )0(>>b a ,其中2 22b a c -=; 3.椭圆的参数方程)(sin cos 为参数?? ? ?? ?==b y a x 注意:1.只有当椭圆的中心为坐标原点,对称轴为坐标轴建立直角坐标系时,才能得到椭圆的标准方程; 2.在椭圆的两种标准方程中,都有)0(>>b a 和2 2 2 b a c -=; 3.椭圆的焦点总在长轴上. 当焦点在x 轴上时,椭圆的焦点坐标为)0,(c ,)0,(c -; 当焦点在y 轴上时,椭圆的焦点坐标为),0(c ,),0(c - 知识点三:椭圆的简单几何性质 椭圆:122 22=+b y a x )0(>>b a 的简单几何性质 (1)对称性:对于椭圆标准方程122 22=+b y a x )0(>>b a :说明:把x 换成x -、或把y 换成y -、 或把x 、y 同时换成x -、y -、原方程都不变,所以椭圆122 22=+b y a x 是以x 轴、y 轴为对称轴 的轴对称图形,并且是以原点为对称中心的中心对称图形,这个对称中心称为椭圆的中心。

椭圆的讲义

海豚教育个性化简案 海豚教育个性化教案(真题演练)

海豚教育个性化教案

A . 45 B .23 C .22 D .2 1 例2:已知m,n,m+n 成等差数列,m ,n ,mn 成等比数列,则椭圆12 2=+n y m x 的离心率为 例3:在ABC △中,3,2||,300===∠?ABC S AB A .若以A B ,为焦点的椭圆经过点C ,则该椭圆的离心率 e = . 【变式训练】 1. 椭圆的两个焦点把两条准线间距离三等分,则椭圆离心率为( ) A. 63 B.33 C.2 3 D. 不确定 2. 椭圆的一个顶点与两焦点构成等边三角形,则此椭圆的离心率是( ) 3. 以椭圆两焦点为直径的圆交椭圆于四个不同点,顺次连结这四个点和两个焦点,恰好围成一个正六边形,则这个椭圆的离心率等于___________。 2:求离心率的取值范围 例1:已知椭圆12222=+b y a x (0>>b a ),F 1,F 2是两个焦点,若椭圆上存在一点P ,使3 221π =∠PF F ,求 其离心率e 的取值范围。 例2:已知椭圆122 22=+b y a x (0>>b a )与x 轴的正半轴交于A ,0是原点,若椭圆上存在一点M ,使MA ⊥MO , 求椭圆离心率的取值范围。 例3:已知椭圆12222=+b y a x (0>>b a ),以a ,b ,c 为系数的关于x 的方程02 =++c bx ax 无实根,求 其离心率e 的取值范围。 题型四:椭圆的其他几何性质的运用(范围、对称性等) 例1:已知实数y x ,满足12 42 2=+y x ,求x y x -+22的最大值与最小值

椭圆知识点归纳总结和经典例题

椭圆的基本知识 1.椭圆的定义:把平面与两个定点21,F F 的距离之和等于常数(大于21F F )的点的轨迹叫做椭圆.这两个定点叫做椭圆的焦点,两焦点的距离叫做焦距(设为2c ) . 2.椭圆的标准方程: 12222=+b y a x (a >b >0) 12 2=+b a (a > b >0) 焦点在坐标轴上的椭圆标准方程有两种情形,为了计算简便,可设方程为mx2+ny2=1(m>0,n>0) 不必考虑焦点位置,求出方程 3.求轨迹方程的方法: 定义法、待定系数法、相关点法、直接法 . ,.2,,1的轨迹中点求线段段轴作垂线 向从这个圆上任意一点半径为标原点已知一个圆的圆心为坐如图例M P P P P x P ''解: (相 关点法)设点M (x , y ),点P (x 0, y 0), 则x =x 0, y = 2 0y 得x 0=x , y 0=2y. ∵x 02 +y 02 =4, 得 x 2 +(2y )2 =4, 即.14 2 =+y x 所以点M 的轨迹是一个椭圆. 4.围. x 2≤a 2,y 2≤b 2 ,∴|x|≤a ,|y|≤b . 椭圆位于直线x =±a 和y =±b 围成的矩形里. 5.椭圆的对称性 椭圆是关于y 轴、x 轴、原点都是对称的.坐标轴是椭圆的对称轴. 原点是椭圆的对称中心.椭圆的对称中心叫做椭圆的中心. 6.顶点 只须令x =0,得y =±b ,点B 1(0,-b )、B 2(0, b )是椭圆和y 轴的两个交点;令y =0,得x =±a ,点A 1(-a ,0)、A 2(a ,0)是椭圆和x 轴的两个交点.椭圆有四个顶点:A 1(-a , 0)、A 2(a , 0)、B 1(0, -b )、B 2(0, b ).椭圆和它的对称轴的四个交点叫椭圆的顶点. 线段A 1A 2、B 1B 2分别叫做椭圆的长轴和短轴. 长轴的长等于2a . 短轴的长等于2b .a 叫做椭圆的 长半轴长.b 叫做椭圆的短半轴长. |B 1F 1|=|B 1F 2|=|B 2F 1|=|B 2F 2|=a . 在Rt △OB 2F 2中,|OF 2|2=|B 2F 2|2-|OB 2|2 , 即c 2=a 2-b 2 . 7.椭圆的几何性质:

椭圆性质整理讲解学习

椭圆性质 1. 12||||2PF PF a += 2. 标准方程:22 221x y a b += 3. 11 || 1PF e d =< 4. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角. 5. PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去 长轴的两个端点. 6. 以焦点弦PQ 为直径的圆必与对应准线相离. 7. 以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切. 8. 设A 1、A 2为椭圆的左、右顶点,则△PF 1F 2在边PF 2(或PF 1)上的旁切圆,必与A 1A 2所在的直线切 于A 2(或A 1). 9. 椭圆22 221x y a b +=(a >b >o )的两个顶点为1(,0)A a -,2(,0)A a ,与y 轴平行的直线交椭圆于P 1、P 2时 A 1P 1与A 2P 2交点的轨迹方程是22 221x y a b -=. 10. 若000(,)P x y 在椭圆22 221x y a b +=上,则过0P 的椭圆的切线方程是00221x x y y a b +=. 11. 若000(,)P x y 在椭圆22 221x y a b +=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线 方程是 00221x x y y a b +=. 12. AB 是椭圆22 221x y a b +=的不平行于对称轴且过原点的弦,M 为AB 的中点,则22OM AB b k k a ?=-. 13. 若000(,)P x y 在椭圆22 221x y a b +=内,则被Po 所平分的中点弦的方程是2200002222x x y y x y a b a b +=+. 14. 若000(,)P x y 在椭圆22 221x y a b +=内,则过Po 的弦中点的轨迹方程是22002222x x y y x y a b a b +=+. 15. 若PQ 是椭圆22 221x y a b +=(a >b >0)上对中心张直角的弦,则 122222121111 (||,||)r OP r OQ r r a b +=+==. 16. 若椭圆22 221x y a b +=(a >b >0)上中心张直角的弦L 所在直线方程为1Ax By +=(0)AB ≠,则

选修2-1数学椭圆综合知识点+大量例题

椭圆的性质 ▓椭圆的围 椭圆上的点都位于直线x=±a 和y=±b 围成的矩形,所以坐标满足|x|≤a ,|y|≤b. ▓椭圆的离心率 ①椭圆的焦距与长轴长度的比叫做椭圆的离心率,用e 表示,记作22c c e a a = =。②因为a >c >0,所以e 的取值围是0<e <1。e 越接近1,则c 就越接近a ,从而22b a c =-越小,因此椭圆越扁;反之,e 越接近于0,c 就越接近0,从而b 越接近于a ,这时椭圆就越接近于圆。当且仅当a=b 时,c=0,这时两个焦点重合,图形变为圆,方程为x 2 +y 2 =a 2 。 ▓椭圆122 22=+b y a x 的图象中线段的几何特征(如下图):(1)12 2PF PF a +=,1212 ||||||||PF PF e PM PM ==,2 122||||a PM PM c +=;(2)12BF BF a ==,12OF OF c ==,2221A B A B a b ==+;(3)1122A F A F a c ==-,1221A F A F a c ==+,c a PF c a +≤≤-1; ▓椭圆标准方程中的三个量a 、b 、c 的几何意义 椭圆标准方程中,a 、b 、c 三个量的大小与坐标系无关,是由椭圆本身的形状大小所确定的,分别表示椭圆的长半轴长、短半轴长和半焦距长,均为正数,且三个量的大小关系为:a >b >0,a >c >0,且a 2 =b 2 +c 2 。 ▓椭圆的焦点总在长轴上,因此已知标准方程,判断焦点位置的方法是:看x 2 、y 2 的分母的大小,哪个分母大,焦点就在哪个坐标轴上。 ▓平面点与椭圆的位置关系 椭圆将平面分成三部分:椭圆上、椭圆、椭圆外,因此,平面上的点与椭圆的位置关系有三种,任给一点M (x,y ),若点M (x,y )在 椭圆上,则有22 221x y a b +=(0)a b >>;若点M (x,y )在椭圆,则有 22221x y a b +<(0)a b >>;若点M (x,y )在椭圆外,则有22 221x y a b +>(0)a b >>. ▓直线与椭圆的相交弦 设直线y kx b =+交椭圆22 221x y a b +=(0)a b >>于点111222(,),(,),P x y P x y 两点,则 22 121212||()() PP x x y y =-+-= 22 121212 ()[1( )]y y x x x x --+-= 2121|| k x x +-同理可得 12122 1 ||1||(0)PP y y k k =+ -≠这里12||,x x -12||,y y -的求法通常使用韦达定理,需作以下变形:2121212||()4x x x x x x -=--;2121212||()4y y y y y y -=-- ▓例 1. 已知椭圆的对称轴为坐标轴,O 为坐标原点,F 是一个焦点,A 是一个顶点,若椭圆的长轴长是6,且 2 cos 3 OFA ∠= ,求椭圆的方程。

(完整版)圆锥曲线知识点+例题+练习含答案(整理)

圆锥曲线 一、椭圆:(1)椭圆的定义:平面内与两个定点21,F F 的距离的和等于常数(大于||21F F )的点的轨迹。 其中:两个定点叫做椭圆的焦点,焦点间的距离叫做焦距。 注意:||221F F a >表示椭圆;||221F F a =表示线段21F F ;||221F F a <没有轨迹; (2)椭圆的标准方程、图象及几何性质: 3.常用结论:(1)椭圆)0(122 22>>=+b a b y a x 的两个焦点为21,F F ,过1F 的直线交椭圆于B A ,两 点,则2ABF ?的周长= (2)设椭圆)0(122 22>>=+b a b y a x 左、右两个焦点为21,F F ,过1F 且垂直于对称轴的直线 交椭圆于Q P ,两点,则Q P ,的坐标分别是 =||PQ 二、双曲线:

(1)双曲线的定义:平面内与两个定点21,F F 的距离的差的绝对值等于常数(小于||21F F )的点的轨迹。 其中:两个定点叫做双曲线的焦点,焦点间的距离叫做焦距。 注意:a PF PF 2||||21=-与a PF PF 2||||12=-(||221F F a <)表示双曲线的一支。 ||221F F a =表示两条射线;||221F F a >没有轨迹; (2)双曲线的标准方程、图象及几何性质: 中心在原点,焦点在x 轴上 中心在原点,焦点在y 轴上 标准 方程 )0,0(122 22>>=-b a b y a x )0,0(122 22>>=-b a b x a y 图 形 顶 点 )0,(),0,(21a A a A - ),0(),,0(21a B a B - 对称轴 x 轴,y 轴;虚轴为b 2,实轴为a 2 焦 点 )0,(),0,(21c F c F - ),0(),,0(21c F c F - 焦 距 )0(2||21>=c c F F 222 b a c += 离心率 )1(>= e a c e (离心率越大,开口越大) 渐近线 x a b y ± = x b a y ± = 通 径 22b a (3)双曲线的渐近线: ①求双曲线122 2 2 =-b y a x 的渐近线,可令其右边的1为0,即得022 2 2 =-b y a x , 因式分解得到0x y a b ±=。 ②与双曲线12222=-b y a x 共渐近线的双曲线系方程是λ=-2222y x ; (4)等轴双曲线为222t y x =-2

相关主题
文本预览
相关文档 最新文档