当前位置:文档之家› 方程及方程组专题(习题)

方程及方程组专题(习题)

方程及方程组专题(习题)
方程及方程组专题(习题)

中考第二轮专题复习例题示例

中考第二轮专题复习三方程及其应用A

11、用8块相同的长方形地砖拼成一块矩形地面,地砖的拼放方式相关数据如

12、由方程t=-x+5,t=y-4组成的方程组可得x,y的关系式是()

A.2x+y=14 B.2x+y=7 C.x+y=9 D.x+y=3

13、解方程

(1) x+y=1 ①(2)2x2-3x-2=0

2x?y=?4 ②

14、已知方程组 3x?5y=2a 的解x,y的值互为相反数,求a的值及原方程组的解.

2x+7y=a?18

□C:想一想,不过如此

15、给出下面四个方程:x+y=2°,xy=1,x=cos60°,y+2x=5

(1)任意两个方程所组成的方程组是二元一次方程组的概率是多少?

(2)请找出一个解是整数的二元一次方程组,并直接写出这个方程组的解.

16、关于x,y的方程组 x+2y=3m

x?y=9m

(1)若x的值比y的值小5,求m的值;

(2)若方程3x+2y=17与方程组的解相同,求m的值.

线性代数第3章_线性方程组习题解答

习题3 3-1.求下列齐次线性方程组的通解: (1)?? ? ??=--=--=+-087305302z y x z y x z y x . 解 对系数矩阵施行行初等变换,得 ???? ? ??-----?→?????? ??-----=144072021 1873153211A )(000720211阶梯形矩阵B =???? ? ??-?→? ??? ?? ??-?→?0002720211)(000271021101行最简形矩阵C =????? ? ???→? , 与原方程组同解的齐次线性方程组为 ??? ??? ?=+=+02702 11 z y z x , 即 ??? ??? ?-=-=z y z x 272 11(其中z 是自由未知量), 令1=z ,得到方程组的一个基础解系 T )1,2 7,211(-- =ξ, 所以,方程组的通解为

,)1,2 7,211(T k k -- =ξk 为任意常数. (2)??? ??=+++=+++=++++0 86530543207224321 432154321x x x x x x x x x x x x x . 解 对系数矩阵施行行初等变换,得 ???? ? ??--?→?????? ??=21202014101072211086530543272211A )(7000014101072211阶梯形矩阵B =????? ??-?→? ???? ? ??-?→?70000141010211201 )(100000101001201行最简形矩阵C =???? ? ???→?, 与原方程组同解的齐次线性方程组为 ??? ??==+=++00 025 42431x x x x x x , 即 ??? ??=-=--=025 4 2431x x x x x x (其中43,x x 是自由未知量), 令34(,)T x x =(1,0)T ,(0,1)T ,得到方程组的一个基础解系 T )0,0,1,0,2(1-=ξ,T )0,1,0,1,1(2--=ξ, 所以,方程组的通解为

初中数学专题中考题精选方程和方程组

三、方程和方程组 1.某河上游的A地,为改善流域环境,把一部分牧场改为林场。改变后,林场与牧场共有162 公顷,牧场面积是林场面积的20%,问退牧还林后林场面积为多少公顷? 2.某队伍长450m,以1.5m/s的速度行进,一个通讯兵从排尾赶到排头,并立即返回排尾,他 的速度是3m/s,那么往返需要多少时间? 3.一个容器盛满酒精20L,倒出一部分后又用水加满;第二次又倒出与第一次相同体积的酒精 溶液,再用水加满,这时容器内的水是纯酒精的3倍,求每次倒出溶液的体积。 4.某厂以500万元资金投入生产,在一年中可以得到一定的利润,第二年又以这500万元资金 和上年的利润一并投入生产,结果得利润42.2万元。已知第二年的利润比第一年增加2.5%,求第一年的利润是投产资金的百分之几? 5.一水池装有A、B两水管,单独打开A管比单独打开B管注满水池多用10小时,现在先打开 B管10小时后,再打开A管,共同注水6小时将水池注满。问同时打开两管注满水池需要几小时? 6.一船由A港到B港顺流需行6小时,由B港逆流需行8小时。一天船从早晨6点由A港出发 顺流行到B港时,发现一救生圈在途中掉落在水中,立刻返回,1小时后找到救生圈。问:(1)若船按水流速度由A港漂流到B港需要多少小时? (2)救生圈是何时掉入水中的? 7.甲、乙两人分别骑摩托车从A、B两地相向而行。甲行1小时后,乙才出发,又经过4小时两 人在途中的C地相遇。相遇后两人按原来的方向继续前进。乙在由C地到达A地的途中因故停了20分钟,结果乙由C地到达A地时比甲由C地到达B地还提前了40分钟。已知乙比甲每小时多行驶4km,求甲、乙两车的速度。 8.某初一学生在做作业时,不慎将墨水瓶打翻,使一道作业题只看到如下字样:“甲、乙两地相 距40km,摩托车的速度为45km/h,运货汽车的速度为35km/h, ?”请将这道作业题补充完整,并列方程解答。 9.某校参加数学竞赛的有120名男生,80名女生;参加英语竞赛的有120名女生,80名男生。 已知该校总共有260名学生参加了竞赛,其中有75名男生两科竞赛都参加了,那么参加数学竞赛而没有参加英语竞赛的女生人数是多少人? 10.果品公司购进苹果5.2万千克,每千克的进价是0.98元,付运费的开支1840元,预计损耗 为1%。如果希望全部销售后能获利17%,问每千克苹果零售价应当定为多少元? 11.某种商品因换季准备打折出售。如果按定价的七五折出售将赔25元;而按定价的九折出售

3线性方程组典型习题解析

3 线性方程组 3、1 知识要点解析(关于线性方程组的常用表达形式) 3.1.1 基本概念 1、方程组1111221n 1211222 2n 2m11m22mn m x x b x x b x x b a a a a a a a a a +++=??+++=? *???++ +=? 称为含n 个未知量m 个方程的线性方程组, i)倘若12m b ,b ,....,b 不全为零,则该线性方程组称为非齐次线性方程组; ii)若12m b =b = =b 0=,则该线性方程组就就是齐次线性方程组, 这时,我们也把该方程组称为1111221n 1211222 2n 2m11m22mn m x x x x x x a a a a a a a a a ++ +=??+++=? ???++ +=?c c c 的导出组, (其中12m c ,c ,...c 不全为零) 2、记1111 1221 n m x b x b ,x ,b x b n m mn a a A a a ???? ?? ? ? ? ? ?== ? ? ? ? ? ??? ???? = 则线性方程组(*)又可以表示为矩阵形式 x b A =** 3、又若记 1j 2j j mj ,j 1,2, n a a a α?? ? ? == ? ? ??? 则上述方程游客一写成向量形式 1122n n x x x b. ααα++ +=***。 同时,为了方便,我们记(,b)A A =,称为线性方程组(*)的增广矩阵。 3.1.2 线性方程组解的判断

1、齐次线性方程组x 0A =,(n=线性方程组中未知量的个数 对于齐次线性方程组,它就是一定有解的(至少零就就是它的解), i)那么,当r n A =秩()=时,有唯一零解; ii)当r n A =秩()<时,又非零解,且线性无关解向量的个数为n-r 、 2、非齐次线性方程组x b A = ()<() ()=()=n, ()=()()=()() A A A A A A A A A A A ?? ???????? ? ?秩秩无解;秩秩有唯一解, 秩秩秩秩有无穷多解,且基础解系个数为 -秩秩秩不可能 3.1.3 线性方程组的解空间 1、齐次线性方程组的解空间 (作为线性方程组的一个特殊情形,在根据其次线性方程与非齐次线性方程组解 的关系,我们这里首先讨论齐次线性方程组的解空间) 定理:对于数域K 上的n 元齐次线性方程组的解空间W 的维数为 A dim(W)=n-秩()=n-r , 其中A 就是方程组的系数矩阵。那么,当齐次线性方程组[(*)--ii)] 有 非零解时,它的每个基础解系所含解向量的数目都等于A n-秩()。 2、 非齐次线性方程组的解空间 我们已知线性方程组的解与非齐次线性方程组的解的关系,那么我们可 首先求出非齐次线性方程组的一个解γ0(称其为方程组特解);然后在求对应的导出组的解空间(设该解空间的基础解系为ηηη12n-r ,,...),则(*)解空间的维数为n-r,且非齐次线性方程组的每一个解都可以表示为: 2.................()k k k γηηη+?0112n-r n-r ++...+ 我们称其为该非齐次线性方程组(*)的通解、

专题07 方程与方程组的解法(解析版)

专题07 方程与方程组的解法 一、知识点精讲 一元一次方程 ⑴在一个方程中,只含有一个未知数,并且未知数的指数是1,这样的方程叫一元一次方程。 ⑵解一元一次方程的步骤:去分母,移项,合并同类项,未知数系数化为1。 ⑶关于方程ax b =解的讨论 ①当0a ≠时,方程有唯一解b x a =; ②当0a =,0b ≠时,方程无解 ③当0a =,0b =时,方程有无数解;此时任一实数都是方程的解。 二元一次方程 在一个方程中,含有两个未知数,并且未知数的指数是1,这样的方程叫二元一次方程。 二元一次方程组: (1)两个二元一次方程组成的方程组叫做二元一次方程组。 (2)适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解。 (3)二元一次方程组中各个方程的公共解,叫做这个二元一次方程组的解。 (4)解二元一次方程组的方法:①代入消元法,②加减消元法③整体消元法,。 二、典例精析 ①一元高次方程的解法 思想:降次 方法:换元、因式分解等 【典例1】解方程. (1)4213360x x -+= (2)63980x x -+= 【答案】见解析 【解析】 (1)4222 13360(4)(9)02 3.x x x x x x -+=?--=?=±=±或 (2)6333 980(1)(8)1 2.x x x x x x -+=?--?==或 【典例2】解方程.

(1)32+340x x x -= (2)3210x x -+= 【答案】见解析 【解析】 (1)322 +340(34)0(4)(1)04 1.x x x x x x x x x x x -=?+-=?+-?==-=或或 (2 )33221010(1)(1)1x x x x x x x x x x -+=?--+=?-+-?==或 ②方程组的解法 解方程组的思想:消元 解方程组的方法:①代入消元法,②加减消元法,③整体消元法等。 【典例3】解方程组. 347(1)295978x z x y z x y z +=??++=??-+=? 3(2)45x y y z z x +=?? +=??+=? 【答案】见解析 【解析】 5 3471(1)29359782x x z x y z y x y z z =?+=???? ++=?=???? -+=??=-? 3(2)45x y y z z x +=??+=??+=?213x y z =?? ?=??=? 【典例4】解方程组22 210 4310x y x y x y --=??-++-=? 【答案】见解析 【解析】 22 2104310x y x y x y --=??-++-=?8115 1115x x y y ? = ?=?????=??= ?? 或 【典例5】解方程组.

线性方程组典型习题及解答

线性方程组 1. 用消元法解方程组?????? ?=- +-+=-- + - =-+-+ =- -+-5 2522220 21 22325 4 321 53 2 154321 5 4321x x x x x x x x x x x x x x x x x x x . 解: 方程组的增广矩阵 : ????? ???????---------→????????????---------→????????????---------420200110100112430211321312630202530112430211321512522110112121111211321? ??? ????? ???--------→60000 0110100112430211321,可知,系数矩阵的秩为3,增广矩阵的秩为4,系数矩阵的秩不等于增广矩阵的秩,从而方程组无解. 2. 讨论λ为何值时,方程组??? ??=++ = + +=++2 3 2 1 3 2 1 321 1 λλλλλx x x x x x x x x 有唯一解、无解和有无穷多解。 解:将方程组的增广矩阵进行初等行变换,变为行阶梯矩阵。 ()() ()()B A =??? ? ???? ? ?+------→→???? ????? ?→?? ??? ?????=22 2 2211210 1101 111 1 11111 1 1 1 111λλλλλλλ λλλ λλλλλλλ λλ λΛ于是,当2,1-≠λ时,系数矩阵的秩等于增广矩阵的秩,都等于3,等于未知量的个数,此 时方程组有唯一解;2 )1(,21,213 321++-=+=++- =λλλλλx x x 当2-=λ时,系数矩阵的秩为2,增广矩阵的秩为3,此时方程组无解; 当1=λ时,系数矩阵的秩等于增广矩阵的秩,都等于1,小于未知量的个数,此时方程组有无穷多解,即3211x x x --=,其中32,x x 为自由未知量。

齐次和非齐次线性方程组的解法(整理定稿)

线性方程组解的结构(解法) 一、齐次线性方程组的解法 【定义】 r (A )= r 时,若()r A n ≤,则存在齐次线性方程组的同解方程组; $ 若()r A n >,则齐次线性方程组无解。 1、求AX = 0(A 为m n ?矩阵)通解的三步骤 (1)?? →A C 行 (行最简形); 写出同解方程组CX =0. (2) 求出CX =0的基础解系,,,n r -12ξξξ; (3) 写出通解n r n r k k k --=++ +1122X ξξξ其中k 1,k 2,…, k n-r 为任意常数.

中考数学专题一方程与方程组及其应用

中考复习专题——方程和方程组及其应用 基础知识点: 一、方程有关概念 1、方程:含有未知数的等式叫做方程。 2、方程的解:使方程左右两边的值相等的未知数的值叫方程的解,含有一个未知数的方程的解也叫做方程的根。 3、解方程:求方程的解或判断方程无解的过程叫做解方程。 4、方程的增根:在方程变形时,产生的不适合原方程的根叫做原方程的增根。 二、一元方程 1、一元一次方程 (1)一元一次方程的标准形式:ax+b=0(其中x 是未知数,a 、b 是已知数,a ≠0) (2)一元一次方程的最简形式:ax=b (其中x 是未知数,a 、b 是已知数,a ≠0) (3)解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项和系数化为1。 (4)一元一次方程有唯一的一个解。 2、一元二次方程 (1)一元二次方程的一般形式:02=++c bx ax (其中x 是未知数,a 、b 、c 是已知数,a ≠0) (2)一元二次方程的解法: 直接开平方法、配方法、公式法、因式分解法 (3)一元二次方程解法的选择顺序是:先特殊后一般,如没有要求,一般不用配方法。 (4)一元二次方程的根的判别式:ac b 42-=? 当Δ >0时?方程有两个不相等的实数根; 当Δ =0时?方程有两个相等的实数根; 当Δ < 0时?方程没有实数根,无解; 当Δ≥0时?方程有两个实数根 注:常用公式 配方式

(5)一元二次方程根与系数的关系: 若21,x x 是一元二次方程02=++c bx ax 的两个根, (6)以两个数21,x x 为根的一元二次方程(二次项系数为1)是:0)(21212=++-x x x x x x 例1、解下列方程: (1)2)3(2 12=+x ;(2)1322=+x x ;(3)22)2(25)3(4-=+x x 分析:(1)用直接开方法解;(2)用公式法;(3)用因式分解法 (4)配方法 [规律总结]如果一元二次方程形如)0()(2≥=+n n m x ,就可以用直接开方法来解;利用公式法可以解任何一个有解的一元二次方程,运用公式法解一元二次方程时,一定要把方程化成一般形式。 例2、解下列方程: (1))(0)23(2为未知数x b a x a x =+--; (2)08222=-+a ax x 分析:(1)先化为一般形式,再用公式法解;(2)直接可以十字相乘法因式分解后可求解。 [规律总结]对于带字母系数的方程解法和一般的方程没有什么区别,在用公式法时要注意判断△的正负。 例3、已知关于x 的方程:032)1(2=+++-p px x p 有两个相等的实数根,求p 的值。 分析:由题意可得?=0,把各系数代入?=0中就可求出p ,但要先化为一般形式。 [规律总结]对于根的判别式的三种情况要很熟练,还有要特别留意二次项系数不能为0 例4、已知a 、b 是方程0122=--x x 的两个根,求下列各式的值: (1)22b a +;(2)b a 11+ 分析:先算出a+ b 和ab 的值,再代入把(1)(2)变形后的式子就可求出解。 [规律总结]此类题目都是先算出两根之和和两根之积,再把要求的式子变形成含有两根之和和两根之积的形式,再代入计算。但要注意检验一下方程是否有解。 例5、求作一个一元二次方程,使它的两个根分别比方程052=--x x 的两个根小3 分析:先出求原方程的两根之和21x x +和两根之积21x x 再代入求出)2()3(21-+-x x 和)3)(3(21--x x 的值,所求的方程也就容易写出来。解:略 [规律总结]此类题目可以先解出第一方程的两个解,但有时这样又太复杂,用根与系数的关系就比较简单。 三、分式方程 (1)定义:分母中含有未知数的方程叫做分式方程。 (2)分式方程的解法:一般解法:去分母法,方程两边都乘以最简公分母。 特殊方法:换元法。 (3)检验方法:一般把求得的未知数的值代入最简公分母,使最简公分母不为0的就

线性方程组-练习

1.设向量组123,,ααα线性无关,向量1β可由123,,ααα线性表示,而向量2β不能由123,,ααα线性表示,则对于任意常数k ,必有( )A (A) 12312,,,k αααββ+线性无关; (B )12312,,,k αααββ+线性相关; ( C) 12312,,,k αααββ+线性无关; (D) 12312,,,k αααββ+线性相关 2.n 维向量组)1(,,,21n s s ≤≤ααα 线性无关的充要条件是 ( D ) (A) 存在一组不全为零的s k k k ,,21 ,使得02211=+++s s k k k ααα (B) s ααα ,,21 中的任何两个向量都线性无关 (C) s ααα ,,21 中存在一个向量,它不能被其余向量线性表示 (D) s ααα ,,21 中的任何一个向量都不能被其余向量线性表示 3. (1)若两个向量组等价,则它们所含向量的个数相同; (2)若向量组}{21r ααα,,, 线性无关,1+r α可由r ααα ,21,线性表出,则向量组}{121+r ααα,,, 也线性无关; (3)设}{21r ααα,,, 线性无关,则}{121-r ααα,,, 也线性无关; (4)}{21r ααα,,, 线性相关,则r α一定可由121,-r ααα ,线性表出;以上说法正确的有( A )个。 A .1 个 B .2 个 C .3 个 D .4个 4.向量组A :12,,,n ααα 与B :12,,,m βββ 等价的充要条件为( C ). A .()()R A R B =; B .()R A n =且()R B m =; C .()()(,)R A R B R A B ==; D .m n = 5.讨论a ,b 取什么值时,下面方程组有解,对有解的情形,求出一般解。 1234123423412341322235433x x x x x x x x a x x x x x x x b +++=??+++=??++=??+++=?。 答案:a =0,b =2有解;其他无解。 (-2,3,0,0)’+k1(1,-2,1,0)’+k2(1,-2,0,1)’ 6.试就k 的取值情况讨论以下线性方程组的解,并在有无穷的解时求出通解:

中考数学总复习专题基础知识回顾六方程及方程组.doc

2019-2020 年中考数学总复习专题基础知识回顾六方程与方程组一、单元知识网络 二、考试目标要求 1.能够根据具体问题中的数量关系,列出方程,体会方程是刻画现实世界的一个有效的数 学模型 . 2. 经历用观察、画图或计算器等手段估计方程解的过程. 3. 会解一元一次方程、简单的二元一次方程组、可化为一元一次方程的分式方程( 方程中的分式不超过 两个 ). 4. 理解配方法,会用因式分解法、公式法、配方法解简单的数字系数的一元二次方程. 5. 能根据具体问题的实际意义,检验结果是否合理. 三、知识考点梳理 考点一:等式性质 1.等式的两边都加上 ( 或减去 ) 同一个整式,结果仍是等式 . 2.等式的两边都乘以同一个数,结果仍是等式. 3.等式的两边都除以同一个不等于零的数,结果仍是等式.

考点二:方程及相关概念 1.方程定义 含有未知数的等式叫做方程 . 2.方程的解 使方程两边的值相等的未知数的值,叫做方程的解( 一元方程的解也叫做根). 3.解方程 求方程的解的过程,叫做解方程. 考点三:一元一次方程 1.一元一次方程定义 只含有一个未知数,且未知数的次数是一次的整式方程叫做一元一次方程. 2.一元一次方程的一般形式 : . 3.解一元一次方程的一般步骤: (1)去分母; (2) 去括号; (3) 移项; (4) 合并同类项; (5) 系数化成 1;(6) 检验 ( 检验步骤可以不写出来 ) 考点四:二元一次方程组 1.二元一次方程组定义 两个含有两个未知数,且未知数的次数是一次的整式方程组成的一组方程,叫做二元一次方程组 . 2. 二元一次方程组的一般形式: 3.二元一次方程组的解法: (1)代入消元法; (2)加减消元法 . 考点五:分式方程 1.分式方程定义 分母中含有未知数的方程叫做分式方程. 2.分式方程与整式方程的联系与区别: 分母中是否含有未知数 .

解线性方程组

课程设计阶段性报告 班级:学号:姓名:申报等级: 题目:线性方程组求解 1.题目要求:输入是N(N<256)元线性方程组Ax=B,输出是方程组的解,也可能无解或有多组解。可以用高斯消去法求解,也可以采用其它方法。 2.设计内容描述:将线性方程组做成增广矩阵,对增广矩阵进行变换然后采用高斯消元法消去元素,从而得到上三角矩阵,再对得到的上三角矩阵进行回代操作,即可以得到方程组的解。 3.编译环境及子函数介绍:我使用Dev-C++环境编译的,调用uptrbk() FindMax()和ExchangeRow(),uptrbk是上三角变换函数,FindMax()用于找出列向量中绝对值最大项的标号,ExchangeRow()用于交换两行 4. 程序源代码: #include #include #include //在列向量中寻找绝对值最大的项,并返回该项的标号 int FindMax(int p,int N,double *A) { int i=0,j=0; double max=0.0; for(i=p;imax) { j=i; max=fabs(A[i*(N+1)+p]); } } return j;

//交换矩阵中的两行 void ExchangeRow(int p,int j,double *A,int N) { int i=0; double C=0.0; for(i=0;i

线性方程组习题课

线性方程组求解 习题课

一、给定方程组123211*********x x x -???????????? =? ???????????-?????? 试考察用Jacobi 迭代法和Seidel 迭代法求解的收敛性。 解:对Jacobi 迭代法,迭代矩阵为 -1J 00.50.5B =I-D A=1010.50.50-?? ??--?????? 因为3 5 04 J I B λλλ-=+=,得特征值 1230,,22i i λλλ===- 得( )12J B ρ=> ,由定理知 Jacobi 迭代法发散。 对Seidel 迭代法,迭代矩阵为 ()1 S B D L U -=-=1 20001100.50.511000100.50.5112000000.5---?????? ??????-=--?? ??????????--?? ???? 显然,其特征值为1230,0.5λλλ===-

故()0.51s B ρ=<,由定理知Seidel 迭代法收敛。 二、设线性方程组111211212222a a x b a a x b ?????? = ??? ??????? ,11220a a ≠, 112221120a a a a -≠。证明:解线性方程组的Jacobi 迭代法和Gauss-Seidel 迭代法同时收敛或不收敛。 证明: 121 1111 122221 21 22 0000 00J a a a a B a a a a -??- ?-???? ?== ? ? ?-????- ??? ()2 1221 1122det J a a I B a a λλ-=-,故( )J B λ= ( )J B ρ= 。 1211111 1221 2212211122000000S a a a a B a a a a a a -??- ?-???? ?== ? ? ????? ?? ?

线性方程组练习题

线性方程组练习题 §1 向量的线性关系 1.判断下列向量组是否线性无关: (1)????? ??-11 2,????? ??-840,????? ??-311; (2)??????? ??01014,??????? ??1521,??????? ??1202,?????? ? ??7024。 2.讨论下面向量组的线性相关性: ???????? ??12211,???????? ??-15120,???????? ??-141b a 。 3.设????? ??=1111a ,????? ??=3211a ,???? ? ??=t 311a 。 (1)问当t 为何值时,321,,a a a 线性相关? (2)问当t 为何值时,321,,a a a 线性无关? (3)当321,,a a a 线性相关时,问3a 是否可以由1a ,2a 线性表示?若能,写出具体表达式。 4.设有向量组 ??????? ??+=11111t a ,??????? ??+=22222t a ,??????? ??+=33333t a ,?????? ? ??+=t 44444a 。 问:(1)当t 为何值时,4321,,,a a a a 线性相关? (2)当t 为何值时,4321,,,a a a a 线性无关? 5.设321,,a a a 线性无关,问当参数l ,m 满足何种关系时,12a a -l ,23a a -m ,31a a -也线性无关? 6.设m a a a ,,,21 线性无关,作 211a a b +=,322a a b +=,…,m m m a a b +=--11,1a a b +=m m 。 判别m b b b ,,,21 的线性相关性。 7.设21,a a 线性无关,b a b a ++21,线性相关,问b 能否由21,a a 线性表示? 8.设321,,a a a 线性相关,432,,a a a 线性无关。问: (1)1a 能否由32,a a 线性表示; (2)4a 能否由321,,a a a 线性表示。 9.若T k k ),,0(2=b 能由T k )1,1,1(1+=a ,T k )1,1,1(2+=a ,T k )1,1,1(3+=a 唯一

中考数学专题复习四方程与方程组练习

专题四 方程与方程组 一. 填空题: 1. 方程 2x +y =5 的所有正整数解为____ 2. 若 ? ??==2y 1x 是方程3ax -2y =2 的解,则 a =____ 3. 当 a ____时,方程 (a -1) x 2 +x -2=0 是一元二次方程。 4. 方程 x 111x 122 +=--的解为____ 5. 如果方程x 2m 12x 1x -=+-+有增根,那么m =____ 6. 3名同学参加乒乓球赛,每两名同学之间赛一场,一共需要__场比赛,则5名同学一共需要____比赛。 7. 如图,四个一样大的小矩形拼成一个大矩形,如果大矩形的周长为12cm ,那么小矩形的周长为____cm 。 8. 长20m 、宽15m 的会议室,中间铺一块地毯,地毯的面积是会议室面积的 21,若四周未铺地毯的留空宽度相同,则留空的宽度为____。 二. 选择题: 1. 下列方程中,属于一元一次方程的是( ) A. x =y +1 B. 1x 1= C. x 2=x -1 D. x =1 2. 已知3-x +2y =0,则2x -4y -3的值为( ) A. -3 B. 3 C. 1 D. 0 3. 用“加减法”将方程组? ??-=+=-1y 4x 29y 3x 2中的x 消去后得到的方程是( ) A. y =8 B. 7y =10 C. -7y =8 D. -7y =10 4. 下列方程中是一元二次方程的是( ) A. x +3=5 B. xy =3 C. 0x 1x 2=+ D. 2x 2-1=0 5. 若关于x 的方程 11x a x 2=--无解,则a 的值等于( ) A. 0 B. 1 C. 2 D. 4

线性方程组练习题(免费下载)

《线性代数》第三章练习题 一、思考题 1、设有线性方程组b AX =,其中A 为n 阶方阵,j A 为A 中第j 列元素换为b 所得行列式的值,判断下列命题是否正确? (1)若0≠A ,则b AX =有唯一解; (2)若0=A ,且至少有一)1(0n j A j ≤≤≠,则b AX =无解; (3)若0=A ,且),,2,1(0n j A j ==,则b AX =有无穷多解。 2、判断下列命题是否正确?其中A 为n m ?矩阵。 (1)非齐次线性方程组b AX =,当n m <时,有无穷多解;当n m =时,有唯一解;当n m >时,无解; (2)齐次线性方程组0=AX ,当n m <时,必有非零解; (3)非齐次线性方程组b AX =,当m A r =)(时,必相容。 3、设向量组4321,,,αααα线性无关,判断向量组14433221,,,αααααααα++++是否也线性无关。 4、判断下列命题是否正确? (1)若向量组m ααα,,,21 线性相关,则存在全不为零的数m k k k ,,,21 ,使得 02211=+++m m k k k ααα ; (2)若向量组m ααα,,,21 线性相关,且有02211=+++m m k k k ααα ,则 m k k k ,,,21 必不全为零; (3)若当数021====m k k k 时,02211=+++m m k k k ααα ,则向量组m ααα,,,21 线性无关; (4)若02211=+++m m k k k ααα ,必有021====m k k k ,则向量组m ααα,,,21 线性无关; (5)向量β不能由m ααα,,,21 表示,则βααα,,,,21m 线性无关; (6)若向量组m ααα,,,21 线性无关,则其中每一个向量都不能表示成其余向量的线性组合; (7)若向量组m ααα,,,21 线性无关,向量组s βββ,,,21 线性无关,则向量组 m ααα,,,21 ,s βββ,,,21 线性无关。 二、单项选择题 1. 设321,,X X X 是b AX =的三个特解,则下列哪个也是b AX =的解 ( ) (A )332211X k X k X k ++; (B )332211X k X k X k ++,1321=++k k k ; (C )321)(X X X k ++ ; (D ) 32211)(X k X X k +-。 2.设321,,ξξξ是0=AX 的一组基础解系,则下列哪组也是0=AX 的一基础解系( ) (A )133221,,,ξξξξξξ+-; (B )312321,,ξξξξξξ++-; (C ) 13321,ξξξξξ-++ ; (D ) 3121,,ξξξξ- 。 3.设A 是n 阶矩阵,并且0=A ,则A 的列向量中 ( ) (A )必有一个向量为零向量 ; (B)必有两个向量的对应分量成比例; (C )必有一个向量是其余向量的线性组合 ; (D )任一向量是其余向量的线性组合。 4.如果4),,,(21=m r ααα ,则下列正确的是 ( ) (A )如果 m ααα,,,21 的一个部分组线性无关 ,则该部分组包含的向量个数一定不超过4;

专题二不等式组与方程组

专题二不等式与方程 次方程2x 3y 6的解,贝卩k的值为 4.如图所示的两架天平保持平衡,且每块巧克力的质量相 等,每个果冻的质量也相等,则一块巧克力的质量是 6.如果关于x的一元二次方程k2x2(2k 相 等的实数根,那么k的取值范围是( A. k > k 0; 7.已知a、b、c分别是三角形的三边,则关于x的一元二 一、选择题 1.已知4x4m y 3m 与5x n y是同类项,贝卩与的值分别 2.列哪个不等式组的解集在数轴上表示如图所示 A. B. :21 C. x x 2 D. x 2 1 x 1 第2题图3 . 若关于X, y的二元一次方程组: x 5k, 9k 的解也是二元 A. 20g.30g ) 的结果是( 82 4 - K2~ 2 - K 5.解方程 =-2 =2 =4 D. 无解 A. 3 B. 3 C. D. 1)x 1 0有两个不 ) 1 ; D. k -且 4 4 1 ; B. k > 1且k 0; C. k v 4 4

A . -1 B . 1 C . 2 D . -2 11.三角形两边的长是3和4 ,第三边的长是方程 x 2 12x 35 0 的根,则该三角形的周长为( ) A . 14; B . 12; C . 12 或 14; D.以上都不对 12.直线 y = kx + b 与直线 y = k ?x + c 直角坐标系中的图象如图所示,则关于 等式ky + bv k 2x + c 的解集为( ) > 1 v 1 C.x >— 2 v- 2 二、填空题 1.关于 x 的方程(a 2 -4 ) x 2 +(a-2)x+6=0. a 满足 时,是一元一次方程,当 a 满足 ________ 时,是一元二次 方程。 次方程(a + b )x 2 + 2cx + (a + b ) = 0的根的情况是( ) A .没有实数根 B.可能有且只有一个实数根 C.有两个相等的实数根 D.有两个不相等的实数根 8. 某服装厂准备加工400套运动服,在加工完160套后, 采用了新技术,使得工作效率比原计划提高了 20%结果 共用了 18天完成任务。问:计划每天加工服装多少套在 这个问题中,设计划每天加工 x 套,则根据题意可得方程 ( ) A. 9. 在某次聚会上,每两个人都握了一次手,所有人共握手 100次, 设有x 人参加这次聚会,则列出方程正确的是( ) x (x - 1) x (x + 1) (x-1)=100 ―j — 二 100 D. ―j — 二 100 10. 若(3x 4y 1)2 3y 2x 5 0 则 x ( ) 160 400 = 18 {1 + 10 18 C. 160 400 - "0 x 咖 18 400 一 + 400 - 160 (1 + 20V x 18 B 400-160 (1 + 20%) X ~

中考数学总复习专题基础知识回顾六方程与方程组(最新整理)

中考数学总复习专题基础知识回顾六方程与方程组 一、单元知识网络 二、考试目标要求 1.能够根据具体问题中的数量关系,列出方程,体会方程是刻画现实世界的一个有效的 数学模型. 2.经历用观察、画图或计算器等手段估计方程解的过程. 3.会解一元一次方程、简单的二元一次方程组、可化为一元一次方程的分式方程(方程中的分式不超过 两个). 4.理解配方法,会用因式分解法、公式法、配方法解简单的数字系数的一元二次方程. 5.能根据具体问题的实际意义,检验结果是否合理. 三、知识考点梳理 考点一:等式性质 1.等式的两边都加上(或减去)同一个整式,结果仍是等式. 2.等式的两边都乘以同一个数,结果仍是等式. 3.等式的两边都除以同一个不等于零的数,结果仍是等式.

考点二:方程及相关概念 1.方程定义 含有未知数的等式叫做方程. 2.方程的解 使方程两边的值相等的未知数的值,叫做方程的解(一元方程的解也叫做根). 3.解方程 求方程的解的过程,叫做解方程. 考点三:一元一次方程 1.一元一次方程定义 只含有一个未知数,且未知数的次数是一次的整式方程叫做一元一次方程. 2.一元一次方程的一般形式: . 3.解一元一次方程的一般步骤: (1)去分母;(2)去括号;(3)移项;(4)合并同类项;(5)系数化成 1;(6)检验(检验步骤可以不写出来) 考点四:二元一次方程组 1.二元一次方程组定义 两个含有两个未知数,且未知数的次数是一次的整式方程组成的一组方程,叫做二元一次方程组. 2.二元一次方程组的一般形式: 3.二元一次方程组的解法: (1)代入消元法; (2)加减消元法. 考点五:分式方程 1.分式方程定义 分母中含有未知数的方程叫做分式方程. 2.分式方程与整式方程的联系与区别: 分母中是否含有未知数. 3.分类:

线性方程组解题方法技巧与题型归纳

线性方程组解题方法技巧与题型归纳 题型一 线性方程组解的基本概念 【例题1】如果α1、α2是方程组 123131233231 2104 x x ax x x x ax x --=?? -=??-++=? 的两 个不同的解向量,则a 的取值如何 解: 因为α1、α2是方程组的两个不同的解向量,故方程组有无穷多解,r(A)= r(Ab)<3, 对增广矩阵进行初等行变换: 21131132031022352104002314510a a a a a a a ----???? ? ?-→-- ? ? ? ?-----???? 易见仅当a=-2时,r(A)= r(Ab)=2<3, 故知a=-2。 【例题2】设A 是秩为3的5×4矩阵, α1、α2、 α3是非齐次线性方程组Ax=b 的三个不同的解,若α1+α2+2α3=(2,0,0,0)T , 3α1+α2= (2,4,6,8)T ,求方程组Ax=b 的通解。 解:因为r(A)= 3,所以齐次线性方程组Ax=0的基础解系由4- r(A)= 1个向量构成, 又因为(α1+α2+2α3)-(3α1+α2) =2(α3-α1)=(0,-4,-6,-8)T , 是Ax=0的解, 即其基础解系可以是(0,2,3,4)T , 由A (α1+α2+2α3)=Aα1+Aα2+2Aα3=4b 知1/4

(α1+α2+2α3)是Ax=b 的一个解, 故Ax=b 的通解是 ()1,0,0,00,2,3,42T T k ?? + ??? 【例题3】已知ξ1=(-9,1,2,11)T ,ξ2=(1,- 5,13,0)T ,ξ3=(-7,-9,24,11)T 是方程组 12234411223441 234432332494x a x x a x d x b x x b x x x x c x d +++=?? +++=??+++=?的三个解,求此方程组的通解。 分析:求Ax=b 的通解关键是求Ax=0的基础解系,判断r(A)的秩。 解:A 是3×4矩阵, r(A)≤3,由于A 中第2,3两行不成比例,故r(A)≥2,又因为 η1=ξ1-ξ2=(-10,6,-11,11)T , η2=ξ2-ξ3= (8,4,-11,-11)T 是Ax=0的两个线性无关的解向量, 于是4- r(A)≥2,因此r(A)=2,所以ξ1+k 1η1+k 2η2是通解。 总结: 不要花时间去求方程组,太繁琐,由于ξ1-ξ2,ξ1-ξ3或ξ3-ξ1,ξ3-ξ2等都可以构成齐次线性方程组的基础解系,ξ1,ξ2,ξ3都是特解,此类题答案不唯一。 题型2 线性方程组求解

专题四方程与方程组

专题四方程与方程组 解题方法技巧 本专题主要考查方程思想和转化思想,同时考查学生收集和处理信息的能力、分析和解决实际问题的能力及创新实践的能力. 1.解方程(组)的方法 解方程(组)主要采用加减消元法、代入消元法、因式分解法、公式法、去分母法、换元法等;对于特殊形式的方程(组)可采用对称思想、整体思想、非负数性质、定义法、拆项法等特殊的方法求解. 例1 解方程组 7, 28. x y x y += ? ? -=? 2.换元法 换元法解方程(组),关键是观察分析出能够换元的整式或分式,有时需要对方程(组)进行整理变形(如因式分解、配方、添拆项等)才能观察出如何换元, 例2 解方程: 2 2 (1)1 20 x x x x -- --=. 3.列方程(组)解应用题 列方程(组)解应用题的关键是找到能够表示题目全部含义的相等关系,常见的相等关系有两种:第一种是题目中的关键词语表示的相等关系,例如:“多”“少”“增加”“减少”等;另一种是题目中没有明显给出而题意中又包含着的隐含相等关系,隐含相等关系需结合日常生活常识和自然科学知识才能得到,常用的方法有:(1)译式法;(2)图示法;(3)表格法等.方程(组)常与函数、不等式(组)等知识结合,解决生活中的热点问题. 例3 同庆中学为丰富学生的校园生活,准备从军跃体育用品商店一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),若购买3个足球和2个篮球共需310元,购买2个足球和5个篮球共需500元. (1)购买一个足球、一个篮球各需多少元? (2)根据同庆中学的实际情况,需从军跃体育用品商店一次性购买足球和篮球共96个.要求购买足球和篮球的总费用不超过5720元,这所中学最多可以购买多少个篮球?热点试题归类 考点1 一元一次方程 1.王先生到银行存了一笔三年期的定期存款,年利率是4. 25%,若到期后取出得到本息和(本金+利息)33825元.设王先生存入的本金为x元,则下面所列方程正确的是()A.x+3×4.25%x=33825 B.x+4.25%x=33825 C.3×4.25%x=33825 D.3(x+4.25%x)=33825 2.已知关于x的方程250 x a --=的解是2 x=-,则a的值为()A.1 B.-1 C.9 D.-9 3.湖园中学学生志愿服务小组在“三月学雷锋”活动中,购买了一批牛奶到敬老院慰

相关主题
文本预览
相关文档 最新文档