当前位置:文档之家› 专题07 方程与方程组的解法(解析版)

专题07 方程与方程组的解法(解析版)

专题07 方程与方程组的解法(解析版)
专题07 方程与方程组的解法(解析版)

专题07 方程与方程组的解法

一、知识点精讲 一元一次方程

⑴在一个方程中,只含有一个未知数,并且未知数的指数是1,这样的方程叫一元一次方程。 ⑵解一元一次方程的步骤:去分母,移项,合并同类项,未知数系数化为1。 ⑶关于方程ax b =解的讨论 ①当0a ≠时,方程有唯一解b x a

=; ②当0a =,0b ≠时,方程无解

③当0a =,0b =时,方程有无数解;此时任一实数都是方程的解。 二元一次方程

在一个方程中,含有两个未知数,并且未知数的指数是1,这样的方程叫二元一次方程。 二元一次方程组:

(1)两个二元一次方程组成的方程组叫做二元一次方程组。

(2)适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解。 (3)二元一次方程组中各个方程的公共解,叫做这个二元一次方程组的解。 (4)解二元一次方程组的方法:①代入消元法,②加减消元法③整体消元法,。 二、典例精析 ①一元高次方程的解法 思想:降次

方法:换元、因式分解等 【典例1】解方程. (1)4213360x x -+= (2)63980x x -+= 【答案】见解析 【解析】

(1)4222

13360(4)(9)02 3.x x x x x x -+=?--=?=±=±或

(2)6333

980(1)(8)1 2.x x x x x x -+=?--?==或

【典例2】解方程.

(1)32+340x x x -= (2)3210x x -+= 【答案】见解析 【解析】

(1)322

+340(34)0(4)(1)04 1.x x x x x x x x x x x -=?+-=?+-?==-=或或

(2

)33221010(1)(1)1x x x x x x x x x x -+=?--+=?-+-?==或 ②方程组的解法 解方程组的思想:消元

解方程组的方法:①代入消元法,②加减消元法,③整体消元法等。 【典例3】解方程组.

347(1)295978x z x y z x y z +=??++=??-+=? 3(2)45x y y z z x +=??

+=??+=?

【答案】见解析 【解析】

5

3471(1)29359782x x z x y z y x y z z =?+=????

++=?=????

-+=??=-?

3(2)45x y y z z x +=??+=??+=?213x y z =??

?=??=?

【典例4】解方程组22

210

4310x y x y x y --=??-++-=?

【答案】见解析 【解析】

22

2104310x y x y x y --=??-++-=?8115

1115x x y y ?

=

?=?????=??=

??

或 【典例5】解方程组.

7(1)10x y xy +=??=?

225(2)2x y xy ?+=?=?

【答案】见解析 【解析】

7(1)10x y xy +=??=?2552x x y y ==?????==??

225(2)2x y xy ?+=?=?

12-1-2

21-2-1x x x x y y y y ====?????????====????或或或

【典例6】解方程组. 22

10

(1)341xy x y x y --+=??+=?

2222

34340(2)25x xy y x y x y ?---+=??+=??

【答案】见解析 【解析】

22

10(1)341xy x y x y --+=??+=?

由①得11x ==或y 分别带入②式可得没有这样的,x y 满足条件,∴该方程组无解。 2222

34340(2)25x xy y x y x y ?---+=??+=??

44433334x x x x y y y y ==-==-?????????==-=-=????或或或 【典例7】解方程组. 2222

315(1)331545x xy y x xy y ?++=?

?-+=-??

22

22

4

41(2),(0,0)1611a b a b a b ?+=??>>??+=??

【答案】见解析 【解析】

2222

315(1)331545x xy y x xy y ?++=??-+=-??

11223311x x x x y y y y ==-==-?????????==-==-????或或或 22

224

41(2),(0,0)1611a b a b a

b ?+=??>>??+=?

?a b ?=???=??

【典例8】已知二次函数2y ax bx c =++的图像经过(1,3),(2,7),(3,13)A B C 三点,求该二次函数的表达式.

【答案】见解析 【解析】

由题意得2

31

4271193131a b c a a b c b y x x a b c c ++==????++=?=?=++????++==??

三.对点精练

1.已知二次函数的图像的对称轴为1x =且过(1,2),(2,4)A B ,求该二次函数的表达式. 【答案】见解析

【解析】由题意得2

122242444244

b

a a a

b

c b y x x a b c c ?-=?=???++=?=-?=-+????++==??

?

2.解方程

(1)3520x x --= (2)323460x x x +--= 【答案】见解析 【解析】

(1

)332520420(2)(21)021x x x x x x x x x x --=?---=?+--=?=-=±或(2

3232222

3460(246)0.(1)2(1)(3)0(1)(26)011x x x x x x x x x x x x x x x x +--=?++--=?+++-=?++-=?=-=-±或

3.解方程组.

15(1)239540x y z x y z x y z ++=??+-=??--=?

(2)34524x y z x y z ?==???++=?

【答案】见解析 【解析】

15(1)239540x y z x y z x y z ++=??+-=??--=?438x y z =??

?=??=? (2)345

24x y z

x y z ?==

???++=?6810x y z =???=??=?

4.解方程组.

2

1(1)21x y y x x -=??=+-? 2

21

(2)142

y x x y =+???+=?

? 【答案】见解析 【解析】

2

1(1)21x y y x x -=??=+-?

01

12x x y y ==-?????=-=-??或 221(2)142y x x y

=+???+=?

?x x y y ??==??

???????==????

或 5. 解方程组.

22330(1)143xy x y x y +++=???+=?? 22220(2)122

x y x y x y ?-++=??-=??

【答案】见解析 【解析】

22330(1)143xy x y x y

+++=???+=??113322x x y y =-=-???????==-????或 22220(2)122x y x y x y ?-++=??-=?

?3212

x y ?=-?????=-??

6. 解方程组

.11

a b a b c ?

?=??

+==??=

【答案】见解析 【解析】据题意0b ≥

111(11221

1111a a a b a b a b a b c a a c a a c b b c c ???==?????????==-=?????????

?+==?+==+-==?=-=??????????=??====??????

或)

第二章 线性方程组的数值解法

第二章 线性方程组的数值解法 在科技、工程技术、社会经济等各个领域中很多问题常常归结到求解线性方程组。例如电学中的网络问题,样条函数问题,构造求解微分方程的差分格式和工程力学中用有限元方法解连续介质力学问题,以及经济学中求解投入产出模型等都导致求解线性方程组。 n 阶线性方程组的一般形式为 ?? ???? ?=+++=+++=+++n n nn n n n n n n b x a x a x a b x a x a x a b x a x a x a L K K K K L L 22112 222212********* (1.1) 其矩阵形式为 b Ax = (1.2) 其中 ????? ???????=??? ?????????=? ? ????? ?????= n n nn n n n n b b b b x x x x a a a a a a a a a A M M L K K K K L L 2121212222111211 ),,2,1,(n j i a ij L =,),,2,1(n i b i L =均为实数,i b 不全为0,且A 为非奇异。 关于线性方程组的数值解法一般分为两类: 1.直接法 就是不考虑计算机过程中的舍入误差时,经有限次的四则运算得到方程组准确解的方法。 而实际中由于计算机字长的限制,舍入误差的存在和影响,这种算法也只能求得线性方程组的近似解。本章将阐述这类算法中最基本的消去法及其某些变形。这些方法主要用于求解低阶稠密系数矩阵方程组。 2.迭代法 从某个解的近似值出发,通过构造一个无穷序列,用某种极限过程去逐步逼近线性方程组的精确解的方法。本章主要介绍迭代法与迭代法。迭代法是解大型稀疏矩阵(矩阵阶数高而且零元素较多)的线性方程组的重要方法。 §1 高斯)(Gauss 消去法 1.1 Gauss 消去法 Gauss 消去法是将线性方程组化成等价的三角形方程组求解。首先举例说明Gauss

初中数学专题中考题精选方程和方程组

三、方程和方程组 1.某河上游的A地,为改善流域环境,把一部分牧场改为林场。改变后,林场与牧场共有162 公顷,牧场面积是林场面积的20%,问退牧还林后林场面积为多少公顷? 2.某队伍长450m,以1.5m/s的速度行进,一个通讯兵从排尾赶到排头,并立即返回排尾,他 的速度是3m/s,那么往返需要多少时间? 3.一个容器盛满酒精20L,倒出一部分后又用水加满;第二次又倒出与第一次相同体积的酒精 溶液,再用水加满,这时容器内的水是纯酒精的3倍,求每次倒出溶液的体积。 4.某厂以500万元资金投入生产,在一年中可以得到一定的利润,第二年又以这500万元资金 和上年的利润一并投入生产,结果得利润42.2万元。已知第二年的利润比第一年增加2.5%,求第一年的利润是投产资金的百分之几? 5.一水池装有A、B两水管,单独打开A管比单独打开B管注满水池多用10小时,现在先打开 B管10小时后,再打开A管,共同注水6小时将水池注满。问同时打开两管注满水池需要几小时? 6.一船由A港到B港顺流需行6小时,由B港逆流需行8小时。一天船从早晨6点由A港出发 顺流行到B港时,发现一救生圈在途中掉落在水中,立刻返回,1小时后找到救生圈。问:(1)若船按水流速度由A港漂流到B港需要多少小时? (2)救生圈是何时掉入水中的? 7.甲、乙两人分别骑摩托车从A、B两地相向而行。甲行1小时后,乙才出发,又经过4小时两 人在途中的C地相遇。相遇后两人按原来的方向继续前进。乙在由C地到达A地的途中因故停了20分钟,结果乙由C地到达A地时比甲由C地到达B地还提前了40分钟。已知乙比甲每小时多行驶4km,求甲、乙两车的速度。 8.某初一学生在做作业时,不慎将墨水瓶打翻,使一道作业题只看到如下字样:“甲、乙两地相 距40km,摩托车的速度为45km/h,运货汽车的速度为35km/h, ?”请将这道作业题补充完整,并列方程解答。 9.某校参加数学竞赛的有120名男生,80名女生;参加英语竞赛的有120名女生,80名男生。 已知该校总共有260名学生参加了竞赛,其中有75名男生两科竞赛都参加了,那么参加数学竞赛而没有参加英语竞赛的女生人数是多少人? 10.果品公司购进苹果5.2万千克,每千克的进价是0.98元,付运费的开支1840元,预计损耗 为1%。如果希望全部销售后能获利17%,问每千克苹果零售价应当定为多少元? 11.某种商品因换季准备打折出售。如果按定价的七五折出售将赔25元;而按定价的九折出售

线性方程组的数值解法实验

线性方程组的数值解法 实验 题目 用Gauss消元法和Seidel迭代法求线性方程组的解。 实验目的 通过本次实验了解Gauss消元法和Seidel迭代法的基本原理,掌握其算法,学会用Matlab编程进行计算,并能用这些方法解决实际问题。 Gauss 顺序消元法的基本原理算法: (1)输入:,. A b (2)对1,2,,1 k n =???-做 1)if0 kk a=then输出算法失败信息,停机; 2)对1,, i k n =+???做 1/; ik ik ik kk a l a a ←= 2; i i ik k b b l b =- 3对1,, j k n =+???做; ij ij ik kj a a l a =- (3)if0 nn a=then输出算法失败信息,并停机else做 1)/; n n n nn b x b a ←= 2)对1,,2,1 i n =-???做 1 ()/; n i i i ij j ii j i b x b a x a =+ ←=-∑ (4)输出方程组的解.X

流程图见附页 Seidel 迭代法的基本原理算法: (1)输入:,; A b (2)输入:初始解向量 ;x (3)对1,2,, i n =???做 1) 1 ()/; n i i ij j ii j j i y b a x a = ≠ =-∑ 2); i i i e y x =- 3); i i x y = (4)if 1 {||} max i i n eε ≤≤ 时方程组无解,当RB RA n ==时方程组有唯一解,当RB RA n =<时,方程组有无穷多解; ②根据公式 (1)()() (1)()() (,1,,) (1,,) k k k ij ij ik kj k k k i i ik k a a l a i j k n b b l b i k n + + =-=+??? =-=+??? 将增广矩阵[,] B A b =化为上三角形矩阵; (2)建立. backsub m文件; (3)调用. backsub m文件,在Matlab命令窗口输入,A b矩阵,再输入[,,,](,) RA RB n X gaus A b =,进行Matlab实现得出方程的解。

专题07 方程与方程组的解法(解析版)

专题07 方程与方程组的解法 一、知识点精讲 一元一次方程 ⑴在一个方程中,只含有一个未知数,并且未知数的指数是1,这样的方程叫一元一次方程。 ⑵解一元一次方程的步骤:去分母,移项,合并同类项,未知数系数化为1。 ⑶关于方程ax b =解的讨论 ①当0a ≠时,方程有唯一解b x a =; ②当0a =,0b ≠时,方程无解 ③当0a =,0b =时,方程有无数解;此时任一实数都是方程的解。 二元一次方程 在一个方程中,含有两个未知数,并且未知数的指数是1,这样的方程叫二元一次方程。 二元一次方程组: (1)两个二元一次方程组成的方程组叫做二元一次方程组。 (2)适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解。 (3)二元一次方程组中各个方程的公共解,叫做这个二元一次方程组的解。 (4)解二元一次方程组的方法:①代入消元法,②加减消元法③整体消元法,。 二、典例精析 ①一元高次方程的解法 思想:降次 方法:换元、因式分解等 【典例1】解方程. (1)4213360x x -+= (2)63980x x -+= 【答案】见解析 【解析】 (1)4222 13360(4)(9)02 3.x x x x x x -+=?--=?=±=±或 (2)6333 980(1)(8)1 2.x x x x x x -+=?--?==或 【典例2】解方程.

(1)32+340x x x -= (2)3210x x -+= 【答案】见解析 【解析】 (1)322 +340(34)0(4)(1)04 1.x x x x x x x x x x x -=?+-=?+-?==-=或或 (2 )33221010(1)(1)1x x x x x x x x x x -+=?--+=?-+-?==或 ②方程组的解法 解方程组的思想:消元 解方程组的方法:①代入消元法,②加减消元法,③整体消元法等。 【典例3】解方程组. 347(1)295978x z x y z x y z +=??++=??-+=? 3(2)45x y y z z x +=?? +=??+=? 【答案】见解析 【解析】 5 3471(1)29359782x x z x y z y x y z z =?+=???? ++=?=???? -+=??=-? 3(2)45x y y z z x +=??+=??+=?213x y z =?? ?=??=? 【典例4】解方程组22 210 4310x y x y x y --=??-++-=? 【答案】见解析 【解析】 22 2104310x y x y x y --=??-++-=?8115 1115x x y y ? = ?=?????=??= ?? 或 【典例5】解方程组.

求解线性方程组的直接解法

求解线性方程组的直接解法 5.2LU分解 ① Gauss消去法实现了LU分解 顺序消元结束时的上三角矩阵U和所用的乘数,严格下三角矩阵。 将下三角矩阵的对角元改成1,记为L,则有A=LU, 这事实是一般的,我们不难从消去的第k个元素时的矩阵k行及k列元素的 历史得到这一点.因为从消元的历史有 u kj=a kj-m k1u1j- m k2u2j -…- m k,k-1u k-1,j, j=k,k+1,…,n m ik=(a ik-m i1u1k- m i2u2k -…-m i,k-1u k-1,k>/u kk i=k+1,k+2,…,n 于是a kj=m k1u1j+m k2u2j+…+m k,k-1u k-1,j+u kj, j=k,k+1,…,n a ik=m i1u1k+m i2u2k+…+m i,k-1u k-1,k+m ik u kk i=k+1,k+2,…,n 从前面两个式子我们可以直接计算L和U(见下段>.将矩阵分解为单位下 三角矩阵和上三角矩阵之积称为矩阵的LU分解.顺序消元实现了LU分 解,同时还求出了g, Lg=b的解. ②直接LU分解 上段我们得到(l ij=m ij> u kj=a kj-l k1u1j-l k2u2j -…- l k,k-1u k-1,j, j=k,k+1,…,n l ik=(a ik-l i1u1k-l i2u2k -…-l i,k-1u k-1,k>/u kk i=k+1,k+2,…,n 2 诸元素对应乘积,只不过算L的元素时还要除以同列对角元.这一规律很 容易记住.可写成算法(L和U可存放于A>: for k=1:n-1 for j=k:n u kj=a kj-l k1u1j-l k2u2j -…- l k,k-1u k-1,j end for i=k+1:n l ik=(a ik-l i1u1k-l i2u2k -…-l i,k-1u k-1,k>/u kk end end 这一算法也叫Gauss消去法的紧凑格式,可一次算得L,U的元素,不需逐步 计算存储.

中考数学专题一方程与方程组及其应用

中考复习专题——方程和方程组及其应用 基础知识点: 一、方程有关概念 1、方程:含有未知数的等式叫做方程。 2、方程的解:使方程左右两边的值相等的未知数的值叫方程的解,含有一个未知数的方程的解也叫做方程的根。 3、解方程:求方程的解或判断方程无解的过程叫做解方程。 4、方程的增根:在方程变形时,产生的不适合原方程的根叫做原方程的增根。 二、一元方程 1、一元一次方程 (1)一元一次方程的标准形式:ax+b=0(其中x 是未知数,a 、b 是已知数,a ≠0) (2)一元一次方程的最简形式:ax=b (其中x 是未知数,a 、b 是已知数,a ≠0) (3)解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项和系数化为1。 (4)一元一次方程有唯一的一个解。 2、一元二次方程 (1)一元二次方程的一般形式:02=++c bx ax (其中x 是未知数,a 、b 、c 是已知数,a ≠0) (2)一元二次方程的解法: 直接开平方法、配方法、公式法、因式分解法 (3)一元二次方程解法的选择顺序是:先特殊后一般,如没有要求,一般不用配方法。 (4)一元二次方程的根的判别式:ac b 42-=? 当Δ >0时?方程有两个不相等的实数根; 当Δ =0时?方程有两个相等的实数根; 当Δ < 0时?方程没有实数根,无解; 当Δ≥0时?方程有两个实数根 注:常用公式 配方式

(5)一元二次方程根与系数的关系: 若21,x x 是一元二次方程02=++c bx ax 的两个根, (6)以两个数21,x x 为根的一元二次方程(二次项系数为1)是:0)(21212=++-x x x x x x 例1、解下列方程: (1)2)3(2 12=+x ;(2)1322=+x x ;(3)22)2(25)3(4-=+x x 分析:(1)用直接开方法解;(2)用公式法;(3)用因式分解法 (4)配方法 [规律总结]如果一元二次方程形如)0()(2≥=+n n m x ,就可以用直接开方法来解;利用公式法可以解任何一个有解的一元二次方程,运用公式法解一元二次方程时,一定要把方程化成一般形式。 例2、解下列方程: (1))(0)23(2为未知数x b a x a x =+--; (2)08222=-+a ax x 分析:(1)先化为一般形式,再用公式法解;(2)直接可以十字相乘法因式分解后可求解。 [规律总结]对于带字母系数的方程解法和一般的方程没有什么区别,在用公式法时要注意判断△的正负。 例3、已知关于x 的方程:032)1(2=+++-p px x p 有两个相等的实数根,求p 的值。 分析:由题意可得?=0,把各系数代入?=0中就可求出p ,但要先化为一般形式。 [规律总结]对于根的判别式的三种情况要很熟练,还有要特别留意二次项系数不能为0 例4、已知a 、b 是方程0122=--x x 的两个根,求下列各式的值: (1)22b a +;(2)b a 11+ 分析:先算出a+ b 和ab 的值,再代入把(1)(2)变形后的式子就可求出解。 [规律总结]此类题目都是先算出两根之和和两根之积,再把要求的式子变形成含有两根之和和两根之积的形式,再代入计算。但要注意检验一下方程是否有解。 例5、求作一个一元二次方程,使它的两个根分别比方程052=--x x 的两个根小3 分析:先出求原方程的两根之和21x x +和两根之积21x x 再代入求出)2()3(21-+-x x 和)3)(3(21--x x 的值,所求的方程也就容易写出来。解:略 [规律总结]此类题目可以先解出第一方程的两个解,但有时这样又太复杂,用根与系数的关系就比较简单。 三、分式方程 (1)定义:分母中含有未知数的方程叫做分式方程。 (2)分式方程的解法:一般解法:去分母法,方程两边都乘以最简公分母。 特殊方法:换元法。 (3)检验方法:一般把求得的未知数的值代入最简公分母,使最简公分母不为0的就

线性方程组数值解法

. 计算法实验 题目:

班级:学号::

目录 计算法实验 (1) 1 实验目的 (3) 2 实验步骤 (3) 2.1环境配置: (3) 2.2添加头文件 (3) 2.3主要模块 (3) 3 代码 (3) 3.1主程序部分 (3) 3.2多项式程部分 (3) 3.3核心算法部分 (3) 3.4数据结构部分 (3) 4运行结果 (3) 4.1列主元高斯消去法运行结果 (3) 4.2LU三角分解法运行结果 (3) 4.3雅克比迭代法运行结果 (3) 边界情况调试 (3) 5总结 (3) 输入输出 (3) 列主元高斯消元法 (3) 雅克比迭代法 (3) 6参考资料 (3)

1 实验目的 1.通过编程加深对列主元高斯消去法、LU三角分解法和雅克比迭代法等求解多 项式程法的理解 2.观察上述三种法的计算稳定性和求解精度并比较各种法利弊 2 实验步骤 2.1环境配置: VS2013,C++控制台程序 2.2添加头文件 #include "stdio.h" #include "stdlib.h" #include "stdafx.h" #include 2.3主要模块 程序一共分成三层,最底层是数据结构部分,负责存储数据,第二层是交互部分,即多项式程部分,负责输入输出获得数据,最上层是核心的算法部分,负责处理已获得的数据。具体功能如下: ●数据结构部分 数据结构部分是整个程序的最底层,负责存储部分。因数组作为数据元素插入和删除操作较少,而顺序表空间利用率大且查看便,故此程序选用二维顺序表保存系数。数据结构文件中写的是有关其的所有基本操作以供其他文件调用。 ●多项式程部分

中考数学总复习专题基础知识回顾六方程及方程组.doc

2019-2020 年中考数学总复习专题基础知识回顾六方程与方程组一、单元知识网络 二、考试目标要求 1.能够根据具体问题中的数量关系,列出方程,体会方程是刻画现实世界的一个有效的数 学模型 . 2. 经历用观察、画图或计算器等手段估计方程解的过程. 3. 会解一元一次方程、简单的二元一次方程组、可化为一元一次方程的分式方程( 方程中的分式不超过 两个 ). 4. 理解配方法,会用因式分解法、公式法、配方法解简单的数字系数的一元二次方程. 5. 能根据具体问题的实际意义,检验结果是否合理. 三、知识考点梳理 考点一:等式性质 1.等式的两边都加上 ( 或减去 ) 同一个整式,结果仍是等式 . 2.等式的两边都乘以同一个数,结果仍是等式. 3.等式的两边都除以同一个不等于零的数,结果仍是等式.

考点二:方程及相关概念 1.方程定义 含有未知数的等式叫做方程 . 2.方程的解 使方程两边的值相等的未知数的值,叫做方程的解( 一元方程的解也叫做根). 3.解方程 求方程的解的过程,叫做解方程. 考点三:一元一次方程 1.一元一次方程定义 只含有一个未知数,且未知数的次数是一次的整式方程叫做一元一次方程. 2.一元一次方程的一般形式 : . 3.解一元一次方程的一般步骤: (1)去分母; (2) 去括号; (3) 移项; (4) 合并同类项; (5) 系数化成 1;(6) 检验 ( 检验步骤可以不写出来 ) 考点四:二元一次方程组 1.二元一次方程组定义 两个含有两个未知数,且未知数的次数是一次的整式方程组成的一组方程,叫做二元一次方程组 . 2. 二元一次方程组的一般形式: 3.二元一次方程组的解法: (1)代入消元法; (2)加减消元法 . 考点五:分式方程 1.分式方程定义 分母中含有未知数的方程叫做分式方程. 2.分式方程与整式方程的联系与区别: 分母中是否含有未知数 .

线性方程组数值解法总结

好久没来论坛,刚刚发现以前的帖子现在那么火很欣慰,谢谢大家支持! 今天趁着不想做其他事情,把线性方程组的数值解法总结下,有不足的地方希望大神指教!数学建模中也会用到线性方程组的解法,你会发现上10个的方程手动解得话把你累个半死,而且不一定有结果,直接用matlab的函数,可以,关键是你不理解用着你安心吗?你怎么知道解得对不对? 我打算开个长久帖子,直到讲完为止!这是第一讲,如有纰漏请多多直接,大家一起交流!线性方程组解法有两大类:直接法和迭代法 直接法是解精确解,这里主要讲一下Gauss消去法,目前求解中小型线性方程组(阶数不超过1000),它是常用的方法,一般用于系数矩阵稠密,而有没有特殊结构的线性方程组。 首先,有三角形方程组的解法引入Gauss消去法,下三角方程组用前代法求解, 这个很简单,就是通过第一个解第二个,然后一直这样直到解出最后一个未知数,代码如下:前代法: function [b]= qiandai_method(L,b) n=size(L,1); %n 矩阵L的行数 for j=1:n-1 %前代法求解结果存放在b中 b(j)=b(j)/L(j,j); b(j+1:n)=b(j+1:n)-b(j)*L(j+1:n,j); end b(n)=b(n)/L(n,n); 上三角方程组用回代法,和前面一样就是从下面开始解x,代码: 后代法: function [y]=houdai_method(U,y) n=size(U,1); %n 矩阵L的行数 for j=n:-1:2 %后代法求解结果存放在y中 y(j)=y(j)/U(j,j); y(1:j-1)=y(1:j-1)-y(j)*U(1:j-1,j); end y(1)=y(1)/U(1,1); Gauss消去的前提就是这两个算法: 具体思想是把任何一个线性方程组的系数矩阵A,分解为一个上三角和一个下三角的乘积,即A=LU,其中L为下三角,U为上三角。 那么具体怎么做呢? 有高斯变换,什么是高斯变换?由于时间有限我不可能去输入公式,所以我用最平白的话把它描述出来。 你先想一下怎么把一个矩阵的某一列的从第j个分量后全部变0? 高斯变换就是通过每次一个矩阵Li把A的第i列对角线元素以下的都变为0,最后把这么多Li一次左乘起来就是一个矩阵L’=L(n-1)L(n-2)…L2L1,而L’A=U, 那么L=L’的转置,这样就得到了A得分解。 我们要求Ax=b A=LU

中考数学专题复习四方程与方程组练习

专题四 方程与方程组 一. 填空题: 1. 方程 2x +y =5 的所有正整数解为____ 2. 若 ? ??==2y 1x 是方程3ax -2y =2 的解,则 a =____ 3. 当 a ____时,方程 (a -1) x 2 +x -2=0 是一元二次方程。 4. 方程 x 111x 122 +=--的解为____ 5. 如果方程x 2m 12x 1x -=+-+有增根,那么m =____ 6. 3名同学参加乒乓球赛,每两名同学之间赛一场,一共需要__场比赛,则5名同学一共需要____比赛。 7. 如图,四个一样大的小矩形拼成一个大矩形,如果大矩形的周长为12cm ,那么小矩形的周长为____cm 。 8. 长20m 、宽15m 的会议室,中间铺一块地毯,地毯的面积是会议室面积的 21,若四周未铺地毯的留空宽度相同,则留空的宽度为____。 二. 选择题: 1. 下列方程中,属于一元一次方程的是( ) A. x =y +1 B. 1x 1= C. x 2=x -1 D. x =1 2. 已知3-x +2y =0,则2x -4y -3的值为( ) A. -3 B. 3 C. 1 D. 0 3. 用“加减法”将方程组? ??-=+=-1y 4x 29y 3x 2中的x 消去后得到的方程是( ) A. y =8 B. 7y =10 C. -7y =8 D. -7y =10 4. 下列方程中是一元二次方程的是( ) A. x +3=5 B. xy =3 C. 0x 1x 2=+ D. 2x 2-1=0 5. 若关于x 的方程 11x a x 2=--无解,则a 的值等于( ) A. 0 B. 1 C. 2 D. 4

线性方程组的数值解法

第三章线性方程组地数值解法 范数 (1> 常用范数 ① 向量 1- 范数: ② 向量 2- 范数: ③ 向量∞- 范数: ④ 向量 p- 范数: 向量1- 范数,向量2- 范数,向量∞- 范数实际上为任意 p- 范数地特例. (2> 矩阵范数 设,则 (1>,A地行范数 (2>,A地列范数 (3>,A地 2- 范数,也称谱范数 (4>, F- 范数 其中指矩阵地最大特征值 (3>谱半径(用于判断迭代法地收敛值> 设为矩阵A地特征值,则

称为A地谱半径 谱半径小于任何半径,若,则 (4>设A为非奇异矩阵,称 为A地条件数 矩阵地条件数与范数选取有关,通常有 显然当A对称时 直接法 Gauss消去法 ①Gauss顺序消去法 对线性方程组Ax=b,设,按顺序消元法,写出增广矩阵(A┆b>第一步,写出,将2~n行中地变为0 第k步,写出,将k+1~n行中地变为0 具体步骤可参照下面地例题 例5:用Gauss消去法解方程组

解: Guass列主元消去法 消去过程与Guass消元法基本相同,不同地是每一步消元时,都要将所选到地绝对值最大元素作为主元. 具体分析参见习题详解1 ②矩阵三角(LU>分解法 基本思想:将Ax=b化为LUx=b,令Ux=y 可得Ly=b,Ux=y,相当于先求出y,再求出x 其中,L,U分别为下三角矩阵和上三角矩阵 若L为单位下三角矩阵,则称为Doolittle分解。若U为单位上三角矩阵,则称为Crout分解. ③矩阵Doolittle分解法

计算公式 具体解题见习题详解2 注意计算顺序,先行再列,用简图表示为 虚线上地元素为对角元,划为行元. ④ 分解法 计算公式

专题二不等式组与方程组

专题二不等式与方程 次方程2x 3y 6的解,贝卩k的值为 4.如图所示的两架天平保持平衡,且每块巧克力的质量相 等,每个果冻的质量也相等,则一块巧克力的质量是 6.如果关于x的一元二次方程k2x2(2k 相 等的实数根,那么k的取值范围是( A. k > k 0; 7.已知a、b、c分别是三角形的三边,则关于x的一元二 一、选择题 1.已知4x4m y 3m 与5x n y是同类项,贝卩与的值分别 2.列哪个不等式组的解集在数轴上表示如图所示 A. B. :21 C. x x 2 D. x 2 1 x 1 第2题图3 . 若关于X, y的二元一次方程组: x 5k, 9k 的解也是二元 A. 20g.30g ) 的结果是( 82 4 - K2~ 2 - K 5.解方程 =-2 =2 =4 D. 无解 A. 3 B. 3 C. D. 1)x 1 0有两个不 ) 1 ; D. k -且 4 4 1 ; B. k > 1且k 0; C. k v 4 4

A . -1 B . 1 C . 2 D . -2 11.三角形两边的长是3和4 ,第三边的长是方程 x 2 12x 35 0 的根,则该三角形的周长为( ) A . 14; B . 12; C . 12 或 14; D.以上都不对 12.直线 y = kx + b 与直线 y = k ?x + c 直角坐标系中的图象如图所示,则关于 等式ky + bv k 2x + c 的解集为( ) > 1 v 1 C.x >— 2 v- 2 二、填空题 1.关于 x 的方程(a 2 -4 ) x 2 +(a-2)x+6=0. a 满足 时,是一元一次方程,当 a 满足 ________ 时,是一元二次 方程。 次方程(a + b )x 2 + 2cx + (a + b ) = 0的根的情况是( ) A .没有实数根 B.可能有且只有一个实数根 C.有两个相等的实数根 D.有两个不相等的实数根 8. 某服装厂准备加工400套运动服,在加工完160套后, 采用了新技术,使得工作效率比原计划提高了 20%结果 共用了 18天完成任务。问:计划每天加工服装多少套在 这个问题中,设计划每天加工 x 套,则根据题意可得方程 ( ) A. 9. 在某次聚会上,每两个人都握了一次手,所有人共握手 100次, 设有x 人参加这次聚会,则列出方程正确的是( ) x (x - 1) x (x + 1) (x-1)=100 ―j — 二 100 D. ―j — 二 100 10. 若(3x 4y 1)2 3y 2x 5 0 则 x ( ) 160 400 = 18 {1 + 10 18 C. 160 400 - "0 x 咖 18 400 一 + 400 - 160 (1 + 20V x 18 B 400-160 (1 + 20%) X ~

线性方程组的直接解法

第2章线性方程组的直接解法 2.1实验目的 理解线性方程组计算机解法中的直接解法的求解过程和特点,学习科学计算的方法和简单的编程技术。 2.2概念与结论 1. n阶线性方程组 如果未知量的个数为 n ,而且关于这些未知量x1,x2, …,x n的幂次都是一次的(线性的)那末, n 个方程 a11x1+a12x2+ … +a1n x n=b1 ┆┆┆ (1) a n1x1+a n2x2+ … +a nn x n= b n 构成一个含n个未知量的线性方程组,称为n阶线性方程组。其中,系数a11,…,a1n,a21, …,a2n, …,a n1, …,a nn 和b1, …,b n都是给定的常数。 方程组(1)也常用矩阵的形式表示,写为 Ax=b 其中,A是由系数按次序排列构成的一个n阶矩阵,称为方程组的系数矩阵,x和b都是n维向量,b称为方程组的右端向量。 2. n阶线性方程组的解 使方程组(1)中每一个方程都成立的一组数x1*,x2*, …,x n*称为式(1)的解,把它记为向量的形式,称为解向量. 3.一些特殊的线性方程组 1) 上三角方程组 2) 三对角方程组 ? ? ? ? ? ? ? ? ? ? ? ? = ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? - - - - - n n nn n n n n n n n n b b b x x x a a a a a a a a a a a a 2 1 2 1 1 1 1 2 1 2 23 22 1 1 1 13 12 11

4.矩阵的Doolittle 分解 5.Doolittle 分解的紧凑格式 6.矩阵的Crout 分解 ????????? ? ??=?????????? ???????????? ? ?--n n n n n n d d d x x x b a c b c b a c b a c b 21 2111333 22211???? ?? ? ? ???????? ??=??????? ??nn n n n n nn n n n n u u u u u u l l l a a a a a a a a a 222 11211 2 1 21 2 1 2222111211111 ???? ?? ? ? ???????? ??=??????? ??11 1 21122 1 2221 11 2 1 2222111211 n n nn n n nn n n n n u u u l l l l l l a a a a a a a a a ????? ?? ? ??nn n n n n n n u l l l u u l l u u u l u u u u 3 2 1 333323122322211131211

中考数学总复习专题基础知识回顾六方程与方程组(最新整理)

中考数学总复习专题基础知识回顾六方程与方程组 一、单元知识网络 二、考试目标要求 1.能够根据具体问题中的数量关系,列出方程,体会方程是刻画现实世界的一个有效的 数学模型. 2.经历用观察、画图或计算器等手段估计方程解的过程. 3.会解一元一次方程、简单的二元一次方程组、可化为一元一次方程的分式方程(方程中的分式不超过 两个). 4.理解配方法,会用因式分解法、公式法、配方法解简单的数字系数的一元二次方程. 5.能根据具体问题的实际意义,检验结果是否合理. 三、知识考点梳理 考点一:等式性质 1.等式的两边都加上(或减去)同一个整式,结果仍是等式. 2.等式的两边都乘以同一个数,结果仍是等式. 3.等式的两边都除以同一个不等于零的数,结果仍是等式.

考点二:方程及相关概念 1.方程定义 含有未知数的等式叫做方程. 2.方程的解 使方程两边的值相等的未知数的值,叫做方程的解(一元方程的解也叫做根). 3.解方程 求方程的解的过程,叫做解方程. 考点三:一元一次方程 1.一元一次方程定义 只含有一个未知数,且未知数的次数是一次的整式方程叫做一元一次方程. 2.一元一次方程的一般形式: . 3.解一元一次方程的一般步骤: (1)去分母;(2)去括号;(3)移项;(4)合并同类项;(5)系数化成 1;(6)检验(检验步骤可以不写出来) 考点四:二元一次方程组 1.二元一次方程组定义 两个含有两个未知数,且未知数的次数是一次的整式方程组成的一组方程,叫做二元一次方程组. 2.二元一次方程组的一般形式: 3.二元一次方程组的解法: (1)代入消元法; (2)加减消元法. 考点五:分式方程 1.分式方程定义 分母中含有未知数的方程叫做分式方程. 2.分式方程与整式方程的联系与区别: 分母中是否含有未知数. 3.分类:

计算方法实验报告-线性方程组的数值解法

重庆大学 学生实验报告实验课程名称计算方法 开课实验室DS1421 学院年级专业 学生姓名学号 开课时间至学年第学期

1.实验目的 (1)高斯列主元消去法求解线性方程组的过程 (2)熟悉用迭代法求解线性方程组的过程 (3)设计出相应的算法,编制相应的函数子程序 2.实验内容 分别用高斯列主元消去法 ,Jacobi 迭代法,Gauss--Saidel 迭代法,超松弛迭代法求解线性方程组 ????? ???????-=????????????????????????------725101391444321131243301024321x x x x 3.实验过程 解:(1)高斯列主元消去法 编制高斯列主元消去法的M 文件程序如下: %高斯列主元消元法求解线性方程组Ax=b %A 为输入矩阵系数,b 为方程组右端系数 %方程组的解保存在x 变量中 format long;%设置为长格式显示,显示15位小数 A=[2,10,0,-3;-3,-4,-12,13;1,2,3,-4;4,14,9,-13] b=[10,5,-2,7]' [m,n]=size(A); %先检查系数正确性 if m~=n error('矩阵A 的行数和列数必须相同'); return; end if m~=size(b) error('b 的大小必须和A 的行数或A 的列数相同'); return; end %再检查方程是否存在唯一解 if rank(A)~=rank([A,b]) error('A 矩阵的秩和增广矩阵的秩不相同,方程不存在唯一解'); return; end c=n+1; A(:,c)=b; %(增广) for k=1:n-1

专题四方程与方程组

专题四方程与方程组 解题方法技巧 本专题主要考查方程思想和转化思想,同时考查学生收集和处理信息的能力、分析和解决实际问题的能力及创新实践的能力. 1.解方程(组)的方法 解方程(组)主要采用加减消元法、代入消元法、因式分解法、公式法、去分母法、换元法等;对于特殊形式的方程(组)可采用对称思想、整体思想、非负数性质、定义法、拆项法等特殊的方法求解. 例1 解方程组 7, 28. x y x y += ? ? -=? 2.换元法 换元法解方程(组),关键是观察分析出能够换元的整式或分式,有时需要对方程(组)进行整理变形(如因式分解、配方、添拆项等)才能观察出如何换元, 例2 解方程: 2 2 (1)1 20 x x x x -- --=. 3.列方程(组)解应用题 列方程(组)解应用题的关键是找到能够表示题目全部含义的相等关系,常见的相等关系有两种:第一种是题目中的关键词语表示的相等关系,例如:“多”“少”“增加”“减少”等;另一种是题目中没有明显给出而题意中又包含着的隐含相等关系,隐含相等关系需结合日常生活常识和自然科学知识才能得到,常用的方法有:(1)译式法;(2)图示法;(3)表格法等.方程(组)常与函数、不等式(组)等知识结合,解决生活中的热点问题. 例3 同庆中学为丰富学生的校园生活,准备从军跃体育用品商店一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),若购买3个足球和2个篮球共需310元,购买2个足球和5个篮球共需500元. (1)购买一个足球、一个篮球各需多少元? (2)根据同庆中学的实际情况,需从军跃体育用品商店一次性购买足球和篮球共96个.要求购买足球和篮球的总费用不超过5720元,这所中学最多可以购买多少个篮球?热点试题归类 考点1 一元一次方程 1.王先生到银行存了一笔三年期的定期存款,年利率是4. 25%,若到期后取出得到本息和(本金+利息)33825元.设王先生存入的本金为x元,则下面所列方程正确的是()A.x+3×4.25%x=33825 B.x+4.25%x=33825 C.3×4.25%x=33825 D.3(x+4.25%x)=33825 2.已知关于x的方程250 x a --=的解是2 x=-,则a的值为()A.1 B.-1 C.9 D.-9 3.湖园中学学生志愿服务小组在“三月学雷锋”活动中,购买了一批牛奶到敬老院慰

三元线性方程组的几何解法.doc

三元线性方程组的几何解法 任春丽,王金金 (西安电子科技人学理学院数学系,陕西酋安710071 ) 线性方程组是线性代数中重要的内容,其解的结构在线性代数课程中已通过向量及矩阵理论讨论的非常清楚,但在教材中很少提及几何意义.由于三元线性方程表示空间屮的平而,因此,通过平面图形Z间的位置关系求解线性方程组,不仅形象、直观,而且为从三维空间抽象的代数问题推广到n维空间更定了基础°文献[2] 丿IJ矩阵 的秩判别了空间屮平面、直线之间的位證关系;相反的,本文利用空间中平而、肓线之间的位宜关系讨论了三元线性方程组解的情况,并举例说明。 1.两个方程的三元线性方程组 设方程组(I): [仲+恥+C"。-街俩个平面) A2X +B2y + C2z = D2—兀2 讨论:令e=4,d,G,o)(心1,2), %=Q,B,C)(i = l,2) ⑴若wa,即牛鲁咱唔‘则 眄与龙2重合,方程组(I)有无穷多解; (2)若n.//n2i a^a29即4 =邑』』, 1 2 1 2 码场C? D2则眄与?平行但不重合,方程组(I )无解; (3)若讥叫,则陌与幻相交,方程纨I)有无穷多解,其解为相交直线上的所有点。 例1求解下列线性方程组 3兀 + 6y — 3z = 8 fx + 2y-z = 7 (1){ : (2){ ?一兀一 2y + z = 3 [-2x + y + z = 4 解⑴因为—7^-,所以两个平 -1-213 血平行但不重合,故方程组无解; (2)因为阿x〃2 =(1,2,T)x(一2,1,1) = (3丄5) H 0, 所以两个平面相交于H线L,故方程组有无穷多 解。又点(1,4,2)在L上,故直线L的参数方程x = 1 + 3f, 为:」= 4+r,即是方程组的通解。 z = 2 + 5/. 2.三个方程的三元线性方程组 设方程组(II): A}x + + Gz = °―兀、 < A2x + B2y + C2z = D2—兀2(三个平面) A.x + B,y^C.z = D. 一心 讨论:令q=Q,d,G,q)(i = l,2,3), n,=(4.,B/,C/)(i = l,2,3)o (1)若= 1,2,3)中至少有两个平行,则至 少有两个平面重合,其解的讨论同第1 H; (2)若? (/ = 1,2,3)屮至少有两个平行,但相应的乞?加勺(心力,则至少冇两个平面平行但 不重合,方程组(II)无解; (3)若?加? (心/),则三个平面两两相交, 方程组(II)可能有解,也可能无解。进一步:求 x = x Q + mt, ! IW与兀2的交线L的参数式方程:\y = y o+ntf z = 5 + pt. 如果厶〃龙3,但点(兀O,y°,Zo)不在龙3上,则

2015中考数学专题复习方程与方程组

中考专题复习方程与方程组 一. 教学目标: 1. 掌握一元一次方程、二元一次方程组、一元二次方程、分式方程的定义, 2. 使学生掌握解方程的基本思想、方法、步骤。并能熟练运用各技巧解一元一次方程、二元一次方程组、一元二次方程、分式方程。 3. 列一元一次方程二元一次方程组、一元二次方程、分式方程解应用题。 二. 教学重点与难点 1. 一元二次方程、分式方程的解法及其运用 2. 列方程解决生活实际中的问题 三.知识要点 知识点1、方程(组)的解(整数解)等概念。使等式左右两边相等的未知数的值叫做方程的解 知识点2、一元一次方程及二元一次方程组的定义 只含有一个未知数并且未知数的次数是1系数不为0的方程叫做一元一次方程 几个二元一次方程组成一组,叫做二元一次方程组 知识点3、一元一次方程、二元一次方程组的解法 一元一次方程的解法是:去分母,去括号,移项,合并同类,系数化为1 二元一次方程组的解法是:通过加减,代入消元转化为一元一次方程 知识点4、一元一次方程与一次函数、一元一次不等式之间的关系 当为二元一次方程中的一个未知数的取值确定范围时,可利用一元一次不等式组确定另一个未知数的取值范围由于任何二元一次方程都可以转化为一次函数的形式,所以解二元一次方程可以转化为:当y=0时,求x的值。从图象上看,这相当于已知纵坐标,确定横坐标的值。 知识点5、一元二次方程的定义 ax2+bx+c=0(a≠0),a,b,c均为常数,尤其a不为零要切记。 知识点6、一元二次方程的几种解法 如因式分解法、公式法等,弄清化一元二次方程为一元一次方程的转化思想。 知识点7、分式方程的解法 (1)去分母,把分式方程转化为整式方程 (2)解整式方程 (3)检验 知识点8、解分式方程要验根的原因 解分式方程时我们在方程的两边同乘了一个可能使分母为0的整式. 因为解分式方程可能产生增根,所以解分式方程必须检验. 知识点9、关于行程、工程、储蓄、打折销售等基本类型应用题的分析 掌握生活中问题的数学建模的方法,多做一些综合性的训练。 例题精讲 例1. 选择题 1、小明的父亲到银行存入20000元人民币,存期一年,年利率为1.98%,到期后应交纳所获利息的20%的利息税,那么小明的父亲存款到期交利息税后共得款() A. 20158.4元 B. 20198元 C. 20396元 D. 20316.8元 2、我国股市交易中每买卖一次需交千分之七点五的各种费用,某投资者以每股10元的价格买入上海某股票1000股,当该股票涨到12元时全部卖出,该投资者实际盈利为() A. 2000元 B. 1925元 C. 1835元 D. 1910元 3、一件商品按成本价提高40%后标价,再打8折(标价的80%)销售,售价为240元,设这件商品的成本价为x元,根据题意,下面所列的方程正确的是() A. x·40%×80%=240 B. x(1+40%)×80%=240 C. 240×40%×80%=x D. x·40%=240×80%

相关主题
文本预览
相关文档 最新文档