当前位置:文档之家› 线性空间和欧式空间

线性空间和欧式空间

线性空间和欧式空间
线性空间和欧式空间

第六章 线性空间和欧式空间

§1 线性空间及其同构

一 线性空间的定义

设V 是一个非空集合,K 是一个数域,在集合V 的元素之间定义了一种代数运算,

叫做加法;这就是说,给出了一个法则,对于V 中任意两个元素α和β,在V 中都有唯一的一个元素γ与他们对应,成为α与β的和,记为βαγ+=。在数域K 与集合V 的元素之间还定义了一种运算,叫做数量乘法,即对于数域K 中任一数k 与V 中任一元素α,在V 中都有唯一的一个元素δ与他们对应,称为k 与α的数量乘积,记为αδk =,如果加法与数量乘法满足下述规则,那么V 称为数域K 上的线性空间。

加法满足下面四条规则:

1)αββα+=+;交换律

2))()(γβαγβα++=++;结合律

3)在V 中有一个元素0,对于V 中任一元素α都有αα=+0(具有这个性质的元

素0称为V 的零元素); 存在零元

4)对于V 中每一个元素α,都有V 中的元素,使得0=+βα(β称为α的负元素).

存在负元

数量乘法满足下面两条规则:

5)αα=1; 存在1元

6)αα)()(kl l k =. 数的结合律

数量乘法与加法满足下面两条规则:

7)αααl k l k +=+)(; 数的分配律

8)βαβαk k k +=+)(. 元的分配律

在以上规则中,l k ,表示数域中的任意数;γβα,,等表示集合V 中任意元素。

例1. 元素属于数域K 的n m ?矩阵,按矩阵的加法和矩阵的与数的数量乘法,构成

数域K 上的一个线性空间,记为,()m n M K 。

例2. 全体实函数(连续实函数),按函数的加法和数与函数的数量乘法,构成一个实

数域上的线性空间。

例3. n 维向量空间n K 是线性空间。

例4. 向量空间的线性映射的集合(,)m n K Hom K K 是线性空间。

二.简单性质

1.零元素是唯一的。

2.负元素唯一。

3.00=α,00=k ,αα-=-)1(。

4.若0=αk ,则0=k 或者0=α。

三.同构映射

定义:设,V V '是数域K 上的线性空间. (,)K A Hom V V '∈是一个线性映射.如果A 是一一

映射,则称A 是线性空间的同构映射,简称同构。线性空间V 与'V 称为同构的线性

空间。

定理 数域P 上两个有限维线性空间同构的充分必要条件是他们有相同的维数。

同构映射的逆映射以及两个同构映射的乘积还是同构映射。

§2 线性子空间的和与直和

子空间的和:设12,W W 是线性空间V 的子空间,则集合121122{}W W W αααα=+∈∈|或

也是一个线性子空间,称为12,W W 的和,记为12W W +.

两个线性子空间的和12W W +是包含这两个线性子空间的最小子空间.

满足交换律、结合律

设1,,s ααL 与1,,t ββL 是V 的两个向量组.则

1111(,,)(,,)(,,,,,)s t s t L L L ααββααββ+=L L L L

线性子空间中的线性无关向量组都能被扩充成这个子空间的一个基。

定理:(维数公式)如果12,W W 是线性空间V 的两个子空间,那么

1dim()W + 2dim()W =12dim()W W ++ 12dim()W W ?

由此可知,和的维数要比维数的和来得小。推广到有限个线性子空间的和空间维数

?

同构线性空间分类?维数

推论:如果n 维线性空间V 中两个子空间21,V V 的维数之和大于n ,那么21,V V 必含有非零

的公共向量。

直和:设12,W W 是线性空间V 的子空间,如果12W W +中的每个向量α都能被唯一地表

示成21ααα+= 1122,W W αα∈∈.则称12W W +为直和,记为12W W ⊕。

设12,W W 是线性空间V 的子空间,则下列结论互相等价:

设W 是线性空间V 的一个子空间,那么一定存在V 的一个线性子空间U ,使得

V W U =⊕

满足上述条件的线性子空间U 称为W 的补子空间.

推广到有限多个线性子空间也可以定义它们的直和

§3 欧式空间

定义 设V 是实数域R 上的有限维线性空间,在V 上定义了一个二元实函数,称为内积,记作),(βα,满足以下四条公理:

1)对称性 ),(),(αββα=;

2)关于标量乘法线性性质 ),(),(βαβαk k =;

3) 关于向量加法的线性性质),(),(),(γβγαγβα+=+;

4)正定性0),(≥αα,当且仅当0=α时, 0),(=αα

这里γβα,,是V 任意的向量,k 是任意实数,这样的线性空间V 称为欧几里得空间.

例1 在线性空间n

R 中,对于向量 .dim dim )dim(3;

0,,1211111m m j i m j j i m W W W W W W m i W W ++=++=?

=++∑≠≤≤ΛΛΛΛ)(有)对(是直和;

)(12121212(1)(2)0;

(3)dim()dim dim .W W W W W W W W +?=+=+是直和;12m W W W V L 设,,

,是的线性子空间,则下列结论相互等价:

),,,(,),,,(2121n n b b b a a a ΛΛ==βα,

定义内积

.),(2211n n b a b a b a +++=Λβα (1)

则内积(1)适合定义中的条件,这样n R 就成为一个欧几里得空间.

3=n 时,(1)式就是几何空间中的向量的内积在直角坐标系中的坐标表达式.

例2 在n R 里, 对于向量

),,,(,),,,(2121n n b b b a a a ΛΛ==βα,

定义内积

.2),(2211n n b na b a b a +++=Λβα

则内积(1)适合定义中的条件,这样n R 就也成为一个欧几里得空间.

对同一个线性空间可以引入不同的内积,使得它作成欧几里得空间.

例3 在闭区间],[b a 上的所有实连续函数所成的空间),(b a C 中,对于函数)(),(x g x f 定义内积

?=b

a dx x g x f x g x f )()())(),((. (2) 对于内积(2),),(

b a C 构成一个欧几里得空间.

同样地,线性空间n x R x R ][],[对于内积(2)也构成欧几里得空间.

例4 令H 是一切平方和收敛的实数列

+∞<=∑∞

=1221),,,,(n n n x x x x Λξ

所成的集合,则H 是一个欧几里得空间,通常称为希尔伯特(Hilbert)空间.

定义 非负实数),(αα称为向量α的长度,记为α.

显然,向量的长度一般是正数,只有零向量的长度才是零,这样定义的长度符合熟知的性质:

αα||k k = (3)

这里V R k ∈∈α,.

长度为1的向量叫做单位向量.如果,0≠α由(3)式,向量

αα1

就是一个单位向量.用向量α的长度去除向量α,通常称为把α单位化.

(Cauchy-Buniakowski 不等式)对任意的向量,,αβ有

|(,)|||||,αβαβ≤

而且等号成立当且仅当,,αβ线性相关.(保证向量夹角定义的合理性)

定义 非零向量βα,的夹角><βα,规定为

πβα

βαβαβα≤≤>=<,0,)

,(arccos ,

根据柯西-布涅柯夫斯基不等式,有三角形不等式

βαβα+≤+.

定义 如果向量βα,的内积为零,即

0),(=βα

那么βα,称为正交或互相垂直,记为βα⊥. 两个非零向量正交的充要条件是它们的夹角为

2

π.只有零向量才与自己正交. 勾股定理:当βα,正交时, .2

22βαβα+=+

推广:如果向量两m ααα,,,21Λ两两正交,那么 2

2221221m m αααααα+++=+++ΛΛ.

(),(,)ij nn ij i j A a a ηη==

称为基n εεε,,,21Λ的度量矩阵.度量矩阵完全确定了内积.

(,)T

X AY αβ= 标准欧式空间(其内积关于自然基的度量矩阵是n 阶单位阵)

定义 欧氏空间V 的一组非零的向量,如果它们两两正交,就称为一个正交向量组.

由单个非零向量所成的向量组也是正交向量组.

在n 维欧氏空间中,两两正交的非零向量不能超过n 个.

正交向量组一定是线性无关的。

若正交向量组中的向量都是单位向量,则称为规范正交组。

定义 在n 维欧氏空间中,由n 个向量组成的正交向量组称为正交基;由单位向量组成的正交基称为规范正交基组.对一组正交基进行单位化就得到一组规范正交基.

欧式空间的线性子空间必存在规范正交基。

在规范正交基下,向量的内积可以通过坐标简单地表示出来,

1122(,).T n n x y x y x y X Y αβ=+++=L

这个表达式正是几何中向量的内积在直角坐标系中坐标表达式的推广.

把一组线性无关的向量变成一单位正交向量组的方法在一些书和文献中称为格拉姆-施密特(Schimidt )正交化方法. (P314)

定义 欧氏空间V 与V '称为同构的,如果存在线性空间的同构(,)R A Hom V V '∈,保持内积,即 ((),())(,)A A αβαβ'=,

对任意的,V αβ∈成立,这样的映射A 称为V 到V '的同构映射.

同构的欧氏空间必有相同的维数.

每个n 维的欧氏空间都与n

R 同构. 同构作为欧氏空间之间的关系具有反身性、对称性与传递性.

由每个n 维欧氏空间都与n

R 同构知,任意两个n 维欧氏空间都同构. 定理 两个有限维欧氏空间同构?它们的维数相等.

这个定理说明,从抽象的观点看,欧氏空间的结构完全被它们的维数决定.

§4 欧式空间中的正交补空间与正交投影

S 是欧式空间V 的一个子集,如果V 中向量α与S 中每个向量都正交,则称α与S 正交,记做S α⊥.

S V ,V ,,{|(,)0}.S S S S V S ααββ⊥⊥=∈=∈定义

设是欧几里得空间的一个非空子集中与正交的所有向量组成的集合称为的正交补记作即

对所有的

正交投影的定义,正交投影的求法(P321-323)

V W W ⊥=⊕,则其中每个向量α都能唯一的表示成1212,,W W ααααα⊥=+∈∈ 1W α∈是α在W 上的正交投影的充要条件是1W αα⊥-∈.

令1:W P V W V

αα→?a 则W P 为V 在W 上的正交投影.在W 中取一个规范正交基1,,m ηηL ,

则α在W 上的正交投影为1

()(,)m

W i i i P ααηη==

∑. 正交投影的求法: (1) 用施密特正交化方法求出W 的规范正交基,再用1()(,)m

W i i

i P ααηη==∑ (2) 设1i W αη=∈∑,则21W ααα⊥=-∈,2(,)0i αη=解齐次线性方程组

(3) 把(2)写成矩阵形式,解决T A AX AY =,()W P AX α=

V 中任意向量α在子空间W 上的最佳逼近元存在且唯一,就是α在W 上的正交投

影()W P α.

最小二乘法(偏差总和最小——>偏差平方和最小)(P327-328)

最小二乘法问题:线性方程组

???????=-+++=-+++=-+++0

,0,022112222212111212111n s ns n n s s s s b x a x a x a b x a x a x a b x a x a x a ΛΛΛΛΛΛΛΛΛ 可能无解.即任何一组数s x x x ,,,21Λ都可能使

.S V S V ⊥命题设是欧几里空间的任意一个非空子集,则是的一个线性子空间.W V V W W ⊥=⊕定理设是欧几里得空间的一个线性子空间,则

11,||||,.W V V W W W ααααααββ∈∈-≤-∈定理设是欧几里得空间的子空间,对于是在上的正交投影的充分必要条件为

对所有的.||||,.

W V V W W W αδβαδαβδα∈-≤-定义设是欧几里得空间的一个子空间,是中的向量如果中存在一个向量使得对所有的有那么称为在上的最佳逼近元

∑=-+++n i i s is i i b x a x a x a

122211)(Λ (1)

不等于零.我们设法找00201,,,s x x x Λ使(1)最小,这样的00201,,,s x x x Λ称为方程组的最小二

乘解.这种问题就叫最小二乘法问题.

下面利用欧氏空间的概念来表达最小二乘法,并给出最小二乘解所满足的代数条件.

.,,,1121121212122221

11211AX x a x a x a Y x x x X b b b B a a a a a a a a a A s j j nj s j j j s j j j s n ns n n s s =?????????

? ??=??????? ??=??????

? ??=??????? ??=∑∑∑===M M M ΛM M M ΛΛ (2) 用距离的概念,(1)就是

2

B Y -

最小二乘法就是找00201,,,s x x x Λ使Y 与B 的距离最短.但从(2),知道向量Y 就是 .21222122121111??????

? ??++??????? ??+??????? ??=ns s s s n n a a a x a a a x a a a x Y M ΛM M 把A 的各列向量分别记成s ααα,,,21Λ.由它们生成的子空间为),,,(21s L αααΛ=.Y 就是),,,(21s L αααΛ=中的向量.于是最小二乘法问题可叙述成:

找X 使(1)最小,就是在),,,(21s L αααΛ=中找一向量Y ,使得B 到它的距离比到子空间),,,(21s L αααΛ=中其它向量的距离都短.

应用前面所讲的结论,设

s s x x x AX Y ααα+++==Λ2211

是所求的向量,则

AX B Y B C -=-=

必须垂直于子空间),,,(21s L αααΛ=.为此只须而且必须

0),(),(),(21====s C C C αααΛ

回忆矩阵乘法规则,上述一串等式可以写成矩阵相乘的式子,即

120,0,,0.T T T s C C C ααα===L

而12,,,T T T s αααL 按行正好排成矩阵T A ,上述一串等式合起来就是

()0T A B AX -=

T T A AX A B =

这就是最小二乘解所满足的代数方程,它是一个线性方程组,系数矩阵是T A A ,常数项是T A B .这种线性方程组总是有解的.

§5 正交变换与正交矩阵

定义 欧氏空间V 的线性变换A 叫做一个正交变换,如果它保持向量的内积不变,即对任意的,都有V ∈βα,,都有

(A α,A β)=),(βα.

正交变换可以从几个不同方面公平加以刻画.正交群(,)O n R

设A 是n 维欧氏空间的一个正交变换,则有以下结论:

(1) 如果n εεε,,,21Λ是规范正交基,那么A 1ε, A 2ε,…, A n ε也是规范正交基;

(2) A 保持向量的长度不变,即对于V ∈α,(A α,A α)=(α,α);

(3) A 在任一组规范正交基下的矩阵是正交矩阵T

A A E =.

(4) 正交变换的乘积与正交矩阵的逆矩阵也是正交矩阵.

1123410T T A n A A A AA E A -==推论设是一个阶实数矩阵,那么下列条件是等价的:()是正交矩阵;();

);()的每个列的元素的平方和等于,不同列的对应元素之积和等于,即:510.A ()的每个行的元素的平方和等于,不同行的对应元素之积和等于

如果A 是正交矩阵,那么由

T AA E =

可知

12=A 或者1±=A .

因此,正交变换的行列式等于+1或-1.行列式等于+1的正交矩阵通常称为旋转,或者称为第一类的,特殊正交群(,)SO n R ;行列式等于-1的正交变换称为第二类的.

线性空间与欧几里得空间

线性空间与欧几里得空间 自测题 一、填空题 1、对欧几里得空间V 中的任意向量βα,,有()βαβα≤ ,,而且等号成立当且仅当 。 2、设1W 与2W 是V 的两个线性子空间,如果1W +2W 中的每个向量α都可唯一的被表示成21ααα+=,2211W W ∈∈αα,,则称1W +1W 为这两个子空间的 。 3、两个同构的线性空间的维数 。 4、第二类正交变换的行列式的值等于 。 5、如果A 是正交矩阵。若k 为实数,使kA 为正交矩阵,则k 等于 。 二、选择题 6、下列n R 的子集是n R 的子空间的为( ) A :(){}n i Z a a a a a i n ...,3,2,1,.....,,,321=∈ B :(){}0.....,,,21321=a a a a a a n C :(){}R a a a a n ∈211,,0,...,0, C :{} 1..)...,,(2222121≤+++n n a a a a a a 7、全体正实数的集合+R 对于下面定义的加法与标量乘法:k a a k a b b a ==⊕ ,构成R 上的线性空间,则+R 的零元素为( ) A :0 B: 1 C: 2 D: 3 8、若A 是正交矩阵,则下列矩阵中仍为正交矩阵的是(多重选择,其中k 是1±≠的整数) A:kA B:k A C:交换A 的任两行所得的矩阵 D :把A 的某行k 倍加到另一行所得的矩阵 9、设A 是欧几里得空间V 关于基n ααα,,,...21的度量矩阵,则A 满足以下哪个条件时,n ααα,,,...21是规范正交基? ( ) A: A 是正交矩阵 B :A 为对称矩阵 C :1-A 为正交矩阵 D :A 为单位矩阵 10、以下哪个结论不是两个线性子空间1W 与2W 的和21W W +为直和的等价命题:( ) A :dim ()()()()221121dim dim dim dim W W W W W W >+>+且

矩阵第二章 内积空间

第二章 内积空间 目的:在线性空间中引入向量的长度、向量之间夹角等度量概念,深化对线性空间、线性变换等的研究。 §1 内积空间的概念 定义2-1 设V 是实数域R 上的线性空间。如果对于V 中任意两个向量βα,,都有一 个实数(记为()βα,)与它们对应,并且满足下列条件(1)-(4),则实数()βα,称为向量βα,的内积。 (1) ()()αββα,,=; (2)),(),(βαβαk k =,(R k ∈) (3)),(),(),(γβγαγβα+=+,(V ∈γ) (4)()0,≥αα,当且仅当θα=时,等号成立。 此时线性空间V 称为实内积空间,简称为内积空间。 例2-1 对于n R 中的任二向量()n x x x X ,,,21 =,()n y y y Y ,,,21 =,定义内积 ()∑==n i i i y x Y X 1 ,,n R 成为一个内积空间。内积空间n R 称为欧几里得(Euclid )空间,简称 为欧氏空间。由于n 维实内积空间都与n R 同构,所以也称有限维的实内积空间为欧氏空间。 例2-2 如果对于n n R B A ?∈?,,定义内积为()∑== n j i ij ij b a B A 1 ,,,则n n R ?成为一个内积 空间。 例2-3 ],[b a R 定义dx x g x f x g x f b a ? = )()())(),((,则可以验证))(),((x g x f 满足内积 的条件,从而],[b a R 构成内积空间。 内积()βα,具有下列基本性质 (1) ()()βαβα,,k k =,(R k ∈);(2) ()()()γαβαγβα,,,+=+; (3) ()()0,,==βθθα。

第八章欧氏空间

第九章欧氏空间 [教学目标] 1理解欧氏空间、内积、向量的长度、夹角、正交和度量矩阵的概念。2理解正交组、正交基、标准正交基和正交矩阵的概念,理解n维欧氏空间的标准正交基的存在性和标准正交基之间过渡矩阵的性质,重点掌握施密特正交化方法。 3理解欧氏空间同构的定义和同构的充要条件。 4理解正交变换的定义及正交变换与正交矩阵的关系,掌握正交变换的几个等价条件。 5理解子空间的正交和正交补的概念,掌握正交补的结构和存在唯一性。 6理解对称变换的定义和对称变换与对称矩阵之间的关系,掌握实对称矩阵特征值的性质,重点掌握用正交变换把实对称矩阵及实二次型化为对角形和标准形的方法。 [教学重难点] 欧氏空间的定义,求向量的长度和夹角的方法,施密特正交化方法,正交变换与正交矩阵的关系,用正交变换把实对称矩阵及实二次型化为对角形和标准形的方法。 [教学方法]讲授,讨论和习题相结合。 [教学时间]18学时。 [教学内容]

欧氏空间的定义和性质,标准正交基,同构,正交变换,子空间,对称矩阵的标准形,向量到子空间的矩离、最小二乘法*。 [教学过程] §1 定义、性质 定义1:设V 是R 上的一个线性空间,在V 上定义了一个二元实函数,称为内积,记为),(βα,如果它具有以下性质: (1)),(),(αββα= (2)),(),(βαβαk k = (3)),(),(),(γβγαγβα+=+ (4)0),(≥αα当且仅当0=α时0),(=αα。 这里R k V ∈∈,,,γβα,则V 称为欧几里得空间(简称欧氏空间) 例1、例2。 练习:394P 1(1)。 定义2:非负实数),(αα称为α的长度,记为α 性质:ααk k = 单位向量:长度为1的向量。 α单位化: α α -Cauchy Буняковский不等式:βα,?,有 βαβα≤),( 等号成立当且仅当βα,线性相关。 在不同内积中,-Cauchy Буняковский不等式的具体例子: 例1中,2 2221222212211n n n n b b b a a a b a b a b a ++++++≤+++ΛΛΛ

线性空间和欧式空间

第六章 线性空间和欧式空间 §1 线性空间及其同构 一 线性空间的定义 设V 是一个非空集合,K 是一个数域,在集合V 的元素之间定义了一种代数运算, 叫做加法;这就是说,给出了一个法则,对于V 中任意两个元素α和β,在V 中都有唯一的一个元素γ与他们对应,成为α与β的和,记为βαγ+=。在数域K 与集合V 的元素之间还定义了一种运算,叫做数量乘法,即对于数域K 中任一数k 与V 中任一元素α,在V 中都有唯一的一个元素δ与他们对应,称为k 与α的数量乘积,记为αδk =,如果加法与数量乘法满足下述规则,那么V 称为数域K 上的线性空间。 加法满足下面四条规则: 1)αββα+=+;交换律 2))()(γβαγβα++=++;结合律 3)在V 中有一个元素0,对于V 中任一元素α都有αα=+0(具有这个性质的元 素0称为V 的零元素); 存在零元 4)对于V 中每一个元素α,都有V 中的元素,使得0=+βα(β称为α的负元素). 存在负元 数量乘法满足下面两条规则: 5)αα=1; 存在1元 6)αα)()(kl l k =. 数的结合律 数量乘法与加法满足下面两条规则: 7)αααl k l k +=+)(; 数的分配律 8)βαβαk k k +=+)(. 元的分配律 在以上规则中,l k ,表示数域中的任意数;γβα,,等表示集合V 中任意元素。 例1. 元素属于数域K 的n m ?矩阵,按矩阵的加法和矩阵的与数的数量乘法,构成 数域K 上的一个线性空间,记为,()m n M K 。 例2. 全体实函数(连续实函数),按函数的加法和数与函数的数量乘法,构成一个实 数域上的线性空间。 例3. n 维向量空间n K 是线性空间。

第二章 赋范线性空间-黎永锦

第2章 赋范线性空间 虽然不允许我们看透自然界本质的秘密, 从而认识现象的真实原因,但仍可能 发生这样的情形:一定的虚构假设 足以解释许多现象. Eurler L . (欧拉) (1707-1783,瑞士数学家) Schmidt E .在1908 年讨论由复数列组成的空间}||: ){(1 2∞<∑∞ =i i i z z 时引入记号 ||||z 来表示2 11 )(∑∞ =i i i z z ,||||z 后来就称为z 的范数.赋范空间的公理出现在Riesz F .在 1918 年关于],[b a C 上关于紧算子的工作中,但赋范空间的定义是在 1920到1922年间由 Banach S .(1892—1945)、Hahn H .(1879—1934)、Helly E .(1884—1943)和 Wiener N .(1894—1964)给出的,其中以Banach S .的工作最具影响. 2.1赋范空间的基本概念 线性空间是Peano Giuseppe 在1888年出版的书Geometrical Calculus 中引进的.Banach S .在1922年的工作主要是建立具有范数的完备空间,以后为了纪念他称之为 Banach 空间.他定义的空间满足三组公理,第一组公理定义了线性空间,第二组定义了范数, 第三组给出了空间的完备性. 定义 2.1.1 设K 是实数域R 或复数域C ,X 是数域K 上的线性空间,若||||?是X 到R 的映射,且满足下列条件: (1) 0||||≥x 且0||||=x 当且仅当0=x ; (2) ||||||||||x x λλ=,对任意X x ∈和任意K ∈λ ;

第二章内积空间

第二章 内积空间 在以前学习的线性代数中,我们知道在n R 中向量的长度、夹角和正交等性 质是用内积刻划的,在本章中将内积的概念推广到一般线性空间,从而讨论一般线性空间中向量的度量性质。定义了内积的线性空间称为内积空间,常用的内积空间有欧氏空间与酉空间。 §2.1欧氏空间与酉空间 一、欧氏空间与酉空间 定义1 设V 是R 上的线性空间,如果V 中每对向量,x y ,按某一对应法则都有唯一确定的实数(,)x y 与之对应且满足: ),(),(.1x y y x = ),(),(.2y x y x λ=λ,λ?∈R ),(),(),(.3z y z x z y x +=+,z V ?∈ 0),(.4≥x x 等号成立当且仅当x θ= 则称(,)x y 为V 的内积。称定义了上述内积的有限维线性空间()V R 为欧几里得空间,简称欧氏空间,称21 ),(x x x =为x 的长度或模。 例1 在[]n P x 中定义1 0((),())()()f x g x f x g x dx =?,(),()[]n f x g x P x ∈,则[]n P x 构成一个欧氏空间。 例2 在n n ?R 中对,n n A B ??∈R 定义T (,)tr()A B AB =,则n n ?R 为欧氏空间。 证明 因为,,,n n A B C λ??∈∈R R (1) T T T T (,)tr tr[()]tr (,)A B AB AB BA B A ==== (2) T T (,)tr tr (,)A B AB AB A B λλλλ=== (3) T T T (,)tr[()]tr[](,)(,)A B C A B C AC BC A C B C +=+=+=+

第一章 线性空间与线性变换概述

第一章 线性空间与线性变换 线性空间与线性变换是学习现代矩阵论时经常用到的两个极其重要的概念.本章先简要地论述这两个概念及其有关理论,然后再讨论两个特殊的线性空间,这就是Euclid 空间和酉空间. §1.1 线性空间 线性空间是线性代数最基本的概念之一,也是学习现代矩阵论的重要基础,所考虑的数域是实数域(记为R)和复数域(记为C),统称数域F . 一、线性空间的定义及性质 定义1 设V 是一个非空集合,F 是一数域.如果存在一种规则,叫做V 的加法运算:对于V 中任意两个元素,αβ,总有V 中一个确定的元素γ与之对应.γ称为αβ与的和,记为γαβ=+.另有一种规则,叫做V 对于F 的数乘运算:对于F 中的任意数k 及V 中任意元素α,总有V 中一个确定的元素σ与之对应,σ叫做k 与α的数乘,记为k σα=.而且,以上两种运算还具有如下的性质: 对于任意α,β,V γ∈及k ,l F ∈,有 1)αββα+=+; 2)()()αβγαβγ++=++; 3)V 中存在零元素0,对于任何V α∈,恒有αα+=0; 4)对于任何V α∈,都有α的负元素V β∈,使0αβ+=; 5)1αα=; 6)()()k l kl αα=;(式中kl 是通常的数的乘法) 7)()k l k l ααα+=+;(式中k l +是通常的数的加法) 8)()k k k αβαβ+=+. 则称V 为数域F 上的一个线性空间,也称向量空间. V 中所定义的加法及数乘运算统称为线性运算,其中数乘又称数量乘 法.在不致产生混淆时,将数域F 上的线性空间简称为线性空间. 需要指出,不管V 的元素如何,当F 为实数域R 时,则称V 为实线性空间;当F 为复数域C 时,就称V 为复线性空间. 线性空间{0}V =称为零空间.

泛函分析中的度量空间

泛函分析主要内容 泛函分析是20世纪30年代形成的数学分科。是从变分问题,积分方程和理论物理的研究中发展起来的。它综合运用函数论,几何学,现代数学的观点来研究无限维向量空间上的函数,算子和极限理论。它可以看作无限维向量空间的解析几何及数学分析。主要内容有拓扑线性空间等。泛函分析在数学物理方程,概率论,计算数学等分科中都有应用,也是研究具有无限个自由度的物理系统的数学工具。泛函分析是研究拓扑线性空间到拓扑线性空间之间满足各种拓扑和代数条件的映射的分支学科。 1、度量空间 定义:设X为一个集合,一个映射d:X×X→R。若对于任何x,y,z属于X,有 (I)(正定性)d(x,y)≥0,且d(x,y)=0当且仅当 x = y; (II)(对称性)d(x,y)=d(y,x); (III)(三角不等式)d(x,z)≤d(x,y)+d(y,z) 则称d为集合X的一个度量(或距离)。称偶对(X,d)为一个度量空间,或者称X为一个对于度量d而言的度量空间。 例:实数带有由绝对值给出的距离函数d(x, y) = |y?x|,和更一般的欧几里得n维空间带有欧几里得距离是完备度量空间 2、赋范线性空间 泛函分析研究的主要是实数域或复数域上的完备赋范线性空间。这类空间被称为巴拿赫空间,巴拿赫空间中最重要的特例被称为希尔

伯特空间。 例:任何赋范向量空间通过定义d(x, y) = ||y?x|| 也是度量空间。 (如果这样一个空间是完备的,我们称之为巴拿赫空间)。例:曼哈顿范数引发曼哈顿距离,这里在任何两点或向量之间的距离是在对应的坐标之间距离的总和。 3、希尔伯特空间 希尔伯特空间可以利用以下结论完全分类,即对于任意两个希尔伯特空间,若其基的基数相等,则它们必彼此同构。对于有限维希尔伯特空间而言,其上的连续线性算子即是线性代数中所研究的线性变换。对于无穷维希尔伯特空间而言,其上的任何态射均可以分解为可数维度(基的基数为50)上的态射,所以泛函分析主要研究可数维度上的希尔伯特空间及其态射。希尔伯特空间中的一个尚未完全解决的问题是,是否对于每个希尔伯特空间上的算子,都存在一个真不变子空间。该问题在某些特定情况下的答案是肯定的。 4、巴拿赫空间 巴拿赫空间理论(Banach space)是192O年由波兰数学家巴拿赫(S.Banach)一手创立的,数学分析中常用的许多空间都是巴拿赫空间及其推广,它们有许多重要的应用。大多数巴拿赫空间是无穷维空间,可看成通常向量空间的无穷维推广。

欧式空间中线性变换和正交变换的关系

欧氏空间中线性变换和正交变换的关系 摘要 对欧式空间中的线性变换与正交变换之间的关系进行讨论 关键词:欧式空间 线性变换 正交变换 线性变换和正交变换是欧氏空间的两种重要变换。本文首先引入线性变换和正交变换在欧氏空间中的定义,然后讨论两者之间的关系。为了阅读方便,本文从最基本的概念谈起,即先定义线性空间、内积、欧氏空间、线性变换和正交变换。 定义1 设V 不是空集,P 为一个数域,在V 中定义加法和数量乘法(简称数乘),若对P l k V ∈?∈?,,,,γβα,满足: (1)V ∈+βα,(关于加法封闭) (2)αββα+=+,(交换律) (3)) ()(γβαγβα++=++,(结合律) (4)V V ∈?=+∈?ααα,使0,0,(零元) (5)0=-+∈-?∈?)(,使)(,ααααV V ,(负元) (6)V k ∈?α(关于数乘封闭) (7)αα=?1 (8)αα)()(kl l k = (9)αααl k l k +=+)( (10)βαβαk k k +=+)( 则称V 为数域P 上的线性空间。 定义2 设V 是R 上的一个线性空间,在V 上定义了一个二元实函数,称为内积,记为),(βα,它具有以下性质(R k V ∈∈,,,γβα): (1)),(),(αββα= (2)),(),(βαβαk k = (3)),(),(),(γβγαγβα+=+ (4)0),(≥αα,当且仅当0=α时,0),(=αα。 定义3 定义2中的线性空间V 就称为欧几里得空间,简称欧氏空间。 定义4 设V 是一个线性空间,P 为一个数域,对于P k V ∈?∈?,,βα,有 (1)()()()A A A αβαβ+=+ (2)()()A k kA αα?= 则称A 为V 上的线性变换。 定义5 设A 是欧氏空间V 的一个变换,如果对于任意的,,V ∈βα即保持内积不变,

11 度量空间的定义与极限

第一章 度量空间 若在实数集 R 中点列n x 的极限是x 时,我们使用||n x x -来表示n x 和x 的接近程度,事实上,||n x x -可表示为数轴上n x 和x 这两 点间的距离,那么实数集R 中点列n x 收敛于x 也就是指n x 和x 之间的距离随着n →∞而趋于0,即lim (,)0n n d x x →∞ =. 于是人们就想, 在一般的点集 X 中如果也有“距离” ,那么在点集X 中也可借这一“距离”来定义极限,而究竟什么是“距离”呢?或者说“距离”的本质是什么? 诗人顾城的一首诗《远和近》对距离的感受又如何呢? 远和近 你 一会看我 一会看云 我觉得 你看我时很远 你看云时很近 这首诗诗似乎是纯理性的,十分冷静,但细细品味,其中暗暗催动着一股热流:呼唤一种相互理解、相互信任、和谐融洽的人际关系.现实距离和心理距离并不总是一致的.现实距离很远,但心理距离却可能很近,“海内存知己,天涯若比邻”,即是此意.也可能现实距离很近,而心理距离却很远,所谓“咫尺天涯”大概就是指此而言了.那么如何给出距离这一概念? 1.1 度量空间的定义与极限 1.1.1 度量空间的定义与举例 定义 1.1.1 设X 为一非空集合.若存在二元映射:d X X ?→R ,使得,,x y z X ?∈,均满足以下三个条件: (1)(,)0,d x y ≥且(,)0d x y =当且仅当x y = (非负性 Positivity ); (2)(,)(,)d x y d y x = (对称性 Symmetry ); (3)(,)(,)(,)d x z d x y d y z ≤+ (三角不等式 Triangle inequality ), 则称d 为 X 上的一个距离函数,称(,)X d 为距离空间或度量空间(Metric Spaces),(,)d x y 称为x 和y 两点间的距离.□ 注1:在不产生误解时,(,)X d 可简记为X . 下面我们来看一些具体的例子 例 1.1.1 欧氏空间n R . 设 n R 12{(,,,)|,1,2, ,}n i x x x x R i n =∈=,定义 (,)d x y 其中 12(,,,),n x x x x = 12(,,,)n y y y y =n R ∈,可以验证(,)n R d 是一个度量空间. 在证明之前,引入两个重要的不等式. 引理1.1.1 (许瓦兹(Schwarz)不等式) 任给 2n 个实数1212,,,,,,,n n a a a b b b ,有 1 12222 1 1 1 ()() n n n i i i i i i i a b a b ===≤∑∑∑ (1.1) 证明 任取实数 λ,则由

泛函分析第2章 度量空间与赋范线性空间

第2章 度量空间与赋范线性空间 度量空间在泛函分析中是最基本的概念。事实上,它是n 维欧几里得空间n R 的推广,它为统一处理分析学各分支的重要问题提供了一个共同的基础。它研究的范围非常广泛,包括了在工程技术、物理学、数学中遇到的许多很有用的函数空间。因而,度量空间理论已成为从事科学研究所不可缺少的知识。 2.1 度量空间的基本概念 2.1.1 距离(度量)空间的概念 在微积分中,我们研究了定义在实数空间R 上的函数,在研究函数的分析性质,如连续性,可微性及可积性中,我们利用了R 上现有的距离函数d ,即对y x y x d R y x -=∈),(,,。度量是上述距离的一般化:用抽象集合X 代替实数集,并在X 上引入距离函数,满足距离函数所具备的几条基本性质。 【定义2.1】 设X 是一个非空集合,),(??ρ:[)∞→?,0X X 是一个定义在直积X X ?上的二元函数,如果满足如下性质: (1) 非负性 y x y x y x X y x =?=≥∈0,(,0),(,,ρρ; (2) 对称性 ),(),(,,x y y x X y x ρρ=∈ (3) 三角不等式 ),(),(),(,,,y z z x y x X z y x ρρρ+≤∈; 则称),(y x ρ是X 中两个元素x 与y 的距离(或度量)。此时,称X 按),(??ρ成为一个度量空间(或距离空间),记为),(ρX 。 注:X 中的非空子集A ,按照X 中的距离),(??ρ显然也构成一个度量空间,称为X 的子空间。当不致引起混淆时,),(ρX 可简记为X ,并且常称X 中的元素为点。 例2.1 离散的距离空间 设X 是任意非空集合,对X 中任意两点,,x y X ∈令 1 (,)0 x y x y x y ρ≠?=?=? 显然,这样定义的),(??ρ满足距离的全部条件,我们称(,)X ρ是离散的距离空间。这种距离是最粗的。它只能区分X 中任意两个元素是否相同,不能区分

内积空间与希尔伯特空间

2.3 内积空间与希尔伯特空间 通过前面的学习,知道n 维欧氏空间就是n 维线性赋范空间的“模型”,范数相当于向量的模,表明了线性赋范空间的代数结构.对于三维向量空间,我们知道向量不仅有模,而且两个向量有夹角,例如θ为向量α和β的夹角时有:cos αβ θαβ ?= 或者cos αβαβθ?=,其中αβ?表示两个向量的数量积(或点积或内积),α表示向量的模.于是便有了直交性、直交投影以及向量的分解等概念,这些均反映了空间的“几何结构”.通过在线性空间上定义内积,可得到内积空间,由内积可导出范数,若完备则为Hilbert 空间. 2.3.1 内积空间 定义1.1 设U 是数域K 上的线性空间,若存在映射( , )??:U U ?→K ,使得,,x y z U ?∈, α∈K ,它满足以下内积公理: (1) (,)0x x ≥;(,)00x x x =?=; 正定性(或非负性) (2) (,)(,)x y y x =; 共轭对称性 (3) (,)(,)(,)x z y x y z y αβαβ+=+, 线性性 则称在U 上定义了内积( , )??,称(,)x y 为x 与y 的内积,U 为K 上的内积空间(Inner product spaces ).当=K R 时,称U 为实内积空间;当=K C 时,称U 为复内积空间.称有限维的实内积空间为欧几里德(Euclid spaces )空间,即为欧氏空间;称有限维的复内积空间为酉(Unitary spaces )空间. 注1:关于复数:设z a bi =+∈C ,那么z oz =;(cos sin )z r i θθ=+其中θ为辐射角、r z =;2 z z z ?=;z z =;对于12,z z ∈C ,有1212z z z z ?=?. 注2:在实内积空间中,第二条内积公理共轭对称性变为对称性. 注3:在复内积空间中,第三条内积公理为第一变元是线性的,第二变元是共轭线性的. 因为(,)(,)(,)(,)(,)x y y x y x y x x y ααααα===?=,所以有 (,)(,)(,)x y z x y x z αβαβ+=+, 即对于第二变元是共轭线性的.在实内积空间中,第三条内积公理为第一变元、第二变元均为

1.什么是线性空间什么是线性变换线性变换

1. 什么是线性空间?什么是线性变换?线性变换的秩如果小于空间的维数将会怎样?平方的秩? 2. 描述一下密度矩阵的特征,纯态和混合态的区别(表现在密度矩阵的秩) 3. 什么是U 变换,U 变换对应的矩阵满足什么样的特点。U 矩阵一定是可对角化的吗?对应欧氏空 间的正交变换有什么特点?正交变换对应的矩阵的矩阵元一定是实的吗? 4. 什么是厄米算符,厄米算符的物理意义?对应的矩阵具有什么样的特点?厄米算符的本征值具有 什么样的特征?厄米算符对应的矩阵的矩阵元是实的吗?厄米算符是否可以表示成实矩阵,特点是什么?互相对易的厄米算符具有共同的本征态,具有共同本征态的算符一定是对易的吗?具有共同本征值的呢?厄米算符的和是厄米算符吗?厄米算符的乘积呢?直积呢?不对易的厄米算符一定不可交换吗? 5. exp (A )exp (B )=exp (A+B )?LnA 怎么计算? 6. 简单介绍一下三种picture 的物理意义,态的特征,算符的特征。为什么采用这三种picture ,只有 这三种picture 吗?你觉得相互作用picture 可以用在什么地方?Heisenberg picture 的波函数不随时间演化,本征态呢?与哈密顿量对易算符的本征态呢?本征值怎么样? 7. 传播子的物理意义?路径积分与惠更斯原理有什么联系吗?两个光子能够叠加吗?最小作用原 理和路径积分的联系。 8. 什么是态的纠缠?什么是直积态? 9. 量子力学的五大假设是什么?什么是测量假设?测量假设可以从量子力学的其它假设推导出来 吗?能够从态演化过程推导出来吗?它是一个物理过程吗? 10. EPR 佯谬讲了一些什么内容?说明了什么物理本质? 11. Bell 不等式怎么写?它有什么作用?2),(),(),(),(≤-++=''''b a b a b a b a u u E u u E u u E u u E S 12. 在quantum teleportation 中,对于粒子1的初态10βαψ+=,如果根据粒子1和2的Bell 基测 量结果推知粒子3的量子态为10βαψ-=,10αβψ+=以及10αβψ-=,怎么样才能是粒子3的态恢复到粒子1原来的量子态? 13. 什么是定态? 第二次作业中的2.2题中的(e)小问, 为什么在上一次测量x μ得到0μ+之后隔一个时间间隔t ?再测量x μ,得到0μ+的几率并不完全等于1? 1). 若体系的H 不显含时间t ,在初始时刻(t=0)体系处于某一个能量本征态)()0,(E ψψ=,其中),(),(t r E t r H E E ψψ=,则 ]/exp[)(),( iEt t E -=ψψ

度量空间和线性赋范空间

度量空间和线性赋范空间

1 第六章 度量空间和线性赋范空间 第1次课 教学内容(或课题): §6.1 度量空间的进一步例子 目的要求: 在复习第二章度量空间基本概念前提下,要求进一步掌握离散度量空间、序列空间、有界函数空间、可测函数空间等. 教学过程: 一 复习第二章度量空间的概念 设X 是个集合,若对于∈?y x ,X ,都有唯一确定的实数()y x d ,与之对应,且满足01 ()y x d ,0≥,()y x d ,=0y x =?;02 ()y x d ,≤()z x d ,+()z y d ,对∈?z y x ,,X 都成立, 则称(X ,d )为度量 空间或距离空间,X 中的元素称为点,条件02称为三点不等式. 欧氏空间n R 对n R 中任意两点()n x x x x ,,,21Λ=和 ()n y y y y ,,,21Λ=,规定距离为 ()y x d ,=()2 1 12??? ??-∑=n i i i y x . []b a C ,空间 []b a C ,表闭区间[]b a ,上实值(或复值)连续函数的全体.对[]b a C ,中任意两点y x ,,定义()y x d ,=()()t y t x b t a -≤≤max . 2 l 空间 记2l ={}? ??? ??∞<=∑∞ =∞ =12 1 k k k k x x x .设{}∞==1k k x x ,{}∞==1k k y y ∈2l ,定义 ()y x d ,=()2 112?? ? ??-∑∞ =i i i y x . 二 度量空间的进一步例子 例1 设X 是任意非空集合,对于∈?y x ,X ,令

线性变换和矩阵

§3 线性变换和矩阵 一、线性变换关于基的矩阵 设V 是数域P 上n 维线性空间.n εεε,,,21 V 的一组基,现在建立线性变换与矩阵关系. 空间V 中任意一个向量ξ可以被基n εεε,,,21 线性表出,即有关系式 n n x x x εεεξ+++= 2211 (1) 其中系数是唯一确定的,它们就是ξ在这组基下的坐标.由于线性变换保持线性关系不变,因而在ξ的像A ξ与基的像A 1ε,A 2ε,…,A n ε之间也必然有相同的关系: A ξ=A (n n x x x εεε+++ 2211) =1x A (1ε)+2x A (2ε)+…+n x A (n ε) (2) 上式表明,如果知道了基n εεε,,,21 的像,那么线性空间中任意一个向量ξ的像也就知道了,或者说 1. 设n εεε,,,21 是线性空间V 的一组基,如果线性变换?与?在这组基上的作用相同,即 A i ε= B i ε, ,,,2,1n i = 那么A = B . 结论1的意义就是,一个线性变换完全被它在一组基上的作用所决定.下面指出,基向量的像却完全可以是任意的,也就是 2. 设n εεε,,,21 是线性空间V 的一组基,对于任意一组向量n ααα,,,21 一定有一个线性变换?使 A i ε=i α .,,2,1n i = 定理1 设n εεε,,,21 是线性空间V 的一组基,n ααα,,,21 是V 中任意n 个向量.存在唯一的线性变换?使

A i ε=i α .,,2,1n i = 定义2 设n εεε,,,21 是数域P 上n 维线性空间V 的一组基,A 是V 中的一个线性变换.基向量的像可以被基线性表出: ?? ? ?? ? ?+++=+++=+++=. , , 22112222112212211111n nn n n n n n n n a a a A a a a A a a a A εεεεεεεεεεεε 用矩阵表示就是 A (n εεε,,,21 )=(A (1ε),A ?(2ε),…, A (n ε)) =A n ),,,(21εεε (5) 其中 ??? ??? ? ??=nn n n n n a a a a a a a a a A 212222111211 矩阵A 称为线性变换A 在基n εεε,,,21 下的矩阵. 例 1 设m εεε,,,21 是n )(m n >维线性空间V 的子空间W 的一组基,把它扩充为V 的一组基n εεε,,,21 .指定线性变换A 如下 ?? ?+====. ,,1,0,,,2,1,n m i A m i A i i i εεε 如此确定的线性变换A 称为子空间W 的一个投影.不难证明 A 2=A 投影A 在基n εεε,,,21 下的矩阵是

距离空间、线性赋范空间、内积空间的理解及其区别

距离空间、线性赋范空间、内积空间的理解 及其区别 从初中开始,我们就接触到了绝对值的概念。在以往学习过的实数域中,绝对值为一个非负的标量,表示某个数到0的长度。而在学完向量的计算后我们知道,绝对值为向量的模,即向量的长度。扩展到现代数学,绝对值不止应用于实数域、向量计算,还适用于点列、函数等,由此也就引出了距离的概念。 设X 是任一集合, ,x y X ?∈,按照一定的法则确定一个函数(),d x y ,这个函数满足定义域X X ?,且满足: 1. 非负性:(),0d x y ≥,且(),=0d x y 的充要条件是x y =; 2. 对称性:()(),=,d x y d y x ; 3. 三角不等式:()()(),,,d x y d x z d z y ≤+,()z X ?∈。 则称X 为一个距离空间,(),d x y 为空间中,x y 之间的距离。 有距离空间的定义可以发现,距离空间中的距离是一个二元函数,他可以简单地理解为x 与y 之间的长度,即(),=d x y x y -。 我们定义距离空间实际上是为了在空间这个概念上定义收敛。若点列{}n x X ∈,x X ∈,则{}n x 收敛于X 可以定义为(),0n d x x →,()n →+∞。 线性空间是具有线性结构的空间,他在空间上定义了加法和数乘运算。这就表示空间中的所有点都可以用一组基通过加法和数乘线性表示出来。转化到图像上就是线性空间可以表示某一点的位置。有一种特殊的线性空间叫做向量空间,向量空间可以表示起始点在原点的向量。若想知道两个向量相加的和向量或者向量数乘之后的向量长度,则需要引入范数的概念。范数可以近似理解为向量的长或者确定点到原点的距离,引入范数的线性空间称作线性赋范空间。定义为: X 为一线性空间,x X ?∈,定义实值函数x 满足: 1. 非负性:0x ≥,且=0=0x x ?; 2. 齐次性:=x x λλ; 3. 三角函数:+x y x y ≤+。 则称x 为X 的范数,X 为线性赋范空间。 对比距离空间和线性赋范空间的定义可以发现,线性赋范空间是在距离空间的基础上增

(第六节)内积空间

泛函分析题1_6内积空间p75 1.6.1 (极化恒等式) 设a是复线性空间X上的共轭双线性函数,q是由a诱导的二次型,求证:?x, y∈X,有 a(x, y) = (1/4) · ( q(x + y) -q(x-y) + i q(x + i y) -i q(x-i y)). 证明:?x, y∈X, q(x + y) -q(x-y) = a(x + y, x + y) -a(x-y, x-y) = (a(x, x) + a(x, y) + a(y, x) + a(y, y)) - (a(x, x) -a(x, y) -a(y, x) + a(y, y)) = 2 (a(x, y) + a(y, x)), 将i y代替上式中的y,有 q(x + i y) -q(x-i y) = 2 (a(x, i y) + a(i y, x)) = 2 (-i a(x, y) + i a( y, x)), 将上式两边乘以i,得到 i q(x + i y) -i q(x-i y) = 2 ( a(x, y) -a( y, x)), 将它与第一式相加即可得到极化恒等式. 1.6.2 求证在C[a, b]中不可能引进一种内积( · , · ),使其满足 ( f, f )1/2 = max a ≤x≤b| f (x) |(?f∈C[a, b] ). 证明:若C[a, b]中范数|| · ||是可由某内积( · , · )诱导出的, 则范数|| · ||应满足平行四边形等式. 而事实上,C[a, b]中范数|| · ||是不满足平行四边形等式的, 因此,不能引进内积( · , · )使其适合上述关系. 范数|| · ||是不满足平行四边形等式的具体例子如下: 设f(x) = (x–a)/(b–a),g(x) = (b–x)/(b–a), 则|| f || = || g || = || f + g || = || f –g || = 1, 显然不满足平行四边形等式. 1.6.3 在L2[0, T]中,求证函数x# | ?[0, T]e- ( T-τ)x(τ) dτ| ( ?x∈L2[0, T] )在单位球面上达到最大值,并求出此最大值和达到最大值的元素x. 证明:?x∈L2[0, T],若|| x || = 1,由Cauchy-Schwarz不等式,有 | ?[0, T]e- ( T-τ)x(τ) dτ|2≤ (?[0, T] (e- ( T-τ))2dτ) (?[0, T] ( x(τ))2dτ) = ?[0, T] (e- ( T-τ))2dτ = e- 2T ?[0, T]e 2τdτ= (1-e- 2T )/2. 因此,该函数的函数值不超过M = ((1-e- 2T )/2)1/2. 前面的不等号成为等号的充要条件是存在λ∈ ,使得x(τ) = λ e- ( T-τ). 再注意|| x || = 1,就有?[0, T] (λ e- ( T-τ))2dτ= 1. 解出λ= ±((1-e- 2T )/2)- 1/2. 故当单位球面上的点x(τ) = ±((1-e- 2T )/2)- 1/2 ·e- ( T-τ)时, 该函数达到其在单位球面上的最大值((1-e- 2T )/2)1/2. 1.6.4 设M, N是内积空间中的两个子集,求证:M?N ?N⊥?M⊥. 证明:若x∈N⊥,则?y∈N,(x, y) = 0. 而M?N,故?y∈M,也有(x, y) = 0. 因此x∈M⊥.所以,N⊥?M⊥.

内积空间简介

第九章内积空间Inner Product Space

§9.1 目的与要求 ?掌握内积、内积空间的概念 ?熟练掌握欧氏空间的度量概念,如长度、距离、夹角、正交等 ?熟练掌握Cauchy-Schwarz不等式、三角不等式的含义及应用 厦门大学数学科学学院 网址: https://www.doczj.com/doc/1f13350755.html,

?定义:设V 是R 上线性空间,存在映射( ,):, 使得对任意x , y , z ∈V, c ∈R,有 (1). ( x , y ) = ( y , x ) (2). ( x + y , z ) = ( x ,z ) + (y , z ) (3). ( cx , y ) = c ( x , y ) (4). ( x , x ) ≥ 0.且等号成立当且仅当x = 0.则称在V 上定义内积( , ). V 称为内积空间. 有限维实内积空间称为Euclid 空间(欧氏空间). R V V →?对称线性非负(实)内积空间

?定义:设V 是C 上线性空间,存在映射( , ):使得对任意x , y , z ∈V, c ∈C,有 (1).(2). (x + y , z ) = (x , z ) + ( y , z ) (3). (cx , y ) = c ( x , y ) (4). (x , x ) ≥ 0.且等号成立当且仅当x = 0. 则称在V 上定义内积( , ). V 称为复内积空间.有限维复内积空间称为酉空间. ?注1:对任意实数a , , 所以复内积空间与实内积空间的定义是一致的, 统称为内积空间. ?注2:在复内积空间中, (,)(,) x y y x =a a =(,)(,) x cy c x y =R V V →?(复)内积空间

第六章 线性空间与线性变换

第六章 线性空间与线性变换 柴中林 (A) 1. 检验下列集合对于所指的线性运算是否构成实数域上的线性空间: (1)全体n 阶上三角矩阵,对矩阵的加法和数量乘法。 (2)平面上不平行于某一向量的全部向量所成的集合,对向量的加法和数乘运算。 (3)平面上的全体向量对于通常的加法和如下定义的数量乘法:k 。a =0 . 2. 设V 1和V 2都是线性空间V 的子空间,如果V 1∪V 2也是的子空间,求证有:V 1 V 2或V 2 V 1。 3. 检验下列各向量集合是否是R 3的子空间: (1)},0|),,{(213211R x x x x x x V i ∈≥=, (2)}(|),,{(3212有理数)Q x x x x V i ∈=. 4. R 4中,求向量ξ在基α1,α2,α3,α4下的坐标,已知: (1)α1(1,1,1,1), α2=(1,1,-1,-1), α3=(1,-1,1,-1), α4=(1,-1,-1,1), ξ=(1,2,1,1)。 (2)α1(1,1,0,1), α2=(2,1,3,-1), α3=(1,1,0,0), α4=(1,1,-1,-1), ξ=(0,0,0,1)。 5. R 4中,求由基α1,α2,α3,α4到基β1,β2,β3,β4的过渡矩阵,并求向量ξ在指定基下的坐标。已知: (1)α1=(1,0,0,0), α2=(0,1,0,0), α3=(0,0,1,0), α4=(0,0,0,1), β1=(2,1,-1,1), β2=(0,3,1,0), β3=(5,3,2,1), β4=(6,6,1,3)。 ξ=(1,2,1,1)在基β1,β2,β3,β4下的坐标。 (2)α1=(1,1,1,1), α2=(1,1,-1,-1), α3=(1,-1,1,-1), α4=(1,-1,-1,1), β1=(1,1,0,1), β2=(2,1,3,1), β3=(1,1,0,0), β4=(0,1,-1,-1)。 ξ=(1,0,0,-1)在基α1,α2,α3,α4下的坐标。 6. 向量α、β、γ满足0321=++γβαk k k ,且k 1k 2≠0, 求证向量组α、β和向量组β、γ生成相同的向量空间。 7. 判断下面所定义的变换,哪些是线性变换,哪些不是: (1)在线性空间V 中,T (ξ)=ξ+α,其中α∈V 是一已知向量, (2)在R 3 中, T T x x x x x x x T ),,()),,((233221321+=, (3)在R 3中,T T x x x x x x x x T ),,2()),,((13221321+-=, (4)在P[x]n 中,T(f (x ))=f (x +1). 8. 证明线性变换将一个子空间变为一个子空间。 9. 已知矩阵A 与B 相似,C 与D 相似,证明: ???? ??C A 00与???? ??D B 00相似。 10. 设α1,α2,α3,α4是4维线性空间V 的一组基, 线性变换T 在这组基下的矩阵为: ??????? ??--------=7113102/52/92/1323133425T ,

线性空间与度量空间

线性空间与度量空间 摘要:线性空间和度量空间是很重要的内容,本文对空间的线性结构 和度量结构做了简单总结,体现了空间的度量结构和线性结构之间具 有某种协调性,特别重要和有用的一类度量空间是赋范线性空间.而向量的长度与夹角等度量性质都可以通过向量的内积来表示. 关键词:空间;线性;度量 线性空间是线性代数最基本的概念之一.在解析几何中,讨论过三维空间中的向量.向量的基本属性是可以按平行四边形规律来描述的. P是一个数域.在集合X的元素之间定义了一种代定义1 设X是一个 集合, .在数域P与集合X的元素之间还定义了一运算,叫做数量乘法;这 就是说,对于β+α=γ的和,记为β与α与它们对应,称为γ,在X中都 有唯一的一个元素β与α数运算,叫做加法;这就是说,给出了一个 法则,对于X中任意两个元素 .如果加法与数量乘法满足下述规则,那么X称为数域P上的线性空间.αk=δ的数量乘积,记为α与它们对应,称为k与δ,在X中都有唯 一的一个元素α数域P中任一数k与X中任一元素 加法满足下面四条规则: ;α+β=β+α1) );γ+β(+α=γ+)β+α2)( 都有α3)在X中有一个元素0,对于X中任一元素 ,使得β,都有X中的元素α;4)对于X中每一个元素α=α+0

0.=β+α .α(kl)=)α;6)k(lα=α数量乘法满足下面两条规则:5)1 .βk+αk=)β+α;8)k(αl+αk=αl)+数量乘法与加法满足下面两条规则:7)(k 等表示集合X中任意元素.γ,β,α在以上规则中,k,l等表示数域P 中任意数; 由定义,几何空间中全部向量组成的集合是一个实数域上的线性空间.分量属于数域P的全体n元数组构成数域P上的一个线性空间,这个线性空间我们用

相关主题
文本预览
相关文档 最新文档