当前位置:文档之家› 高频软性印刷电路板v1

高频软性印刷电路板v1

高频软性印刷电路板v1
高频软性印刷电路板v1

高頻軟性印刷電路板

摘要

電路板產業中的軟性電路板已成為產業成長的主要推動力,伴隨資通訊行動化的產業與技術趨勢,軟板的發展政方興未艾。隨者應用產品功能強化及整合,高寬頻及高速的新一代軟板將被期待成為下一波市場成長的主力,可以想像在高階智慧手機及平板電腦等攜帶式電子裝置的推波助瀾下,高頻軟板的需限將逐漸浮上檯面。本文將就軟板的技術市場趨勢做導入,再從高頻的定義與需求做說明,接著帶出高頻軟板材料的種類與發展,並以高頻軟板應用的重點-阻抗匹配做詳細說明,以強化高頻軟板對材料及製程的相互依存性,最後再將影響高頻訊號傳輸的關鍵要因做陳述。軟板的高頻化已成為軟板產品與技術的必然,這一趨勢將使軟板由材料、製程及設計端都必須做不同的選擇及思考,對軟板的發展將是重要的里程碑,也是軟板產業及業者必須要面對的重要議題,希望本文可以提供大家一個深入此一議題的開端,及早對高頻軟板做佈局與準備。

前言

這些年來隨著資通訊行動化及個人化的發展越趨蓬勃,具有輕量薄型的軟性印刷電路板(軟板-FPC)市場與需求遽增,使得原本在電路板產業中屬於寡眾的軟板一夕成為當紅炸子雞,不僅在市場成長比例增加最快,也在整體產業比例由過去的個位數成長到接近20%。由應用產品的驅動來看,行動通訊的智慧手機及平板電腦已經成為現代人必備工具,恰好這二種終端應用產品使用到的軟板數量最多,一般每支(每台)都會使用超過10塊以上的軟板(圖一及圖二),在這一股成長勢力及風潮帶動下,軟板的榮景將會再持續好一段時間。

圖一軟板在終端電子產品應用的分類(來源:台新投顧2012.09)

圖二各類資通訊電子產品使用軟板的狀況(來源:台新投顧2012.09)

再由技術發展趨勢來看,隨著終端應用產品的功能整合越來越強、解析度越來要求越高、反應速度必須越來越快、儲存容量越來越大的整體需求下,軟板技術也必須做搭配。因此,軟板高頻高速化、功能化的趨勢發展越發明顯,但不論軟板技術需求如何演進,軟板薄型化是永遠不變的必要。亦即,所有的軟板新技術發展都必須考慮與薄型化一起考慮,因為應用產品的薄型永遠是王道,這也緊緊牽動軟板技術的發展動向。高頻軟板已經是軟板技術的三大趨勢之一,主要在迎合行動通訊電子產品功能的強化及整合,例如,手機整合越來越多的功能,除了一般的聲音及影像功能外,包括照相、藍芽、Wi-Fi、3G上網等,未來包括指紋辨識及各項感測原件的整合進來,使得所需的頻寬是必要增加,當然做為訊號傳輸的軟板高頻高速的需求浮現。電路訊號傳輸的高頻化,基板材料將是主要的關鍵,於是,低介電與低傳輸損失的軟性基板材料,成為這一波軟板高頻化的主要訴求。

高頻的定義與需求

在電路訊號的傳輸領域裏,一般是定義傳輸頻率大於300MHz時稱之為高頻(傳輸波長小於1m的短波)。高頻訊號傳輸需求的動力有以下幾個原因:1.原屬軍事用途的高頻通訊頻道,部分讓給民用(1990‘s),使遠距高頻通訊、導航、醫療、運輸、交通等迅速發展;2.高保密、高傳輸品質使行動通訊往高頻化發展,高劃質、高傳輸容量使衛星、微波及光纖通訊高頻化;3.計算機技術處理能力增加,訊號記憶容量增大,訊號傳送高速化需求迫切。電子產品的高速高頻化,對於傳輸電路的特性上產生很大的變化。

高頻電路的需求內涵就是傳輸訊號的速度及品質。而影響這二項的主要因素是傳輸材料的電氣特性,亦即材料的介電常數(Dielectric constant)與介電損失(Dielectric loss),我們由以下的電氣訊號傳輸公式來說明:

V=K×C/(Dk)1/2Td=L×(Dk)1/2/C

Transmission Loss=K×f×(Dk)1/2× tanδ

其中V:訊號傳輸速度;T d:訊號傳輸延遲;C:光速;K:常數;Dk:介電常數(Dielectric constant);tanδ:介電損失(Df,Dielectric loss),以高速傳輸來說,若要提高訊號傳速度,必須要有低的材料介電常數;同理,若要降低訊號傳輸的延遲,也一樣要藉由低介電常數的材料來達成。若以訊號傳輸的品質而言,要有優質的訊號傳輸

損失特性,就必須有低的訊號傳輸損失,就必須要有低的材料介電常數及介電損失。一般來說在資訊傳輸應用領域,需要高速的計算處理,介電常數是主要的考量,使用較低介電常數的材料可以達成需求;屬於較高頻(GHz)的通訊應用領域,考慮的是訊號傳輸的品質,所以要同時考慮材料的介電常數及介電損失。我們以訊號傳輸延遲為例,選擇一般FR-4基材(Dk約在4.5)及對比的低介電常數材料(Dk<3.0)做比較,由圖三的示意圖來看,FR-4基板其訊號延遲的時間較低介電基板材料每inch多30ps,若是傳輸線的長度是5 inches,則總體訊號的延遲將多出150ps,這對於講求高速傳輸的電子行動裝置而言,將是一個很大的訊號言持現象。圖四則是不同的介電材料基板與訊號傳輸損失的相關圖示,其中PTFE(Teflon,鐵氟龍)因同時具有低介電特性(Dk約為2.0,Df約為0.002),所以此種基材的電路板將會具有最低的訊號傳輸損失,尤其是在高頻(>5GHz)下的傳輸損失比較更會有明顯的差異。圖中的Epoxy基板就是傳統所謂的FR-4基板,因具有較高的介電特性(Dk約為4.5,Df約為0.02),當然呈現出較高的訊號傳輸損失。因為基板材料的介電常數與介電損失是影響訊號傳輸速度與品質的重要因 素,在此再將這二種材料電氣特性稍做一簡單說明:介電常數(Dk)-電極間充以某種物質為介質時的電容與同樣結構以真空為介質時的電容比值。當介電常數大時,表示介質儲存電能能力大,電路中訊號傳輸速度會下降。介電損失(Df)-介電材料在交流電場的作用下,由於發熱而引起的能量損耗。一般介電損失是和介電常數成正比的。

圖三 不同介電基板的訊號傳輸延遲比較(來源:工研院電光所)

圖四 不同介電基板材料訊號傳輸損失的比較

高頻軟板技術與材料

上節中將影響高頻訊號傳輸的要因與材料電氣特性做了說明,本節將以軟板為主題,闡述一下在軟板產業裡關於軟板材料與技術對於高頻的對應與發展。現今最常被拿來做為解決軟板高頻訊號傳輸的軟板材料是液晶高分子材料(Liquid crystalline polymer),原因無它,就是因為LCP具有高頻傳輸所需的低介電常數(Dk=2.9)及低介電損失(Df=0.001-0.002)。除了具備高頻訊號傳輸的優異電氣特性外,LCP同時也其低吸濕性(吸濕率約為0.01-0.02%,只有一般軟板基材PI的1/10)而使其具有良好的基板高可靠性,過去被認為有機會取代PI,但近年來在市場的能見度依然有限,但近來高頻傳輸的需求浮現,LCP成為軟板基材的呼聲似乎又再起。

2010 JPCA Show Japan Gore-Tex這家公司竟然以LCP軟板材料榮獲展出大賞,推敲原因是近來環保綠色當道,加上節能減碳議題正紅,LCP因屬於熱可塑型材料,可以使用後加熱回收使用(當然其回收效率及成本,是否划算還未定論),加上LCP材料原本白色的外觀,正好可以做為LED光反射之用,即基板就具備有高反射率之效能,被認為在LED封裝上具有利基。所以可以想見環保的訴求,已經逐漸融入各項新產品開發的進程設計中。而今年的JPCA Show 中日本Primatec公司展出的BIAC RF-Clad(圖五)外,同時展出的還有新日鐵的Expanex L、松電工的FELIOS、Kuraray的Vestar等,都有展出LCP做為軟板基材的樣品。其中YFLEX公司還以Kuraray的LCP材料製作成LCP軟板(圖六),看來順著這波高頻與環保議題,使得LCP可以奮力一博,找出長久期盼的市場應用機會。另外,Primatec公司還展出以LCP做為FPC補強板的應用,厚度由1-5mil都有,強調具有柔軟及低反彈力特色,也因為LCP的白色而特別適用時LED封裝的應用領域。高頻部份因為智慧手機領導品牌-蘋果的iPhone,經拆解分析後,可以在其所使用的16條FPC中找到2條使用LCP軟板,用於做為高速訊號傳輸的Cable,高頻傳輸的導入行動通訊,在智慧手機這一塊以經逐漸發酵。個人認為,LCP除了需要在成本上與傳統以PI為基材的FPC有競爭外(目前還是LCP較PI 為貴,原因可能在於生產量的問題),下游FPC業者如何由過去已熟悉的PI基材製程,轉換到LCP材料製程,二者在設備及製程技術上的差異,是否可以順利克服?相信是LCP未來應用成功與否的重要關鍵。

圖五 Japan Gore-Tex的BIAC RF-Clad 圖六 YFLEX的LCP軟板

LCP FPC在高頻特性上具有先天優勢,但因其加工時必須使用高溫設備及條件,這與現有FPC主流的低溫快壓製程明顯不同,不僅要更換製程設備,以傳壓設備進行高溫的LCP基材壓合,也同時影響到生產速度。這個問題已逐漸在各家評估以LCP導入高頻軟板的製程及設計中發生,在實驗驗證階段或許不用考慮,但一旦進入量產階段,勢必成為進入的障礙。為了解決這個應用障礙,發展可以低溫(<180o C)壓合的高頻接著劑就成了軟板材料開發的重要選項,包括Toyo chemical、Nikkan industry、Doosan Electronic及台灣本土的台虹及亞電等,都以經將低介電特性的高頻接著劑列入軟板材料的發展藍圖中,這也是影響高頻軟板是否能夠快速導入市場的重要因素之一。圖七及圖八就是日本塗料與接著劑大廠Toyo chemical在今年JPCA show所展出的高頻軟板材料,研發的重點是高頻低介電特性的接著劑,依據展示資料顯示其Dk=2.45,Df=0.019(5 GHz),在Dk部份具有很優異的特性,雖然其Df值還略嫌偏高,若能再持續改善到小於0.01,我想其後勢應用將看好,可將其在高頻的應用領域擴及數位及通訊二者兼顧的產品市場。其強調的材料特色就是可以在傳統的軟板低溫製程進行加工,當然此高頻膠系亦可以覆蓋膜(Coverlay)及純膠(Bond-ply)方式使用,用於軟板線路保護與多層軟板及軟應複合板上,增加其應用範疇.另外,美國Du Pont也在幾年前推出非LCP的高頻FPC材料,它是用Teflon(PTFE,鐵氟龍)來做為FPC基板的接著材料,利用Tefon優異的材料電氣特性來達成高頻訊號傳輸的目的,這是以PI+Teflon+Cu結構所組成的FPC FCCL材料。但其同樣面臨LCP FPC的問題,需要一個低溫製程覆蓋膜來與其搭配,克服高溫製程帶來的量產性及製程設備更換的議題。

圖七 Toyo chemical發展中的低溫製程高頻軟板材料結構

(來源:2013 JPCA show)

圖八 Toyo chemical展出的低溫製程高頻軟板材料樣品

(來源:2013 JPCA show)

軟板的阻抗匹配

隨著應用終端產品高速高頻化與電子訊號要更精準,加上資通訊行動電子產品需要更高的解析需求及更高的通訊訊號品質,此時訊號線與負載原件間的阻抗

匹配成為關鍵。以上的高品質訊號傳輸,必須藉由線路與原件間更精確的阻抗匹配來達成,例如原本只需±20%的二者阻抗匹配誤差,隨著訊號品質的提升要求,已經逐漸縮小阻抗匹配誤差值,±10%以內的阻抗匹配誤差將會成為高階應用電子產品的必須,未來再向下修正的空間還會一一浮現。阻抗匹配是指在電子訊號能量在傳輸時,要求負載(例如承載的元件)阻抗要和傳輸線的特征阻抗盡量相等。如果二者阻抗不相等,就是所謂的阻抗不匹配,阻抗不匹配時訊號傳遞能量會產生反彈,造成訊號強度衰減,將使得原來良好品質的方波訊號,立即出現異常的變形,可以參考圖九的示意說明。目前業界對於訊號傳輸的阻抗匹配誤差,必須視產品及功能需求來決定,誤差越小,訊號傳輸的精度及品質就越好。在高頻高速下傳輸時雜訊將更嚴重,甚至還會引發誤動作,而且當時脈速度愈快時雜訊愈多也愈容易出錯。以終端應用而言,對於阻抗匹配有要求的資通訊電子產品主要有:高速影像處理器(TV、DVD)、高速處理運算(Serves、Play station)、高速通訊(Smart phone、GPS、Radar)、高階電腦(Serves、MP system)等。

圖九 訊號傳輸阻抗匹配的說明示意

如果我們以訊號品質及完整性做輸出指標,由電路與負載的阻抗匹配來進一步說明阻抗匹配的重要性,圖十就是一個最好的範例說明。當一個完整的電路訊號藉由傳輸線傳出,如果此時該傳輸線的阻抗值因為某種原因(例如傳輸線路因製程因素有缺陷)而與原先設計的阻抗質有差異(不匹配),此時的訊號在輸出端就會有失真或不完整的現象發生,造成負載元件產生辨識困難而引發不動作或誤動作,最終形成訊號傳輸的失效。如果以電子物理觀念來解讀的話,就是當某訊號方波,在傳輸線組合體的訊號線中,以正壓訊號向前推進時,則距其最近的參考層(如接地層)中,理論上必有被該電場所感應出來的負壓訊號伴隨前行(等於正壓訊號反向的回歸路徑Return Path),如此將可完成整體性的回路(Loop)係統。該“訊號”前行中若將其飛行時間短暫加以凍結,即可想象其所遭受到來自訊號線、介質層與參考層等所共同呈現的瞬間阻抗值,此即所謂的“特性阻抗”,若此特性阻抗因材料或製程因素的原因而無法與負載元件之特性阻抗搭配,就會在訊號傳輸時形成訊號反彈,進而會產生訊號雜訊而影響訊號傳輸品質。而影響線路訊號特性阻抗的因素很多,牽涉到材料、FPC製程能力及線路設計,我們可以用圖十一來做影響線路特性阻抗大小的說明,這裡以Micro strip及Strip二種最典型的線路設計為例,由圖中的特性阻抗公式來看,導體寬度及厚度比較屬於FPC製程端的控制因素,也就是說具有較佳製程能力的FPC廠,可以用較精確的製程能力來準確掌控線路寬度(解析度)及厚度(鍍銅精度),進而控制

線路訊號的特性阻抗。另外的公式中的絕緣層厚度及介電常數,則是屬於FPC 材料製造端的因素,主要控制者是FPC材料供應商,換言之,提供厚度及介電常數均勻的FPC材料,也將有助於FPC製造廠做較佳的線路特性阻抗控制。因此,良好的特性阻抗控制是需要材料與製造二者共同來承擔,再加上線路設計做適當的搭配,才能有效的達到目的,這也是降低線路與負載間阻抗匹配誤差的重要觀念。

圖十 阻抗匹配與訊號完整性示意

圖十一 影響線路特性阻抗值的因素

軟板介電特性與阻抗匹配

上一節已經把軟板的阻抗匹配定義及影響做了完整的說明。軟板承載高頻訊號時,如果訊號線與負載間有阻抗不匹配的問題,就會產生大量的傳輸雜訊。控制軟板特性阻抗的關鍵要因是基板材料及導體,這其中牽涉到軟性基板的介電常數及厚度,另外就是軟板製程的精度控制,再延伸一些來看,阻抗匹配的內涵是牽扯到軟板的薄型化與製造良率。由圖十一的特性阻抗公式來看,影響基板特性阻抗的因子有基板絕緣材料的介電常數、厚度、銅導體的厚度及寬度,經由特性阻抗計算軟體模擬的結果來看,其中影響特性阻抗最大的是基材絕緣層厚度。亦即,可以藉由調整絕緣層厚度來有效率的控制軟板的特性阻抗,進而做到傳輸訊號與負載間的阻抗匹配。因為此絕緣層厚度直接關係到軟板整體厚度的設計,在軟板薄型化的主流趨勢下,任何型式的軟板設計都必須考慮到薄型的需求。較厚的軟板絕緣材其特性阻抗控制比較容易達到,但卻違背薄型化的要求,這時就必

須藉由較精密的軟板製程技術,例如精確的線路蝕刻及鍍銅技術來確保線路精度及高密度細線的製作,這需要優異的製程管控及設備來達成。否則,一旦為了兼顧阻抗控制及薄型化,卻得以精密設備及製程管控來平衡高製程良率及線路製做精度,這將造成軟板廠在生產上的瓶頸。其中線路蝕刻技術要考慮解析精度外,就是要往高密度細線化走,鍍銅技術則是要求厚度精確與均勻,這都是影響訊號線路阻抗控制的必要手段,但這都會造成軟板廠製造成本的增加.從另一個角度來看,在製造技術外還可以用材料介電特性來調節特性阻抗,由圖十一的特性阻抗控制公式顯示,軟板基材的絕緣層介電常數越低是越有利線路的阻抗控制。我們由圖十二來說明軟板製程與材料對線路特性阻抗控制的相對關係,當線路阻抗被要求是50歐姆,如果可以將軟板基材的介電常數由現有一般的3.5下降到2.5,此時在相同基材及銅導體的厚度下,銅線路的解析寬度可以由50um放寬的65um,這意謂者軟板製程的精度控制或是設備能力可以放寬的,或者是經過這樣的線路及材料設計,在同樣的製程能力及設備下,可以提高軟板線路製作的良率。另一個例子當將軟板基材的介電常數由3.5下降到2.5,只需將線路寬度由100um提升到60um(一般目前軟板業者都可做到的製程能力),就可以在同樣線路特性阻抗下,將基材的厚度由50um下降到25um.這意謂者可藉由線路及材料設計,在兼顧線路特性阻抗控制的前提下,做到軟板薄型化的目的。

圖十二 軟板結構及介電特性與阻抗匹配的關係

影響高頻軟板訊傳輸損失的因素分析

軟板材料的介電特性是影響其訊號傳輸的主要因素,還有一些其他的材料或環境因素也會直接或間接影響軟板高頻訊號的傳輸。導體銅箔的表面粗糙度隨製造方式(電解或壓延)及其表面處理技術會有不同,一般而言電解銅箔的表面粗度較大,同是電解或壓延銅箔還會因表面處理技術不同,而區分成各種表面稜線高度不同的品號。高頻訊號因為訴度快,訊號在傳輸時會集中在銅箔導體的表面,稱之為集膚效應(Skin effect),這會造成訊號傳輸的損失變大。當銅線路的表面粗度越大時,集膚效應會越嚴重而使得訊號傳輸越大,所以做為高頻訊號傳輸的銅箔必須選擇表面粗度較低的種類型號,以降低因集膚效應而產生的傳輸損失。圖十三是不同銅箔種類(表面粗度不同)對高頻訊號傳輸損失的比較,圖中銅箔的表

面粗度由高到低依序是標準箔(STD)>RTF箔>超低稜線箔1(VLP1)>超低稜線箔2(VLP2),從這張比較圖看來,越低粗度的銅箔顯現出越好的傳輸品質,而且在越高頻下其傳輸損失的比較差異越明顯。所以在高頻軟板的應用領域中,選擇壓延或經特殊處理的低粗度電解銅將獲得較低的訊號傳輸損失。但是一般低粗度的銅箔將使得的軟板的接著力下降,所以在考慮銅箔種類時要注意到必須也要滿足接著特性的要求,一般銅箔廠都會提供各種不同表面處理型式的銅箔來兼顧接著與高頻特性,甚至發展高頻應用專屬的銅箔。低粗度的銅箔還會有一項優勢,因為銅箔表面粗度較小時,製作的軟板在經過線路蝕刻製程後,因為低粗度的銅箔與PI基材間的低稜線介面而使得整體軟板顯現出較高的透視率。圖十四一般與高頻專用的低粗度銅箔軟板,在經過線路製程後二者的透視率比較,較高的透視率會使得軟板在後段元件組裝時的對位更容易,亦即會有較高的組裝良率。這是低粗度銅箔除了高頻應用的必要需求外,另一種在軟組裝製程的優點。

圖十三 不同粗度銅箔對傳輸訊號損失得比較

圖十四 高頻專用低粗銅箔(右邊)的透視率比較

(來源:2103 JPCA show)

高頻軟板除了基材的介電特性會影響其傳輸品質外,其所搭配的覆蓋膜Coverlay)的介電特性也會對其訊號傳輸產生一定程度的影響。因為傳輸線路是由基材及覆蓋膜共同組成,覆蓋膜的介電特性當然關係訊號傳輸的品質,與軟板基材一樣,較低的覆蓋膜介電常數及介電損失,會有較低的訊號傳輸損失。另外,環境因素會對軟板材料的介電特性產生影響,所以環境因素如溫、濕度是間接會對軟板的訊號傳輸產生影響。通常在材料的介電特性會隨者溫度上升而變差(Dk 及Df隨溫度增加而增加),反映在訊號傳輸就是傳輸損失隨溫度增加而提高,而

且這現象是隨者頻率增加而越嚴重,越高頻時溫度對傳輸品質的影響越大。對於濕度環境而言也有異曲同工的效應,一般基板材料吸濕程度越高其介電特性也會變差,原因是越高的濕度環境會讓基板材料吸濕增加,其結果就是讓訊號傳輸品質變差。

結論

軟板除了薄型化已確立為其發展主軸外,高頻高速也將成為薄型化外第二個技術主軸。高頻化軟板與軟板材料的介電特性息息相關,軟板材料的低介電常數及介電損失是軟板高頻化的必要,這將衍生出新型態的軟板材料系統,這是有別於現有軟板材料系統的新型材料,當然新型材料所帶來的製程及設備的變動也牽動高頻軟板導入的成敗與速度,這將是現有軟板業者要仔細思考與評估的。另外,高頻化所牽動的線路阻抗匹配問題也是高頻軟板另一個重要議題,這將與軟板製程及設計相關,讓軟板業者必須化更多的心力在製程匹配與電路設計上,這不應該是只有材料的更迭及選用而已,其中更深層的是新的軟板製程與電路設計概念導入。高頻軟板雖然是軟板發展得必然,但台灣軟板業者如何藉由這次產業技術的進程,協同上由軟板材料業者與終端下游系統做三向的協調溝通,取得技術與應用的主導權,在先進軟板技術取得優勢及持續維持軟板產業的領先,可能是當今業者必須深思的。

作者簡介

姓名:金進興

現職:亞洲電材股份有限公司 技術副總經理

學歷:國立交通大學 材料科學與工程研究所 博士

專長:高分子合成與特性分析、電路板材料與製程、電子構裝材料與製程

印制电路板的可靠性设计

印制电路板的可靠性设计 实践证明,即使电路原理图设计正确,印制电路板设计不当,也会对电子设备的可靠性产生不利影响。例如,如果印制板两条细平行线靠得很近,则会形成信号波形的延迟,在传输线的终端形成反射噪声。因此,在设计印制电路板的时候,应注意采用正确的方法。 地线设计 在电子设备中,接地是控制干扰的重要方法。如能将接地和屏蔽正确结合起来使用,可解决大部分干扰问题。电子设备中地线结构大致有系统地、机壳地(屏蔽地)、数字地(逻辑地)和模拟地等。在地线设计中应注意以下几点: 1.正确选择单点接地与多点接地 在低频电路中,信号的工作频率小于1MHz,它的布线和器件间的电感影响较小,而接地电路形成的环流对干扰影响较大,因而应采用一点接地。当信号工作频率大于10MHz时,地线阻抗变得很大,此时应尽量降低地线阻抗,应采用就近多点接地。当工作频率在1~10MHz时,如果采用一点接地,其地线长度不应超过波长的1/20,否则应采用多点接地法。 2.将数字电路与模拟电路分开 电路板上既有高速逻辑电路,又有线性电路,应使它们尽量分开,而两者的地线不要相混,分别与电源端地线相连。要尽量加大线性电路的接地面积。 3.尽量加粗接地线 若接地线很细,接地电位则随电流的变化而变化,致使电子设备的定时信号电平不稳,抗噪声性能变坏。因此应将接地线尽量加粗,使它能通过三位于印制电路板的允许电流。如有可能,接地线的宽度应大于3mm。 4.将接地线构成闭环路 设计只由数字电路组成的印制电路板的地线系统时,将接地线做成闭环路可以明显的提高抗噪声能力。其原因在于:印制电路板上有很多集成电路元件,尤其遇有耗电多的元件时,因受接地线粗细的限制,会在地结上产生较大的电位差,引起抗噪声能力下降,若将接地结构成环路,则会缩小电位差值,提高电子设备的抗噪声能力。

什么叫高频板及高频电路板的参数

什么叫高频板及高频电路板的参数 电子设备高频化是发展趋势,尤其在无线网络、卫星通讯的日益发展,信息产品走向高速与高频化,及通信产品走向容量大速度快的无线传输之语音、视像和数据规范化.因此发展的新一代产品都需要高频基板,卫星系统、移动电话接收基站等通信产品必须应用高频电路板,在未来几年又必然迅速发展,高频基板就会大量需求。 高频基板材料的基本特性要求有以下几点: (1)介电常数(Dk)必须小而且很稳定,通常是越小越好信号的传送速率与材料介电常数的平方根成反比,高介电常数容易造成信号传输延迟。 (2)介质损耗(Df)必须小,这主要影响到信号传送的品质,介质损耗越小使信号损耗也越小。 (3)与铜箔的热膨胀系数尽量一致,因为不一致会在冷热变化中造成铜箔分离。 (4)吸水性要低、吸水性高就会在受潮时影响介电常数与介质损耗。 (5)其它耐热性、抗化学性、冲击强度、剥离强度等亦必须良好。 一般来说,高频可定义为频率在1GHz以上.目前较多采用的高频电路板基材是氟糸介质基板,如聚四氟乙烯(PTFE),平时称为特氟龙,通常应用在5GHz以上。另外还有用FR-4或PPO基材,可用于1GHz~10GHz之间的产品,这三种高频基板物性比较如下。 现阶段所使用的环氧树脂、PPO树脂和氟系树脂这三大类高频基板材料,以环氧树脂成本最便宜,而氟系树脂最昂贵;而以介电常数、介质损耗、吸水率和频率特性考虑,氟系树脂最佳,环氧树脂较差。当产品应用的频率高过10GHz时,只有氟系树脂印制板才能适用。显而易见,氟系树脂高频基板性能远高于其它基板,但其不足之处除成本高外是刚性差,及热膨胀系数较大。对于聚四氟乙烯(PTFE)而言,为改善性能用大量无机物(如二氧化硅SiO2)或玻璃布作增强填充材料,来提高基材刚性及降低其热膨胀性。另外因聚四氟乙烯树脂本身的分子惰性,造成不容易与铜箔结合性差,因此更需与铜箔结合面的特殊表面处理。处理方法上有聚四氟乙烯表面进行化学蚀刻或等离子体蚀刻,增加表面粗糙度或者在铜箔与聚四氟乙烯树脂之间增加一层粘合膜层提高结合力,但可能对介质性能有影响,整个氟系高频电路基

印制电路板的可靠性设计措施doc

印制电路板的可靠性设计措施 摘要:本文通过长期科研实践和产品开发,提出了印制电路板在设计与工艺中应解决的可靠性设计、电磁兼容性问题的有效方法。 关键词:印制电路板可靠性电磁兼容 1 引言 近年,由于先后参加“彩电回扫变压器自动测试系统”“黑白电视机回扫变压器自动测试仪”以及“FBT回扫变压器温控台”,“FBT回扫变压器断续台”的研制开发生产工作,体会到:即使电路原理图和试验板试验正确,印制板电路设计不当,也会对设计的电子产品的可靠性产生不利影响。 印制电路板的设计与工艺越来越显得重要,譬如:印制电路板的两条细平行线靠得近,则会形成信号波形的延迟,在传输线的终端形成反射噪声。还有印制板地线的阻抗较高,构成公共阻抗就会在器件之间形成耦合干扰,元、器件在印制板中的排列也十分重要。因此,在设计印制电路板的时候,应注意采用科学的方法进行印制板的可靠性设计和电磁兼容性设计。 2.根据器件排列选择印制 电路板的尺寸 根据电路原理图中的元器件的体积,多少及相互影响来决定印制电路板的大小尺寸的选择。印制板尺寸要适中,尺寸大时,即制线条长,阻抗增加,不仅抗噪声能力下降,成本也高,体积也大;尺寸小时,则散热不好,同时易受临近线条干扰。 器件的排列,应把相互有关的器件尽量就近排列,按电路原理图逐级排列。有两个变压器以上的电路应考虑垂直分布,对发热器件应考虑通风与散热。 3.电磁兼容性设计 印制电路板中的电磁兼容设计尤为重要。电磁兼容性是指电子设备在各种电磁环境中能够正常工作的能力。电磁兼容性设计的目的是使电子设备既能抑制各种外来的干扰,使电子设备在特定的电磁环境中能够正常工作,同时又能减少电子设备本身对其它电子设备的电磁干扰 。 3.1 选择合理的布线 印制电路板中选择合理的布线也是提高电磁兼容的好办法。为了抑制印制电路板导线之间的串扰,在设计布线时应尽量避免长距离的平行走线,尽可能拉开线与线之间的距离,信号线与地线及电源线尽可能不交叉,在一些对干扰十分敏感的信号线之间设置一根接地的印制线,可以有效地抑制串扰。 选择双面印制板也是提高电磁兼容的有效办法。具体做法是在印制板的一面横向布线,另一面纵向布线,然后在交叉孔处用金属化孔相连,装配时逐一严格检查金属化孔的上下连线是否接通。采用平行走线可以减少导线电感,但导线之间的互感和分布电容增加,如果布局允许,最好采用双面#字形网状布线结构。 3.2 抑制高频产生的电磁辐射

印刷电路板基础知识

印刷电路板(PCB)基础知识 对PC中的主板、显示卡来说,最基本的部分莫过于印刷电路板(PCB : Printed Circuit Board)了,它是各种板卡工作的基础。对具体产品而言,印刷电路板的设计与制造水平,也在很大程度上决定着产品的各项指标和最终性能。 什么是印刷电路板(PCB : Printed Circuit Board) 印刷电路板(PCB : Printed Circuit Board)几乎是任何电子产品的基础,出现在几乎每一种电子设备中,一般说来,如果在某样设备中有电子元器件,那么它们也都是被安装在大小各异的 PCB上。 除了固定各种元器件外,PCB的主要作用是提供各项元器件之间的连接电路。随着电子设备越来越复杂,需要的元器件越来越多,PCB上头的线路与元器件也越来越密集了。 电路板本身是由绝缘隔热、并无法弯曲的材质制作而成,在表面可以看到的细小线路材料是铜箔。在被加工之前,铜箔是覆盖在整个电路板上的,而在制造过程中部份被蚀刻处理掉,留下来的部份就变成网状的细小线路了。——因这个加工生产过程,多是通过印刷方式形成供蚀刻的轮廓,故尔才得到印刷电路板的命名。国。——这些线路被称作导线(conductor pattern)或称布线,并用来提供PCB上元器件的电路连接。

PCB中的导线(Conductor Pattern) PCB上元器件的安装 为了将元器件固定在PCB上面,需要它们的接脚直接焊在布线上。在最基本的PCB(单面板)上,元器件都集中在其中一面,导线则都集中在另一面。这么一来就需要在板子上打洞,以便接脚才能穿过板子到另一面,所以元器件的接脚是焊在另一面上的。因为如此,PCB的正反面分别被称为元器件面(Component Side)与焊接面(Solder Side)。 对于部分可能需要频繁拔插的元器件,比如说主板上的CPU,需要给用户可以自行调整、升级的选择,就不能直接将CPU焊在主板上了,这时候便需要用到插座(Socket):虽然插座是直接焊在电路板上,但元器件可以随意地拆装。如下方的Socket插座,即可以让元器件(这里指的是CPU)轻松插进插座,也可以拆下来。插座旁的固定杆,可以在您插进元器件后将其固

PCB印制电路板的认证

PCB(印制电路板)是一项技术难度高,生产工艺复杂,资金投入量大的高科技产品。随着电子产品的集成化和小型化趋势,对印制电路板的体积要求越来越小,随之要求的是多层技术和高密度技术,致使印制电路板的制造越来越复杂。能否制造出高质量,高复杂及高精密度的印制电路板,生产设备尤其重要。而在PCB生产设备中,激光光绘机是PCB生产的关键设备,它的精度决定了生产印制电路板的精密度。 Q/SLEC001-2001 1、范围 本规范规定了有关激光光绘机的技术 要求、实验方法、检验规则、标志、包 装及运输和贮存。 2、引用规范 下列规范包含的条文,通过本规范中引 用而构成为本规范的条文。在规范出版 时,所示版本均为有效。所有规范都会 被修订,使用本规范的各方探讨、使用 下列规范最新版本的可能性。 外观尺寸说明

GB191―1990包装储运图标标志GB2423.1―1989电工电子产品基本环 境实验规程 实验A:低温实验方法GB2423.2―1989电工电子产品基本环 境实验规程 实验B:高温实验方法GB2423.3―1992电工电子产品基本环 境实验规程 实验Ca:恒定湿热实验 方法 GB4943―1995信息技术设备(包括电气事务设备)安全 GB5080.7―1986设备可靠性实验,恒定 失败率假设下的失败 率与平均无故障时间 的验证方法。 GB6881―1986声学―噪声源声功率 级的测定混响室精密

法和工程法 HB6158―1988 可靠性实验故障分类 3、技术要求 3.1主要设计要求 本机采用He-Ne激光器作为 光源,声光调制器作扫描激 光的控制开关,由计算机发 送的图形信息经RIP处理后 进入驱动电路控制声光调制 器工作,被调制的Ⅰ级4路 衍射激光,经物镜聚焦在被 滚筒吸咐的胶片上,滚筒高 速旋转作纵向主扫描,光学 记录系统横移作副扫描,两 个扫描运动合成,实现将计 算机内部处理的图形信息以 点阵形式还原在胶片上。 3.2主要技术性能

电子工程师必须懂的高频pcb设计emiemc等设计技巧

电子工程师必须懂的高频PCB设计、EMI、EMC等设计技 巧 数字器件正朝着高速、低耗、小体积、高抗干扰性的方向发展,这一发展趋势对印刷电路板的设计提出了很多新要求。作者根据多年在硬件设计工作中的经验,总结一些高频布线的技巧,供大家参考。 (1)高频电路往往集成度较高,布线密度大,采用多层板既是布线所必须的,也是降低干扰的有效手段。 (2)高速电路器件管脚间的引线弯折越少越好。高频电路布线的引线最好采用全直线,需要转折,可用45°折线或圆弧转折,满足这一要求可以减少高频信号对外的发射和相互间的耦合。 (3)高频电路器件管脚间的引线越短越好。 (4)高频电路器件管脚间的引线层间交替越少越好。所谓“引线的层间交替越少越好”是指元件连接过程中所用的过孔(Via)越少越好,据测,一个过孔可带来约0.5 pF的分布电容,减少过孔数能显著提高速度。 (5)高频电路布线要注意信号线近距离平行走线所引入的“交叉干扰”,若无法避免平行分布,可在平行信号线的反面布置大面积“地”来大幅度减少干扰。同一层内的平行走线几乎无法避免,但是在相邻的两个层,走线的方向务必取为

相互垂直。 (6)对特别重要的信号线或局部单元实施地线包围的措施,即绘制所选对象的外轮廓线。利用此功能,可以自动地对所选定的重要信号线进行所谓的“包地”处理,当然,把此 功能用于时钟等单元局部进行包地处理对高速系统也将非 常有益。 (7)各类信号走线不能形成环路,地线也不能形成电流 环路。 (8)每个集成电路块的附近应设置一个高频去耦电容。(9)模拟地线、数字地线等接往公共地线时要用高频扼 流环节。在实际装配高频扼流环节时用的往往是中心孔穿有导线的高频铁氧体磁珠,在电路原理图上对它一般不予表达,由此形成的网络表(netlist)就不包含这类元件,布线时就 会因此而忽略它的存在。针对此现实,可在原理图中把它当做电感,在PCB元件库中单独为它定义一个元件封装,布 线前把它手工移动到靠近公共地线汇合点的合适位置上。(10)模拟电路与数字电路应分开布置,独立布线后应单点连接电源和地,避免相互干扰。 (11)DSP、片外程序存储器和数据存储器接入电源前,应加滤波电容并使其尽量靠近芯片电源引脚,以滤除电源噪声。另外,在DSP与片外程序存储器和数据存储器等关键部分 周围建议屏蔽,可减少外界干扰。

高频软性印刷电路板v1

高頻軟性印刷電路板 摘要 電路板產業中的軟性電路板已成為產業成長的主要推動力,伴隨資通訊行動化的產業與技術趨勢,軟板的發展政方興未艾。隨者應用產品功能強化及整合,高寬頻及高速的新一代軟板將被期待成為下一波市場成長的主力,可以想像在高階智慧手機及平板電腦等攜帶式電子裝置的推波助瀾下,高頻軟板的需限將逐漸浮上檯面。本文將就軟板的技術市場趨勢做導入,再從高頻的定義與需求做說明,接著帶出高頻軟板材料的種類與發展,並以高頻軟板應用的重點-阻抗匹配做詳細說明,以強化高頻軟板對材料及製程的相互依存性,最後再將影響高頻訊號傳輸的關鍵要因做陳述。軟板的高頻化已成為軟板產品與技術的必然,這一趨勢將使軟板由材料、製程及設計端都必須做不同的選擇及思考,對軟板的發展將是重要的里程碑,也是軟板產業及業者必須要面對的重要議題,希望本文可以提供大家一個深入此一議題的開端,及早對高頻軟板做佈局與準備。 前言 這些年來隨著資通訊行動化及個人化的發展越趨蓬勃,具有輕量薄型的軟性印刷電路板(軟板-FPC)市場與需求遽增,使得原本在電路板產業中屬於寡眾的軟板一夕成為當紅炸子雞,不僅在市場成長比例增加最快,也在整體產業比例由過去的個位數成長到接近20%。由應用產品的驅動來看,行動通訊的智慧手機及平板電腦已經成為現代人必備工具,恰好這二種終端應用產品使用到的軟板數量最多,一般每支(每台)都會使用超過10塊以上的軟板(圖一及圖二),在這一股成長勢力及風潮帶動下,軟板的榮景將會再持續好一段時間。 圖一軟板在終端電子產品應用的分類(來源:台新投顧2012.09)

圖二各類資通訊電子產品使用軟板的狀況(來源:台新投顧2012.09) 再由技術發展趨勢來看,隨著終端應用產品的功能整合越來越強、解析度越來要求越高、反應速度必須越來越快、儲存容量越來越大的整體需求下,軟板技術也必須做搭配。因此,軟板高頻高速化、功能化的趨勢發展越發明顯,但不論軟板技術需求如何演進,軟板薄型化是永遠不變的必要。亦即,所有的軟板新技術發展都必須考慮與薄型化一起考慮,因為應用產品的薄型永遠是王道,這也緊緊牽動軟板技術的發展動向。高頻軟板已經是軟板技術的三大趨勢之一,主要在迎合行動通訊電子產品功能的強化及整合,例如,手機整合越來越多的功能,除了一般的聲音及影像功能外,包括照相、藍芽、Wi-Fi、3G上網等,未來包括指紋辨識及各項感測原件的整合進來,使得所需的頻寬是必要增加,當然做為訊號傳輸的軟板高頻高速的需求浮現。電路訊號傳輸的高頻化,基板材料將是主要的關鍵,於是,低介電與低傳輸損失的軟性基板材料,成為這一波軟板高頻化的主要訴求。 高頻的定義與需求 在電路訊號的傳輸領域裏,一般是定義傳輸頻率大於300MHz時稱之為高頻(傳輸波長小於1m的短波)。高頻訊號傳輸需求的動力有以下幾個原因:1.原屬軍事用途的高頻通訊頻道,部分讓給民用(1990‘s),使遠距高頻通訊、導航、醫療、運輸、交通等迅速發展;2.高保密、高傳輸品質使行動通訊往高頻化發展,高劃質、高傳輸容量使衛星、微波及光纖通訊高頻化;3.計算機技術處理能力增加,訊號記憶容量增大,訊號傳送高速化需求迫切。電子產品的高速高頻化,對於傳輸電路的特性上產生很大的變化。 高頻電路的需求內涵就是傳輸訊號的速度及品質。而影響這二項的主要因素是傳輸材料的電氣特性,亦即材料的介電常數(Dielectric constant)與介電損失(Dielectric loss),我們由以下的電氣訊號傳輸公式來說明: V=K×C/(Dk)1/2Td=L×(Dk)1/2/C Transmission Loss=K×f×(Dk)1/2× tanδ 其中V:訊號傳輸速度;T d:訊號傳輸延遲;C:光速;K:常數;Dk:介電常數(Dielectric constant);tanδ:介電損失(Df,Dielectric loss),以高速傳輸來說,若要提高訊號傳速度,必須要有低的材料介電常數;同理,若要降低訊號傳輸的延遲,也一樣要藉由低介電常數的材料來達成。若以訊號傳輸的品質而言,要有優質的訊號傳輸

一文读懂高频pcb线路板制作相关知识

一文读懂高频pcb线路板制作相关知识 众所周知高频PCB线路板涉及才高频材料,对工艺的要求也比较高。今天小编来分享一下高频电路板的制作工艺和注意事项。 首先我们从构造上去了解高频PCB板的制作 高频PCB主要由焊盘、过孔、安装孔、导线、元器件、接插件、填充、电气边界等组成,各组成部分的主要功能如下: 焊盘:用于焊接元器件引脚的金属孔。 过孔:有金属过孔和非金属过孔,其中金属过孔用于连接各层之间元器件引脚。 安装孔:用于固定电路板。

导线:用于连接元器件引脚的电气网络铜膜。 接插件:用于电路板之间连接的元器件。 填充:用于地线网络的敷铜,可以有效的减小阻抗。 电气边界:用于确定电路板的尺寸,所有电路板上的元器件都不能超过该边界。 其次了解高频电路板制作原理是必须: 在高频电路设计中,电源以层的形式设计,在大多数情况下都比以总线的形式设计要好得多,这样回路总可以沿着阻抗最小的路径走。此外电源板还得为PCB上所有产生和接受的信号提供一个信号回路,这样可以最小化信号回路,从而减小噪声,这点常常为低频电路设计人员所忽视。 在高频PCB设计中,我们应该遵循下面的原则: 电源与地的统一,稳定。 仔细考虑的布线和合适的端接可以消除反射。 仔细考虑的布线和合适的端接可以减小容性和感性串扰。 需要抑制噪声来满足EMC要求。 了解了高频电路板构成和制作原理我们就不难理解高频电路板加工注意点 1、阻抗控制要求比较严格,相对线宽控制的很严格,一般公差百分之二左右。 2、由于板材特殊,所以PTH沉铜时的附着力不高,通常需要借助等离子处理设备等先对过孔及表面进行粗化处理,以增加PTH孔铜和阻焊油墨的附着力。 3、做阻焊之前不能磨板,不然附着力会很差,只能用微蚀药水等粗化。

印制电路板的种类

印制电路板的种类 实际电子产品中使用的印制扳千差万别,简单的印制板只有几个焊点或导线,一般电 子产品中焊点数为数十个到数百个,焊点数超过60D的属于复杂印制板。根据不同的标 准印制电路板有不同的分类。 1.按印制,电路的分布分类 按印制电路约分布可将印制电路板分为单面板、双面板、多层扳3种 (1)单面板 单面板是在厚度为o.2—5mm的绝缘基板上,只有一个表面敷有铜箔,通过印制和 腐蚀的方法在基板上形成印制电路。单面板制造简单,装配方便,适用于一放电路要求, 如收音机、电视机等;不适用于要求高组装密度或复杂电路的场合。 (2)双面板 双面板是在厚度为o.2—5mm的绝缘基板两面均印制电路。它适用于一般要求的 电子产品,如电子计算机、电子仪器和仪表等。由于双面板印制电路的布线密度较单面板 高,所以能减小设备的体积。 (3)多层板 在绝缘基板上印制3层以上印制电路的印制板称为多层板。它是由几层较薄的单面 板或双面板教和而成,其厚度一般为1.2—2.5m顺。为了把夹在绝缘基板中间的电路引TI代理商 出,多层板上安装元件的孔需要金属化,即在小孔内表面涂效金属层,使之与夹在绝缘基 板中间的印制电路接通。图2—2是多层板结构示意固,多层板所用的元件多为贴片式元

件,其特点是: ·与集成电路配合使用,可使整机小型化,减少整机重量; ·提高了布线密度,缩小了元器件的间距,缩短了信号的传翰路径; ·减少了元器件焊接点,降低了故陈牢, .增设了屏蔽层,电路的信号失真减少; ·引入了接地散热层,可减少局部过热现象,提高整机工作的可靠性。。 2.按基材的性质分类 按基材的性质可将印制电路板分为刚性和柔性两种。 (1)刚性印制板 刚性印制板具有一定的机械强度,用它装成的部件具有 于乎展状态。一般电子产品中使用的都是刚性印制板。 (2)柔性印制板 柔性印制板是以软层状塑料或其他软质绝缘材料为基材而制成。它所制成的部件可 以弯曲和伸缩,在使用时可根据ATMEL代理商安装要求将其弯曲。柔性印制板一般用于特殊场合,如某 些数字万用表的显示屏是可以旋转的,其内部往往采用柔性印制板;手机的显示屏、按键 等。图2—3为手机柔性印制板,它的基材采用聚酰亚胺,并且对表面进行了防氧 化处理,

印制电路板的设计与制作

印制电路板的设计与制作 本章主要介绍印制电路板的元件布局及布线原则;应用PROTEL设计印制电路板的基本步骤及设计示例;印制电路板的手工制作与专业制作的方法,并以实验室常用的VP?108K电路板制作系统为例,介绍了PCB的制作步骤与方法。章末附有印制电路板的设计与制作训练。 现代印制电路板(简称PCB,以下PCB即指印制电路板)的设计大多使用电脑专业设计软件进行,PCB的制作也是通过专业制作厂家完成的。因此,大批量的PCB生产常常是用户自己设计好印制板,将文档资料交给印制板生产厂家,由其完成PCB板的制 出的印制板文档可以广泛地被各专业印制板生产厂家所接受。因此本章首先介绍使用PROTEL进行印制板设计的一般步骤,给出一个设计示例,然后简单介绍手工制作印制板的一般方法,最后介绍适合于实验室的印制电路板制作设备VP?108K。 印制电路板的设计原则 印制电路板的设计是一项很重要的工艺环节,若设计不当,会直接影响整机的电路性能,也直接影响整机的质量水平。它是电子装配人员学习电子技术和制作电子装置的基本功之一,是实践性十分强的技术工作。 印制电路板的设计是根据电路原理图进行的,所以必须研究电路中各元件的排列,确定它们在印制电路板上的最佳位置。在确定元件

的位置时,还应考虑各元件的尺寸、质量、物理结构、放置方式、电气连接关系、散热及抗电磁干扰的能力等因素。可先草拟几种方案,经比较后确定最佳方案,并按正确比例画出设计图样。画图在早期主要靠手工完成,十分繁琐,目前大多用计算机完成,但前述的设计原则既可适用于手工画图设计,也可适用于计算机设计。 对于印制电路板来说,一般情况下,总是将元件放在一面,我们把放置元件的一面称为元件面。印制板的另一面用于布置印制导线(对于双面板,元件面也要放置导线)和进行焊接,我们把布置导线的这一面叫做印制面或焊接面。如果电路较复杂,元件面和焊接面容不下所有的导线,就要做成多面板。在元件面和焊接面的中间设置层面,用于放置导线,这样的层面我们称之为内部层或中间层。中间层如果是专门用于放置电源导线的,又称做电源层或地线层。如果是用于放置传递电路信号的导线的,叫做中间信号层。多面板的元件面、焊接面要和中间层连通,靠印制电路板上的金属化孔完成,这种金属化孔叫通孔(Via)。 1. 要将一定数量的元件按原理图中的电气连接关系安装在印制电路板上,必须事先知道各元件的安装数据,以便元件布局。一般采用下述方法确定元件的安装数据。 (1)设计者提供元件正确的安装资料。 (2)若没有提供元件安装数据,应通过元件型号查手册找出元件的安装数据。

高速高频化PCB主要特性与基板材料

【中国环氧网(中国环氧树脂行业在线)https://www.doczj.com/doc/1f10995789.html,】2009年1月22日讯:在世界上高速高频化环氧树脂印刷线路板(PCB),真正形成规模化的市场源于1999年。美国电子电路互连与封装协会(IPC)的会长Thomas J.Dummrich对世界这一发展趋势,曾作过这样的评价:“1999年是全球PCB产业发展史上最具有戏剧性的一年,无论在全球市场结构上或在技术的演变上,都面临着重要的转变。” 据中国环氧树脂行业协会()专家介绍,该会长提及的全世界环氧树脂印刷线路板(PCB)的“市场结构上或技术上”的重要转变,其一个重要的表现方面,就是高速化及高频化环氧树脂印刷线路板(PCB)市场的迅速兴起和发展。 2、发展高速化、高频化PCB已成为PCB业当前的重要工作 目前日本业在发展“差别化战略”中,把发展高速化、高频化环氧树脂印刷线路板(PCB)的制造技术,摆在相当重要的地位。台湾也是这样:不少台湾的大型环氧树脂印刷线路板(PCB)生产厂家,近几年来重点发展这类环氧树脂印刷线路板(PCB)的制造技术。例如,南亚电路板公司在高速化、高频化PCB的品种发展上作了很多的开发、研究工作。所使用的低介电常数基板材料的数量,在近几年已攀升到世界的前几名的大厂(在2000年间,低ε的基板材料使用量,成为居世界第2位的厂家)。对于高速化、高频化PCB的发展前景,南亚高层管理者报有十分乐观的态度。他们预测这种高速化、高频化PCB产品的市场需求高峰出现的契机,可能会在2003年下半年。 在发展高速化、高频化环氧树脂印刷线路板(PCB)产业中,从它的产品设计,到选择基板材料、产品制作、产品检验都处处包含着新技术、新水平。它的应用领域也提升到一个新的高档次产品方面。因此中国环氧树脂行业协会()专家认为,高速化、高频化环氧树脂印刷线路板(PCB)产业,是带有高附加值的、具有“知识经济”产业。 发展高速化、高频化环氧树脂印刷线路板(PCB)产品,将给其带来新的商机、新的广阔的应用市场。例如,电子元器件和电子产品,在信号传输速度上更加发展其高速化,就可更快地推动计算机网络化技术的进步。一些电子产品就更快推出新一代的产品。台湾一位PCB专家在此方面发展上,曾作了这样两个形象的预测:“如果等到有一天,出现用各人电脑下载一部DVD的影片只用30秒,根本不用跑到商店去花钱购买、或租赁就可以在家里迅速看到,这时候真正的对这种新一代电脑的大量需求就会到来”。再例如通过电脑、移动电话等带有影视的通讯工具,就

印制电路板标准精选(最新)

印制电路板标准精选(最新) G1360《GB/T1360-1998 印刷电路网格体系》 G4588.1《GB/T4588.1-1996 无金属化孔单双面印制板分规范》 G4588.2《GB/T4588.2-1996 有金属化孔单双面印制板分规范》 G4588.3《GB/T4588.3-2002 印制板的设计和使用》 G4677《GB/T4677-2002 印制板测试方法》 G4724《GB/T 4724-1992 印制电路用覆铜箔环氧纸层压板》 G4725《GB/T 4725-1992 印制电路用覆铜箔环氧玻璃布层压板》 G5130《GB/T5130-1997 电气用热固性树脂工业硬质层压板试验方法》 G7911《GB/T 7911-1999 热固性树脂浸渍纸高压装饰层积板(HPL)》 G10244《GB10244-1988 电视广播接收机用印制板规范》 G14515《GB/T14515-1993 有贯穿连接的单、双面挠性印制板技术条件》 G14708《GB/T 14708-1993 挠性印制电路用涂胶聚酯薄膜》 G14709《GB/T 14709-1993 挠性印制电路用涂胶聚酰亚胺薄膜》 G15157.2《GB/T15157.2-1998 基本网格 2.54mm(0.1in)的印制板用两件式连接器》 G15157.7《GB/T15157.7-2002 有质量评定的具有通用插合特性的8位固定和自由连接器详细规范》4 G15157.12《GB/T 15157.12-2011 频率低于3MHz的印制板连接器 :集成电路插座的尺寸、一般要求和试验方法详细规范》 G15157.14《GB/T 15157.14-2007 音频、视频和音像设备用低音频及视频圆形连接器详细规范》 G16261《GB/T16261-1996 印制板总规范》 G16315《GB/T16315-1996 印制电路用限定燃烧性的覆铜箔玻璃布层压板》 G16317《GB/T16317-1996 多层印制电路用限定燃烧性的薄覆铜箔玻璃布层压板》G17562.1《GB/T17562.1-1998 频率低于3MHz的矩形连接器:有质量评定要求的连接器》 G17562.8《GB/T17562.8-2002 具有4个信号接触件和电缆屏蔽用接地接触件的连接器详细规范》 G18334《GB/T18334-2001 有贯穿连接的挠性多层印制板规范》 G18335《GB/T18335-2001 有贯穿连接的刚性多层印制板规范》 G18373《GB/T 18373-2013 印制板用E玻璃纤维布》 G19247.1《GB/T19247.1-2003 印制板组装:通用规范采用表面安装和相关组装技术的电子和电气焊接组装的要求》 G19247.2《GB/T19247.2-2003 印制板组装:分规范表面安装焊接组装的要求》 G19247.3《GB/T19247.3-2003 印制板组装:通孔安装焊接组装的要求》 G19247.4《GB/T19247.4-2003 印制板组装:引出断焊接组装的要求》 G29846《GB/T 29846-2013 印制板用光成像耐电镀抗蚀剂》 G29847《GB/T 29847-2013 印制板用铜箔试验方法》 G31988《GB/T 31988-2015 印制电路用铝基覆铜箔层压板》 GJZ163《GJB/Z 163-2012 Z 印制电路组件装焊技术指南》 GJ362B《GJB362B-2009 Z 刚性印制板通用规范》 GJ1438Z《GJB1438A-2006 Z 印制电路连接器及其附件通用规范》

印制电路板的可靠性设计样本

印制电路板可靠性设计 一、印制电路板可靠性设计 当前电子器材用于各类电子设备和系统依然以印制电路板为重要装配方式。实践证明,虽然电路原理图设计对的,印制电路板设计不当,也会对电子设备可靠性产生不利影响。例如,如果印制板两条细平行线靠得很近,则会形成信号波形延迟,在传播线终端形成反射噪声。因而,在设计印制电路板时候,应注意采用对的办法。 一、地线设计 在电子设备中,接地是控制干扰重要办法。如能将接地和屏蔽对的结合起来使用,可解决大某些干扰问题。电子设备中地线构造大体有系统地、机壳地(屏蔽地)、数字地(逻辑地)和模仿地等。在地线设计中应注意如下几点: 1.对的选取单点接地与多点接地 在低频电路中,信号工作频率不大于1MHz,它布线和器件间电感影响较小,而接地电路形成环流对干扰影响较大,因而应采用一点接地。当信号工作频率不不大于10MHz时,地线阻抗变得很大,此时应尽量减少地线阻抗,应采用就近多点接地。当工作频率在1~10MHz时,如果采用一点接地,其地线长度不应超过波长1/20,否则应采用多点接地法。 2.将数字电路与模仿电路分开 电路板上既有高速逻辑电路,又有线性电路,应使它们尽量分开,而两者地线不要相混,分别与电源端地线相连。要尽量加大线性电路接地面积。 3.尽量加粗接地线 若接地线很细,接地电位则随电流变化而变化,致使电子设备定期信号电平不稳,抗噪声性能变坏。因而应将接地线尽量加粗,使它能通过三位于印制电路板容许电流。如有也许,接地线宽度应不不大于3mm。 4.将接地线构成闭环路 设计只由数字电路构成印制电路板地线系统时,将接地线做成闭环路可以明显提高抗噪声能力。其因素在于:印制电路板上有诸多集成电路元件,特别遇有耗电多元件时,因受接地线粗细限制,会在地结上产生较大电位差,引起抗噪声能力下降,若将接地构导致环路,则会缩小电位差值,提高电子设备抗噪声能力。 印制电路板可靠性设计 二、电磁兼容性设计 电磁兼容性是指电子设备在各种电磁环境中仍可以协调、有效地进行工作能力。电磁兼容性设计目是使电子设备既能抑制各种外来干扰,使电子设备在特定电磁环境中可以正常工作,同步又能减少电子设备自身对其他电子设备电磁干扰。 1.选取合理导线宽度 由于瞬变电流在印制线条上所产生冲击干扰重要是由印制导线电感成分导致,因而应尽量减小印制导线电感量。印制导线电感量与其长度成正比,与其宽度成反比,因而短而精导线对抑制干扰是有利。时钟引线、行驱动器或总线驱动器信号线经常载有大瞬变电流,印制导线要尽量地短。对于分立元件电路,印制导线宽度在1.5mm左右时,即可完全满足规定;对于集成电路,印制导线宽度可在0.2~1.0mm之间选取。 2.采用对的布线方略

8个方面告诉你如何设计高频电路板

8个方面告诉你如何设计高频电路板 在高频高速电路方面,高介质高频基材制作出的高频电路板是非常必要的,要实现好的性能设计高频电路板有其需要注意的细节,今天小编就阐述一下关于高频电路板设计的八个细节方面。 1.要采用介电常数值按层数严格受控的高性能介质电路板。这种方法有利于对绝缘材料与邻近布线之间的电磁场进行有效仿真计算。 2.传输线拐角要采用45°角,以降低回损。 3.突出管脚引线存在抽头电感和寄生效应,要避免使用有引线的元件。高频环境下,最好使用表面安装SMD元件。 4.要规定有关高精度蚀刻的PCB设计规范。要考虑规定线宽总误差为+/-0.0007英寸、对布线形状的下切(undercut)和横断面进行管理并指定布线侧壁电镀条件。对布线(导线)几何形状和涂层表面进行总体管理,对解决与微波频率相关的趋肤效应问题及实现这些规范相当重要。 5.对信号过孔而言,要避免在敏感板上使用过孔加工(pth)工艺,因为该工艺会导致过孔处产生引线电感。如一个20层板上的一个通孔用于连接1至3层时,引线电感存在4到19层,要采用埋盲孔或背钻。 6.要选择非电解镀镍或浸镀金工艺,不要采用HASL法进行电镀。这种电镀表面能为高频电流提供更好的趋肤效应。此外,这种高可焊涂层所需引线较少,有助于减

少环境污染.要提供丰富的接地层。要采用模压孔将这些接地层连接起来防止3维电磁场对电路板的影响。 7.要提供丰富的接地层。要采用模压孔将这些接地层连接起来防止3维电磁场对电路板的影响。 8.阻焊层可防止焊锡膏的流动。但是,由于厚度不确定性和介电常数性能的未知性,整个板表面都覆盖阻焊材料将会导致微带设计中的电路性能变化。一般采用焊坝(solderdam)来作阻焊层。 金瑞欣特种电路是专业的PCB打样厂家,专业提供高频电路板、高多层电路板,厚铜电路板等研发生产厂家,更多高频微波电路板的详情可以咨询金瑞欣特种电路官网。

印制电路板的设计方法和步骤

印制电路板的设计方法和步骤 1.印制扳材料的选择 印制板的材料选择必须首先考虑到电气和机械特性,当然还要考虑到购买的相对价 格和制造的相对成本,从而选择印制板的基材。电气特性是指基材的绝缘电阻、抗电弧 性、印制导线电阻、击穿强度、介电常数及电容等。机械特性是指基材的吸水性、热膨胀系 数、耐热性、抗统曲强度、抗冲击强度、抗剪强度和硬度。 目前,我国所采用的印制板材料性能如下。 (1)敷铜箔酚醛纸基层压板:机械强度低,易吸水及耐高温性能较差,表面绝缘电阻较低,但价格便宜。一般适用于民用电子产品。 (2)敷铜箔环氧酚醛玻璃布钽电容封装层压板:电气及机械性能好,既耐化学溶剂,又耐高温、耐 潮湿,表面绝缘电阻高,但价格较贵。一般适用于仪器、仪表及军用电子产品振动。 以上两种印制板均可制成单面的、双面的或多层的;可以是阻燃的或是可燃的。可根 据电路的要求选用。 2.印制摄厚度的确定 从结构的角度确定印制板的厚度,主要是考虑印制板对其上装有的所有元器件重量 的承受能力及使用中承受的机械负荷能力。如果只装配集成电路、小功率晶体管、电阻和 电容等小功率元器件,在没有较强的负荷条件下,可使用厚度为1.5航m(或 1.6mm),尺 寸在500 mm×500 mm之内的印制板。如果板面较大或无法支撑时,应选择2—2.5mm 厚的印制板。印制板板厚已标堆化,其尺寸为1.o mm、1.5mm、2.o mm和2.5mm几种,常用的

是1.5mm和2.0mm。 对于尺寸很小的印制板(如计算机、电子表和便携式仪表中用的印制板) 量、降低成本,可选用更薄一些的印制板来制造。 3.印制板形状和尺寸的确定 印制板的结构尺寸与印制板的制造、装配有密切关系。应从装联工艺角度考虑两 个方面的问题广方面是便于自动化组装,使设备的性能得到充分利用,能使用通用化、 标准他的工具和夹具;另一方面是便于将印制板组装成不同规格的产品,安装方便, 固 定可靠。 印制板的外形应尽量简单,一般为长方形,尽量避免采用异形板。 标准系列的尺寸,以便简化工艺,降低加工成本。 4.印制电路板坐标尺寸图贴片钽电容的设计 用印有坐标格(格子面积为1mm2)的图纸绘制电路板坐标尺寸团,借助于坐标格正 确地表达印制板上印制图形的坐标位置。在设计和绘制坐标尺寸图时,应根据电路团 并 考虑元器件布局和布线要求,如哪些元器件在板内,有哪些要加固,要散热,要屏蔽;哪些 元器件在板外,需要多少板外连线,引出端的位置如何等,必要时还应画出板外元器 件接 线图。 (1)典型元器件的尺寸 典型元器件是全部安装元器件中在几何尺寸上具有代表性的元件,它是布置元器件 时的基本单元。先估计典型元器件的尺寸,再估计一下其他大元件尺寸相当于典型元 件 的倍数(即一个大元件在几何尺寸上相当于几个典型元件),这样就可以算出整个印制 板

软性印刷电路板简介(doc 33页)

软性印刷电路板简介(doc 33页)

软性印刷电路板简介 1. 软板(FLEXIBLE PRINTED CIRCUIT)简介 以俱挠性之基材制成之印刷电路板具有体积小重量轻可做3D 立体组装及动态挠曲等优。 2. 基本材料 2.1. 铜箔基材COPPER CLAD LAMINATE 由铜箔+胶+基材组合而成亦有无胶基材亦即仅铜箔+基材其价格较高在目前应用上较少除非特殊需求。 2.1.1. 铜箔Copper Foil 在材料上区分为压延铜(ROLLED ANNEAL Copper Foil)及电解铜 (ELECTRO DEPOSITED Copper Foil)两种在特性上来说压延铜之机械特性较佳有挠折性要求时大部分均选用压延铜厚度上则区分为1/2oz (0.7mil) 1oz 2oz 等三种一般均使用1oz。2.1.2. 基材Substrate 在材料上区分为PI (Polymide ) Film 及 PET (Polyester) Pilm 两种PI 之价格较高但其耐燃性较佳PET 价格较低但不耐热因此若有焊接需求时大部分均选用PI 材质厚度上则区分为1mil 2mil 两种。 2.1.3. 胶Adhesive 胶一般有Acrylic 胶及Expoxy 胶两种最常使用Expoxy 胶厚度上由0.4~1mil 均有一般使用1mil 胶厚

铜箔基材钻孔程序 B40 NNN RR 400(300) 铜箔基材品料号末三码版别程序格式(4000/3000) 覆盖膜钻孔程序 B45 NNN RR 40T(30B) 覆盖膜品料号末三码版别 40/30 程序格式 T 上CVL B 下CVL 加强片钻孔程序 B46 NNN RR 4#A 加强片品料号末三码版别 4 程序格式 # 离型纸方向 0-无, 1-上, 2-下, 3-双面 A 加强片A 背胶钻孔程序

印刷电路板设计指南

环测威官网:https://www.doczj.com/doc/1f10995789.html,/印刷电路板,也称为PCB,构成了当今每个电子产品的核心。这些小型绿色组件对于日常家用电器和工业机器都是必不可少的。PCB设计和布局是任何产品功能的重要组成部分- 这决定了设备的成功或失败。随着技术的不断发展,这些设计不断发展。今天,由于电气工程师的创新,这些设计的复杂性和期望达到了新的高度。 PCB设计系统和技术的最新进展已在整个行业中产生了广泛的影响。因此,PCB设计规则和生产流程已经发展,以实现新的布局和功能。如今,较小的轨道和多层板在大规模生产的PCB中很常见- 这种设计在几年前是闻所未闻的。PCB设计软件也有助于这一进展。这些程序提供了一些工具,电子工程师可以从头开始设计更好的PCB。 即使具有这些改进的功能,PCB板布局也难以设计。即使是最有经验的电子工程师也可能难以在PCB上创建电路或如何根据业界的最佳实践设计PCB板。更难的是创建一个满足客户需求的优质板。通过客户设计,平衡PCB功能与最佳设计实践是一个相关的过程。这就是为什么我们概述了设计PCB的过程,包括一些基本的PCB设计规则。 确定需要 第一个主要的PCB设计步骤是需要的。对于大多数电子工程师而言,这些要求由客户决定,客户将列出PCB必须满足的所有要求。然后,电子工程师必须将客户列出的需求转换为电子形式。从本质上讲,这意味着将它们转换为电子逻辑语言,这是工程师在设计PCB时将使用的语言。

环测威官网:https://www.doczj.com/doc/1f10995789.html,/ 项目的需求决定了PCB设计的几个方面。这包括从材料到PCB本身最终外观的所有内容。PCB的应用,例如医疗或汽车,通常将决定PCB中的材料。例如,许多用于电子植入物的医用PCB由柔性基底制成。这使它们可以适应狭小的空间,同时还能承受内部有机环境。PCB的最终外观主要取决于其电路和功能- 例如,许多更复杂的PCB由多层制成。 电子工程师将确定并列出这些需求,然后使用此要求列表来设计PCB的初始原理图以及BOM。 原理图 原理图设计基本上是蓝图制造商和其他工程师在开发和生产过程中使用的。原理图确定了PCB的功能,设计的特性和元件的位置。PCB的硬件也在此原理图中列出。该设备包括PCB 的材料,设计中涉及的组件以及制造商在生产过程中需要的任何其他材料。 所有这些信息都包含在初始设计阶段的原理图中。完成第一个原理图后,设计人员进行初步分析,检查潜在问题并根据需要进行编辑。然后将原理图上传到用于PCB设计软件的特殊工具,该软件可以运行模拟以确保功能。这些模拟使工程师能够捕获在初始原理图检查期间可能遗漏的任何设计错误。之后,电路的电子设计可以转换成“网表”,其列出了有关组件互连的信息。 在考虑其原理图的设计时,电子工程师应该从一开始就牢记几个关键的电路板设计基础。在原理图开发阶段实现的一些注意事项包括:

FPC软性电路板术语速查

FPC软性电路板术语速查 蚀刻相关术语 侧蚀: 发生在抗蚀层图形下面导线侧壁的蚀刻称为侧蚀。侧蚀的程度是以侧向蚀刻的宽度来表示。侧蚀与蚀刻液种类,组成和所使用的蚀刻工艺及设备有关。 蚀刻系数: 导线厚度(不包括镀层厚度)与侧蚀量的比值称为蚀刻系数。 蚀刻系数=V/X 用蚀刻系数的高低来衡量侧蚀量的大小。蚀刻系数越高,侧蚀量越少。在印制板的蚀刻操作中,希望有较高的蚀刻系数,尤其是高密度的精细导线的印制板更是如此。 镀层增宽: 在图形电镀时,由于电镀金属层的厚度超过电镀抗蚀层的厚度,而使导线宽度增加,称为镀层增宽。镀层增宽与电镀抗蚀层的厚度和电镀层的总厚度有直接关系。实际生产时,应尽量避免产生镀层增宽。 镀层突沿: 金属抗蚀镀层增宽与侧蚀量的总和叫镀层突沿。如果没有镀层增宽,镀层突沿就等于侧蚀量。 蚀刻速率: 蚀刻液在单位时间内溶解金属的深度(常以μm/min表示)或溶解一定厚度的金属所需的时间(min)。 溶铜量: 在一定的允许蚀刻速率下,蚀刻液溶解铜的量。常以每升蚀刻液中溶解多少克铜(g/l)来表示。对特定的蚀刻液,其溶铜能力是一定的。 PCB设计基本概念 1、“层(Layer) ”的概念 与字处理或其它许多软件中为实现图、文、色彩等的嵌套与合成而引入的“层”的概念有所同,Protel 的“层”不是虚拟的,而是印刷板材料本身实实在在的各铜箔层。现今,由于电子线路的元件密集安装。防干扰和布线等特殊要求,一些较新的电子产品中所用的印刷板不仅有上下两面供走线,在板的中间还设有能被特殊加工的夹层铜箔,例如,现在的计算机主板所用的印板材料多在4层以上。这些层因加工相对较难而大多用于设置走线较为简单的电源布线层(如软件中的Ground Dever和Power Dever),并常用大面积填充的办法来布线(如软件中的ExternaI P1a11e和Fill)。上下位置的表面层与中间各层需要连通的地方用软件中提到的所谓“过孔(Via)”来沟通。有了以上解释,就不难理解“多层焊盘”和“布线层设置”的有关概念了。举个简单的例子,不少人布线完成,到打印出来时方才发现很多连线的终端都没有焊盘,其实这是自己添加器件库时忽略了“层”的概念,没把自己绘制封装的焊盘特性定义为”多层(Mulii一Layer)的缘故。要提醒的是,一旦选定了所用印板的层数,务必关闭那些未被使用的层,免得惹事生非走弯路。 2、过孔(Via)

相关主题
文本预览
相关文档 最新文档