当前位置:文档之家› 波节换热管

波节换热管

波节换热管
波节换热管

不锈钢波节换热管

不锈钢波节换热管

不锈钢波节换热管是取代列管的一种新型高效换热管。用它制作的波节管换热器具有以下优点。

传热系数高

传热系数是换热设备的一个重要技术指标,强化换热表面的对流传热是提高传热系数的有效措施。波节管换热器的强化传热是通过其独特的超薄壁波节管来实现的,波节管是一种由大小圆弧连续相切,内外形如波纹状的薄壁管子,其波峰与波谷间的高差使流体受到了强烈的扰动,这种扰动来自管内外流体的三维运动,因此其扰动的程度更为强烈和彻底,即使流体流速很低,也能使其成为湍流状态,同时管壁薄温度梯度小,大大降低管壁热阻,提高了管内外换热系数,从而使总的传热系数提高。一般对水—水传热而言可达 1500-3500Kcal /㎡.h.℃,汽—水可达2500-5000 Kcal /㎡.h.℃,其换热效率是一般列管换热器的三倍。

耐高温、能承受较大温差、压差

波节管虽壁很薄 (0.5-0.8mm),由于它采用了特殊的自由成型工艺及独特的圆弧外形,使其承压能力大大提高,实验室测得波节管单向破坏压力一般为20Mpa左右,实际使用时压力控制在6.4Mpa以下还是很安全的。同时波节管换热器采用不锈钢材料能适应较高工作温度,最高可达450℃,且波纹管是一种柔性元件,具有一定的热补偿能力,对较大工作温差工况,适应性好,设备热应力小,较普通列管有着明显优势。

防垢、除垢功能强

换热器结垢、腐蚀、堵塞一直是个较难解决的问题,特别是在水质条件差、水处理效果不佳,气体介质中含杂质或化学反应易生成结垢物的情况下,这一问题尤为突出。轻者换热器功能下降、工况恶化、阻力增大、能耗增加,重者换热器堵死无法运行,因此换热器维护、清洗或更新的工作量增大。

波节管换热器的不锈钢波节管,由于采用的是不锈钢优质材料,本身抗腐蚀,更主要的是波节管特殊的内外波形,湍流介质不断冲刷换热管的内外表面,污垢很难在表面存积,即使结垢,由于波节管是一种柔性元件,在工作过程中受到温差的作用后,波节管各部分的曲率不断地变化,尽管这种曲率变化带来的变形不是很大,但污垢和金属波节管的线膨胀系数相差很大,因此污垢与波节管表面之间将产生一个较大的拉脱力,足以使垢脱落实现自动清理、自动除垢,特别这一点是列管及其它换热器所无法相比的。

应力分布均匀、防腐蚀能力强

由于波节管采用独特成形工艺,即“自由成形”或“软成形”。该工艺特点是:在成形过程中,变形不是由于金属在模具中的强制流动形成的,而是一种自由流动的过程或称之为“软成形”过程,这种成形过程由于没有强制变形,不会造成应力集中,残余应力小、应力分布均匀,没有晶间缺欠,因此具有很强的耐应力腐蚀能力。

使用寿命长,价格合理

由于波节管采用了超薄壁不锈钢材料,一方面提高了产品的使用寿命,同时也大大地降低了产品的重量,节约了材料,还由于运行维护费用的降低,占地面积的减少,使产品的性能价格比大幅度提高,经济效益明显。

(完整版)气气热管换热器计算书

热管换热器设计计算 1 确定换热器工作参数 1.1 确定烟气进出口温度t 1,t 2,烟气流量V ,空气出口温度t 2c ,饱和蒸汽压力 p c .对于热管式换热器,t 1范围一般在250C ~600C 之间,对于普通水-碳钢热管的工作温度应控制在300C 以下.t 2的选定要避免烟气结露形成 灰堵及低温腐蚀,一般不低于180C .空气入口温度t 1c .所选取的各参数值 如下: 2 确定换热器结构参数 2.1 确定所选用的热管类型 烟气定性温度: t f = t 1+t 22 = 420°C+200°C 2 =310°C 在工程上计算时,热管的工作温度一般由烟气温度与4倍冷却介质温度的和的平均值所得出: 烟气入口处: t i =t 1+t 2 c ×45 =420°C+152°C×4 5 =180°C 烟气出口处:t o = t 2+t 1 c ×45 = 200°C+20°C×4 5 =56°C 选取钢-水重力热管,其工作介质为水,工作温度为30C ~250C o o ,满足要求,其相容壳体材料:铜、碳钢(内壁经化学处理)。

2.2 确定热管尺寸 对于管径的选择,由音速极限确定所需的管径 d v =1.64√ Q c r(ρv p v )12 根据参考文献《热管技能技术》,音速限功率参考范围,取C Q 4kW ,在t o =56°C 启动时 ρv =0.1113kg/m 3 p v =0.165×105pa r =2367.4kJ/kg 因此 d v =1.64√ Q c r(ρv p v )1 2 =10.3mm 由携带极限确定所要求的管径 d v =√ 1.78×Q ent π? r(ρL ?14 ?+ρv ?1 4?)?2[gδ(ρL ? ρv ]14 ? 根据参考文献《热管技能技术》,携带限功率参考范围,取4Q ent kw 管内工作温度 t i =180℃时 ρL =886.9kg/m 3 ρv =5.160kg/m 3 r =2013kJ/kg 4431.010/N m 因此 d v =√ 1.78×4 π×2013×(886.9?14?+5.16?14?)?2[g×431.0×10?4(886.9?5.160)]1 4 ? =13.6mm 考虑到安全因素,最后选定热管的内径为 m m 22d i 管壳厚度计算由式 ] [200d P S i V 式中,V P 按水钢热管的许用压力228.5/kg mm 选取,由对应的许用230C 来选取管壳最大应力2MAX 14kg/mm ,而 2MAX 1 [] 3.5/4 kg mm

纯凝结段盘管式换热器热力水力计算

纯凝结段换热器热力水力计算 (盘管式) 一.原始数据 给水压力w P (MPa ) 给水流量G (s kg /) 给水进口焓1h (kg kJ /)或给水进口温度1t (℃) 给水出口焓2h (kg kJ /)或给水出口温度2t (℃) 蒸汽压力s P (MPa )或蒸汽饱和温度s T (℃) 蒸汽进口焓1H (kg kJ /) 蒸汽温度1T (℃) 疏水出口焓2H (kg kJ /) 二.选用数据 1.管子直径i o d d /(m m /) 螺旋管式高加常取略大的管径,约φ18~32mm ,壁厚2.5~5mm 左右。腰圆管的壁厚最薄至2.5mm ,实践表明2mm 壁厚者寿命不长。 螺旋形以及腰圆形等的管子,当壁厚在2.5~3mm 以上时,可以拼焊,但须注意拼接质量。 2.管内水速w (s m /) N d G w i 2 4 πυ = 在额定满负荷运行工况下,流经管内的给水流速按平均温度不超过下列数值,平均温度可按进口和出口温度的算术平均值或按热力计算的数据取用: 不锈钢、蒙乃尔合金(monel )、因科镍(inconel )管子为3s m / 铜镍合金(70-30,80-20,90-10)管子为2.7s m / 碳钢管子为2.4s m / 在平均温度下的额定满负荷工况下的碳钢管和铜管的合适给水速度推荐 为1.85s m /,或在1.85~2s m /之间,不得已时可略超过2s m /,但不应超过2s m /;螺旋管式高压加热器的碳钢螺旋管内给水速度推荐为2s m / 三.计算 1.传热量Q (W )

()31210?-=h h G Q 2.核算蒸汽量D (s kg /) ()98 .0103 21??-= H H Q D 3.对数平均温差m t ?(℃) 2 11 2t T t T In t t t s s m ---= ? 4.给水平均温度f t (℃) m s f t T t ?-= 5.汽侧壁温w t (℃) m s w t T t ?-=4.0 6.汽液膜平均温度M t (℃) ()w s M t T t +=2 1 7.系数B ,查表 8.汽化潜热r (kg kJ /) 根据s P 查汽水性质表 9.换热管数量N (根) w d G N i 24 υ =

波节换热管

不锈钢波节换热管 不锈钢波节换热管 不锈钢波节换热管是取代列管的一种新型高效换热管。用它制作的波节管换热器具有以下优点。 传热系数高 传热系数是换热设备的一个重要技术指标,强化换热表面的对流传热是提高传热系数的有效措施。波节管换热器的强化传热是通过其独特的超薄壁波节管来实现的,波节管是一种由大小圆弧连续相切,内外形如波纹状的薄壁管子,其波峰与波谷间的高差使流体受到了强烈的扰动,这种扰动来自管内外流体的三维运动,因此其扰动的程度更为强烈和彻底,即使流体流速很低,也能使其成为湍流状态,同时管壁薄温度梯度小,大大降低管壁热阻,提高了管内外换热系数,从而使总的传热系数提高。一般对水—水传热而言可达 1500-3500Kcal /㎡.h.℃,汽—水可达2500-5000 Kcal /㎡.h.℃,其换热效率是一般列管换热器的三倍。 耐高温、能承受较大温差、压差 波节管虽壁很薄 (0.5-0.8mm),由于它采用了特殊的自由成型工艺及独特的圆弧外形,使其承压能力大大提高,实验室测得波节管单向破坏压力一般为20Mpa左右,实际使用时压力控制在6.4Mpa以下还是很安全的。同时波节管换热器采用不锈钢材料能适应较高工作温度,最高可达450℃,且波纹管是一种柔性元件,具有一定的热补偿能力,对较大工作温差工况,适应性好,设备热应力小,较普通列管有着明显优势。 防垢、除垢功能强 换热器结垢、腐蚀、堵塞一直是个较难解决的问题,特别是在水质条件差、水处理效果不佳,气体介质中含杂质或化学反应易生成结垢物的情况下,这一问题尤为突出。轻者换热器功能下降、工况恶化、阻力增大、能耗增加,重者换热器堵死无法运行,因此换热器维护、清洗或更新的工作量增大。 波节管换热器的不锈钢波节管,由于采用的是不锈钢优质材料,本身抗腐蚀,更主要的是波节管特殊的内外波形,湍流介质不断冲刷换热管的内外表面,污垢很难在表面存积,即使结垢,由于波节管是一种柔性元件,在工作过程中受到温差的作用后,波节管各部分的曲率不断地变化,尽管这种曲率变化带来的变形不是很大,但污垢和金属波节管的线膨胀系数相差很大,因此污垢与波节管表面之间将产生一个较大的拉脱力,足以使垢脱落实现自动清理、自动除垢,特别这一点是列管及其它换热器所无法相比的。 应力分布均匀、防腐蚀能力强

双管板与单管板换热器的区别

双管板与单管板换热器的区别 从结构、用途、制造等方面比较了双管板换热器和单管板换热器。同单管板换热器相比,双管板换热器管程壳程间泄漏概率低得多;受力状况更好。从结构看,双管板换热器采用固定管板式结构,管束不能抽出清洗。实际使用表明,采用机械胀管法制造的双管板换热器,可以满足使用要求。 1.双管板换热器 北京燕山石化公司0.66 Mt/a乙烯改扩建工程中,制苯装置改造新上了三台双管板换热器,即汽提塔再沸器(E-607,F=213 m2)、抽提蒸馏塔再沸器(E-634,F=350 m2)和余热溶剂冷却器(E-111,F=150 m2),它们的管程走Ⅳ.甲酰吗啉溶剂,壳程走蒸汽或水,该溶剂具有遇水发生分解的特性。这三台换热器,经过一年多使用,效果很好,溶剂损耗同装置改造前相比下降很多。 2.双管板与单管板换热器结构比较

双管板换热器采用固定管板结构,管束不能抽出清洗,单管板换热器可采用多种结构型式,管束可以抽出清洗。对于温差较大的双管板换热器,简体上可加装波纹膨胀节;而单管板换热器除可考虑简体上加装波纹膨胀节外,常采用浮头或U型管型式来补偿。 对于双管板换热器,存在二种设计理念的认识:一种认为双管板换热器用于绝对防止管壳程间介质混串的场合,设计在内外管板之间空腔上加装排液倒淋阀,供日常观察和内管板发生泄漏时排放,使得管壳程介质切实被内外二层管板隔离。这是采用双管板结构型式的主要目的。 另一种认为双管板换热器可用于管壳程间介质压差很大的场合,设计在内外管板之间的空腔中加入一种介质,来减小管壳程间介质的压差。这和一般单管板换热器一样,不能绝对保证外管板上管口不发生泄漏。 3.双管板与单管板换器使用上的比较 单管板换热器最常见。在使用中除经常出现垫片螺栓法兰接头密封泄漏外,还会出现管板上的管口泄漏,以及焊接裂纹等。单管板换热器管板上的管口泄漏大部分出现在焊接收弧处。焊接收弧时气体未放干净,有砂眼。

盘管换热器相关计算

共享知识分享快乐 一、铜盘管换热器相关计算 条件:600kg水6小时升温30℃?单位时间内换热器的放热量为q q=GCΔT=600*4.2*10^3*30/(6*3600)= 3500 w 盘管内流速1m/s,管内径为0.007m,0.01m, 盘管内水换热情况: Re=10^4~1.2*10^5 湍流范围:物性参数: 40℃饱和水参数。 黏度—653.3*10^-6 运动黏度—0.659 *10^-6 普朗特数—4.31 导热系数—63.5*10^2 w/(m. ) ℃ 求解过程: 盘管内平均水温40℃为定性温度时 换热铜管的外径,分别取d1=0.014m d2=0.02m 努谢尔特准则为 0.80.40.80.4Pr023Re*0.2Nu?1.=143.4 (d1)=1.2*0.023*21244.31 4.31fff0.40.80.40.8Pr023Re*0.?Nu1.2 d2)=1.2*0.023*30349.014.31(=190.7 fff 管内对流换热系数为??Nu ff?h)d1 (=143.4*0.635/0.014=6503.39 i l??Nu ff h?)(d2 =190.7*0.635/0.02=6055.63 i l管外对流换热系数 格拉晓夫数准则为(Δt=10) 3232??/?tdGr?g)(=9.8*3.86*10^-4*10*.016=356781.6 /(0.659*10^-6)d13232??/Gr?g?td) (=9.8*3.86*10^-4*10*.022/(0.659*10^-6)d2=927492.9 其中g=9.8 N/kg ?为水的膨胀系数为386*10^-6 1/K 页眉内容. 共享知识分享快乐 自然对流换热均为层流换热(层流范围:Gr=10^4~5.76*10^8) 0.253???t?lg??w0.25Pr??Nu0.525d1)=18.48755 (=0.525(356781.6*4.31)?? w2???0.253???t?lg??w0.25Nu525Pr??0.)(d2=23.47504 =0.525(927492.9*4.31) ??w2???其中Pr普朗特数为4.31 对流换热系数为 ?Nu m??)(d1 =18.48755*0.635/0.014=838.5422 d?Nu m??)

浅谈换热器管板与换热管胀焊并用连接的制造工艺

浅谈换热器管板与换热管胀焊并用连接的制造工艺 GB151-1999标准中规定,强度胀接适用于设计压力≤4MPa、设计温度≤300℃、无剧烈振动、无过大温度变化及无应力腐蚀的场合;强度焊接适用于振动较小和无间隙腐蚀的场合;胀、焊并用适用于密封性能较高、承受振动或疲劳载荷、有间隙腐蚀、采用复合管板的场合。由此可见,单纯胀接或强度焊接的连接方式使用条件是有限制的。胀、焊并用结构由于能有效地阻尼管束振动对焊口的损伤,避免间隙腐蚀,并且有比单纯胀接或强度焊具有更高的强度和密封性,因而得到广泛采用。目前对常规的换热管通常采用“贴胀+强度焊”的模式;而重要的或使用条件苛刻的换热器则要求采用“强度胀+密封焊”的模式。胀、焊并用结构按胀接与焊接在工序中的先后次序可分为先胀后焊和先焊后胀两种。 1 先胀后焊 管子与管板胀接后,在管端应留有15mm长的未胀管腔,以避免胀接应力与焊接应力的迭加,减少焊接应力对胀接的影响,15mm的未胀管段与管板孔之间存在一个间隙。在焊接时,由于高温熔化金属的影响,间隙内气体被加热而急剧膨胀。据国外资料介绍,间隙腔内压力在焊接收口时可达到200~300MPa的超高压状态。间隙腔的高温高压气体在外泄时对强度胀的密封性能造成致命的损伤,且焊缝收口处亦将留下肉眼难以觉察的针孔。目前通常采用的机械胀接,由于对焊接裂纹、气孔等敏感性很强的润滑油渗透进入了这些间隙,焊接时产生缺陷的现象就更加严重。这些渗透进入间隙的油污很难清除干净,所以采用先胀后焊工艺,不宜采用机械胀的方式。由于贴胀是不耐压的,但可以消除管子与管板管孔的间隙,所以能有效的阻尼管束振动到管口的焊接部位。但是采用常规手工或机械控制的机械胀接无法达到均匀的贴胀要求,而采用由电脑控制胀接压力的液袋式胀管机胀接时可方便、均匀地实现贴胀要求。采用液袋式胀管机胀接时,为了使胀接结果达到理想效果,胀接前管子与管板孔的尺寸配合在设计制造上必须符合较为严格的要求。只有这样对于常规设计的“贴胀+强度焊”可采用先胀后焊的方式,而对特殊设计的“强度胀+强度焊”则可采用先贴胀,再强度焊,最后强度胀的方法。 2 先焊后胀 在制造过程中,一台换热器中有相当数量的换热管,其外径与管板管孔孔径之间存在着较大的间隙,且每根换热管其外径与管板管孔间隙沿轴向是不均匀的。当焊接完成后胀接时,管子中心线必须与管板管孔中心线相重合。当间隙很小时,上端15mm的未胀管段将可以减轻胀接变形对焊接的影响。当间隙较大时,由于管子的刚性较大,过大的胀接变形将越过15mm未胀区的缓冲而对焊接接头产生损伤,甚至造成焊口脱焊。所以对于先焊后胀工艺,控制管子与管板孔的精度及其配合为首要的问题。当管子与管板腔的间隙小到一定值后,胀接过程将不至于损伤到焊接接头的质量。有关资料显示,管口的焊接接头承受轴向力的能力是相当大的,即使是密封焊,焊接接头在做静态拉脱试验时,管子拉断了,焊口将不会拉脱。然而焊口承受切向剪力的能力相对较差,所以强度焊后,由于控制达不到要求,可能造成过胀失效或胀接对焊接接头的损伤。 3 合理的制造工艺 3.1 管子与管孔的公差控制 (1)换热管 在采购换热管时要求每台换热器所使用的换热管在冷拔加工时应采用同一坯料(炉批次)的原料,并在同一台经校验试验合格的拉管机上生产,这样才能保证每根换热管具有相同的材质、规格与精度。换热管外径的均匀一致能保证管子与管板管孔的间隙,内径的均匀一致能保证与液袋式胀管机胀头的匹配性,从而延长胀头的使用寿命。一般管子与管板管孔间隙要求控制在(0.3±0.05)mm范围内,而液袋式胀管机胀头外径与管子内径的公差也应控制在 (0.3±0.05)mm范围内。 (2)管板 为使换热器管板管孔与管子外径在同一公差范围内,首先必须根据到货换热管外径的实际精度尺寸决定管板管孔的加工精度,如上所述,管板管孔与已到货换热管实际均匀外径间隙仍应控制在(0.3土0.05)mm范围内。 3.2换热管与管板的加工及验收

换热器计算

换热器计算的设计型和操作型问题--传热过程计算 与换热器 日期:2005-12-28 18:04:55 来源:来自网络查看:[大中小] 作者:椴木杉热度: 944 在工程应用上,对换热器的计算可分为两种类型:一类是设计型计算(或称为设计计算),即根据生产要求的传热速率和工艺条件,确定其所需换热器的传热面积及其他有关尺寸,进而设计或选用换热器;另一类是操作型计算(或称为校核计算),即根据给定换热器的结构参数及冷、热流体进入换热器的初始条件,通过计算判断一个换热器是否能满足生产要求或预测生产过程中某些参数(如流体的流量、初温等)的变化对换热器传热能力的影响。两类计算所依据的基本方程都是热量衡算方程和传热速率方程,计算方法有对数平均温差(LMTD)法和传热效率-传热单元数(e-NTU)法两种。 一、设计型计算 设计型计算一般是指根据给定的换热任务,通常已知冷、热流体的流量以及冷、热流体进出口端四个温度中的任意三个。当选定换热表面几何情况及流体的流动排布型式后计算传热面积,并进一步作结构设计,或者合理地选择换热器的型号。 对于设计型计算,既可以采用对数平均温差法,也可以采用传热效率-传热单元数法,其计算一般步骤如表5-2所示。 表5-2 设计型计算的计算步骤

体进出口温度计算参数P 、R ; 4. 由计算的P 、R 值以及流动排布型式,由j-P 、R 曲线确定温度修正系数j ;5.由热量衡算方程计算传热速率Q ,由端部温度计算逆流时的对数平均温差Δtm ; 6.由传热速率方程计算传热面积 。 体进出口温度计算参数e 、CR ; 4.由计算的e 、 CR 值确定NTU 。由选定的流动排布型式查取 e-NTU 算图。可能需由e-NTU 关系反复计算 NTU ;5.计算所需的传热面积 。 例5-4 一列管式换热器中,苯在换热器的管内流动,流量为 kg/s ,由80℃冷却至30℃;冷却水在管间与苯呈逆流流动,冷却水进口温度为20℃,出口温度不超过50℃。若已知换热器的传热系数为470 W/(m2·℃),苯的平均比热为1900 J/(kg·℃)。若忽略换热器的散热损失,试分别采用对数平均温差法和传热效率-传热单元数法计算所需要的传热面积。 解 (1)对数平均温差法 由热量衡算方程,换热器的传热速率为 苯与冷却水之间的平均传热温差为 由传热速率方程,换热器的传热面积为 A = Q/KΔt m = = m 3 (2)传热效率-传热单元数法 苯侧 (m C ph ) = *1900 = 2375 W/℃ 冷却水侧 (m c C pc ) =(m h C ph )(t h1-t h2)/(t c1-t c2) =2375*(80-30)/(50-20)= W/℃ 因此, (m C p )min=(m h C ph )=2375 W/℃ 由式(5-29),可得

盘管与夹套式热交换器

iani盘管与夹套式热交换器 一、实验目的 测定盘管式与夹套式热交换器的热总传系数。 二、实验原理 化学工厂常见的反应器、调料桶等都需要配备加热(或冷却)及搅拌装置,以便有效控制器内物料的温度,一般均以夹套或盘管式热交换器来达成目的。夹套与盘管可同时共有,也可单独装设,依实际需要而定。 (一)盘管式热交换器 盘管式热交换器包括一个圆柱形容器,在容器内可以装设机械搅拌,以便加强热传效果,其盘管则由铜管、钢管或其他合金管均匀地盘绕而成,使获得较大的传热面积。若以盘管盘绕方式来区分,则可分为平板盘管式(Plate coil)热交换器(图一)及螺旋盘管式(Helical coil)热交换器(图二)两种。平板管水平置于容器底部,藉由自然对流的方式传递热量,螺旋管则装在垂直圆柱容器内,两者皆可加装搅拌器,以提高热传效率。 图一平板盘管热交换器(a)侧视图(b)为不同盘绕方式的俯视图

图二 附挡板螺旋盘管式热交换器及其几何形状的建议值比率 盘管式热交换器具有如下的优点: (1)流体具有离心力,而增加传热效果。 (2)型态简单,有安定的流动,适于黏性流体的热交换。 (3)积垢性小,易清理。 (4)适于流量小或低比热的流体。 (5)安装容易,坚固耐用。 但它亦受以下的限制: (1)整体结构小,管的整修、接合比较困难。 (2)管外虽可用机械方式清理,但管内一定要以化学方式 处理。 以下各种热传系数经验式的介绍,皆以螺旋盘管式热交换器为例: 1.稳定状态下的传热 (1)总传热系数 如图三所示,若所供应热源为热水加热流体,当系统达稳定状态后,则热水所供应的热量为 ()hb ha h h h T T Cp m q -= (1) 冷水吸收热量为:

各种型号换热器说明

各种型号换热器说明 一各种型号换热器说明及优点 1、BLL双螺旋波节管换热器,使被加热介质在管内成螺旋线流动形式,破坏管壁的介膜层,增加传热面的热传递。它的传热机理与光管及其它形式的传热元件有明显不同。 l换热效果明显提高由于换热器采用了导热最优良的紫铜管制作,换热效果比其它管壳式热交换器相比,换热量提高了3~5倍。在汽-水换热中,传热系数K值在4500~6500W/m2?℃之间,在水-水换热中,传热系数K值在3200~5000 W/m2?℃之间。 不易结垢 由于对紫铜管的特殊加工,在工作过程中,紫铜管的热伸冷缩,使垢片碎裂脱落,预防了结垢现象。 安全性能高 因传热管具有热补偿能力,在传热过程中固定性能优良,可减少应力的作用,因此,管板与管的胀接口处不易泄漏。 安装灵活方便 该设备具有立式、卧式两种结构型式,能适应各种场合的使用,方便灵活。 这类换热器是按照GB150-1998、GB151-1999〈〈钢制压力容器〉〉和〈〈管壳式压力容器〉〉制造、检验和验收的,安全可靠、性能优良,是当今最优秀的换代产品。 2、SFP、LFP型浮动盘管热交换器半即热式换热器也是适应现代需要开发研制的一种新型换热器。它是将加热水贮存在壳体内,热媒(蒸汽或高温水)在管束盘管内,它属于一种有限量注水的换热器,具有较少的注水量(可注水1-3分钟用水),却能迅速补充热量。由于该换热器传热效率高,在换热器热媒进口必须安装温度调节器,以控制热媒和热水温度,尤其是热水供应系统,温度控制更为重要。 自动除垢 换热器中螺旋盘管在热媒温度、压力变化和离心力作用下,以及被加热水流动力的冲动下,使盘管自由上下,左右浮动和高频振动,可使水垢不易粘附在管臂上,可自动脱落,实现自动除垢。但在某些角落仍可能有部分水垢无法脱落,每半年应清垢一次,可利用热水冲击方法,具体如下:1)放净壳体内的水。2)关闭进出水口。3)打开进汽阀和冷凝水阀门排净管内存水,然后关闭冷凝水阀门,大约5-6分钟突然关闭进汽阀门,打开冷水阀门和底部排污阀门,使加热管突然冷却同时关掉脱落水垢,连续5-6次,即可全部排净。 节能效果显著,由于热媒在管内,被加热水在壳体内,因而壳体表面温度低,散热损失少,节约能源,尤其是汽-水换热时,冷凝水温度低,具有较大的节能效益,并减少环境污染。 3、BBR(BR)板式换热器的结构比较简单,它是由板片、密封垫片、固定压紧板等零部件组成,其中板片采用进口不锈钢板,密封垫片采用中美合资生产的派克垫。其主要技术指标均达到国内先进水平,且在许多方面与国外同类产品相当。 传热系数高 板式换热器不存在旁通,板片波纹能使流体在较小的流速下产生湍流,所以具有较高的传热系数,一般为3000~7000W/㎡?℃,同时湍流又具有自净效应能够防止污垢的形成。 占地面积小 板式换热器结构紧凑,在传热量相当的条件下,所占空间仅为管壳式换热器的1/2~1/3。 阻力损失小 在相同的传热系数条件下,板式换热器通过合理的选择流速,阻力损失可控制在管壳式换热器的1/3范围内。 热损失小

换热器计算程序+++

换热器计算程序 2.1设计原始数据 表2—1 名称设计压力设计温度介质流量容器类别设计规范单位Mpa ℃/ Kg/h / / 壳侧7.22 420/295 蒸汽、水III GB150 管侧28 310/330 水60000 GB150 2.2管壳式换热器传热设计基本步骤 (1)了解换热流体的物理化学性质和腐蚀性能 (2)由热平衡计算的传热量的大小,并确定第二种换热流体的用量。 (3)确定流体进入的空间 (4)计算流体的定性温度,确定流体的物性数据 (5)计算有效平均温度差,一般先按逆流计算,然后再校核 (6)选取管径和管内流速 (7)计算传热系数,包括管程和壳程的对流传热系数,由于壳程对流传热系数与壳径、管束等结构有关,因此,一般先假定一个壳程传热系数,以计算K,然后再校核 (8)初估传热面积,考虑安全因素和初估性质,常采用实际传热面积为计算传热面积值的1.15~1.25倍 l (9)选取管长 N (10)计算管数 T (11)校核管内流速,确定管程数 D和壳程挡板形式及数量等 (12)画出排管图,确定壳径 i (13)校核壳程对流传热系数 (14)校核平均温度差 (15)校核传热面积 (16)计算流体流动阻力。若阻力超过允许值,则需调整设计。

2.3 确定物性数据 2.3.1定性温度 由《饱和水蒸气表》可知,蒸汽和水在p=7.22MPa、t>295℃情况下为蒸汽,所以在不考虑开工温度、压力不稳定的情况下,壳程物料应为蒸汽,故壳程不存在相变。 对于壳程不存在相变,其定性温度可取流体进出口温度的平均值。其壳程混合气体的平均温度为: t=420295 357.5 2 + =℃(2-1) 管程流体的定性温度: T=310330 320 2 + =℃ 根据定性温度,分别查取壳程和管程流体的有关物性数据。 2.3.2 物性参数 管程水在320℃下的有关物性数据如下:【参考物性数据无机表1.10.1】 表2—2 密度ρ i- =709.7 ㎏/m3 定压比热容c pi =5.495 kJ/㎏.K 热导率λ i =0.5507 W/m.℃ 粘度μ i =85.49μPa.s 普朗特数Pr=0.853 壳程蒸气在357.5下的物性数据[1]:【锅炉手册饱和水蒸气表】 表2—3

中国换热器行业十大品牌

中国换热器行业十大品牌 活动简介: 为了帮助国内换热器行业企业应对不断变化的市场需求,通过品牌建设确立竞争优势,抓住发展机遇,推动国内换热器行业健康、持续、稳步的发展,中国换热器网与中国暖通网联合举办了“中国换热器行业最具影响力TOP10品牌”评选活动,此次评选活动得到了中国换热设备网和山东机械联合会以及各大众媒体的大力支持。行业协会与门户网站的公信力大大提升了活动传播度与参与度,众多国内换热器行业企业纷纷参选,角逐行业十强品牌。为期两个月的网络票选结束后,中国换热器网综合企业得票数、经营状况、技术实力和市场影响力,确定了“中国换热器行业最具影响力TOP10品牌”的最终归属。 十强企业: 四平市巨元瀚洋板式换热器有限公司 四平市巨元瀚洋板式换热器有限公司是全球领先的换热方案供应商,公司一直为致力于改善和提高人类的生活环境而不断努力。公司产品和换热方案覆盖了化工行业、冶金行业、造船行业、暖通空调行业和集中供热行业,营销及服务网络遍及全球,能够为客户提供快速、优质的服务。公司拥有热诚的员工和强大的研发能力,能够快速响应客户需求,提供个性化的产品和周到的服务,助力客户商业成功。 四平市通达换热设备有限公司 四平市通达换热设备有限公司是一家专业生产板式热交换器的公司,是东北换热设备定点生产企业。公司产品包括板式换热器、家用板式换热器、管壳式换热器、换热机组、波节管换热器等,产品广泛用于化工、医药、轻工、食品、采暖、电力、涂装、微电子行业机械和生活用水等领域。多年来,公司始终不渝地坚持“质量第一,客户至上”的质量宗旨,向广大用户提供技术先进、性能卓越、质量优良、满意的合格产品。 四平市鼎立换热设备有限公司 四平市鼎立换热设备有限公司是一家集热工设备的科研、设计、制造于一体的综合型企业,也是国内最具实力的热工产品专业生产厂家之一。企业通过ISO9001国际质量管理体系认证,拥有自主开发换热产品的实力。公司主要产品有:板式换热器、智能换热机组、管壳式换热器等,产品广泛应用于集中供热、电力、冶金、石油、化工、船舶、医药、轻纺、造纸、食品等各个领域,营销网络遍布全国各地。 石家庄蓝宝机械制造有限公司 石家庄蓝宝机械制造有限公司是集三大项目、两大贸易为一体的综合性企业,公司采用先进的管理模式,拥有国内一流的生产设备和雄厚的技术实力,数年来,公司增大生产制造能力,加大投资规模,开发出板式换热器系列产品,产品销往全国各地,在医药化工,电力、食品、冶金、房地产,供热等方面具有广泛的应用。在未来发展道路上,公司将坚持“打造蓝宝品牌,走全国路,谋海外财”的发展战略,着重培养企业核心竞争力,壮大企业发展规模。

换热器管子和管板焊接接头浅见分析

换热器管子和管板焊接接头浅见分析 史建涛 (江苏省特种设备安全监督检验研究院苏州分院,江苏苏州215128) 摘要:通过对管板换热器设计参数、介质特性、使用环境以及承载情况的分析研究,比较不同焊缝接头形式以及焊接工艺过程的选择对最终焊接质量的影响,同时阐述了合理的焊缝检验工艺对于确保在焊接前、焊接过程中以及焊接完成之后保证焊接质量的重要意义,总结出管板换热器管子和管板焊接接头在制造过程中的关键控制点。 关键词:管板换热器;焊接接头;焊接质量;焊接检验工艺 管板换热器是利用传热原理,通过对冷、热物料与被加热或冷却的介质进行逆向流动,即热交换,从而达到物料被冷却或加热作用[1]。由于其结构简单,制造成本低,能得到较小的壳体直径,管程可分成多样,壳程也可用纵向隔板分成多程,规格范围广,可用作蒸发器、加热器、冷凝器和冷却器等,在工程中应用十分广泛。 作者在参与某德国U公司石化项目过程中,有幸作为现场监造到广东省茂名重力石化机械制造厂进行制造过程的质量监检。由于此项目合同中要求设计由德国公司负责,图纸细化则由CPM(重力石化机械制造厂简称)完成,且CPM负责全程的制造质量,而且该德国公司此次采购的主要设备为管板式换热器, 设计中采用了德国公司的企业标准,因此对于制造厂而言,要准确理解德国公司的企业标准,并且利用现有的设备及人员完成不同于国标要求的石化设备相应难度

加大。而在管板换热器的制造过程中,换热管与管板的连接是整个制造过程中的关键环节。 1 管子-管板连接型式 换热管与管板的连接方式有胀接、焊接、胀焊并用等型式。常用的工艺制造方法有强度胀接、贴胀、强度焊以及密封焊。强度胀接指为保证换热管与管板连接的密封性能以及抗拉脱强度的胀接;贴胀指为消除换热管与管孔之间缝隙的轻度胀接;强度焊指保证换热管与管板连接的密封性能及抗拉脱强度的焊接; 密封焊指保证换热管与管板连接密封性能的焊接[2]。目前对常规的换热管通常采用“贴胀+强度焊”的模式;而重要的或使用条件苛刻的换热器则要求采用“强度胀+密封焊”的模式。胀、焊并用结构按胀接与焊接在工序中的先后次序可分为先胀后焊和先焊后胀两种。对于常规设计的“贴胀+强度焊”可采用先胀后焊的方式,而对特殊设计的“强度胀+强度焊”则可采用先贴胀,再强度焊,最后强度胀的方法。对于先焊后胀工艺,控制管子与管板孔的精度及其配合为首要的问题。当管子与管板腔的间隙小到一定值后,胀接过程将不至于损伤到焊接接头的质量。 此次该德国公司在CPM采购的九台固定式管板换热器筒体最高工作压力为6MPa,最高工作温度为265℃;换热管最高工作压力为0·76,最高工作温度为385℃,介质均为无毒石化行业反应物料,故该批换热器设计上采用了换热管与管板焊接的连接工艺。 2 管子-管板焊接接头

盘管换热器相关计算精编版

一、铜盘管换热器相关计算 条件:600kg 水 6小时升温30℃ 单位时间内换热器的放热量为q q=GC ΔT=600*4.2*10^3*30/(6*3600)= 3500 w 盘管内流速1m/s ,管内径为0.007m ,0.01m , 湍流范围:Re=10^4~1.2*10^5 物性参数: 40℃饱和水参数。 黏度—653.3*10^-6 运动黏度—0.659 *10^-6 普朗特数—4.31 导热系数—63.5*10^2 w/(m. ℃) 求解过程: 盘管内平均水温40℃为定性温度时 换热铜管的外径,分别取d1=0.014m d2=0.02m 努谢尔特准则为 0.4 f 8.0f f Pr 023Re .0*2.1Nu ==1.2*0.023*21244.310.84.310.4=143.4 (d1) 0.4 f 8.0f f Pr 023Re .0*2.1Nu ==1.2*0.023*30349.010.84.310.4=190.7 (d2) 管内对流换热系数为 l Nu h f f i λ?= =143.4*0.635/0.014=6503.39 (d1) l Nu h f f i λ?= =190.7*0.635/0.02=6055.63 (d2) 管外对流换热系数 格拉晓夫数准则为(Δt=10) 23/υβtd g Gr ?==9.8*3.86*10^-4*10*.0163/(0.659*10^-6)2=356781.6 (d1) 23/υβtd g Gr ?==9.8*3.86*10^-4*10*.0223/(0.659*10^-6)2=927492.9(d2) 其中g=9.8 N/kg β为水的膨胀系数为386*10^-6 1/K

波节管换热机组机组说明书

整体式波节管换热机组安装使用说明书

一、重要提示 1、操作说明 所有从事安装、维护换热机组者,都必须通过书面形式认真阅读本操作说明,并完全地了解各项操作指令。 保证本使用说明已分发至所有操作人员并且随时都可以使用。 请特别注意“安全性”。 2、安全说明 换热机组是经常来运用处理高温或低温流体的,并在一定的压力下运行的一种换热设备。因此,操作换热机组在运行时 安全性必须是第一位的! 为了确保安全请按照以下的指令进行操作: ●完全按照选用该设备时计划使用的环境运行该设备。 ●换热机组可以直接固定安装在混凝土地板或砼基础上。 ●在全部必要的保护装置未全部安装好之前不要单独运行本设备。 ●只有当设备处于无压状态、关断机组电源和热源且温度在10℃和40℃之间 时,机组才能进行维护和修理工作,才可以被拆开。 ●防止未经批准的人擅自接触该设备。 ●保持设备周围的空间清洁卫生;肮脏的环境经常是引起事故的主要原因。 3、按设计工况使用 换热机组在设计时已指定了应用的媒体、压力、温度和操作条件,请不要让 机组在超过原设计条件的工况下工作。

二、技术参数

三、机组流程图和装配图 见附图

四、机组安装说明 1、机组可直接放置在机房内混凝土基础上(适合电机功率较小的机组),也可用 膨胀螺栓或预埋螺栓固定。当机组安装在楼板上时,请校核楼板承载能力。 2、机组安装前,需要预做基础的,可先做一素混凝土基础,高约100~150mm, 长、宽比机组底座尺寸大100-200mm即可,基础表面要水平。并考虑四周各有1000~2000mm左右的操作维修间距。 3、安装前,应检查一次侧、二次侧、供水管道和电源是否符合设计要求。并把 与机组相连的管道吹扫、冲洗、试压,验收合格后,方可与机组连接。 4、若机组本身未配置温控阀,而又无人值守的,建议安装时在一次侧进口或出 口管上安装电动或自力式温控调节阀,温度传感器设在二次侧出口管上。注意:温控阀只能作为调节用,不能用作关闭阀使用。 5、组装卸车或转运时,请不要倒置或倾斜;在现场施工时,严禁把机组作为焊 机接地线。 6、若外管和机组接口方位有差异,可以适当调整机组管道出口方向,使其和外 管顺利连接。 7、根据安装要求,先把机组就位,调整到合适位置,再安装有关管道安装施工 规范进行连接。 8、整个管路系统安装完成后,应吹扫、冲洗、试压、保温,验收合格后方可试 车。 9、严格按照设计要求,连接管道法兰,特别注意不要接错进出口。配对法兰皆 为国标。蒸汽侧垫片为金属缠绕垫片,循环水侧为橡胶垫。 当两台或两台以上机组并联时,每台机组的出水管应安装止回阀。 10、机组连接的管路系统最高点应安装自动排气阀,最低点应安装泄水阀。 11、电控柜应注意防潮,并符合安全间距和防爆要求。连接电源时应注意电机转 向和标示是否一致。 12、部管道连接好后,应对系统按照安装验收规范整体试压,合格后方可调试。

换热管与管板账接

xx 换热管与管板账接xxxxxxxx 1 范围 本标准规定了换热管与管板胀接的基本要求。 本标准适用于碳钢、合金钢、不锈钢等材料的胀接。铜及铜合金的胀接可参照使用。 2 引用标准 下列标准所包含的条文,通过在本标准中引用而构成为本标准的条文。在标准出版时,所示版本均为有效。所有标准都会被修订,使用本标准的各方应探讨,使用下列标准最新版本的可能性。 GB151-1999 钢制管壳式换热器 3 定义 本标准采用下列定义。 3.1 胀接 利用胀管器使换热管与管板之间产生挤压力而紧贴在一起,达到密封与紧固连接的目的。 3.2 胀管率 换热管与管板胀接后,换热管壁厚的减薄率。 3.3 强度胀 为保证换热管与管板连接的密封性能及抗拉脱强度的胀接。 3.4 密封胀 为保证换热管与管板连接的密封性能的胀接。 3.5 贴胀 为消除换热管与管孔之间缝隙的轻度胀接。 4 总则 换热管与管板的胀接除应符合本标准的规定处,还应满足图样和GB151的有关要求。 5 胀接工艺试验 5.1 当换热管与管板的连接采用只胀不焊,或采用液压胀接时,产品胀接前应进行换热管与管板的胀接工艺试验,本公司已有成熟胀接工艺的则可免做此项试验。 5.2 胀接工艺试验的内容 5.2.1 换热管与管板胀接胀管率的测试,及胀管率的控制试验。 5.2.2 换热管与管板胀接采用强度胀、密封胀时应做水压试验。 5.2.3 换热管与管板胀接采用强度胀时应做拉脱试验。 5.3 胀接工艺试验材料 5.3.1 试验用管板应与产品管板具有相同材质和相当的机械性能。 5.3.2 试验用管子应是产品所用的换热管。

6 胀前准备 6.1 换热管 6.1.1 胀前应抽测出换热管的内径、外径、壁厚并计算出壁厚偏差值。 6.1.2 胀前应提供换热管的屈服强度、延伸率、硬度的数据。 6.2 管板 6.2.1 胀前应提供管板的屈服强度、硬度的数据。 6.2.2 抽测出管孔的孔径、胀管槽的轴向位置、宽度、深度。 6.2.3 采用液压胀接的管板,胀管槽应按图1加工制作。 图1 注:1 图中的尺寸B一般大于20 mm,只要管板厚度允许应尽量长一些。 2 胀管槽宽度W一般为5 mm ~10 mm。 6.2.4 管孔的表面粗糙度应不大于Ra12.5,管孔内表面不得有贯通的纵向或螺旋状划痕等缺陷,否则应先行处理。 6.2.5 应标出管板中最小孔桥的孔的位置。 6.3 胀前清理 6.3.1 在穿管前,应清除换热管胀接部分的表面污物至呈金属光泽,其长度不宜小于二倍的管板厚度。 6.3.2 管板在装配前应清除管孔内和胀管槽内的毛刺、铁屑、锈斑、油污等异物。 6.3.3 胀前应清理换热管内孔的污物。 7 胀接方法 7.1 胀管工具应按图样要求制作,胀珠、胀杆热处理后的硬度为HRC=63~65。 7.2 胀接方法选择。 7.2.1 当管板厚度δ≤70 mm时,采用固定式胀管器。 7.2.2 当管板厚度δ﹥70 mm时,一般采用前进式胀管器,也可采用固定式胀管器分段胀接。 7.2.3 分段胀接时,胀接段之间的重叠长度不得小于5 mm。 7.2.4 中间管板的胀接、特殊材料的胀接,尽可能采用液压胀接。 7.3 胀接顺序如图2所示。第一行从右侧开始向左侧,第二行从左侧开始向右侧,依此类推从顶部到底部胀完。 8 胀接

气气热管换热器计算书

热管换热器设计计算 1确定换热器工作参数 1.1确定烟气进出口温度ti,t3,烟气流量V,空气出口温度頁,饱和蒸汽压力 Pc?对于热管式换热器,ti范圉一般在250°C?600°C之间,对于普通水- 碳钢热管的工作温度应控制在300°C以下.t2的选定要避免烟气结露形成 灰堵及低温腐蚀,一般不低于180°C.空气入口温度的.所选取的各参数值如下: 2确定换热器结构参数 2.1确定所选用的热管类型 烟气定性温度:f 宇_4沁;2沁=310比 在工程上计算时,热管的工作温度一般由烟气温度与4倍冷却介质温度的和的 半均值所得出: 烟气入口处:q =如+営=420?c+严z = 18O°C 烟气出口处:. t2+tiX4 200°C+20°Cx4 l° 5 5 C 选取钢-水重力热管.其工作介质为水.工作温度为30OC~250°C?满足要求.其相容壳体材料:铜.碳钢(内壁经化学处理)。

2.2确定热管尺寸 对于管径的选择,由音速极限确定所需的管径 d v = 1.64 Qc t J厂9必)2 根据参考文献《热管技能技术》,音速限功率参考范闱,取Qc=4kW,在 10 = 56吃启动时 p v = O.1113k^/7H3 p v = 0.165 X 105pa r = 2367.4幼/kg 因此d v = 1.64 I ! = 10.3 mm yr(p v p v)l 由携带极限确定所要求的管径 d _ I 1.78 X Qent P Ji (P L"1/4+P V~1/4)_2^(P L -Pv]1/4 根据参考文献《热管技能技术》,携带限功率参考范围,取Q ent=4kw 管内工作温度t t = 180°C时 P L = 886.9kg/m3 pv = 5.160/c^/m3 r = 20\3kJ/kg J = 431.0xl0^N/m 178x4 因此 nx20L3x(8Q6.^i/4+SA6^i/4)-2 [gX431.0xl0-4(886.9-5.160)]1/4 =13.6nun 考虑到安全因素,最后选定热管的内径为 4 = 22111111 管売厚度计算由式 Pv4 20qcr] 式中,Pv按水钢热管的许用压力28.5kg /nmr选取,由对应的许用230°C來选 取管壳最大应力乐朋=14kg/nim2,而 [

当前国内浮动盘管型换热器的一些基本形式

1 当前国浮动盘管型换热器的一些基本形式 1.1盘管型式 1.1.1立式螺旋型 其基本构造是几个不同旋转直径的竖向螺旋管组成一级管束。但其组合分配型式有较大差异,按管束末端的构造又可分为下述两种类型。 (1)末端为自由浮动的分配器(也称之为惰性块)见图1、图2。 图形1、图2中的分配器具有两个功能:其一,使热媒在各管束较均匀的分配,增大流程,以利充分换热;其二,起阴尼作用,防止共振破坏。图2所示带有两个惰性块,还可起诱导振动的受体作用,能提高传热效率。 (2)盘管始、末端采用分、集水短管连接,如图3所示。国大部分生产浮动盘管型换热器的厂家均采用这种做法。 1.1.2水平螺旋型 它是由一根根水平螺旋管组成,按其分水与集水立管的位置也分为两种类型:分水立管、集水立管边置型,如图4所示;分水立管、集水立管中置型,如图5所示。 1.2换热器的型式 1.2.1半即热式 典型产品是热高牌半即热式换热器 1.2.2容积式 这是近几年来国生产厂家发展较快,品种繁杂的产品。据初步了解,大概有如图6所示的产品。2、浮动盘管型换热器的优点 浮动盘管型换热器与U型管换热器相比,在换热性能上的优越性,主要体现在如下两个方面。 2.1传热系数K值有所提高 工业大学程林教授在他发表的“弹性管束换热器的发展与应用”一文中提到:“与一般的管束式换热器相比,在相同流速条件下,弹性管束汽水热交换器的传热系数提高了200%,同时,弹性管束亦比浮动盘管的传热系数提高40%。 笔者也做过几次浮动盘管型容积式换热器的热工性能测试。其结果及它与我在前几年研制的RV系列容积式换热器、HRV系列半容积式换热器在水-水换热工况下的性能曲线比较见图7。 从图7可以看出:在水-水换热时,相同热媒流速条件下,DFRV浮动盘管换热器的K平均值分别为R V-03、RV-04、HRV-01、HRV-02的1.40、1.31与1.12倍。 需说明的是图7的比较是粗浅的,因为它只固定了热媒流速一个因素。传热系数的基本公式为: 1/K=1/α1+δ/λ+1/α2 式中:K----传热系数; α1----热媒向换热管壁的放热系数; α2----换热管外壁向被加热水的放热系数; 壁厚、水垢和铁锈的总厚度; δ----- λ----管壁、水垢、铁锈等的导热系数。 图7中的关系只反映了K与α1(因与α1热媒流速V1成正比)的关系。由于容积式换热器被加热水流速V2很低,又很难计算确定,并且对于生活热水换热器来说,换热器的产热量主要是满足规定温度下的设计耗热量即可。因此,我们没有做更深入的工作,作出相应不同热媒流速V1,被加热水流速V2的对应K 值的关系曲线。也就是说,图7中的关系线未反映出K与V2即α2之关系。另外RV、HRV系列换热器测

相关主题
文本预览
相关文档 最新文档