当前位置:文档之家› 力学交叉学科发展报告

力学交叉学科发展报告

力学交叉学科发展报告
力学交叉学科发展报告

力学中的交叉学科

力学中的交叉学科基本上可以分为两类:第一类由力学学科内部不同分支学科交叉组成; 第二类由力学与其它学科交叉组成。

内部的交叉学科最典型的是由流体力学与固体力学交叉组成的学科,它们有:

1)流体弹性力学,研究流体和固体的运动和相互作用发生耦合效应的问题;

2)流体弹塑性体力学,研究兼有固体和流体的双重特征的物体的变形和运动;

3)含有流体的多孔介质或散体的动力学,研究的客体本身就由多相组成,而骨架的变形和破坏与体内流体的状态和运动发生相互制约。这方面的实例有地下渗流、地基、边坡和断层的稳定性、泥石流、雪崩等。

物质的运动形式多种多样,除了机械运动这一最基础的形式以外,还有热运动、电磁运动、原子及其内部的运动和分子及原子层次的化学运动等。机械运动往往不能脱离其他运动形式独立存在,在需要和可能研究其他运动形式对机械运动有较大影响或者考虑它们之间的相互作用及内在联系的情况下,便会在力学同其他学科之间形成交叉学科或边缘学科的生长点。

力学是研究物质机械运动规律的科学。随着人类观测手段的进步和对各种形式运动认识的深入和提高,特别是20世纪物理学各个分支和数学的飞速发展,加上计算机科学和技术的突飞猛进,人们对于伴随有其他运动的机械运动的认识也随之提高。今天,我们对自然界各种层次的物质,从宇观的宇宙体系,宏观的天体和常规物体,细观的颗粒、纤维、晶体,到微观的分子、原子、基本粒子已经有了较为广

深的认识。这样就为研究多种形式同时存在的复杂运动提供了有利条件,从而产生了力学中多种多样的交叉学科,如物理力学、电磁流体和等离子体力学、物理化学力学、爆炸力学等。

此外,自然科学发展到今天,已经形成了一些传统的一级学科,如天文学、地学和生物学等。这些学科和力学的研究内容和范围历来存在着重大的相交和重叠。对于天体、地球和生物这样一些重大类别的物体来说,机械运动形式也是他们的基本运动形式,研究他们的结构和运动变化的规律也是力

学学科的内容。今天,天体力学和天体物理实际上超出了刚体和多体动力学的范围,增添了连续介质力学、物

理化学流体力学以及电磁流体和等离子体力学的内容;地学的研究对象则超出了地球表面现象的范围而拓宽到大气、海洋以至地球内部的力学过程;而生物力学则方兴未艾,从基因、细胞、组织和器官四个层次全面展开系统的研究。

交叉学科的形成不仅有利于发展新学科并促进源学科的发展,而且对推动科学、技术和工农业的发展起着巨大的作用。下面将分别探讨物理力学、电磁流体和等离子体力学、爆炸力学、环境流体力学、地球动力学和生物力学今后一个时期的发展方向与建议着重研究的领域。我们估计在下一世纪这些交叉学科,特别是物理力学、地球动力学、生物力学和环境流体力学等学科将会有长足的进步,并将有力地促进人类和社会的进步和发展;而力学与其它学科的交叉必将得到进一步的扩大和加强。

物理力学

物理力学是研究力学运动规律的微观理论的一个力学分支。

传统力学采用连续介质模型,对介质的微观结构不做假设与追究,采用从经验得到的描述介质力学性状的本构关系,运用牛顿运动定律和热力学定律来描述介质的力学运动。

到了本世纪中叶,面临着航空、航天与原子能等技术中高温、高压和强射线作用下材料介质的性质问题,再不能靠传统经验方法来解决。从物质的深层次来研究和解决问题就成为必由之路。事实上,物质本是由原子和分子组成的,是有微观结构的。物质的宏观性质是由其微观结构及其运动规律所决定的。自本世纪以来,物理学和化学对物质微观运动规律的研究已经取得了成功。物理力学的任务就是要沟

通微观与宏观之间的中间过渡领域。以微观运动的理论为基础探求中间层次的规律性,以求阐明和预测介质材料的宏观力学性质,为未来的材料设计提供理论依据。

50年代早期的物理力学多采用简化模型方法,研究内容多局限于热力学平衡和偏离平衡很小的准平衡性质,以气相和简单凝聚相介质为主。近20年来由于计算技术的发展,出现了像分子动力学等一些新的理论方法,增进了对凝聚态内部微观过程的了解,使之可以达到探求介质内部高度非线性不可

逆过程行为的程度。对材料细观层次的了解,特别是对材料的非均匀性、微缺陷及其运动和演化规律的了解有

所加深。所有这些为建立材料形变与强度的统计理论,进而为完善从微观到宏观的过渡带来了希望。

面对当前高新技术的需要,建议今后要着重研究以下四个方面的问题:

1)超高压、超高温与强辐射场作用等极端条件下的材料力学性质;

2)固体塑性变形与破坏的微观机理与统计理论的研究;

3)以原子分子理论为基础的新型材料力学性能与其微观结构的关系,以及对其力学性能的理论预测;

4)有化学反应参与的气相或等离子体相的材料沉积微观过程的研究。电磁流体力学和等离子体动力学

这个力学分支包括了以下三个分支学科:

1)电流体力学。研究单极性流体或极化流体与电场的相互作用。

2)磁流体力学。研究导电流体与磁场的相互作用。

3)等离子体动力学。研究低温等离子体各种运动状态,非平衡过程以及低温等离子体电与磁场的相互作用。

这个力学分支是流体力学、电动力学和热力学相结合的边缘学科,也是等离子体物理学中的宏观理论部分。

下面重点讨论磁流体力学。

导电流体通常指等离子体、液态金属、水和血液等。等离子体被称作是物质的第四态,包括自然界等离子体与实验室等离子体。液态金属包括自然界的水银,地核物质等,以及工业应用中的熔化金属。

1832年法拉第最早提出的磁流体力学问题是: 泰晤士河水切割地磁磁力线产生电动势,能否通过测量两岸的电位差来估算河水的流速结果未获成功。以后,工程师们提出过电磁泵的想法。地球物理学家提出过“发电机作用”

来解释地球磁场的起源。天体物理学家Cowling,Ferraro开始探讨磁流体力学理论,Hartmann进行过简单的磁流体力学实验。1942年,瑞典工程师和天体物理学家H。Alfven提出了Magneto-hydrodynamics(MHD)这个学科名,以及提出“磁冻结”概念,讨论“磁冻结”流动特点,发现Alfven波,这些标志着这门学科的建立。

近几十年,磁流体力学这门学科的迅猛发展是和以下三个领域的发展密切相关的。

1)地球物理,日地空间物理和天体物理。

在地球大气层以外到处是等离子体,磁场也普遍存在。因此,到处存在磁流体力学问题。第二次世界大战以后射电天文学的兴起,出现了以等离子体理论为基础的天体物理学,大大改变了长期以来以光学望远镜观测为主的,以原子理论为基础的天体物理学。1957年人造卫星上天以后,用卫星、飞船带上观测仪器对日地空间、太阳、宇宙的考察,发现了很多新现象,形成了很多新学科。其中磁流体力学内容占有很大比重。如日冕物理、太阳风物理、地核内的流体运动和磁层物理就是如此。

2)受控核聚变反应。

50年代初,美国、前苏联开始探索新能源。人们很快发现,几乎所有磁约束装置都有一个共同难题: 磁流体力学不稳定性。几十年后的今天,在被认为研究得最充分的磁约束装置环流器上,破裂不稳定性仍未最后弄清楚,尽管人们可以采取一系列措施来大大减少破裂的发生。其余的问题见后。

3)等离子体技术,冶金工业等工程技术。

以冶金工业为例。在连续铸造中用电磁力对熔化金属进行搅拌,可以提高产品质量。目前,电磁搅拌器这项新技术已被广泛采用;而电磁搅拌器的研究内容是标准的磁流体力学问题。

建议今后着重研究以下磁流体力学问题:

1)导电流体的流动稳定性与湍流,特别是强磁场下流动稳定性与二维湍流的研究。

2)非线性有限电阻不稳定性,特别是破裂不稳定性与磁场重联的研究。

3)发电机理论的进一步研究,如过程中R-T不稳定性的研究,含气泡物质上升与水平散开动力学过程的研究。

4)磁流体力学激波结构,进化性与稳定性。

5)聚变堆和混合堆的研究,强磁场下MHD管道流减小电磁阻力与增强传热的研究,MHD液态金属自由面流动的研究,MHD直接发电等。

6)冶金技术的研究。磁悬浮冶炼,电磁结晶器,用电磁力控制流量,粉末冶金中电磁雾化等。

爆炸力学

爆炸力学是研究爆炸的发生和发展规律以及爆炸的力学效应的利用和防护的学科。

我国早在8世纪中唐时期已有火药配方,10世纪宋初即已制作火箭火炮,17世纪明代宋应星阐明火药爆炸形成冲击波的现象。1867年诺贝尔发明硝化甘油,19世纪末和20世纪初建立了描述冲击波跃变的Rankine-Hugoniot关系以及描述自持爆轰的Chapman-Jouget理论,第二次世界大战期间,. Taylor,J. von Neumann,Л.И. Седов等结合常规武器和原子武器的

研制在高速冲击力学、爆炸产物状态方程、爆轰理论、空中和水下爆炸理论、点源强爆炸理论等方面取得重要进展,初步形成了爆炸力学这门学科。战后,动武器、核武器和激光武器的效应和防护的研究,固体中击波合成新材料,惯性约束聚变,爆炸加工,爆破技术等方面的研究进一步推动爆炸力学的发展,成为由下面三个密切相关的部分构成的体系,即(1)具有基础性质的爆轰学、击波物理、击波化学、材料动力学、击波理论、应力波理论;

(2)具有应用性质的空中爆炸、水下爆炸和土岩中爆炸的力学、高速冲击动力学、粒子束或激光束的高能密度动力学、爆破工程力学、爆炸工艺力学、爆炸结构力学;(3)具有工具和技术手段性质的计算爆炸力学、瞬态测量技术、模拟技术等研究领域。

我国的有关研究工作是在50年代末期开始的,中国科学院开展了爆破和爆炸加工技术的研究,军工部门开展了原子弹研制和爆轰的研究。60年代初钱学森认为我国爆炸现象的研究已经具备初步基础,一门新兴技术科学已经涌现,遂命名为“爆炸力学”。30年来我国在爆炸力学方面展开了广泛深入的研究,特别应该提到的是60年代郑哲敏等独立提出了流体弹塑性体模型,随后以这一模型为基础解决了一系列与核爆炸效应、高速冲击以及爆炸加工有关的问题。

今后爆炸力学的研究应侧重基础,侧重民用,建议着重研究以下几个问题:

1)爆炸载荷作用下材料的本构特性的研究;

2)击波化学和起爆机制的研究;

3)激光辐照下材料变形和变性的研究;

4)含有流体的多孔介质和散体的动力学研究;

5)爆炸和冲击作用下的结构动力学研究。

环境流体力学

环境流体力学是研究同人类生存环境及其变迁有关的流动问题的力学分支,也是环境科学的重要组成部分。

环境流体力学着重研究地球表面,包括大气圈、水圈、冰雪圈、土壤岩石圈、生物圈中的介质(如大气、水、溶质、气溶胶、污染物、微量气体)的动量、能量、物质输运规律及其对人类环境的影响;同时研究与保护环境有关的绿色产业中的流动问题。

人类为了生存和栖息,从刀耕火种时代起就同自然界作斗争,同时也无意识地破坏了自己的生存环境。第二次世界大战以来,因人口剧增,资源利用不当,导致一系列严重环境污染事件(如烟雾事件、水俣事件)发生,人类开始认识到治理环境的重要性。近20年来,因气候变暖、臭氧空洞、厄尔尼诺、土地沙漠化等各种全球性环境问题正在威胁着人类,人们普遍认识到保护地球的紧迫性,并把环境和发展结合起来。这就是环境流体力学产生和发展的背景。我国幅员辽阔,人口众多,水资源紧缺,水土流失,泥沙沉积,土地沙漠化、盐碱化,环境污染严重,更迫切需要研究和治理。

五六十年代环境流体力学主要研究污染问题,目前逐步趋于研究多尺度、多学科的综合性问题,包括气候、生态、污染、灾害诸多方面。国际上大型合作科研项目,如国际地圈生物圈计划(IGBP)、国际减轻自然灾害(IDND)十年计划正在实施。我国在解放以后,水利、气象、海洋、地理等部门积累了大量丰富的观测资料,环境流体力学的研究可在环境科学从定性或统计描述转向动力学描述方面发挥重要作用。可综合应用流体力学、地球科学、生物、化学、生态学等学科中的基本原理,分析现场观测(包括卫星观测)的资料,建立模型,揭示机理,发现规律,进行预报,并提出防治措施。

在未来的世纪,我们要结合环境科学的发展趋势,根据我国经济与社会可持续发展的需要与研究现状,建议重点开展如下几方面的研究:

1)微气象和陆气、海气界面的湍流交换。

2)两相环境(泥沙、风沙、泥石流、土壤侵蚀等)流体动力学。

3)大城市环境中的流动问题(地面沉降、污染、废弃物处理)。

4)绿色节水农业中的流动问题。

5)高效清洁燃烧器的原理。

地球动力学

生物力学

生物力学研究生命现象中的力学问题,是力学与生命科学的交叉领域。

生命现象中力学问题的研究可追溯到伽利略、牛顿时代。Young、Euler 等研究过血管的弹性及血流脉动;Poiseuille的血流阻力实验推动了粘性流

体力学的发展;Hill因骨骼肌收缩力学模型的研究获得了诺贝尔奖。但是,作为一门独立的学科,生物力学兴起于本世纪60年代,六七十年代是生物力学的开创阶段,将力学方法和生理学、解剖学方法结合起来研究组织和器官层次上的力学问题,建立了独特的方法论体系。90年代以来,生物力学开始进入细胞、基因层次,并与生化过程相联系。生物力学在以下几方面作出了贡献: 揭示心血管系统中血液的流动规律,认识机体的正常和病理生理过程的动力学规律,软组织本构关系和肺血循环的研究等,为诊断和治疗方法提供理论和技术基础,如心血管动力学参数的分析和检测、超声图像分析、临床血液流变技术、步态分析、肾透析技术等;人工心瓣和人工关节等的设计和制造;以及为改进体育运动方法和劳动环境的生物力学设计等。总之,生物力学的研究将对未来生物科学、生物技术、医学、生物医学工程、生物化学工程的发展以及人民的保健发挥重要作用。

我国的生物力学起步于70年代末。美国科学院冯元桢起了重要的推动作用。目前我国已形成了一支有梯队结构的队伍,建立了几个有特色的实验室,并在循环生理流体力学、生物组织力学性质、血液流变学、应力-细胞生长等方面取得了一些成果。

90年代以来,生物力学的发展进入了一个新时期,其目标背景从医学、生物医学工程、体育运动扩展到细胞生物学、结构生物学、生物技术、生物化学工程、人身保健乃至绿色植物力学等。

今后建议着重研究的领域有以下几方面:

1)细胞的力学行为以及应力和细胞生长之间的关系;

2)应力和组织生长之间的关系及其在组织工程和功能性生物材料方面的应用;

3)蛋白质、核酸等生物大分子的构象动力学;

4)血液循环及其它生理流动(如呼吸力学、消化管蠕动、尿流等)的定量规律;

5)骨骼、肌肉和关节力学;

6)绿色植物力学。

考研交叉学科研究报告

考研交叉学科研究 报告 1

考研交叉学科:人参果OR金苹果? 曾几何时,“交叉学科”成为了研究生专业领域的热门词汇,许多学校都在打通学科门类界限,努力争取打造“大学科平台”。“合作实验室”,“联合培养”等新模式雨后春笋般在211学校中间纷纷建立。一批“交叉学科”的新专业也出现在研究生学科招生目录上,成为许多学子的目标对象。 “交叉学科”到底仅仅是“看上去很美”,还是真的含金量十足?神通广大的孙猴子上天入地才求得了医治人参果树的灵丹妙药,特洛伊王子把光彩夺目的金苹果判给了美神却挑起了人间大乱。交叉学科专业是不是值得许多人跨系、跨学科报考?是不是看似光鲜却隐藏着隐患?新嫁衣可试,但专业选择却只有一次。冷静分析,细心思考,交叉学科专业的魅力与误区是什么?来听一听考研教育咨询专家曹先仲老师的分析,有心人自会做出适合自己的判断。 【交叉学科名片】 横跨两个一级学科门类的专业 “交叉学科”其实是个很早就出现的名词,并不新鲜。由于现有的学科是人为划分的,而科学问题是客观存在的,根据人们的认识水平,过去只有天文学、地理(地质)、生物、数学、物理、化学六个一级学科;而经过20世纪科学的发展和交叉研究,又逐

渐形成了新的交叉学科,如生命科学、材料科学、环境科学等。现在的学科被划分为哲学、理学、工学、文学、医学、教育学、历史学、农学、经济学、管理学、法学等数个一级学科。而我们这里所说的“交叉学科”专业,指的是横跨两个一级学科门类的专业,或者兼顾两个方向明显有区别的二级学科。比如,农林经济管理专业,农学为主要研究方向可是学位颁发管理学;传媒经济专业,名为经济,其实是文学硕士;科学技术哲学,是哲学分支,但主要在理工类学校开设,以自然科学为主要研究对象。而更多的其实是生物医学工程、材料物理与化学、等复合性学科,以技术结合为导向的居多。 【风险分析】 得失之间要靠自己综合权衡 选择交叉学科专业的学生,并非是第一个吃螃蟹的人,但似乎并没有太多的信息可供参考证明其前景光明与否。人参果好吃,要使用专业工具来采摘,还要有专人看护,还得不能放置时间太长,如此麻烦,想一劳永逸也难;金苹果好看,至于好吃不好吃就说不准了,可是留下无穷后患确是肯定的。有利也有弊,有收益自然有风险,得失之间,要靠自己综合权衡。首先说说交叉学科本身。 正说交叉学科:新颖多样朝气蓬勃

专业发展报告

专业发展前沿总结 数学科学是研究数、量的关系和空间形式的一个庞大科学体系,它包含纯粹数学、应用数学以及这二者与其它学科的交叉部分。它是一门集严密性、逻辑性、精确性和创造力与想象力于一体的学问,也是自然科学、技术科学、社会科学、管理科学等的巨大智力资源。数学为其它科学提供语言、观念和工具,它与计算机技术的紧密结合产生了可直接应用的数学技术,成为许多高、新技术的核心。按照马克思的看法,一门科学只有当它成功地应用了数学的时候,才算是成熟的科学。数学也是一种文化,在人类理性的认识世界的过程中起着重要的作用。从古时候起,数学就被当作了人类文明的一个智力顶峰。数学的传播与发展对提高国民素质、提高人们的分析与决策能力、推理与创造能力至关重要。数学研究本身则造就出一批富于创新精神的科学研究人才。推动数学发展的动力既来自于内部,即解决自身的问题,也来自于外部研究现实世界提出的模式。当今,数学科学包含了许多分支与丰富的内容,其发展的主要趋势为:数学各分支的融汇;与其它科学更加深入的交叉;以及更加自觉地扩大数学的应 用范围,使它的触角伸向几乎一切领域。 现代控制理论现代控制理论现代控制理论现代控制理论 定义:现代控制理论是建立在状态空间法基础上的一种控制理论,是自动控制理论的一个主要组成部分。在现代控制理论中,对控制系统的分析和设计主要是通过对系统的状态变量的描述来进行的,基本的方法是时间域方法。现代控制理论比经典控制理论所能处理的控制问题要广泛得多,包括线性系统和非线性系统,定常系统和时变系统,单变量系统和多变量系统。它所采用的方法和算法也更适合于在数字计算机上进行。现代控制理论还为设计和构造具有指定的性能指标的最优控制系统提供了可能性。 现代控制理论的发展过程:现代控制理论实在20世纪50年代中期迅速兴起的空间技术推动下发展起来的,以解决诸如把宇宙火箭和人造卫星用最少燃料或最短时间准确地发射到预定轨道一类的控制问题。这类控制问题十分复杂年,苏联科学家庞特里亚金提出了名为极大值的原理综合控制系统的心方法。1960~1961年,美国学者R.E.布什建立了卡尔曼-布什滤波理论。因而有可能有效地考虑控制问题中所存在的随机噪声的影响,把控制理论的研究扩大,包括了更为复杂的控制问题。到60年代初,一套以状态空间法、大值原理、动态规划、卡尔曼理和方法为基础的分析和设计控制系统的新的运力和方法已经确立。 现代控制理论所包含的学科内容十分广泛,主要方面有:线性系统理论、非线性系统理论最优控制理论、随机控制理论和适应控制理论。 线性系统理论是现代控制理论中最为基本和比较成熟的一个分支,着重于研究线性系统中状态的控制和观测问题,其基本的分析和综合方法是状态空间法。 金融和高科技中的数学建模、计算与运筹决策 计算科学是伴随计算机的发展而兴起的一门科学。利用计算机的计算(或模拟或仿真) 来揭示自然界以及人类社会物质生产过程中的复杂运动和现象。计算与理论和实验一起成为人们研究的三大手段。计算科学包括科学与工程计算以及高性能计算系统研制相关的数学问题。从学科内容来讲有三部分:一是包含了各科学领域内的计算性质的学科分支,如计算数学,以及与相关学科相结合的计算分支学科。二是包含了不同工程技术领域在实验与生产过程中所采用的大型计算。第三部分是与计算机科学有关的数学分支。计算科学是计算机科学、数学与相关学科相交叉融合的边缘性学科。其基础是数学,以计算(或模拟) 方法、算法以及与计算系统相关的优化问题的研究为其主要内容。我国的计算科学研究和实践曾为原子弹和氢

交叉学科

考研交叉学科:人参果OR金苹果? 曾几何时,“交叉学科”成为了研究生专业领域的热门词汇,许多学校都在打通学科门类界限,努力争取打造“大学科平台”。“合作实验室”,“联合培养”等新模式雨后春笋般在211学校中间纷纷建立。一批“交叉学科”的新专业也出现在研究生学科招生目录上,成为许多学子的目标对象。 “交叉学科”到底仅仅是“看上去很美”,还是真的含金量十足?神通广大的孙猴子上天入地才求得了医治人参果树的灵丹妙药,特洛伊王子把光彩夺目的金苹果判给了美神却挑起了人间大乱。交叉学科专业是不是值得许多人跨系、跨学科报考?是不是看似光鲜却隐藏着隐患?新嫁衣可试,但专业选择却只有一次。冷静分析,细心思考,交叉学科专业的魅力与误区是什么?来听一听考研教育咨询专家的分析,有心人自会做出适合自己的判断。 【交叉学科名片】 横跨两个一级学科门类的专业 “交叉学科”其实是个很早就出现的名词,并不新鲜。由于现有的学科是人为划分的,而科学问题是客观存在的,根据人们的认识水平,过去只有天文学、地理(地质)、生物、数学、物理、化学六个一级学科;而经过20世纪科学的发展和交叉研究,又逐渐形成了新的交叉学科,如生命科学、材料科学、环境科学等。现在的学科被划分为哲学、理学、工学、文学、医学、教育学、历史学、农学、经济学、管理学、法学等数个一级学科。而我们这里所说的“交叉学科”专业,指的是横跨两个一级学科门类的专业,或者兼顾两个方向明显有区别的二级学科。比如,农林经济管理专业,农学为主要研究方向但是学位颁发管理学;传媒经济专业,名为经济,其实是文学硕士;科学技术哲学,是哲学分支,但主要在理工类学校开设,以自然科学为主要研究对象。而更多的其实是生物医学工程、材料物理与化学等复合性学科,以技术结合为导向的居多。 【风险分析】 得失之间要靠自己综合权衡 选择交叉学科专业的学生,并非是第一个吃螃蟹的人,但似乎并没有太多的信息可供参考证明其前景光明与否。人参果好吃,要使用专业工具来采摘,还要有专人看护,还得不能放置时间太长,如此麻烦,想一劳永逸也难;金苹果好看,至于好吃不好吃就说不准了,但是留下无穷后患确是肯定的。有利也有弊,有收益自然有风险,得失之间,要靠自己综合权衡。首先说说交叉学科本身。 正说交叉学科:新颖多样朝气蓬勃 从我们服务过的学员来看,许多同学跨考这些专业的主要目的就是为了能够改变自己的学位,从纯理论型专业向应用型专业,从纯文科专业向经管结合型专业转变。比如许多理科专业的本科同学,诸如物理学、应用化学、计算科学、力学等同学纷纷向电子、化工、软件、航天、船舶等工科专业跨考;中文、历史、哲学向对外汉语、新闻、旅游、文化管理方面跨考。虽然说文凭并不能定终身,可是在申请大企业校园招聘的时候,网申就是非常难对付的

量子力学知识点总结(精.选)

1光电效应:光照射到金属上,有电子从金属上逸出的现象。这种电子称之为光电子。 2光电效应有两个突出的特点:①存在临界频率ν0 :只有当光的频率大于一定值v 0 时,才有光电子发射出来。若光频率小于该值时,则不论光强度多大,照射时间多长,都没有光电子产生。②光电子的能量只与光的频率有关,与光的强度无关。光的强度只决定光电子数目的多少。 3爱因斯坦光量子假说:光(电磁辐射)不仅在发射和吸收时以能量E= h ν的微粒形式出现,而且以这种形式在空间以光速 C 传播,这种粒子叫做光量子,或光子 4康普顿效应:高频率的X 射线被轻元素如白蜡、石墨中的电子散射后出现的效应。 ⒕康普顿效应的实验规律:射光中,除了原来X 光的波长λ外,增加了一个新的波长为λ'的X 光,且λ' >λ;波长增量Δλ=λ-λ随散射角增大而增大 5戴维逊-革末实验证明了德布罗意波的存在 6波函数的物理意义:某时刻t 在空间某一点(x,y,z)波函数模的平方与该时刻t 该地点(x,y,z)附近单位体积内发现粒子的几率密度(通常称为几率)dw(x,y,z,t)成正比。按照这种解释,描写粒子的波是几率波 7波函数的归一化条件 1),,,( 2 ?∞=ψτd t z y x 8定态:微观体系处于具有确定的能量值的状态称为定态。定

态波函数:描述定态的波函数称为定态波函定态的性质:⑴由定态波函数给出的几率密度不随时间改变。⑵粒子几率流密度不随时间改变。⑶任何不显含时间变量的力学量的平均值不随时间改变 9算符: 作用在一个函数上得出另一个函数的运算符号,量子力学中的算符是作用在波函数上的运算符号。 10厄密算符的定义:如果算符 F ?满足下列等式() ? ?dx F dx F φψφψ**??=,则称F ?为厄密算符。式中ψ和φ为任意波函数,x 代表所有的变量,积分范围是所有变量变化的整个区域。 推论:量子力学中表示力学量的算符都是厄密算符。 11厄密算符的性质:厄密算符的本征值必是实数。厄密算符的属于不同本征值的两个本征函数相互正交。 12简并:对应于一个本征值有一个以上本征函数的情况。简并度:对应于同一个本征值的本征函数的数目。 13量子力学中力学量运动守恒定律形式是: 01=??????+??=H F i t F dt F d ?,?η 量子力学中的能量守恒定律形式是01=??????=H H i dt H d ?,??η 14 15斯特恩-革拉赫实验证明电子存在自旋理由 16黑体辐射揭示了经典物理学的局限性。 17玻尔的量子化条件:在量子理论中,角动量必须是h 的整数 的近似求解方法。 求出,由求出微扰论:由n n n n E E ψψ)0()0(

力学交叉学科发展报告

力学中的交叉学科 力学中的交叉学科基本上可以分为两类:第一类由力学学科内部不同分支学科交叉组成; 第二类由力学与其它学科交叉组成。 内部的交叉学科最典型的是由流体力学与固体力学交叉组成的学科,它们有: 1)流体弹性力学,研究流体和固体的运动和相互作用发生耦合效应的问题; 2)流体弹塑性体力学,研究兼有固体和流体的双重特征的物体的变形和运动; 3)含有流体的多孔介质或散体的动力学,研究的客体本身就由多相组成,而骨架的变形和破坏与体内流体的状态和运动发生相互制约。这方面的实例有地下渗流、地基、边坡和断层的稳定性、泥石流、雪崩等。

物质的运动形式多种多样,除了机械运动这一最基础的形式以外,还有热运动、电磁运动、原子及其内部的运动和分子及原子层次的化学运动等。机械运动往往不能脱离其他运动形式独立存在,在需要和可能研究其他运动形式对机械运动有较大影响或者考虑它们之间的相互作用及内在联系的情况下,便会在力学同其他学科之间形成交叉学科或边缘学科的生长点。 力学是研究物质机械运动规律的科学。随着人类观测手段的进步和对各种形式运动认识的深入和提高,特别是20世纪物理学各个分支和数学的飞速发展,加上计算机科学和技术的突飞猛进,人们对于伴随有其他运动的机械运动的认识也随之提高。今天,我们对自然界各种层次的物质,从宇观的宇宙体系,宏观的天体和常规物体,细观的颗粒、纤维、晶体,到微观的分子、原子、基本粒子已经有了较为广 深的认识。这样就为研究多种形式同时存在的复杂运动提供了有利条件,从而产生了力学中多种多样的交叉学科,如物理力学、电磁流体和等离子体力学、物理化学力学、爆炸力学等。 此外,自然科学发展到今天,已经形成了一些传统的一级学科,如天文学、地学和生物学等。这些学科和力学的研究内容和范围历来存在着重大的相交和重叠。对于天体、地球和生物这样一些重大类别的物体来说,机械运动形式也是他们的基本运动形式,研究他们的结构和运动变化的规律也是力

量子力学知识总结

量子力学基础知识总结 一.微观粒子的运动特征 1.黑体辐射和能量量子化 黑体:一种能全部吸收照射到它上面的各种波长辐射的物体 普朗克提出能量量子化假设:定温下黑体辐射能量只与辐射频率有关,频率为ν的能量,其数值是不连续的,只能是hν的整数倍,称为能量量子化。 2.光电效应与光子学说 爱因斯坦将能量量子化概念用于电磁辐射,并用以解释光电效应。其提出了光子学说,圆满解释了光电效应。 光子学说内容: ①光是一束光子流,每一种频率的的光的能量都有一个最小单位,称为光子 光子能量ε=hν/c ②光子质量m=hν/c2 ③光子动量p=mc=hν/c= h/λ ④光的强度取决于单位体积内光子的数目,即光子密度。光电效应: hν= W+E K =hν +2 1 mv2,W为脱出功,E k 为光电子的动能。 3.实物微粒的波粒二象性 德布罗意提出实物微粒也具有波性:E=hν p=h/λ 德布罗意波长:λ=h/p=h/(mv) 4. 测不准原理:?x?x p≥h?y?p y ≥h?z?p y ≥h?tE≥h 二、量子力学基本假设 1. 假设1:对于一个量子力学体系,可以用坐标和时间变量的函数ψ(x,y,z,t)来描述,它包括体系的全部信息。这一函数称为波函数或态函数,简称态。 不含时间的波函数ψ(x,y,z)称为定态波函数。在本课程中主要讨论定态波函数。 由于空间某点波的强度与波函数绝对值的平方成正比,即在该点附近找到粒子的几率正比于ψ*ψ,所以通常将用波函数ψ描述的波称为几率波。在原子、分子等体系中,将ψ称为原子轨道或分子轨道;将ψ*ψ称为几率密度,它就是通常所说的电子云;ψ*ψdτ为空间某点附近体积元dτ中电子出现的几率。 对于波函数有不同的解释,现在被普遍接受的是玻恩(M. Born)统计解释,这一解释的基本思想是:粒子的波动性(即德布罗意波)表现在粒子在空间出现几率的分布的波动,这种波也称作“几率波”。 波函数ψ可以是复函数, 合格(品优)波函数:单值、连续、平方可积。 2. 假设2:对一个微观体系的每一个可观测的物理量,都对应着一个线性自厄算符。 算符:作用对象是函数,作用后函数变为新的函数。

2020年(发展战略)力学交叉学科发展报告

(发展战略)力学交叉学科发展方案

2.4力学中的交叉学科 力学中的交叉学科基本上能够分为俩类:第壹类由力学学科内部不同分支学科交叉组成;第二类由力学和其它学科交叉组成。 内部的交叉学科最典型的是由流体力学和固体力学交叉组成的学科,它们有: 1)流体弹性力学,研究流体和固体的运动和相互作用发生耦合效应的问题; 2)流体弹塑性体力学,研究兼有固体和流体的双重特征的物体的变形和运动; 3)含有流体的多孔介质或散体的动力学,研究的客体本身就由多相组成,而骨架的变形和破坏和体内流体的状态和运动发生相互制约。这方面的实例有地下渗流、地基、边坡和断层的稳定性、泥石流、雪崩等。物质的运动形式多种多样,除了机械运动这壹最基础的形式以外,仍有热运动、电磁运动、原子及其内部的运动和分子及原子层次的化学运动等。机械运动往往不能脱离其他运动形式独立存于,于需要和可能研究其他运动形式对机械运动有较大影响或者考虑它们之间的相互作用及内于联系的情况下,便会于力学同其他学科之间形成交叉学科或边缘学科的生长点。 力学是研究物质机械运动规律的科学。随着人类观测手段的进步和对各种形式运动认识的深入和提高,特别是20世纪物理学各个分支和数学的飞速发展,加上计算机科学和技术的突飞猛进,人们对于伴随有其他

运动的机械运动的认识也随之提高。今天,我们对自然界各种层次的物质,从宇观的宇宙体系,宏观的天体和常规物体,细观的颗粒、纤维、晶体,到微观的分子、原子、基本粒子已经有了较为广 深的认识。这样就为研究多种形式同时存于的复杂运动提供了有利条件,从而产生了力学中多种多样的交叉学科,如物理力学、电磁流体和等离子体力学、物理化学力学、爆炸力学等。 此外,自然科学发展到今天,已经形成了壹些传统的壹级学科,如天文学、地学和生物学等。这些学科和力学的研究内容和范围历来存于着重大的相交和重叠。对于天体、地球和生物这样壹些重大类别的物体来说,机械运动形式也是他们的基本运动形式,研究他们的结构和运动变化的规律也是力学学科的内容。今天,天体力学和天体物理实际上超出了刚体和多体动力学的范围,增添了连续介质力学、物 理化学流体力学以及电磁流体和等离子体力学的内容;地学的研究对象则超出了地球表面现象的范围而拓宽到大气、海洋以至地球内部的力学过程;而生物力学则方兴未艾,从基因、细胞、组织和器官四个层次全面展开系统的研究。 交叉学科的形成不仅有利于发展新学科且促进源学科的发展,而且对推动科学、技术和工农业的发展起着巨大的作用。下面将分别探讨物理力学、电磁流体和等离子体力学、爆炸力学、环境流体力学、地球动力学和生物力学今后壹个时期的发展方向和建议着重研究的领域。我们估计于下壹世纪这些交叉学科,特别是物理力学、地球动力学、生物力学和环境流体力学等学科将会有长足的进步,且将有力地促进人类和社会的

交叉学科前沿概述

交叉学科前沿概述 20世纪下半叶,各类交叉学科的应用和兴起为科学发展带来了一股新风,许多科学前沿问题和多年悬而未决的问题在交叉学科的联合攻关中都取得了可喜的进展。随着越来越多交叉学科的出现及其在认识世界和改造世界中发挥作用的不辩事实,交叉学科在科学领域中的生命力都得到了充分的证明。 一、交叉学科的概念 交叉学科是指由不同学科、领域、部门之间相互作用,彼此融合形成的一类学科群。其宽泛的含义也包括:边缘学科、综合学科、横断学科等在内。交叉学科既是一个学科概念,同时一又是一个历史范畴。从学科发展的历史长河来看,新学科的产生大都是传统或成熟学科相互交叉作用产生的结果。新学科在经历一段时一期的发展之后,将成为成熟的学科,进而有可能再与其他学科交叉作用发展而产生新的交叉学科。 1.交叉学科名词的起源 为了追溯“交叉学科”名词出现的时间,应该首先确定“交叉学科”的词源。形容词“跨学科的”( Interdisciplinary)是美国哥伦比亚大学心理学家伍德沃斯(R. S. Woodworth)于1926年首创的一个专门术语,用于指称超过一个学科范围的研究活动。在1926年新成立的SSRC(美国社会科学研究理事会)上,伍德沃斯建议说,理事会是几个学科的集合,要努力促进不仅仅是一个学科进行的研究,理事会的任务是促进被专业化所隔离的两个或多

个学科之间跨学科的综合研究。当时,Interdisciplinary就是SSRC 会议使用的记录文字,但未普及。1930年,SSRC在一份文件中正式使用了“跨学科的活动’,这样一种说法。1937年,《新韦氏大词典》、《牛津英语辞典》(增补本)首次收入“跨学科”一词。到了50年代,这一术语己在社会科学界被普遍使用,到了60年代,这个词变得时髦起来,自然科学家、教育学家等广泛使用,此后又相继出现了交叉学科研究(Interdisciplinary Researcher ),交叉学科理论(Interdisciplinarytheory ),交叉学科特征(Interdisciplinary characteristics)等,还出现了一些首字母组成的缩写词,如IDE(Interdisciplinary Education)、IDR(Interdisciplinary Research)、IDU(Interdisciplinary Union) ,IGPH(Interdisciplinary Graduate Progxarn in Humanity) ,IDS( Interdisciplinary Survey)。自20世纪60年代以来,国际上交叉科学研究日趋繁荣,各种交叉科学研究机构、研究中心和学术团体纷纷成立。1970年9月在法国召开了“大学的跨学科问题”国际学术讨论会,会后出版了文集《跨学科—大学中的教学和研究问题》,1976年,在英国创办了国际性的交叉科学杂志《交叉科学评论))( Interdisciplinary Science Review),1980年,国际跨学科学陇会i1,式成立,以跨学科科研和跨学科竹理的研究为中心,迄今为止己经成功地组织了多次跨学科国际学术研讨会。范岱年先生早在1981年就指出,自然科学、社会科学之间存在着一条鸿沟。1984年,国务院通过了《关于科学工作的六条方针》,其中特别提到“自然科学中有

结构力学 几何构造分析

1.图 示 体 系 是 几 何 不 变 体 系 。 ( ) 2.有 多 余 约 束 的 体 系 一 定 是 几 何 不 变 体 系 。 ( ) 3.图 示 体 系 是 : A .几 何 瞬 变 有 多 余 约 束 ; B .几 何 不 变 ; C .几 何 常 变 ; D .几 何 瞬 变 无 多 余 约 束 。 ( ) 4.在 不 考 虑 材 料 的 条 件 下 ,体 系 的 位 置 和 形 状 不 能 改 变 的 体 系 称 为 几 何 体 系 。 ( ) 5几 何 组 成 分 析 中 ,在 平 面 内 固 定 一 个 点 ,需 要 。 6图 示 体 系 是 体 系 ,因 为 。 7联 结 两 个 刚 片 的 任 意 两 根 链 杆 的 延 线 交 点 称 为 ,它 的 位 置 是 定 的 。 8试 对 图 示 体 系 进 行 几 何 组 成 分 析 。 A C D B 9对 图 示 体 系 进 行 几 何 组 成 分 析 。 A C D B E 10对 图 示 体 系 进 行 几 何 组 成 分 析 。 A C D B 11对 图 示 体 系 进 行 几 何 组 成 分 析 。 A B C D E F 12对 图 示 体 系 进 行 几 何 组 成 分 析 。 A C D E F 13对 图 示 体 系 进 行 几 何 组 成 分 析 。 B C D E F A G 14对 图 示 体 系 进 行 几 何 组 成 分 析 。 A B C D E 15对 图 示 体 系 进 行 几 何 组 成 分 析 。

A B C D E 16对 图 示 体 系 进行 几 何 组 成 分析 。 A B C D G E F 17对 图 示 体 系 进 行 几 何 组 成 分 析 。 A B C D E F G H K 18对 图 示 体 系 进 行 几 何 构 造 分 析 。 19对 图 示 体 系 进 行 几 何 构 造 分 析 。 20对 图 示 体 系 进 行 几 何 构 造 分 析 。 21对 图 示 体 系 作 几 何 构 造 分 析 。 22对 图 示 体 系 进 行 几 何 组 成 分 析 。( 图 中 未 编 号 的 结 点 为 交 叉 点 。) A C B D E F 23对 图 示 体 系 进 行 几 何 组 成 分 析 。 A B C D E F 24三 个 刚 片 用 三 个 铰 两 两 相 联 时 的 瞬 变 原 因 是_________________________。 25图 示 体 系 按 三 刚 片 法 则 分 析 , 三 铰 共 线 , 故 为 几 何 瞬 变 体 系 。 ( ) 26图 示 体 系 为 几 何 不 变 有 多 余 约 束 。 ( ) 27图 示 体 系 为 几 何 瞬 变 。 ( ) 28图 示 对 称 体 系 为 几 何 瞬 变 。 ( )

控制科学与工程学科发展报告,发展现状及趋势

控制科学与工程学科发展现状及趋势 一、国内外现状概述: 经典控制理论的研究对象一般为单输入、单输出的自动控制系统,特别是线性定常系统。 经典控制理论的特点是以输入输出特性(主要是传递函数)为系统的数学模型,采用频率响应法和根轨迹法这些图解分析方法,分析系统性能和设计控制装置。经典控制理论的数学基础是拉普拉斯变换,占主导地位的分析和综合方法是频域方法。经典控制理论主要研究系统运动的稳定性、时域和频域中系统的运动特性、控制系统的设计原理和校正方法。其局限性主要表现在一般仅适用于单变量和定常系统。 现代控制理论以线性代数和微分方程为主要的数学工具,以状态空间法为基础,分析与设计控制系统。状态空间法本质上是一种时域的方法,它不仅描述了系统的外部特性,而且描述和揭示了系统内部状态和性能。较之经典控制理论,现代控制理论的研究对象要广泛得多,原则上将,它既可以是单变量、线性、定常、连续的,也可以是多变量、非线性、时变、离散的。 智能控制可以概括为自动控制和运筹学、计算智能、人工智能等学科的结合,其结构是: 识别、推理、决策、执行。在低层次的控制中用常规控制器,而在高层次的控制中则应用具有在线学习、修正、组织、决策和规划能力的控制器,模拟人的某些智能和经验来引导求解过程。智能控制理论是以专家系统、模糊控制、神经网络等智能计算方法为基础的智能控制。 智能控制的发展还不完善,甚至可以说才刚刚开始,但是可以预见智能控制的发展与完善将引起控制科学与工程学科的全面革命。 集散控制系统(DCS)就是在生产过程自动化的巨大需求的背景下发展起来的一种自动化技术。它把控制技术、计算机技术、图像显示技术以及通信技术结合起来,实现对生产过程的监视、控制和管理。它既打破了常规控制仪表功能的局限,又较好地解决了早期计算机系统对于信息、管理和控制作用过于集

作业10量子力学基础( I ) 作业及参考答案

() 一. 选择题 [ C]1.(基础训练2)下面四个图中,哪一个 正确反映黑体单色辐出度 M Bλ (T)随λ 和T的变化关 系,已知T2 > T1. 解题要点: 斯特藩-玻耳兹曼定律:黑体的辐 射出射度M0(T)与黑体温度T的四次方成正比,即 . M0 (T)随温度的增高而迅速增加 维恩位移律:随着黑体温度的升高,其单色辐出度最大值所对应的波长 m λ向短波方向移动。 [ D]2.(基础训练4)用频率为ν 的单色光照射某种金属时,逸出光电子的最大动能 为E K;若改用频率为2ν 的单色光照射此种金属时,则逸出光电子的最大动能为: (A) 2 E K.(B) 2hν - E K.(C) hν - E K.(D) hν + E K. 解题要点: 根据爱因斯坦光电效应方程:2 1 2m h mv A ν=+, 式中hν为入射光光子能量, A为金属逸出功,2 1 2m mv为逸出光电子的最大初动能,即 E K。所以有:0 k h E A ν=+及' 2 K h E A ν=+,两式相减即可得出答案。 [ C]3.(基础训练5)要使处于基态的氢原子受激发后能发射赖曼系(由激发态跃迁 到基态发射的各谱线组成的谱线系)的最长波长的谱线,至少应向基态氢原子提供的能量是 (A) 1.5 eV.(B) 3.4 eV.(C) 10.2 eV.(D) 13.6 eV. 解题要点: 根据氢原子光谱的实验规律,莱曼系: 2 11 (1 R n ν λ ==- 式中,71 1.09677610 R m- =?,称为里德堡常数,2,3, n= 最长波长的谱线,相应于2 n=,至少应向基态氢原子提供的能量1 2E E h- = ν, 又因为 2 6. 13 n eV E n - =,所以l h E E h- = ν=?? ? ? ? ? - - - 2 21 6. 13 2 6. 13eV eV =10.2 eV [ A]4.(基础训练8)设粒子运动的波函数图线 分别如图19-4(A)、(B)、(C)、(D)所示,那么其中确定粒 子动量的精确度最高的波函数是哪个图? 解题要点: 根据动量的不确定关系: 2 x x p ???≥ (B) x (A) x (B) x (C) x (D)

量子力学期末考试知识点+计算题证明题

1. 你认为Bohr 的量子理论有哪些成功之处?有哪些不成功的地方?试举一例说明。 (简述波尔的原子理论,为什么说玻尔的原子理论是半经典半量子的?) 答:Bohr 理论中核心的思想有两条:一是原子具有能量不连续的定态的概念;二是两个定态之间的量子跃迁的概念及频率条件。首先,Bohr 的量子理论虽然能成功的说明氢原子光谱的规律性,但对于复杂原子光谱,甚至对于氦原子光谱,Bohr 理论就遇到了极大的困难(这里有些困难是人们尚未认识到电子的自旋问题),对于光谱学中的谱线的相对强度这个问题,在Bohr 理论中虽然借助于对应原理得到了一些有价值的结果,但不能提供系统解决它的办法;其次,Bohr 理论只能处理简单的周期运动,而不能处理非束缚态问题,例如:散射;再其次,从理论体系上来看,Bohr 理论提出的原子能量不连续概念和角动量量子化条件等,与经典力学不相容的,多少带有人为的性质,并未从根本上解决不连续性的本质。 2. 什么是光电效应?光电效应有什么规律?爱因斯坦是如何解释光电效应的? 答:当一定频率的光照射到金属上时,有大量电子从金属表面逸出的现象称为光电效应;光电效应的规律:a.对于一定的金属材料做成的电极,有一个确定的临界频率0υ,当照射光频率0υυ<时,无论光的强度有多大,不会观测到光电子从电极上逸出;b.每个光电子的能量只与照射光的频率有关,而与光强无关;c.当入射光频率0υυ>时,不管光多微弱,只要光一照,几乎立刻910s -≈观测到光电子。爱因斯坦认为:(1)电磁波能量被集中在光子身上,而不是象波那样散布在空间中,所以电子可以集中地、一次性地吸收光子能量,所以对应弛豫时间应很短,是瞬间完 成的。(2)所有同频率光子具有相同能量,光强则对应于光子的数目,光强越大,光子数目越多,所以遏止电压与光强无关,饱和电流与光强成正比。(3)光子能量与其频率成正比,频率越高,对应光子能量越大,所以光电效应也容易发生,光子能量小于逸出功时,则无法激发光电子。 3.简述量子力学中的态叠加原理,它反映了什么? 答:对于一般情况,如果1ψ和2ψ是体系的可能状态,那么它们的线性叠加:1122c c ψψψ=+(12c c ,是复数)也是这个体系的一个可能状态。这就是量子力学中的态叠加原理。态叠加原理的含义表示当粒子处于态1ψ和2ψ的线性叠加态ψ时,粒子是既处于态1ψ,又处于态2ψ。它反映了微观粒子的波粒二象性矛盾的统一。量子力学中这种态的叠加导致在叠加态下观测结果的不确定性。 4. 什么是定态?定态有什么性质? 答:体系处于某个波函数()()[]exp r t r iEt ψψ=-,所描写的状态时,能量具有确定值。这种状态称为定态。定态的性质:(1)粒子在空间中的概率密度及概率流密度不随时间变化;(2)任何力学量(不显含时间)的平均值不随时间变化;(3)任何力学量(不显含时间)取各种可能测量值的概率分布也不随时间变化。 5. 简述力学量与力学量算符的关系? 答:算符是指作用在一个波函数上得出另一个函数的运算符号。量子力学中采用算符来表示微观粒子的力学量。如果量子力学中的力学量F 在经典力学中有相应的力学量,则表示这个力学量的算符?F 由经典表示式F (r,p )中将p 换为算符?p 而得出的,即:

注意多学科的交叉与融合的方法论意义

注意多学科的交叉与融合的方法论意义 当代科学研究和技术发明变得越来越复杂,进行移植与交叉,通过多学科或跨学科的研究,常常能够获得单一学科研究无法获得的创新成果。多学科融合或通过跨学科研究问题也是当代科学和技术解决问题的创造性方法。体现了广泛联系和发展的辩证法。 当代各门科学之间的交叉性越来越大,通过学科之间的交叉往往可以获得新的认识,带来创新。学科交叉成为一种新的思考方式和研究方法。 1.所谓学科交叉方法,就是两门以上的学科之间在面对同一研究对象时,从不同学科的角度进行对比研究的方法。借鉴其他学科的研究,思考本学科的问题和对象,融合其他学科的研究方法,以达到对研究对象的新认识。 2.所谓跨学科方法就是通过多学科的协作共同解决同一问题的方法,跨学科也是一种多学科融合的方法,也可以称为多维融贯的方法。 多学科交叉是现代科学技术发展的趋势,是科技创新的源泉,也是学科增长点最重要的来源之一。进一步增强多学科交叉融合的意识,积极探索多学科交叉融合的有效途径,以激发创新活力,提升学科竞争力。 从科学发展的历史进程来看,所有学科最初都以混沌不分的形态包含于哲学范畴内,从15世纪末和19世纪初开始,自然科学、社会科学的若干学科分别从哲学中分离出来,到20世纪上半叶,最终在大学中确立了自然科学、社会科学和人文科学中若干经典学科独立的学科地位。学科的分化是学术研究深入和细化的必然结果,也有效地促进了科学的发展。但是从20世纪后半叶开始,由于研究一些复杂的问题需要多个学科的知识,学科发展又出现了融合的趋势,传统经典学科间的界限被不断打破,学科的边界被重新划分,一些交叉学科(如物理化学、分子生物学)和多学科的研究领域(如女性研究、城市研究、脑科学研究)开始大量出现,并且在大学中也逐渐确立了学科的合法性。可见学科的发展从“合”到“分”,现在正在走向新一轮的“合”。两个“合”的含义迥然不同,前者是混沌不分的含义;后者是学科融合的含义,即在承认学科差异的基础上不断打破学科边界,促进学科间相互渗透、交叉的活动。学科融合不仅是学科发展的趋势,也是学术研究产生重大创新性成果的方式之一。据统计,在1901~2008年间,颁发的自然科学类诺贝尔奖(物理、化学、生理学或医学奖三项)中学科交叉的研究成果

交叉学科研究及其对马克思主义哲学发展的启示

龙源期刊网 https://www.doczj.com/doc/1d8102249.html, 交叉学科研究及其对马克思主义哲学发展的启示 作者:张洁 来源:《科教导刊·电子版》2013年第08期 摘要学科交叉已经成为科学发展、知识创新的时代特征。本文从交叉学科的定义出发,明确分析交叉学科的三种不同层次,即狭义的交叉学科、综合学科和横断学科。交叉科学作为一种新的方法论,对马克思主义哲学的发展具有重要的作用。马克思主义要解决当代社会问题,就必须运用交叉学科的方法进行理论创新和发展。 关键词交叉学科科学技术马克思主义哲学 中图分类号:G641 文献标识码:A 当今科学日新月异的发展使知识领域一改以前纯粹而单一的专门化格局,呈现出高度分化又高度综合的趋势。近现代优秀的科学研究成果都显示出学科交叉点常常是科学的新的生长点、代表科学前沿的走向。在这些领域最有可能产生重大的科学突破,从而使科学发生革命性的变化。 交叉学科的定义很多,我们可以理解为交叉学科是将两门及其以上的学科融合而成的一种新的综合理论或系统学问。它的萌芽早在16到19世纪就出现了。如伽利略成功地将数学方法运用到物理学的研究,而后向其他学科渗透;威廉·配第利用数学和统计方法研究经济学,开创了古典政治经济学,创造了自然科学与社会科学相结合的先例。社会科学发展史表明交叉学科的研究方法早已形成,并对科技的发展起到了重要的推动作用。中国在现代化进程中,要想加速科学技术的发展,达到世界的领先水平,就必须大力提倡学科交叉,利用交叉学科的平台,推动科技创新的进程。 交叉学科作为一种新兴的学科,可以分为三种不同层次的学科群:首先是狭义的交叉学科,它指两门学科的结合部通过交叉渗透,或者用一门学科的方法解决另一门学科领域的问题而产生和发展起来的学科。如政治经济学、经济社会学。其次是综合学科,是指多门学科通过相互渗透交融,在研究新问题或复杂的对象时运用多门学科的理论和方法而形成的新兴交叉学科。如管理科学、系统科学。最后是横断学科,它是以各门学科的某些共同特点、共同运动形式之间的内在联系和共同规律为研究对象而形成的新兴交叉学科。系统论、协同学等自组织理论及混沌理论都属于横断学科。 从交叉学科的上述三种类型看,它们之间既有交叉性这一共同特征,又表现出不同的特征和等级上的差别。随着学科发展模式的整合以及交叉学科的继续发展,还必然出现新的交叉渗透类学科,从而推动科学技术领域新的原创性成果的实现。

量子力学知识点小结(良心出品必属精品)

第一章 ⒈玻尔的量子化条件,索末菲的量子化条件。 ⒉黑体:能吸收射到其上的全部辐射的物体,这种物体就称为绝对黑体,简称黑体。 ⒎普朗克量子假说: 表述1:对于一定频率ν的辐射,物体只能以hν为能量单位吸收或发射电磁辐射。 表述2:物体吸收或发射电磁辐射时,只能以量子的方式进行,每个量子的能量为:ε=hν。 表述3:物体吸收或发射电磁辐射时,只能以能量ε的整数倍来实现,即ε,2ε,3ε,…。 ⒏光电效应:光照射到金属上,有电子从金属上逸出的现象。这种电子称之为光电子。 ⒐光电效应有两个突出的特点: ①存在临界频率ν0:只有当光的频率大于一定值v0 时,才有光电子发射出来。若光频率小于该值时,则不论光强度多大,照射时间多长,都没有光电子产生。 ②光电子的能量只与光的频率有关,与光的强度无关。光的强度只决定光电子数目的多少。 ⒑爱因斯坦光量子假说: 光(电磁辐射)不仅在发射和吸收时以能量E= hν的微粒形式出

现,而且以这种形式在空间以光速 C 传播,这种粒子叫做光量子,或光子。爱因斯坦方程 ⒒光电效应机理: 当光射到金属表面上时,能量为 E= h ν 的光子立刻被电子所吸收,电子把这能量的一部分用来克服金属表面对它的吸引,另一部分就是电子离开金属表面后的动能。 ⒓解释光电效应的两个典型特点: ①存在临界频率v 0:由上式明显看出,当h ν- W 0 ≤0时,即ν≤ν0 = W 0 / h 时,电子不能脱出金属表面,从而没有光电子产生。 ②光电子动能只决定于光子的频率:上式表明光电子的能量只与光的频率ν有关,而与光的强度无关。 ⒔康普顿效应:高频率的X 射线被轻元素如白蜡、石墨中的电子散射后出现的效应。 ⒕康普顿效应的实验规律: ①散射光中,除了原来X 光的波长λ外,增加了一个新的波长为λ'的X 光,且λ' >λ; ②波长增量Δλ=λ-λ随散射角增大而增大。 ⒖量子现象凡是普朗克常数h 在其中起重要作用的现象 ⒗光具有微粒和波动的双重性质,这种性质称为光的波粒二象性 ⒘与运动粒子相联系的波称为德布罗意波或物质波。 ???? ? ???? ======n k h k n h P h E λππλων2 ,2

量子力学主要知识点复习资料全

大学量子力学主要知识点复习资料,填空及问答部分 1能量量子化 辐射黑体中分子和原子的振动可视为线性谐振子,这些线性谐振子可以发射和吸收辐射能。这些谐振子只能处于某些分立的状态,在这些状态下,谐振子的能量不能取任意值,只能是某一最小能量 的整数倍εεεεεn ,,4,3,2,??? 对频率为 的谐振子, 最小能量为: νh =ε 2.波粒二象性 波粒二象性(wave-particle duality )是指某物质同时具备波的特质及粒子的特质。波粒二象性是量子力学中的一个重要概念。在经典力学中,研究对象总是被明确区分为两类:波和粒子。前者的典型例子是光,后者则组成了我们常说的“物质”。1905年,爱因斯坦提出了光电效应的光量子解释,人们开始意识到光波同时具有波和粒子的双重性质。1924年,德布罗意提出“物质波”假说,认为和光一样,一切物质都具有波粒二象性。根据这一假说,电子也会具有干涉和衍射等波动现象,这被后来的电子衍射试验所证实。 德布罗意公式h νmc E ==2 λ h m p ==v 3.波函数及其物理意义 在量子力学中,引入一个物理量:波函数 ,来描述粒子所具有的波粒二象性。波函数满足薛定格波动方程 0),()](2[),(22=-?+??t r r V m t r t i ψψ 粒子的波动性可以用波函数来表示,其 中,振幅 表示波动在空间一点(x ,y,z )上的强弱。所以, 应该表示 粒子出现在点(x,y,z )附件的概率大小的一个量。从这个意义出发,可将粒子的波函数称为概率波。 自由粒子的波函数)](exp[Et r p i A k -?=ψ=ψ 波函数的性质:可积性,归一化,单值性,连续性 4. 波函数的归一化及其物理意义 常数因子不确定性设C 是一个常数,则 和 对粒子在点(x,y,z )附件出现概率的描述是相同的。 相位不定性如果常数 ,则 和 对粒子在点(x,y,z ) 2 (,,)x y z ψ(,,) c x y z ψαi e C =(,,)i e x y z αψ(,,)x y z ψ

把握学科交叉综合趋势大力推进创新的团队建设教育学会蔡克勇

把握学科交叉综合趋势大力推进创新团队建设 中国高等教育学会蔡克勇 一、兴校强校,决定的因素是人才(周济) 1.人才问题,始终是高等学校改革与发展的核心问题和头等大事。 清华大学老校长梅贻琦先生的名言:“大学者,非大楼之谓也,乃大师之谓也。”指出人才和教师对于高等学校的特殊意义。哈佛大学名誉校长陆登庭教授也明确指出,“在大学中,没有比发现和聘用教师更重要的事情。”古今中外高等教育史上,高明的、有远见的大学校长们,总是把千方百计延揽人才作为头等重要的工作。抗战时期,西南联大之所以在环境极其艰苦、物质极端匮乏的条件下,培养了一代在科技、教育和文化等领域发挥了重要影响的优秀人才,最主要的原因就是大师云集。正是由于人才荟萃,才使得只有短短九年历史的西南联大,成为中国高等教育史上的一座丰碑。上个世纪初,蔡元培先生在担任北京大学校长期间,非常重视以超常规的举措,以“兼容并包”的博大胸怀,不拘一格广纳人才,陈独秀、李大钊以及鲁迅、胡适等一批杰出人物都曾经在北京大学任职或任教,使得北京大学从此日新月异,在新文化运动中成为中国最早传播马克思主义和民主科学思想的发祥地,铸就了北京大学光荣传统。建国以后,老一代的高等学校领导人如蒋南翔、陆平、匡亚明等同志,无不是高度重视人才工作。华中科技大学老校长朱九思曾说,他在华工实际上就做了两件半事情:第一件事,确立了新时期办学的战略思想和基本思路;第二件事,采取超常规的办法延揽和培养了一大批人才,从全国各地引进了600人;还有半件事,就是校园建设,种树。这两件半事情的核心是人才。正是这两件半事,奠定了华中这些年快速发展的基础。 2.以超常规的热情、努力、举措抓人才 要以超常规的热情,付出超常规的努力,采取超常规的举措来抓人才。什么叫超常规?什么叫超常规的热情、超常规的努力、超常规的举措?早在1978年,小平同志决策并实施派遣学生去西方留学,提出不是派几个人,而是成千上万地派。在改革开放刚刚开始的情况下,在当时那样的政治经济环境下,这是多么的深远的战略眼光,多么巨大的政治勇气,多么宽广的人文胸怀,这就是超常规!也是1978年,华中工学院朱九思同志抓住机遇,采取超常规的办法延揽和培养人才。首先是启用了许许多多的人,包括当时还戴着各种“帽子”的人才;同时他是一个人一个人地去挖掘,一个人一个人地去解决好调动和安置中的每一件事,千方百计将每一个家庭整家整户地调到学校,把户口落到武汉;还有就是送一大批骨干教师出国深造,当时,后来成为院士的几位教师,都有很重的科研任务,走后肯定会对工作造成一些影响,但九思同志有一句话:不惜一切代价,也要把最好的教师送出去。充分显示了他在人才问题上的远见和魄力。这就是超常规!试想,在1978年做这些事情是一种什么情景!想别人之所未想,作别人之所未做,必须要有对于人才问题的特别深刻的认识,必须要有对于党和人民事业的极端热情和责任心。各学校都应该深切认识人才问题的极端重要性,真正把人才工作摆在突出位置,以超常规的热情,付出超常规的努力,采取超常规的举措抓好人才工作。

相关主题
文本预览
相关文档 最新文档