当前位置:文档之家› 电压负反馈和电流正反馈自动调速系统的选择

电压负反馈和电流正反馈自动调速系统的选择

电压负反馈和电流正反馈自动调速系统的选择
电压负反馈和电流正反馈自动调速系统的选择

电压负反馈和电流正反馈自动调速系统的选择

转速负反馈自动调速系统,其调速指标是很好的,但是它需要一个测速发电机,增加了设备投资,维修较麻烦,有时安装也困难。从A-G-M开环系统中可以看出,当负载电流增加时,由于发电机端电压的下降以及发电机、电动机换向绕组压降及电动机电枢压降的增加,使电动机反电动势及转速下降,可用发电机端电压作为负反馈以维持发电机电压近似不变;可用负载电流作为正反馈以补偿换向绕组及电动机电枢绕组压降。这样既可得到近似转速负反馈的性能。

下图为电压负反馈调速系统电路图。

图2.5.1电压负反馈系统电路图

Figure 2.5 .1 negative feedback system voltage circuit

发电机电枢两端并联电阻RV,从中引出反馈电压UV,此即为信号引出点。Rv的选择应使流进其电流而引起发电机内部压降可略而不计。UV与给定电压Us是反向的,因而构成了电压负反馈环节。由于是电压反馈,故应选择高阻控制绕组作为CI。图中Rsa是给定回路附加电阻。

式中, 为给定电位器分压比;

为电压负反馈系数;

上图中各环节的电压平衡方程式为

式中,分别为发电机及电动机电枢绕组及换向绕组电阻;

为主回路换向绕组的电阻和。

根据框图,写出电压负反馈调速系统静特性方程:

式中,KV为电压负反馈闭环系统开环放大倍数

图2.5.2具有电压负反馈及电流正反馈系统电路图

Figure 2.5 .2 a negative feedback voltage and current positive feedback system circuit 从图2.5(b)可得静特性方程式

从式可知,电压负反馈电流正反馈系统中,当负荷增加时,正反馈磁动势IC ⅡNCⅡ亦增加,用以提高发电机电压去补偿因换向绕组及电动机电枢绕组产生的压降。因此电流正反馈是补偿控制而不是反馈控制。具有电压负反馈及电流正反馈系统中发电机外特性如右图曲线l所示.发电机端电压是随负载电流增加而升高的,而电压负反馈系统利用被控量发电机电枢电压的负反馈作用以维持电压近似不变见图曲线2.开环系统发电机电枢电压见图曲线3。

图2.5.3几种系统发电机的外特性

Figure 2.5.3 several characteristics of the generator system

从上式可知,系统静特性为平行于x轴的直线,但在实际上,由于系统各元件的参数非线性因此难以实现?n=0,一般都以近似转速负反馈系统计算,即使

说明了一个系统中,电压负反馈系数av 越大,电流正反馈系数aI 也要增大,这是因为随着负载电流的增大,电流正反馈使发电机电压升高,但电压负反馈的存在却阻碍发电机电压的升高。也就是说,电压负反馈较强的系统必须有强的电流正反馈.才能补偿电动机的因负载而造成的转速降,以保证系统具有类似转速负反馈系统的较硬的静特性。

经整理得

开关电源拓扑电压模式与电流模式的比较

开关电源拓扑电压模式与电流模式的比较 作者:罗伯特.曼诺 Unitrode公司的IC公司拥有自成立以来一直活跃在前沿的发展控制电路来实现国家的最先进的级数在电源技术。在多年来许多新产品已推出使设计人员能够在易于应用新的创新电路拓扑结构。由于每一种新的拓扑声称提供改进过的这以前是可用的,它是合理的期望一些混乱将与引进的UCC3570的生成 - 一种新的电压模式控制器介绍我们告诉了近10年后世界上目前的模式是这样的优越方法。 但事实却是,没有一个统一的拓扑结构是最适合所有的应用程序。此外,电压模式控制如果更新了现代化的电路和工艺的发展 - 大有作为今天的高性能用品的设计师和是一个可行的竞争者为电源设计人员的重视。要回答的问题是,它的电路拓扑结构最好是为一个特定的应用程序时,必须从的每一种方法的两个优点和缺点的认识。下面的讨论尝试这样做以一致的方式为这两个电源的控制算法。 电压模式控制这是用于在第一开关的方法调节器的设计和它服务的行业以及为多年本电压模式配置。这种设计的主要特点是:有一个单一的电压反馈路径,以脉冲宽度调制,通过比较所执行的以恒定的倾斜波形电压误差信号。电流限制必须分开进行。 电压模式控制的优点有: 1.单个反馈回路更易于设计和分析。 2.大振幅锯齿波为一个稳定的调制过程提供良好的噪声容限。 3. 低阻抗功率输出为多路输出电源提供更佳交叉调整。 电压模式控制的缺点: 1.任何改变线路或负载必须首先被检测作为输出的变化,然后由校正反馈回路。 这通常意味着响应速度慢。 2.输出滤波器将两个极点的控制循环要求无论是占主导地位的极低频滚降在误 差放大器或在补偿加零。 3.补偿是通过进一步复杂化,即环增益随输入电压而变化。 电流模式控制上述的缺点是相对显著,因为,设计师们在它的介绍非常积极地考虑所有被缓解电流模式控制这种拓扑结构。如可以看到的从图2中,基本电流模式的图 控制使用振荡器只能作为一个固定频率时钟和斜坡波形被替换为从输出电感电流产生的信号。 而这种控制技术提供的优点包括以下内容: 1. 由于电感电流上升与输入电压 - 武定一个斜坡,这个波形会回应马上到线电压的变化,消除双方的延迟反应和增益变化与输入电压变化。 2. 由于误差放大器现在用命令的输出电流而不是电压,输出电感的影响被最小化现在的过滤器只提供一个单极到反馈回路(至少在感兴趣的正常区域)。这允许在可比的电压模式电路更简单补偿和更高的增益带宽。 3. 电流模式电路额外的好处包括固有的脉冲逐脉冲限流仅仅通过钳位误差放大器的命令,当多个功率单元并联共享以及提供方便的负荷。 而改进提供了电流模式令人印象深刻的是,这项技术在设计过程中还带有其独特的一套必须解决的问题。一些这些清单已概述如下:

深度负反馈电压放大倍数解题秘笈

求解深度负反馈放大电路放大倍数的一般步骤: (1) 正确判断反馈组态;(2)利用不同组态特点求解uf A 或usf A 正负反馈判断方法: 反馈引到非输入端,极性相同,构成负反馈;极性相反,构成正反馈。 反馈引到输入端,极性相同,构成正反馈;极性相反,构成负反馈。 上述是其他老师讲课时总结的方法,我一般就是从定义判断的,使净输入增大的就是正反馈,使净输入减小的就是负反馈。 交流负反馈组态的判断方法: 反馈信号引到输入端为并联反馈;引到非输入端为串联反馈。 反馈从输出端引出为电压反馈;反馈从非输出端引出(或运放输出电压不共地),为电流反馈。 以下解题要点对同一种组态任何一个电路都适用。 【例1】电压串联负反馈 【例2】电流串联负反馈 1 21R R U U U U A f o i o uf +=== 11 R R R I R I U U A L o L o i o uf === 解题要点:所有串联反馈(1)U i =U f ;(2)反馈输入点对地电压为U f ;(3)

o f I R R R I 212+- = 【例3】电压并联负反馈 【例4】电流并联负反馈 【练习1】 s s i f s o usf R R R I R I U U A -=-== s i s R I U =s L s f L o s o usf R R R R R I R I U U A )1(21+-=-== L uf R R R R R R A ?++=31321解题要点:所有并联反馈(1)I i =I f ;(2)反馈输入点对地电压为0(虚地)。 所有电流反馈,找输出电压U o 和输出电流I o 及反馈电压U f (或电流I f )R I U f o -=解题要点:所有串联反馈(1)U i =U f ;(2)反馈输入点对地电压为U f ;(3)反馈输入点到放大电路的输入电流特别小,视为开路。 解题要点:所有并联反馈(1)I i =I f ;(2)反馈输入点对地电压为0(虚地)。 s i s R I U =L o o R I U -=

串联电压负反馈电子电路实验报告

实验报告 实验名称:电压串联负反馈放大电路 实验目的: 1.了解反馈放大器的分类和判别方法 2.加深理解负反馈对放大器性能的改善作用 3.进一步熟悉放大器性能指标的测量方法 实验仪器: 1. 直流稳压电源 2. 函数信号发生器 3. 数字示波器 4. 串联电压负反馈放大电路板 实验原理: 1.反馈放大电路的概念与分类: 将放大器电路的输出的电信号(电压或电流)的一部分或全部,通过一定的方式(烦馈网络)引回到放大器输入电路中,并与输入信号一起参与控制的电路称为反馈放大电路。(如下图1-10) 从反馈的极性划分,反馈分为正反馈和负反馈。 负反馈削弱了净输入信号,降低了放大电路的增益,但负反馈的引入改善了放大器的性能。比如负反馈提高了放大器电路的工作稳定性,减小了非线性失真,抑制了内部

的噪声和干扰,展宽通频带。 正反馈增强了净输入信号,在信号产生电路中有着广泛的使用。 按照反馈网络对输出信号的采样划分,分为电压反馈和电流反馈。 按照反馈信号和输入信号在输入回路中的连接方式,分为串联反馈和并联反馈。 本实验使用并联电压放大电路。 2. 负反馈网络的性能参数和对开环电路的影响 如上图1-10,设X 为输入信号,表示电压或电流,i X 表示输入信号,f X 表示反馈信号,则净输入信号X ∑ =i X -f X 。 开环放大器的放大倍数(开环增益为): 00X A X ∑= 反馈网络的反馈系数为 0f X F X = 所以反馈放大器的放大倍数即闭环增益为:0of i X A X ==00 1A FA + 可见,加入负反馈放大器的增益减小了01FA +倍。令反馈深度D=01FA +,把FA 称为环路增益。当01FA +>>1时,称为深度反馈。得到: 0111f A FA F =≈+,可见在深度反馈中,放大系数取决于反馈网络决定的反馈系数,几乎与开环放大电路无关。而反馈网络通常由性能稳定的无源原件R ,C 组成,所以负反馈放大器较开环放大器较为稳定。 参数D 可直观显示反馈电路对放大电路的影响: 稳定性的影响: 开环放大电路稳定性为00 A A δ?=,闭环放大电路为00f f f A A D δδ?==,稳定性提高了D 倍。 负反馈电路可以展宽放大电路的通频带: 设开环放大电路的上限截止频率和下限截止频率分别为H f 和L f 。而在加入反馈电路后,上限截止频率扩大为原来的D 倍,下限截止频率缩小了D 倍。 对输入输出电阻的影响:

分析电流控制型开关电源方案

分析电流控制型开关电源方案 随着电力电子技术的高速发展,电力电子设备与人们的工作、生活的关系日益密切,而电子设备都离不开可靠的电源,进入80年代计算机电源全面实现了开关电源化,率先完成计算机的电源换代,进入90年代开关电源相继进入各种电子、电器设备领域,程控交换机、通讯、电子检测设备电源、控制设备电源等都已广泛地使用了开关电源,更促进了开关电源技术的迅速发展。开关电源是利用现代电力电子技术,控制开关晶体管开通和关断的时间比率,维持稳定输出电压的一种电源,开关电源一般由脉冲宽度调制(PWM)控制IC和MOSFET构成。开关电源和线性电源相比,二者的成本都随着输出功率的增加而增长,但二者增长速率各异。线性电源成本在某一输出功率点上,反而高于开关电源,这一成本反转点。随着电力电子技术的发展和创新,使得开关电源技术在不断地创新,这一成本反转点日益向低输出电力端移动,这为开关电源提供了广泛的发展空间。 电压控制型开关电源会对开关电流失控,不便于过流保护,并且响应慢、稳定性差。与之相比,电流控制型开关电源是一个电压、电流双闭环控制系统,能克服电流失控的缺点,并且性能可靠、电路简单。据此,我们用UC3842芯片设计了一个电流控制型开关电源。为了提高输出电压的精度,系统没有采用离线式结构,而采用直接反馈式结构。本系统在设计上充分考虑了电磁兼容性和安全性,可广泛应用于

工业、家电、视听和照明设备。 电流控制型开关电源的原理框图 电流型控制是针对电压型控制的缺点而发展起来的,在保留了电压控制型的输出电压反馈控制部分外,又增加了一个电流反馈环节,其原理框如图1所示。 图1 电流控制型开关电源的原理框图 电流控制型开关电源是一个电压、电流双闭环控制系统,内环为电流控制环,外环为电压控制环。当U O变化导致UF变化,或I变化导致US变化时,从而改变UO,达到输出电压稳定的目的。 电流型控制芯片UC3842 UC3842 采用固定工作频率脉冲宽度可控调制方式,共有8 个引脚,各脚功能如下:①脚是误差放大器的输出端,外接阻容元件用于改善误差放大器的增益和频率特性;②脚是反馈电压输入端,此脚电压与误差放大器同相端的2.5V 基准电压进行比较,产生误差电压,从而

单闭环电压负反馈调速

单闭环电压负反馈调速系统的动态建模与仿真 学院: 姓名: 学号: 时间:

目录 一、课题要求.............................................................................................................................. - 1 - 1.设计题目........................................................................................................................ - 1 - 2.设计内容........................................................................................................................ - 1 - 3.设计要求........................................................................................................................ - 1 - 4 . 控制对象参数................................................................................................................ - 1 - 二、设计方案.............................................................................................................................. - 2 - 1、概述................................................................................................................................ - 2 - 2、电压负反馈直流调速系统的原理................................................................................ - 2 - 三、参数计算.............................................................................................................................. - 3 - 四、单闭环电压负反馈调速系统的仿真模型.......................................................................... - 4 - 1. 单闭环电压负反馈调速系统的仿真模型的建立......................................................... - 4 - 2.开环带扰动无电压负反馈调速系统的仿真结果........................................................... - 5 - 3. 单闭环不带扰动电压负反馈调速系统的仿真结果..................................................... - 5 - 4. 单闭环带扰动电压负反馈调速系统的仿真结果......................................................... - 6 - 五、实训心得:.......................................................................................................................... - 8 -

反馈控制电路

反馈控制电路 一、自动增益控制(AGC) 1、AGC电路的作用与组成 (1) 作用 当输入信号变化时,保证输出信号幅度基本恒定。包括: ①能够产生一个随输入信号大小而变化的控制电压,即AGC电压(±UAGC); ②利用AGC电压去控制某些级的增益,实现AGC。 (2) 组成——具有AGC电路的接收机框图 2、AGC电压的产生 (1) 平均值式AGC电路 中频信号电压经检波后,除得到所需音频信号之外,还得到一个平

均直流分量。音频信号由RL2两端取出。平均直流分量(反映了输入信号的幅度)从C3两端取出,经低通后,作为AGC电压,加到中放管上去控制中放的增益。

(2) 延迟式AGC电路 V1、R7和C4组成AGC检波电路,运放A为直流放大器,UREF为延迟电平。当输入信号较小时,AGC不起作用。当输入信号较大时,AGC将起作用。可见,该AGC电路具有延迟功能

3、实现AGC的方法 (1) 改变发射极电流IE 正向AGC 反向AGC (2) 改变放大器负载 由于放大器的增益与负载密切相关,因此通过改变负载就可以控制放大器的增益 。 (3) 改变放大器的负反馈深度 通过控制负反馈的深度来控制放大器的增益。

6.2 自动频率控制(AFC) 1、AFC的工作原理 2、组成 3、工作原理 4、AFC的应用:调幅接收机中的AFC系统 具有AFC电路的调频发射机一、AFC——电路组成

作用:自动控制振荡器频率稳定 组成:鉴相器、低通滤波器和压控振荡器 标准频率fr;输出频率fo;误差电压uD(t) ;直流控制电压 uC(t)。 二、AFC——工作原理 压控振荡器的输出频率fo与标准频率fr在鉴频器中进行比较,当fo=fr时,鉴频器无输出,压控振荡器不受影响;当fo≠fr时,鉴频器即有误差电压输出,其大小正比于(fo-fr),经低通滤波器滤除交流成分后,输出的直流控制电压uc(t),加到压控振荡器上,迫使压控振荡器的振荡频率fo与fr接近,而后在新的振荡频率基础上,再经历上述同样的过程,使误差频率进一步减小,如此循环下去,最后fo和fr的误差减小到某一最小值△f时,自动微调过程停止,环路

电压串联反馈原理

放大电路负反馈的原理特点 一、提高放大倍数的稳定性 引入负反馈以后,放大电路放大倍数稳定性的提高通常用相对变化量来衡量。 因为: 所以求导得: 即: 二、减小非线性失真和抑制噪声 由于电路中存在非线性器件,会导致输出波形产生一定的非线性失真。如果在放大电路中引入负反馈后,其非线性失真就可以减小。 需要指出的是:负反馈只能减小放大电路自身产生的非线性失真,而对输入信号的非线性失真,负反馈是无能为力的。 放大电路的噪声是由放大电路中各元器件内部载流子不规则的热运动引起的。而干扰来自于外界因素的影响,如高压电网、雷电等的影响。负反馈的引入可以减小噪声和干扰,但输出端的信号也将按同样规律减小,结果输出端的信号与噪声的比值(称为信噪比)并没有提高。 三、负反馈对输入电阻的影响 由于负反馈可以提高放大倍数的稳定性,所以引入负反馈后,在低频区和高频区放大倍数的下降程度将减小,从而使通频带展宽。 引入负反馈后,可使通频带展宽约(1+AF)倍。 四、负反馈对输入电阻的影响 (a)串联反馈(b)并联反馈

图1 求输入电阻 1、串联负反馈使输入电阻提高 引入串联负反馈后,输入电阻可以提高(1+AF)倍。即: 式中:ri为开环输入电阻 rif为闭环输入电阻 2、并连负反馈使输入电阻减小引入并联负反馈后,输入电阻减小为开环输入电阻的 1/(1+AF )倍。 即: 五、负反馈对输出电阻的影响 1、电压负反馈使输出电阻减小 放大电路引入电压负反馈后,输出电压的稳定性提高了,即电路具有恒压特性。 引入电压负反馈后,输出电阻rof减小到原来的1/(1+AF)倍。 2、电流负反馈使输出电阻增大 放大电路引入电流负反馈后,输出电流的稳定性提高了,即电路具有恒流特性。 引入电流负反馈后,使输出电阻rof增大到原来的(1+AF)倍。 3、负反馈选取的原则 (1)要稳定静态工作点,应引入直流负反馈。 (2)要改善交流性能,应引入交流负反馈。 (3)要稳定输出电压,应引入电压负反馈; 要稳定输出电流,应引入电流负反馈。 (4)要提高输入电阻,应引入串联负反馈; 要减小输入电阻,应引入并联负反馈。 六、深度负反馈的特点 1、串联负反馈的估算条件 反馈深度(1+AF)>>1的负反馈,称为深度负反馈。通常,只要是多级负反馈放大电路,都可以认为是深度负反馈.此时有: 因为:, 所以:xi≈xf 估算条件:

电压电流反馈控制模式

电压、电流的反馈控制模式 现在的高频开关稳压电源主要有五种PWM反馈控制模式。电源的输入电压、电流等信号在作为取样控制信号时,大多需经过处理。针对不同的控制模式其处理方式也不同。下面以由VDMOS开关器件构成的稳压正激型降压斩波器为例,讲述五种PWM反馈控制模式的发展过程、基本工作原理、电路原理示意图、波形、特点及应用要`氪,以利于选择应用及仿真建模研究。 (1)电压反馈控制模式 电压反馈控制模式是20世纪60年代后期高频开关稳压电源刚刚开始发展而采用的一种控制方法。该方法与一些必要的过电流保护电路相结合,至今仍然在工业界被广泛应用。如图1(a)所示为Buck降压斩波器的电压模式控制原理图。电压反馈控制模式只有一个电压反馈闭环,且采用的是脉冲宽度调制法,即将经电压误差放大器放大的慢变化的直流采样信号与恒定频率的三角波上斜坡信号相比较,经脉冲宽度调制得到一定宽度的脉冲控制信号,电路的各点波形如图1(a)所示。逐个脉冲的限流保护电路必须另外附加。电压反馈控制模式的优点如下。 ①PWM三角波幅值较大,脉冲宽度调节时具有较好的抗噪声裕量。 ②占空比调节不受限制。 ③对于多路输出电源而言,它们之间的交互调节特性较好。 ④单一反馈电压闭环的设计、调试比较容易。 ⑤对输出负载的变化有较好的响应调节。 电压反馈控制模式的缺点如下。 ①对输入电压的变化动态响应较慢。当输入电压突然变小或负载阻抗突然变小时,因为主电路中的输出电容C及电感L有较大的相移延时作用,输出电压的变小也延时滞后,而输出电压变小的信息还要经过电压误差放大器的补偿电路延时滞后,才能传至PWM比较器将脉宽展宽。这两个延时滞后作用是动态响应慢的主要原因。 ②补偿网络设计本来就较为复杂,闭环增益随输入电压而变化的现象使其更为复杂。 ③输出端的LC滤波器给控制环增加了双极点,在补偿设计误差放大器时,需要将主极点低频衰减,或者增加一个零点进行补偿。 ④在控制磁芯饱和故障状态方面较为麻烦和复杂。 改善及加快电压模式控制动态响应速度的方法有两种:一种是增加电压误差放大器的带宽,以保证其具有一定的高频增益。但是这样容易受高频开关噪声干扰的影响,需要在主电路及反馈控制电路上采取措施进行抑制或同相位衰减平滑处理。另一种是采用电压前馈控制模式。电压前馈控制模式的原理图如图1(b)所示。用输入电压对电阻、电容(Rt、Ctt)充电,以产生具有可变化的上斜坡的三角波,并且用它取代传统电压反馈控制模式中振荡器产生的固定三角波。此时输入电压变化能立刻在脉冲宽度的变化上反映出来,因此该方法明显提高了由输入电压的变化引起的动态响应速度。在该方法中对输入电压的前馈控

电压负反馈和电流正反馈自动调速系统的选择

电压负反馈和电流正反馈自动调速系统的选择 转速负反馈自动调速系统,其调速指标是很好的,但是它需要一个测速发电机,增加了设备投资,维修较麻烦,有时安装也困难。从A-G-M开环系统中可以看出,当负载电流增加时,由于发电机端电压的下降以及发电机、电动机换向绕组压降及电动机电枢压降的增加,使电动机反电动势及转速下降,可用发电机端电压作为负反馈以维持发电机电压近似不变;可用负载电流作为正反馈以补偿换向绕组及电动机电枢绕组压降。这样既可得到近似转速负反馈的性能。 下图为电压负反馈调速系统电路图。 图2.5.1电压负反馈系统电路图 Figure 2.5 .1 negative feedback system voltage circuit 发电机电枢两端并联电阻RV,从中引出反馈电压UV,此即为信号引出点。Rv的选择应使流进其电流而引起发电机内部压降可略而不计。UV与给定电压Us是反向的,因而构成了电压负反馈环节。由于是电压反馈,故应选择高阻控制绕组作为CI。图中Rsa是给定回路附加电阻。 式中, 为给定电位器分压比;

为电压负反馈系数; 上图中各环节的电压平衡方程式为 式中,分别为发电机及电动机电枢绕组及换向绕组电阻; 为主回路换向绕组的电阻和。 根据框图,写出电压负反馈调速系统静特性方程: 式中,KV为电压负反馈闭环系统开环放大倍数

图2.5.2具有电压负反馈及电流正反馈系统电路图 Figure 2.5 .2 a negative feedback voltage and current positive feedback system circuit 从图2.5(b)可得静特性方程式

DCDC电流反馈

DCDC电流反馈 电流模式最常见的方法就是采样Nmos管的正向压降,(或者用一个采样电阻和他串联),这个采样电压经过电流采样放大器后就得到电压斜坡,即电压越大,斜坡越大;电压越小,斜坡越小;(这个怎么有点类似于电压前馈的作用)。PWM比较器的另一个引脚接误差放大器的输出; 注意上面是一个锯齿波,因此从P管才电流,只有D的时间导通,所以是锯齿波不是三角波。另外还要在加上Vramp,这个会改变,电压变化的斜率。保持稳定。 当斜坡电压达到控制电压是,PWM比较器输出低电平;从而将上管关闭,进而减小上管导通的时间,从而减小电流流过的大小; 从这个上面的过程可以看到,这个过程中LC二阶网络不参与整个环路,因此电感L并不存在于二阶滤波网络中,就已发挥控制作用了。所以这个电流反馈的网络控制形式和电压反馈还是有区别的,特别是在电流环路中,没有了LC二阶的谐振点; 电感/开关管的斜坡电流和PWM比较器的输入电压斜坡成比例,因此电压和电流可以相互转换; 次谐波不稳定的发生条件:占空比接近或者大于50%,变换器工作在CCM模式,通常在最小输入电压时,尽力排除发生次谐波不稳定的可能性; 增益图中有个莫名的尖峰,这就是次谐波不稳定所导致的。这一点远大于穿越频率。 从电路上分析:那么需要引入的就是foundamentals of power eclectrics chapter 11.

那么之所以选择上面的电流模式分解, 第一步是说明在电流连续模式,且稳定的模式下,是怎么的情况,得到斜率和占空比的关系;第二步是说明在电流连续的模式,且不稳定的模式下,是怎么情况,由于电流反馈是在电流不稳定有扰动的情况下,那么就是在第二种情况下,所以要求D小于0.5; 所以从这个地方可以看出来,如果在电压输输出高的情况下,比如1.6V的时候,可能出现 不稳定的情况,通常电压都是在低压的情况0.9,1.8v,一般不会出现这种情况。

逆变器的两种电流型控制方式

逆变器的两种电流型控制方式 摘要:研究分析了逆变器的两种双环瞬时反馈控制方式——电流型准PWM控制方式和三态DPM电流滞环跟踪控制方式,介绍其工作原理,分析比较其动态和静态性能,并给出具体实现电路及系统仿真结果。 关键词:PWM逆变器功率变换器控制 On Two Types of Current Programmed Control Topologies for Inverters Abstract:This paper presents a comparative study on two types of current programmed instant control modes for inverters, PWM and hysteresis type.Principle, static and dynamic performance are discussed. Realization circuits and simulation results are presented. Keywords:PWM, Inverter, Power converter, Control 中图法分类号:TN86文献标识码:A文章编号:0219 2713(2000)12-642-03 电流型双环控制技术在DC/DC变换器中广泛应用,较单电压环控制可以获得更优良的动态和静态性能[3]。其基本思路是以外环电压调节器的输出作为内环电流给定,检测电感(或开关)电流与之比较,再由比较器的输出控制功率开关,使电感和功率开关的峰值电流直接跟随电压调节器的输出而变化。如此构成的电流、电压双闭环变换器系统瞬态性能好、稳态精度高,特别是具有内在的对功率开关电流的限流能力。逆变器(DC/AC变换器)由于交流输出,其控制较DC/DC变换器复杂得多,早期采用开关点预置的开环控制方式[1],近年来瞬时反馈控制方式被广泛研究,多种各具特色的实现方案被提出,其中三态DPM(离散脉冲调制)电流滞环跟踪控制方式性能优良,易于实现。本文将电流型PWM控制方式成功用于逆变器控制,介绍其工作原理,与电流滞环跟踪控制方式比较动态和静态性能,并给出仿真结果。 1三态DPM电流滞环跟踪控制方式 电流滞环跟踪控制方式有多种实现形式[1,2,4,5],其中三态DPM电流滞环跟踪控制性能较好且易于实现[1]。参照图1,它的基本工作原理是:检测滤波电感电流iL,产生电流反馈信号if。if与给定电流ig相比较,根据两个电流瞬时值之差来决定单相逆变桥的4个开关在下一个开关周期中的导通情况:ig-if>h时(h见图1,为电流滞环宽度,可按参考文献[1]P64式5 2选取)S1、S4导通,UAB=+E,+1状态;ig-if-h时S2、S3导通,UAB="-"E,-1状态;|ig-if|h时S1、S3或S2、S4导通,UAB="0,"0状态。两个D触发器使S1~S4的开关状态变化只能发生在周期性脉冲信号CLK(频率2f)的上升沿,也就是说开关点在时间轴上是离散的,且最高开关频率为f。 仿真和实验表明,iL正半周,逆变器基本上在+1和0状态间切换,而iL负半周,逆变器基本上在-1和0状态间切换,只有U0过零点附近才有少量的+1和-1之间的状态跳变,从而使输出脉动减小。 2电流型准PWM控制方式

电流电压串联并联负反馈分析

一.电压串联负反馈: 图Z0303(a)为两级电压串联负反馈放大电路,图(b)是它的交流等效电路方框图。 1.反馈类型的判断 (1)找出联系输出回路与输入回路的反馈元件。图Z0303(a)中Rf、Cf、Re1是联系输出回路与输入回路的元件,故Rf、Cf、Re1是反馈元件,它们组成反馈网络,引入级间反馈。 (2)判断是电压反馈还是电流反馈。 可用两种方法来判别,一是反馈网络直接接在放大电路电压输出端,故为电压反馈;二是令Uo = 0,因Uf由Rf、Re1 对Uo分压而得,故Uf= 0反馈消失,所以为电压反馈; (3)判别是串联反馈还是并联反馈。 由图Z0303(a)可以看出:Ube = Ui - Uf 即输入端反馈信号与输入信号以电压形式相迭加,故为串联反馈,也可令Ui=0,此时Uf仍能作用到放大电路输入端,故为串联反馈;还可以根据反馈信号引至共射电路发射极则为串联反馈。 (4)判别反馈极性。 假定Ui为+,则经两级共射电路放大后,Uo为+,经Rf与Re1 分压得到的Uf也为+,结果使得放大电路有效输入信号减弱,故为负反馈。 综上判断结果、该电路为电压串联负反馈放大电路。 2、反馈对输出电量的稳定作用 放大电路引入电压负反馈后,能够使输出电压稳定。任何外界因素引起输出电压不稳时,输出电压的变化将通过反馈网络立即回送到放大电路的输入端,并与原输入信号进行比较,得出与前一变化相反的有效输人信号,从而使输出电压的变化量得到削弱,输出电压便趋于稳定。 可见,负反馈使放大电路具有了自动调节能力。电压负反馈能够稳定输出电压。 3、信号源内阻对串联反馈效果的影响 由上面的讨论可见,对串联反馈Ube = Ui - Uf ,显然,UI越稳定,Uf 对Ube 的影响就越强,控制作用就越灵敏。当信号源内阻Rs = 0时,信号源为恒压源,Us就为恒定值,则Uf的增加量就全部转化为Ube 的减小量,此时,反馈效果最强。因此,串联反馈时,Rs 越小越好,或者说串联反馈适用于信号源内阻Rs 小的场合。 4、放大倍数及反馈系数的含义 对电压串联负反馈电路, Xi = Ui, Xo = Uo,Xf = Uf 故: AUf、FU,分别称为闭环电压放大倍数和电压反馈系数。

反馈电路详解

第六章反馈放大电路 第一节反馈的概念和分类 1. 反馈的基本概念 2. 负反馈放大电路的类型 1.1 反馈的基本概念基本概念反馈是指把输出电压或输出电流的一部分或全部通过反馈网络,用一定的方式送回到放大电路的输入回路,以影响输入电量的过程。 1.2 反馈的基本类型反馈的分类: ( 1)反馈产生的途径:内部反馈和外部反馈。 2)反馈信号:直流反馈和交流反馈 反馈信号中只含有直流分量的称为直流反馈,反馈信号中只含有交流分量的称为交流反馈。 3)反馈的作用效果:负反馈与正反馈 反馈信号X F送回到输入回路与原输入信号X I 共同作用后,使净输入信号X ID比没有引入反馈时减小,有X ID=X I -X F, 称这种反馈为负反馈;另一种是使净输入信号X ID比没有引入反馈时增加了,有 X ID=X I- X F,称这种反馈为正反馈。 反馈极性的判定——瞬时极性法, 步骤: (1)首先在基本放大器输入端设定一个递增( 或递减) 的净输入信号, (2)在上述设定下, 推演出反馈信号的变化极性。 (3)判定在反馈信号的影响下, 净输入信号的变化极性。若该极性与前面设定的变化极性相反则为负反馈;若相同, 则为正反馈。 (4)反馈的信号取样的方式:电压反馈与电流反馈 (a) 电压反馈反馈信号是输出电压的一部分或全部,即反馈信号与输出电压成正比,称为电压反馈, (b) 电流反馈如果反馈信号是输出电流的一部分或全部,即反馈信号与输出电流成正比,称为电流反馈,。 (c) 判断是电压反馈还是电流反馈的方法判断是电压反馈还是电流反馈时,常用“输出短路法”,即假设负载短路 ( R L=0),使输出电压 v o=0,看反馈信号是否还反馈信号还存在。若存在,则说明反馈信号与输出电压成比例,是电压反馈;若反馈信号不存在了,则说明反馈信号不是与输出电压成比例,而是和输出电流成比例,是电流反馈。 判定方法之二——按电路结构判定:在交流通路中, 若放大器的输出端和反馈网络的取样端处在同一个放大器件的同一个电极上, 则为电压反馈;否则是电流反馈。

模拟电路自测题4(反馈与负反馈)

反馈和负反馈放大电路 1. 放大电路中有反馈的含义是___B____。 (a) 输出与输入之间有信号通路(b) 电路中存在反向传输的信号通路 (c) 除放大电路以外还有信号通道 2. 根据反馈的极性,反馈可分为___C____反馈。 (a) 直流和交流(b) 电压和电流(c) 正和负 3. 根据反馈信号的频率,反馈可分为____A___反馈。 (a) 直流和交流(b) 电压和电流(c) 正和负 4. 根据取样方式,反馈可分为_____B__反馈。 (a) 直流和交流(b) 电压和电流(c) 正和负 5. 根据比较的方式,反馈可分为___C____反馈。 (a) 直流和交流(b) 电压和电流(c) 串联和并联 6. 负反馈多用于____A___。 (a) 改善放大器的性能(b) 产生振荡(c) 提高输出电压 7. 正反馈多用于____B___。 (a) 改善放大器的性能(b) 产生振荡(c) 提高输出电压 8. 直流负反馈是指___B____。 (a) 只存在于直接耦合电路中的负反馈(b) 直流通路中的负反馈 (c) 放大直流信号才有的负反馈 9. 交流负反馈是指____B___。 (a) 只存在于阻容耦合电路中的负反馈(b) 交流通路中的负反馈 (c) 变压器耦合电路中的反馈 10.直流负反馈在电路中的主要作用是__C_____。 (a) 提高输入电阻(b) 增大电路增益(c) 稳定静态工作点 11.若反馈信号正比于输出电压,该反馈为___C____反馈。 (a) 串联(b) 电流(c) 电压 12.若反馈信号正比于输出电流,该反馈为____B___负反馈。 (a) 并联(b) 电流(c) 电压 13.当电路中的反馈信号以电压的形式出现在电路输入回路的反馈称为___B____反馈。 (a) 并联(b) 串联(c) 电压 14.当电路中的反馈信号以电流的形式出现在电路输入回路的反馈称为___A____反馈。 (a) 并联(b) 串联(c) 电压 15.电压负反馈可以____A___。 (a) 稳定输出电压(b) 稳定输出电流(c) 增大输出功率 16.电流负反馈可以____B___。 (a) 稳定输出电压(b) 稳定输出电流(c) 增大输出功率 17.对于放大电路,所谓闭环是指____ C_____。 (a) 接入负载(b) 接入信号源(c) 有反馈通路 18. 串联负反馈____A_____。 (a) 提高电路的输入电阻(b) 降低电路的输入电阻(c) 提高电路的输出电压 19. 并联负反馈____B_____。 (a) 提高电路的输入电阻(b) 降低电路的输入电阻(c) 提高电路的输出电压 20. 电压并联负反馈____B_____。 (a) 提高电路的输出电阻(b) 降低电路的输出电阻(c) 提高电路的输出电压 21. 电流串联负反馈____A_____。 (a) 提高电路的输出电阻(b) 降低电路的输出电阻(c) 提高电路的输出电压

运动控制系统仿真实验报告——转速电流反馈控制直流调速系统的仿真

运动控制系统仿真实验报告 ——转速、电流反馈控制直流调速系统的仿真

双闭环直流调速系统仿真 对例题3.8设计的双闭环系统进行设计和仿真分析,仿真时间10s 。具体要求如下: 在一个由三相零式晶闸管供电的转速、电流双闭环调速系统中,已知电动机的额定数据为:60=N P kW , 220=N U V , 308=N I A , 1000=N n r/min , 电动势系数e C =0.196 V·min/r , 主回路总电阻R =0.18Ω,变换器的放大倍数s K =35。电磁时间常数l T =0.012s,机电时间常数m T =0.12s,电流反馈滤波时间常数i T 0=0.0025s,转速反馈滤波时间常数n T 0=0.015s 。额定转速时的给定电压(U n * )N =10V,调节器ASR ,ACR 饱和输出电压U im * =8V,U cm =7.2V 。 系统的静、动态指标为:稳态无静差,调速范围D=10,电流超调量i σ≤5% ,空载起动到额定转速时的转速超调量n σ≤10%。试求: (1)确定电流反馈系数β(假设起动电流限制在1.3N I 以内)和转速反馈系数α。 (2)试设计电流调节器ACR.和转速调节器ASR 。 (3)在matlab/simulink 仿真平台下搭建系统仿真模型。给出空载起动到额定转速过程中转速调节器积分部分不限幅与限幅时的仿真波形(包括转速、电流、转速调节器输出、转速调节器积分部分输出),指出空载起动时转速波形的区别,并分析原因。 (4)计算电动机带40%额定负载起动到最低转速时的转速超调量σn 。并与仿真结果进行对比分析。 (5)估算空载起动到额定转速的时间,并与仿真结果进行对比分析。 (6)在5s 突加40%额定负载,给出转速调节器限幅后的仿真波形(包括转速、电流、转速调节器输出、转速调节器积分部分输出),并对波形变化加以分析。

7、实验七:电压串联负反馈放大电路

湖北科技学院计算机科学与技术学院 《电路与电子技术》实验报告学号姓名实验日期: 实验题目:电压串联负反馈放大电路 【实验目的】 1.加深理解负反馈对放大电路性能的影响 2.掌握放大电路开环与闭环特性的测试方法 【实验器材】 模拟电子线路实验箱一台 双踪示波器一台 万用表一台 连线若干 其中,模拟电子线路实验箱用到信号发生器、直流稳压电源模块,元器件模组以及“电压串联负反馈放大电路”模板。 【实验原理】 1.参考电路如图1-1所示。 负反馈有四种类型:电压串联负反馈,电压并联负反馈,电流串联负反馈,电流并联负反馈。本实验电路由两级共射放大电路引入电压串联负反馈,构成负反馈放大器。其中反馈电阻RF=10KΩ。 2.电压串联负反馈对放大器性能的影响 (1)引入负反馈降低了电压放大系数

式中,是反馈系数,,是放大器不引入级间反馈 时的电压放大倍数(即,但要考虑反馈网络阻抗的影响),其值可由图1-2所示的交流等效电路求出。 设,则有 式中:第一级交流负载电阻 第二级交流负载电阻 从式中可知,引入负反馈后,电压放大倍数比没有负反馈时的电压放大倍数降低了()倍,并且愈大,放大倍数降低愈多。 图1-2 (2)负反馈可提高放大倍数的稳定性

该式表明:引入负反馈后,放大器闭环放大倍数的相对变化量比开环放大倍数的 相对变化量减少了(1 AF )倍,即闭环增益的稳定性提高了(1 AF )倍。 (3)负反馈可扩展放大器的通频带 引入负反馈后,放大器闭环时的上、下截止频率分别为: 可见,引入负反馈后,向高端扩展了倍,从而加宽了通频带。 (4)负反馈对输入阻抗、输出阻抗的影响 负反馈对输入阻抗、输出阻抗的影响比较复杂。不同的反馈形式,对阻抗的影响不一样。一般而言,串联负反馈可以增加输入阻抗,并联负反馈可以减小输入阻抗;电压负反馈将减小输出阻抗,电流负反馈可以增加输出阻抗。图1-1电路引入的是电压串联负反馈,对整个放大器电路而言,输入阻抗增加了,输出阻抗降低了。它们的增加和降低程度与反馈深度(1 AF )有关,在反馈环内满足 (5)负反馈能减小反馈环内的非线性失真 综上所述,在放大器引入电压串联负反馈后,不仅可以提高放大器放大倍数的稳定性,还可以扩展放大器的通频带,提高输入电阻和降低输出电阻,减小非线性失真。 【实验内容】 1、负反馈放大器开环和闭环放大倍数的测试 (1)开环电路 ①按图1-1接线,F R 先不接入。 ②输入端接入KHz f mV V i 1,1==的正弦波(注意输入mV 1信号采用输入端衰减法)。调整接线和参数使输出不失真且无振荡。 ③按表2.1要求进行测量并填表。 ④根据实测值计算开环放大倍数。 (2).闭环电路 ①接通f R 。 ②按表2.1要求测量并填表,计算vf A 。

电流模式与电压模式

电源变换器中电流模式和电压模式相互转化 adlsong 摘要摘要::本文先简单的介绍了电流模式和电压模式的工作原理和这两种工作模式它们各自的优缺点;然后探讨了理想的电压模式利用输出电容ESR 取样加入平均电流模式和通过输入电压前馈加入电流模式的工作过程。也讨论了电流模式在输出轻载或无负载时,在使用大的电感或在占比大于0.5加入斜坡补偿后,系统会从电流模式进入电压模式工作过程。 关键词关键词::电流模式,电压模式,转化,斜坡补偿 Mutual Variation between Current Mode and V oltage Mode in Power Supply Converter (AOS Semiconductor Co., Ltd., Shanghai 201203) Abstract: The operation principle and features of current mode and voltage mode are introduced in this paper. The converter at voltage mode will own good dynamic performances of current mode when current signal via ESR of output capacitance or input voltage forward feedback is imposed into control loop of voltage mode. The converter at current mode will go into cycle. Key words: 目前,电压模式和电流模式是开关电源系统中常用的两种控制类型。通常在讨论这两种工作模式的时候,所指的是理想的电压模式和电流模式。电流模式具有动态响应快、稳定性好和反馈环容易设计的优点,其原因在于电流取样信号参与反馈,抵消了由电感产生的双极点中的一个极点,从而形成单阶的系统;但正因为有了电流取样信号,系统容易受到电流噪声的干扰而误动作。电压模式由于没有电流取样信号参与反馈,系统也就不容易受到电流噪声的干扰。 然而,在实际的应用中,通常看似为电压模式的开关电源系统,即系统没有使用电流取样电阻检测电流信号,但也会采用其它的方式引入一定程度的电流反馈,从而提高系统动态响,如:利用输出电容ESR 取样加入平均电流模式,通过输入电压前馈加入电流模式。另一方面,看似为电流模式的开关电源系统,在输出轻载或无负载时,系统会从电流模式进入电压模式。在使用大的电感时,或在占比大于0.5加入斜坡补偿后,系统会从电流模式向电压模式过渡。本文将讨论这些问题,从而帮助工程师在遇到系统不稳定的时候从理论上分析,找到解决问题的办法。 1 电压模式的工作原理电压模式的工作原理 电压模式的控制系统如图1所示。反馈环路只有一个电压环,电压外环包括电压误差放大器,反馈电阻分压器和反馈补偿环节。电压误差放大器的同相端接到一个参考电压Vref,反馈电阻分压器连接到电压误差放大器反相端V FB ,反馈环节连接到V FB 和电压误差放大器的输出端V C 。输出电压微小的变化反映到V FB 管脚,V FB 管脚电压与参考电压的差值被电压误差放大器放大,然后输出,输出值为V C 。

相关主题
文本预览
相关文档 最新文档