当前位置:文档之家› 反馈电路详解

反馈电路详解

反馈电路详解
反馈电路详解

第六章反馈放大电路

第一节反馈的概念和分类

1.反馈的基本概念

2.负反馈放大电路的类型

反馈的基本概念

基本概念

反馈是指把输出电压或输出电流的一部分或全部通过反馈网络,用一定的方式送回到放大电路的

输入回路,以影响输入电量的过程。

反馈的基本类型

反馈的分类:

(1)反馈产生的途径:内部反馈和外部反馈。

(2)反馈信号:直流反馈和交流反馈

反馈信号中只含有直流分量的称为直流反馈,反馈信号中只含有交流分量的称为交流反馈。

(3)反馈的作用效果:负反馈与正反馈

反馈信号X F送回到输入回路与原输入信号X I共同作用后,使净输入信号X ID比没有引入反馈时减小,有X ID=X I-X F,称这种反馈为负反馈;另一种是使净输入信号X ID比没有引入反馈时增加了,有

X ID=X I-X F,称这种反馈为正反馈。

反馈极性的判定——瞬时极性法, 步骤:

(1) 首先在基本放大器输入端设定一个递增(或递减)的净输入信号,

(2) 在上述设定下, 推演出反馈信号的变化极性。

(3) 判定在反馈信号的影响下, 净输入信号的变化极性。若该极性与前面设定的变化极性相反, 则为负反馈;若相同, 则为正反馈。

(4)反馈的信号取样的方式:电压反馈与电流反馈

(a)电压反馈

反馈信号是输出电压的一部分或全部,即反馈信号与输出电压成正比,称为电压反馈,

(b)电流反馈

如果反馈信号是输出电流的一部分或全部,即反馈信号与输出电流成正比,称为电流反馈,。

(c)判断是电压反馈还是电流反馈的方法

判断是电压反馈还是电流反馈时,常用“输出短路法”,即假设负载短路(R L=0),使输出电压

v o=0,看反馈信号是否还反馈信号还存在。若存在,则说明反馈信号与输出电压成比例,是电压反

馈;若反馈信号不存在了,则说明反馈信号不是与输出电压成比例,而是和输出电流成比例,是电流

反馈。

判定方法之二——按电路结构判定:在交流通路中,若放大器的输出端和反馈网络的取样端处在同一个放大器件的同一个电极上, 则为电压反馈;否则是电流反馈。

(5)按照反馈信号与输入信号的连接方式来分,有串联反馈与并联反馈

(a).串联反馈

在串联反馈中,反馈信号和输入信号是在输入端以电压方式求和的。

(b) 并联反馈

判定方法1在并联反馈中,反馈信号和输入信号是在输入端以电流方式求和的。

判定方法2:对于交变分量而言, 若信号源的输出端和反馈网络的比较端接于同一个放大器件的同一个电极上, 则为并联反馈;否则, 为串联反馈。

反馈电路的组态

反馈网络在放大电路输出端有电压和电流两种取样方式,在放大电路输入端有串联和并联两种求和方式,因此可以构成四种组态(或称类型)的负反馈放大电路,即

电压串联负反馈;电压并联负反馈;

电流串联负反馈;电流并联负反馈。

电压串联负反馈放大电路

反馈作用:电压负反馈的重要特点是具有稳定输出电压的作用。电压负反馈放大电路具有较好的恒压输出特性。

电压并联负反馈放大电路

反馈作用:该电路也具有稳定输出电压的作用。例如,当大小一定,由于负载电阻减小而使的大小下降时,该电路能自动进行调节过程。

为增强负反馈的效果,电压并联负反馈放大电路宜采用内限很大的信号源,即电流源或近似电流源。综合电压并联负反馈放大电路的输入恒流与输出恒压的特性,可将其称为电流控制的电压源,或电流-电压变换器。

电流串联负反馈放大电路

反馈作用:电流负反馈的特点是维持输出电流基本恒定,例如,当V i一定,由于负载电阻R L变动(或b值下降)使输出电流减小时,引入负反馈后,电路将进行如下自动调整过程:由此说明电流负反馈具有近似于恒流的输出特性,即在V i不变(R s=0,V i=V s)的情况下,当R L变化时,I o基本不变,放大电路的输出电阻趋于穷大。因此,可将电流串联负反馈放大电路称为电压控制的电流源,或电压-电流变换器。

电流并联负反馈放大电路

反馈作用:电流并联负反馈放大电路可以稳定输出电流,也称为电流控制的电流源。

第二节 负反馈放大电路的计算方法

【教学目的】掌握负反馈放大电路计算方法;

【教学重点】负反馈放大电路增益的一般表达式及计算方法; 【教学难点】负反馈放大电路增益的计算方法 【教学方法及手段】多媒体辅助教学; 【课外作业】、 、 、 、 【学时分配】2学时 【自学内容】 【教学内容】

1. 负反馈放大器的方框图

2. 负反馈放大器的一般表达式

3. 负反馈放大电路的基本放大电路

4. 负反馈放大电路的基本放大电路的计算方法

5.

深度负反馈条件下的近似计算

负反馈放大器的方框图

反馈放大器的方框图

负反馈放大器的一般表达式 定义: 开环放大倍数; 反馈系数;

叫闭环放大倍数。

因为 所以 (1+ )是衡量反馈程度的重要指标。负反馈放大电路所有性能的改善程度都与(1+ )

有关。通常把 称为反馈深度。

负反馈放大电路的基本放大电路

1.画出反馈放大电路的小信号等效电路

求r OF 的法则:如是电压反馈,则含放大电路的输出节点短路(即令 );如是电流反馈,则令放大电路的输出回路开路(令 )。r OF 体现了反馈网络对放大电路输入端的负载效应。 求r iF 的法则是,如是串联反馈,则令放大电路的输入回路开路(

);如是并联反馈,则

令放大电路的输入节点对地短路(令 )。

2.求反馈放大电路的增益

(1)求开环增益

及反馈系数

净输入X f

反馈量

输出量

输入量+基本放大电路

A

X o

反馈网络

F

X i

i X ′

'

i o

X X A ='o f X X F =i o f X X A =,'

''i

i f i i FAX X X X X +=+=FA

A X X A i o f +==1

由反馈放大电路的小信号等效电路求开环增益 时,只要令反馈网络等效电路中的受控源

即可。这样处理符合从反馈放大电路中分离出基本放大电路(即开环状态)的原则:既去掉

反馈的作用,同时又保留了反馈网络对基本放大电路输入和输出端的负载效应。

(2)由 ,求得

深度负反馈条件下的近似计算

近似计算的根据 根据

的定义 ,

在 中,若 , 则 即 所以有

此式表明,当 时,反馈信号 与输入信号 相差甚微,净输入信号 甚小,因而有

对于串联负反馈有 (虚短), ;对于并联负反馈有 、, (虚断)。利用“虚短”、“虚断”的概念可以以快速方便地估算出负反馈放大电路的闭环增益 或闭环电

压增益 。

近似计算的方法

1.判别反馈类型,正确识别并画出反馈网络。注意电压取样时不要把直接并在输出口的电阻计入反馈网络;电流求和时不要把并在输入口的电阻计入反馈网络。

2.在反馈网络输入口标出反馈信号:电压求和为开路电压f v ,电流求和时为短路电流f i

,再由

反馈网络求出反馈系数F 。要注意标f v 时在反馈网络入口标上正下负;标f i

时必须在反馈网络入口以上端流入为参考方向。

3.求闭环增益 ,注意不同的反馈类型f A

的量纲不同。 4.由f A 求闭环源电压增益vsf A

电压取样电压求和时:

s f vsf v v

A A 0

== 电压取样电流求和时:00f vsf s s s s A v v A v i R R =

==

电流取样电压求和时:

00L vsf

f L

s s

v i R A A R v v ''

?'=== 电流取样电流求和时:

00

f L L vsf s s s s A R v i R A v i R R '''?=

==?

其中:0

i '是输出管的管端输出电流,即取样电流。 L R '是取样电流0i '过的输出负载电阻。 F A f 1≈

第三节负反馈对放大电路性能的影响及负反馈放大电路的稳定性问题【教学目的】正确理解负反馈对放大电路性能的改善和影响;正确理解判别负反馈放大电路稳定性的分析方法和自激振荡的消除方法

【教学重点】负反馈对放大电路性能的影响;

【教学难点】负反馈对放大电路输入电阻和输出电阻等性能的影响;

【教学方法及手段】多媒体辅助教学;

【课外作业】

【学时分配】 2学时;

【自学内容】

【教学内容】

1.负反馈对放大电路的增益稳定性、通频带、非线性失真、输入电阻和输出电阻等性能

的影响

2.产生自激振荡的原因

3.负反馈放大电路稳定性的定性分析

4.反馈放大电路稳定性的判断

5.负反馈放大电路中自激振荡的消除方法

负反馈对放大电路性能的影响

负反馈可提高增益的稳定性

即闭环增益几乎仅决定于反馈网络,而反馈网络通常由性能比较稳定的无源线性元件(如R、C等)组成,因而闭环增益是比较稳定的。

负反馈可扩展通频带

既然负反馈具有稳定闭环增益的作用,即引入负反馈后,由于各种原因引起的增益的变化都将减小,当然信号频率的变化引起的增益的变化也将减小。即扩展了通频带。

负反馈可减小非线性失真

负反馈能减小反馈环内产生的非线性失真,如输入信号本身就存在失真,负反馈则无能为力。

负反馈能抑制反馈环内的噪声和干扰

若噪声或干扰来自反馈环外,则加负反馈也无济无事。

负反馈对放大电路输入电阻的影响

负反馈对输入电阻的影响取决于反馈网络与基本放大电路在输入回路的连接方式,

串联负反馈使输入电阻增大

引入串联负反馈后,输入电阻R if是开环输入电阻R i的(1+ )倍。

并联负反馈使输入电阻减小

引入并联负反馈后,闭环输入电阻是开环输入电阻的1/(1+ )倍。

负反馈对放大电路输出电阻的影响

电压负反馈使输出电阻减小

电压负反馈取样于输出电压,又能维持输出电压稳定,即是说,输入信号一定时,电压负反馈的输出趋于一恒压源,其输出电阻很小。有电压负反馈时的闭环输出电阻为无反馈时开环输出电阻的

1/(1+ )①。反馈愈深,R of愈小。

电流负反馈使输出电阻增加

电流反馈取样于输出电流,能维持输出电流稳定,就是说,输入信号一定时,电流负反馈的输出趋于一恒流源,其输出电阻很大。有电流负反馈时的闭环输出电阻为无反馈时开环输出电阻的1/(1+

)倍。反馈愈深,R of愈大。

放大电路中引入负反馈的一般原则

为了稳定静态工作点,应到入直流负反馈;为了改善放大电路的动态性能,应引入交流负反馈(在中频段的极性)。

要求提高输入电阻或信号源内阻较小时,应引入串联负反馈;要求降低输入电阻或信号源内阻较大时,应引入并联反馈。

根据负载对放大电路输出电量或输出电阻的要求决定是引入电压还是电流负反馈。若负载要求提供稳定的电压信号(输出电阻小),则应引入电压负反馈;若负载要求提供稳定的电流信号,输出电阻大,则应引入电流负反馈。

在需要进行信号变换时,应根据四种类型的负反馈放大电路的功能选择合适的组态。

例如,要求实现电流——电压信号的转换时,应在放大电路中引入电压并联负反馈等。

负反馈对放大电路性能的影响只局限于反馈环内,反馈回路未包括的部分并不适用。性能的改善

程度均与反馈深度有关,但并是越大越好。因为都是频率的通数,对于某些电路来说,在一些频率下产生的附加相移可能使原来的负反馈变成了正反馈,甚至会产生自激振荡,使放大电路无法正常工作。另外,有时也可以在负反馈放大电路中引适当的正反馈,以提高增益等等。

负反馈放大电路产生自激振荡的原因及条件

产生自激振荡的原因

引入负反馈后,净输入信号在减小,因此,与必须是同相的,即有

,n=0,1,2…(、分别是、的相角)。可是,在高频区或低频区时,电路中各种电抗性元件的影响不能再被忽略。、是频率的函数,因而、的幅值

和相位都会随频率而变化。相位的改变,使和不再相同,产生了附加相移

()。可能在某一频率下,、的附加相移达到即,

这时,与必然由中频区的同相变为反相,使放大电路的净输入信号由中频时的减小而变为

增加,放大电路就由负反馈变成了正反馈。当正反馈较强以,也就是

时,即使输入端不加信号(),输出端也会产生输出信号,电路产生自激振荡。这时,电路失去正常的放大作用而处于一种不稳定的状态。

产生自激振荡的相位条件和幅值条件

,负反馈放大电路产生自激振荡的条件是环增益

(1)

它包括幅值条件和相位条件,即

(2)

(3)

、的幅值条件和相位条件同时满足时,负反馈放大电路就会产生自激。在

及时,更加容易产生自激振荡。

负反馈放大电路稳定性的定性分析

根据自激振荡的条件,可以对反馈放大电路的稳定性进行定性分析。

设反馈放大电路采用直接耦合方式,且反馈网络的纯电阻构成,为实数。那么,这种类型的电路只有可能产生高频段的自激振荡,而且附加相移只可能由基本放大电路产生。可以推知,超过三级以后,放大电路的级数越多,引入负反馈后越容易产生高频自激振荡。因此,实用电路中以三级放大电路为最常见。

与上述分析相类似,放大电路中耦合电容、旁路电容等越多,引入负反馈后就越容易产生低频自

激振荡。而且越大,幅值条件载容易满足。

负反馈放大电路稳定性的判断

由自激振荡的条件可知,如果环路增益、的幅值条件和相位条件不能同时满足,负反馈

放大电路便不会产生自激振荡。所以,负反馈放大电路稳定工作的条件是:当=1时,

,或当时,<1。

工程上常用环路增益的波特图分析负反馈放大电路能否稳定地工作。

判断方法

,由环路增益的频率特性判断负反馈放大电路是否稳定的方法是:比较f o与f c的大小。若f o>

f c,则电路稳定;若f o≤f c,则电路会产生自激振荡。

稳定裕度

根据上面讨论的负反馈放大电路稳定的判断方法知,只要f o> f c,电路就能稳定,但为了使电路具有足够的稳定性,还规定电路应具有一定的稳定裕度,包括增益裕度和相位裕度。

(1)增益裕度G m

定义f=f o时所对应的20lg 的值为增益裕度G m,

稳定的负反馈放大电路的,且要求G m≤–10dB,保证电路有足够的增益裕度。

(2)相位裕度j m

定义f=f c时的与180°的差值为相位裕度j m,

j m的表达式为

稳定的负反馈放大电路的j m>0,且要求j m≥45°保证电路有足够的相位裕度。

总之,只有当G m≤–10dB且j m≥45°时,负反馈放大电路才能可靠稳定。

当负反馈放大电路中的反馈网络是由纯电阻构成时,反馈系数的大小为一常数,同时有

j f=0。这种情况下,可以利用开环增益的波特图来判别反馈放大电路的稳定性。

负反馈放大电路中自激振荡的消除方法--滞后补偿

常采用频率补偿的办法(或称相位补偿法)。其指导思想是:在反馈环路内增加一些含电抗元件

的电路,从而改变的频率特性,破坏自激振荡的条件,例如使,则自激振荡必然被消除。

频率补偿的形式很多,滞后补偿。设反馈网络为纯电阻网络。

滞后补偿是在反馈环内的基本放大电路中插入一个含有电容C的电路,使开环增益的相们滞后,达到稳定负反馈放大电路的目的。

RC滞后补偿

电容滞后补偿虽然可以消除自激振荡,但使通频带变得太窄。采用RC滞后补偿不仅可以消除自激振荡,而且可使带宽得到一定的改善。

RC滞后补偿后的上限频率向右移了,说明带宽增加了。

前两种滞后补偿电路中所需电容、电阻都较大,在集成电路中难以实现。通常可以利用密勒效应,将补偿电容等无件跨接于放大电路中,如图(a)(b)所示,这样用较小的电容(几皮法~几十皮法)同样可以获得满意补偿效果。

负反馈放大电路中自激振荡的消除方法--超前补偿

如果改变负反馈放大电路中环路增益

点的相位,使之超前,也能破坏其自激振荡的条件,使,这种补偿方法称为超前补偿法。

放大电路中的反馈

第六章放大电路中的反馈 6.1 反馈的基本概念及判断方法 6.1.1 反馈的基本概念 一、反馈(回授)的概念(图6.1.1) 将输出量的一部分或全部,通过一定电路形式作用到输入回路,用来影响其输入量的措施称为反馈。 二、正反馈与负反馈 1.净输入量:基本放大电路的输入信号; 2.正反馈:使放大电路净输入量增大的反馈;反馈结果使输出量的变化增大的反 馈。 3.负反馈:使放大电路净输入量减小的反馈;反馈结果使输出量的变化减小的反 馈。(图2.4.2) 三、直流反馈与交流反馈 1.直流反馈:(图 2.4.2)反馈量中只含有直流量;直流通路中存在的反馈;影响 静态工作点。 2.交流反馈:(图2.4.2中去掉旁路电容)反馈量中只含有交流量;交流通路中存 在的反馈;影响放大电路性能。 6.1.2 反馈的判断 一、反馈存在与否的判断(图6.1.2) 1.是否存在将输出回路与输入回路相连接的反馈通路; 2.反馈通路是否影响了放大电路的净输入。利用叠加定理可以理解输入端有无输 出量的作用结果。 二、反馈极性的判断(瞬时极性法)(图6.1.3)(图6.1.4) 1.规定电路输入信号在某一时刻对地的极性; 2.逐级判断电路中各相关点的电流流向和电位极性; (1)三极管:若基极正极性,则动态电流从c到e; (2)运放:同相端加正极性,输出端输出正极性; 3.判断输出信号的极性; 4.判断反馈信号的极性; 5.反馈信号使放大电路的净输入信号增大与否。 6.注:反馈量仅仅决定于输出量,而与输入量无关,分析反馈极性时,可将输出 量视为作用于反馈网络的独立源。 三、直流反馈与交流反馈的判断(图6.1.5)(图6.1.6) 根据交直流通路来判断

单片机温度感应控制电路原理图

引言 在现代化的工业生产中,电流、电压、温度、压力、流量、流速和开关量都是常用的主要被控参数。例如:在冶金工业、化工生产、电力工程、造纸行业、机械制造和食品加工等诸多领域中,人们都需要对各类加热炉、热处理炉、反应炉和锅炉中的温度进行检测和控制。采用MCS-51单片机来对温度进行控制,不仅具有控制方便、组态简单和灵活性大等优点,而且可以大幅度提高被控温度的技术指标,从而能够大大提高产品的质量和数量。因此,单片机对温度的控制问题是一个工业生产中经常会遇到的问题。本文以它为例进行介绍,希望能收到举一反三和触类旁通的效果。 1硬件电路设计 以热电偶为检测元件的单片机温度控制系统电路原理图如图1所示。 1.1 温度检测和变送器 温度检测元件和变送器的类型选择与被控温度的范围和精度等级有关。镍铬/镍铝热电偶适用于 0℃-1000℃的温度检测范围,相应输出电压为0mV-41.32mV。 变送器由毫伏变送器和电流/电压变送器组成:毫伏变送器用于把热电偶输出的0mV-41.32mV变换成4mA-20mA的电流;电流/电压变送器用于把毫伏变送器输出的4mA-20mA电流变换成0-5V的电压。 为了提高测量精度,变送器可以进行零点迁移。例如:若温度测量范围为500℃-1000℃,则热电偶输出为20.6mV-41.32mV,毫伏变送器零点迁移后输出4mA-20mA范围电流。这样,采用8位A/D转换器就可使量化温度达到1.96℃以内。 1.2接口电路 接口电路采用MCS-51系列单片机8031,外围扩展并行接口8155,程序存储器EPROM2764,模数转换器ADC0809等芯片。 由图1可见,在P2.0=0和P2.1=0时,8155选中它内部的RAM工作;在P2.0=1和P2.1=0时,8155选中它内部的三个I/O端口工作。相应的地址分配为: 0000H - 00FFH 8155内部RAM 0100H 命令/状态口 0101H A 口 0102H B 口 0103H C 口 0104H 定时器低8位口 0105H 定时器高8位口 8155用作键盘/LED显示器接口电路。图2中键盘有30个按键,分成六行(L0-L5)五列(R0-R4),只要某键被按下,相应的行线和列线才会接通。图中30个按键分三类:一是数字键0-9,共10个;二是功能键18个;三是剩余两个键,可定义或设置成复位键等。为了减少硬件开销,提高系统可靠性和降低成本,采用动态扫描显示。A口和所有LED的八段引线相连,各LED的控制端G和8155C口相连,故A口为字形口,C口为字位口,8031可以通过C口控制LED是否点亮,通过A口显示字符。

电子科技大学 模拟电路实验报告01

模拟电路实验报告 实验一常用电子测量仪器的使用 1.实验目的 (1)了解双踪示波器、函数信号发生器、晶体管毫伏表、直流稳压电源的工作原 理和主要技术指标。 (2)掌握双踪示波器、晶体管毫伏表、直流稳压电源的正确使用方法。 2.实验原理 示波器是电子测量中最常用的一种电子仪器,可以用它来测试和分析时域信号。示波器通常由信号波形显示部分、垂直信道(Y通道)、水平信道(X通道)三部分组成。YB4320G是具有双路的通用示波器,其频率响应为0~20MHz。 为了保证示波器测量的准确性,示波器内部均带有校准信号,其频率一般为1KHz,即周期为1ms,其幅度是恒定的或可以步级调整,其波形一般为矩形波。在使用示波器测量波形参数之前,应把校准信号接入Y轴,以校正示波器的Y轴偏转灵敏度刻度以及扫描速度刻度是否正确,然后再来测量被测信号。 函数信号发生器能产生正弦波、三角波、方波、斜波、脉冲波以及扫描波等信号。由于用数字LED显示输出频率,读数方便且精确。 晶体管毫伏表是测量正弦信号有效值比较理想的仪器,其表盘用正弦有效值刻度,因此只有当测量正弦电压有效值时读数才是正确的。晶体管毫伏表在小量程档位(小于1V)时,打开电源开关后,输入端不允许开路,以免外界干扰电压从输入端进入造成打表针的现象,且易损坏仪表。在使用完毕将仪表复位时,应将量程开关放在300V挡,当电缆的两个测试端接地,将表垂直放置。 直流稳压电源是给电路提供能源的设备,通常直流电源是把市电220V的交流电转换成各种电路所需要的直流电压或直流电流。一般一个直流稳压电源可输出两组直流电压,电压是可调的,通常为0~30V,最大输出直流电流通常为2A。 输出电压或电流值的大小,可通过电源表面旋钮进行调整,并由表面上的表头或LED显示。每组电源有3个端子,即正极、负极和机壳接地。正极和负极就像我们平时使用的干电池一样,机壳接地是为了防止外部干扰而设置的。 如果某一电路使用的是正、负电源,即双电源,此时要注意的是双电源共地的接法,以免造成短路现象。 数字万用表可用于交、直流电压测量、交、直流电流测量,电阻测量,一般晶体管的测量等。一般的数字万用表交流电压挡的频率相应范围为45Hz~500Hz,用

放大电路中的反馈要点

放大电路中的反馈 自测题 一、在括号内填入“√”或“×”,表明下列说法是否正确。 (1)若放大电路的放大倍数为负,则引入的反馈一定是负反馈。( ) (2)负反馈放大电路的放大倍数与组成它的基本放大电路的放大倍数量纲相同。( ) (3)若放大电路引入负反馈,则负载电阻变化时,输出电压基本不变。 ( ) (4)阻容耦合放大电路的耦合电容、旁路电容越多,引入负反馈后,越容易产生低频振荡。( ) 解:(1)× (2)√ (3)× (4)√ 二、已知交流负反馈有四种组态: A .电压串联负反馈 B .电压并联负反馈 C .电流串联负反馈 D .电流并联负反馈 选择合适的答案填入下列空格内,只填入A 、B 、C 或D 。 (1)欲得到电流-电压转换电路,应在放大电路中引入 ; (2)欲将电压信号转换成与之成比例的电流信号,应在放大电路中引入 ; (3)欲减小电路从信号源索取的电流,增大带负载能力,应在放大电路中引入 ; (4)欲从信号源获得更大的电流,并稳定输出电流,应在放大电路中引入 。 解:(1)B (2)C (3)A (4)D 三、判断图T6.3所示各电路中是否引入了反馈;若引入了反馈,则判断是正反馈还是负反馈;若引入了交流负反馈,则判断是哪种组态的负反馈, 并求出反馈系数和深度负反馈条件下的电压放大倍数f u A 或f s u A 。设图中所有 电容对交流信号均可视为短路。

图T6.3 解:图(a )所示电路中引入了电流串联负反馈。反馈系数和深度负反 馈条件下的电压放大倍数f u A 分别为 L 31321f 32131 R R R R R R A R R R R R F u ?++≈++= 式中R L 为电流表的等效电阻。 图(b )所示电路中引入了电压并联负反馈。反馈系数和深度负反馈条件下的电压放大倍数f u A 分别为 12f 2 1R R A R F u -≈-= 图(c )所示电路中引入了电压串联负反馈。反馈系数和深度负反馈条 件下的电压放大倍数f u A 分别为 1 1f ≈=u A F 图(d )所示电路中引入了正反馈。 四、电路如图T6.4所示。 (1)合理连线,接入信号源和反馈,使电路的输入电阻增大,输出电阻减小;

单片机电路图详解

单片机:交通灯课程设计(一) 目录 摘要--------------------------------------------------------- 1 1.概述 -------------------------------------------------------- 2 2.硬件设计----------------------------------------------------- 3 2.1单片机及其外围--------------------------------------------3 2.1.1单片机的选择-----------------------------------------3 2.1.2单片机的特点及其应用范围----------------------------- 3 2.1.3存储器的扩展----------------------------------------- 4 2.1.4内存的扩展------------------------------------------- 6 2.1.5MCS-52的I/O接口扩展--------------------------------- 8 2.2电路部分--------------------------------------------------11 2.2.1元器件选用-------------------------------------------11 2.2.2电路完成功能-----------------------------------------13 3.软件设计------------------------------------------------------15 3.1软件概述-------------------------------------------------15 3.2汇编语言指令说明-----------------------------------------16 3.3定时/计数器的原理----------------------------------------16 3.3.1定时/计数器的概述-----------------------------------16 3.3.2 8255A片选及各端口地址-------------------------------18 3.3.3信号控制码------------------------------------------18 3.3.4工作方式寄存器--------------------------------------19 3.3.5定时/计数器初值及定时器T0的工作方式----------------20

负反馈放大电路分析要点

课程设计报告

课程设计题目:负反馈放大电路的设计 要求完成的内容:设计一个负反馈放大电路,保证输出电压稳定。指标条件如下:电压放大增益|Av|≥10,反馈深度≥10,输入电阻R i≥1KΩ,输出电阻R o≤100Ω, f L≤10HZ,f H≥1KHZ。所使用的元器件要求为:晶体管(9013或9014),电容(瓷片电容)、电阻(0.25瓦)等。 要求:(1)根据设计要求,确定电路的设计方案,估算并初步选取电路的元件参数。(2)选用熟悉的电路仿真软件,搭建电路模型进行仿真分析,由仿真结果进行参数调试、修改,直至满足设计要求。 (3)由选取的元件参数,精确计算和复核技术指标要求。 (4)满足设计要求后,认真按格式完成课程设计报告。

指导教师评语: 评定成绩为: 指导教师签名:年月日

负反馈放大电路的设计 一、 课程设计的目的 (1)初步了解和掌握负反馈放大器的设计、调试的过程。 (2)能进一步巩固课堂上学到的理论知识。 (3)了解负反馈放大器的工作原理。 (4)了解并掌握负反馈放大电路各项性能指标的测试方法。 (5)加深理解放大电路中引入负反馈的方法和负反馈对放大器各项性能指标的影响。 二、 设计方案论证 2.1框图及基本公式 图1 负反馈放大电路原理框图 图中X 表示电压或电流信号;箭头表示信号传输的方向;符号¤表示输入求和,+、–表示输入信号 与反馈信号是相减关系(负反馈),即放大电路的净输入信号为: id i f X X X =- 基本放大电路的增益(开环增益)为: /o id A X X = 反馈系数为: /f o F X X = 负反馈放大电路的增益(闭环增益)为: /f o i A X X = 2.2负反馈对放大器各项性能指标的影响 负反馈的电路形式很多,但就基本形式来说,可以分为4种:即电流串联负反馈;电压串联负反馈 ;电流并联负反馈;电压并联负反馈。一个放大器,加入了负反馈环节后,虽

自动控制原理试题与答案解析

课程名称: 自动控制理论 (A/B 卷 闭卷) 一、填空题(每空 1 分,共15分) 1、反馈控制又称偏差控制,其控制作用是通过 给定值 与反馈量的差值进行的。 2、复合控制有两种基本形式:即按 输入 的前馈复合控制和按 扰动 的前馈复合控制。 3、两个传递函数分别为G 1(s)与G 2(s)的环节,以并联方式连接,其等效传递函数为()G s ,则G(s)为 G 1(s)+G 2(s)(用G 1(s)与G 2(s) 表示)。 4、典型二阶系统极点分布如图1所示, 则无阻尼自然频率=n ω , 阻尼比=ξ , 该系统的特征方程为 , 该系统的单位阶跃响应曲线为 。 5、若某系统的单位脉冲响应为0.20.5()105t t g t e e --=+, 则该系统的传递函数G(s)为 。 6、根轨迹起始于 极点 ,终止于 零点或无穷远 。 7、设某最小相位系统的相频特性为101()()90()tg tg T ?ωτωω--=--,则该系统的开环传递函数为 。 8、PI 控制器的输入-输出关系的时域表达式是 , 其相应的传递函数为 ,由于积分环节的引入,可以改善系统的 性能。 二、选择题(每题 2 分,共20分) 1、采用负反馈形式连接后,则 ( ) A 、一定能使闭环系统稳定; B 、系统动态性能一定会提高; C 、一定能使干扰引起的误差逐渐减小,最后完全消除; D 、需要调整系统的结构参数,才能改善系统性能。 2、下列哪种措施对提高系统的稳定性没有效果 ( )。 A 、增加开环极点; B 、在积分环节外加单位负反馈; C 、增加开环零点; D 、引入串联超前校正装置。 3、系统特征方程为 0632)(23=+++=s s s s D ,则系统 ( ) A 、稳定; B 、单位阶跃响应曲线为单调指数上升; C 、临界稳定; D 、右半平面闭环极点数2=Z 。

20个常用模拟电路

一. 桥式整流电路 1二极管的单向导电性:二极管的PN结加正向电压,处于导通状态;加反向电压,处于截止状态。 伏安特性曲线; 理想开关模型和恒压降模型: 理想模型指的是在二极管正向偏置时,其管压降为0,而当其反向偏置时,认为它的电阻为无穷大,电流为零.就是截止。恒压降模型是说当二极管导通以后,其管压降为恒定值,硅管为0.7V,锗管0.5 V 2桥式整流电流流向过程: 当u 2是正半周期时,二极管Vd1和Vd2导通;而夺极管Vd3和Vd4截止,负载R L 是的电流是自上而下流过负载,负载上得到了与u 2正半周期相同的电压;在u 2的负半周,u 2的实际极性是下正上负,二极管Vd3和Vd4导通而Vd1和Vd2 截止,负载R L 上的电流仍是自上而下流过负载,负载上得到了与u 2正半周期相同的电压。 3计算:Vo,Io,二极管反向电压 Uo=0.9U 2, Io=0.9U 2 /R L ,U RM =√2 U 2 二.电源滤波器 1电源滤波的过程分析:电源滤波是在负载R L 两端并联一只较大容量的电容器。由于电容两端电压不能突变,因而负载两端的电压也不会突变,使输出电压得以平滑,达到滤波的目的。 波形形成过程:输出端接负载R L 时,当电源供电时,向负载提供电流的同时也

向电容C充电,充电时间常数为τ 充=(Ri∥R L C)≈RiC,一般Ri〈〈R L, 忽略Ri压 降的影响,电容上电压将随u 2迅速上升,当ωt=ωt 1 时,有u 2=u 0,此后u 2 低于u 0,所有二极管截止,这时电容C通过R L 放电,放电时间常数为R L C,放 电时间慢,u 0变化平缓。当ωt=ωt 2时,u 2=u 0, ωt 2 后u 2又变化到比u 0 大,又开始充电过程,u 0迅速上升。ωt=ωt 3时有u 2=u 0,ωt 3 后,电容通 过R L 放电。如此反复,周期性充放电。由于电容C的储能作用,R L 上的电压波动 大大减小了。电容滤波适合于电流变化不大的场合。LC滤波电路适用于电流较大,要求电压脉动较小的场合。 2计算:滤波电容的容量和耐压值选择 电容滤波整流电路输出电压Uo在√2U 2~0.9U 2 之间,输出电压的平均值取决于 放电时间常数的大小。 电容容量R L C≧(3~5)T/2其中T为交流电源电压的周期。实际中,经常进一步 近似为Uo≈1.2U 2整流管的最大反向峰值电压U RM =√2U 2 ,每个二极管的平均电 流是负载电流的一半。 三.信号滤波器 1信号滤波器的作用:把输入信号中不需要的信号成分衰减到足够小的程度,但同时必须让有用信号顺利通过。 与电源滤波器的区别和相同点:两者区别为:信号滤波器用来过滤信号,其通带是一定的频率范围,而电源滤波器则是用来滤除交流成分,使直流通过,从而保持输出电压稳定;交流电源则是只允许某一特定的频率通过。 相同点:都是用电路的幅频特性来工作。 2LC串联和并联电路的阻抗计算:串联时,电路阻抗为Z=R+j(XL-XC)=R+j(ωL-1/ωC) 并联时电路阻抗为Z=1/jωC∥(R+jωL)= 考滤到实际中,常有R<<ωL,所以有Z≈

模拟电子技术基础中的常用公式必备

- 70 - 模拟电子技术基础中的常用公式 第7章 半导体器件 主要内容:半导体基本知识、半导体二极管、二极管的应用、特殊二极管、双极型晶体管、晶闸管。 重点:半导体二极管、二极管的应用、双极型晶体管。 难点:双极型晶体管。 教学目标:掌握半导体二极管、二极管的应用、双极型晶体管。了解特殊二极管、晶闸管。 第8章 基本放大电路 主要内容:放大电路的工作原理、放大电路的静态分析、共射放大电路、共集放大电路。 重点:放大电路的工作原理、共射放大电路。 难点:放大电路的工作原理。 教学目标:掌握 放大电路的工作原理、共射放大电路。理解 放大电路的静态分析。了解共集放大电路。 第9章 集成运算放大器

主要内容:运算放大器的简单介绍、放大电路中的反馈、基本运算电路。 重点:基本运算电路。难点:放大电路中的反馈。 教学目标:掌握运算放大器在信号运算与信号处理方面的应用。了解运算放大器的简单介绍、放大电路中的反馈。 第10章直流稳压电源 主要内容:直流稳压电源的组成、整流电路、滤波电路、稳压电路。 重点和难点:整流电路、滤波电路、稳压电路。 教学目标:掌握直流电源的组成。理解整流、滤波、稳压电路。第11章组合逻辑电路 主要内容:集成基本门电路、集成复合门电路、组合逻辑电路的分析、组合逻辑电路的设计、编码器、译码器与数码显示。 重点:集成复合门电路、组合逻辑电路的分析。难点:组合逻辑电路的设计。 教学目标:掌握集成复合门电路、组合逻辑电路的分析。了解组合逻辑电路的设计、编码器、译码器与数码显示。 - 71 -

- 72 - 第12章 时序逻辑电路 主要内容:双稳态触发器、寄存器、计数器。 重点:双稳态触发器。 难点:寄存器、计数器。 教学目标:掌握双稳态触发器。了解寄存器、计数器。 7.1 半导体器件基础 GS0101 由理论分析可知,二极管的伏安特性可近似用下面的数学表达式来表示: )1()(-=T D V u sat R D e I i 式中,i D 为流过二极管的电流,u D 。为加在二极管两端的电压,V T 称为温度的电压当量,与热力学温度成正比,表示为V T = kT/q 其中T 为热力学温度,单位是K ;q 是电子的电荷量,q=1.602×10-19 C ;k 为玻耳兹曼常数,k = 1.381×10-23 J /K 。室温下,可求得V T = 26mV 。I R(sat)是二极管的反向饱和电流。 GS0102 直流等效电阻R D 直流电阻定义为加在二极管两端的直流电压U D 与流过二极管的直流电流I D 之比,即

电工电子基础 模拟电路分析及应用

项目四模拟电路分析及应用 任务 1 基本电子元件的识别 一、半导体 1.半导体:导电能力随着掺入杂质、输入电压(电流)、温度和光照条件的不同而发生很大变化,人们把这一类物质称为半导体。 2.载流子:半导体中存在的两种携带电荷参与导电的“粒子”。 (1)自由电子:带负电荷。 (2)空穴:带正电荷。 特性:在外电场的作用下,两种载流子都可以做定向移动,形成电流。 3.N型半导体:主要靠电子导电的半导体。 即:电子是多数载流子,空穴是少数载流子。 4.P型半导体:主要靠空穴导电的半导体。 即:空穴是多数载流子,电子是少数载流子。 PN结 1.PN结:经过特殊的工艺加工,将P型半导体和N型半导体紧密地结合在一起,则在两种半导体的交界面就会出现一个特殊的接触面,称为PN结。 2.实验演示 (1)实验电路 (2)现象 所加电压的方向不同,电流表指针偏转幅度不同。 (3)结论 PN结加正向电压时导通,加反向电压时截止,这种特性称为PN结的单向导电性。 3.反向击穿:PN结两端外加的反向电压增加到一定值时,反向电流急剧增大,称为PN结的反向击穿。 4.热击穿:若反向电流增大并超过允许值,会使PN结烧坏,称为热击穿。 5.结电容 PN结存在着电容,该电容称为PN结的结电容。 二、半导体二极管 利用PN结的单向导电性,可以用来制造一种半导体器件——半导体二极管。 1.半导体二极管的结构和符号 (1)结构:由于管芯结构不同,二极管又分为点接触型(如图a)、面接触型(如图b)和。)c 平面型(如图

(2)符号:如图所示,箭头表示正向导通电流的方向。 2.二极管的特性 二极管的导电性能由加在二极管两端的电压和流过二极管的电流来决定,这两者之间的关系称为二极管的伏安特性。硅二极管的伏安特性曲线如图所示。

(完整版)放大电路中的反馈习题_百度文库解读

第六章放大电路中的反馈 习题 6.1选择合适的答案填入空内。 (1 对于放大电路 , 所谓开环是指。 A . 无信号源 B . 无反馈通路 C . 无电源 D . 无负载 而所谓闭环是指。 A . 考虑信号源内阻 B . 存在反馈通路 C . 接入电源 D . 接入负载 (2在输入量不变的情况下 ,若引入反馈后 ,则说明引入的反馈是负反馈。 A . 输入电阻增大 B . 输出量增大 C . 净输入量增大 D . 净输入量减小 (3 直流负反馈是指。 A . 直接耦合放大电路中所引入的负反馈 B . 只有放大直流信号时才有的负反馈 C . 在直流通路中的负反馈 (4 交流负反馈是指。 A . 阻容耦合放大电路中所引入的负反馈

B . 只有放大交流信号时才有的负反馈 C . 在交流通路中的负反馈 (5 为了实现下列目的 , 应引入 A . 直流负反馈 B . 交流负反馈 ①为了稳定静态工作点 , 应引入 ; ②为了稳定放大倍数 , 应引入 ; ③为了改变输入电阻和输出电阻 , 应引入 ; ④为了抑制温漂 , 应引入 ; ⑤为了展宽频带 , 应引入。 解 :(1 B B (2 D (3 C (4 C (5 A B B A B 6.2 选择合适答案填入空内。 A . 电压 B . 电流 C . 串联 D . 并联 (1 为了稳定放大电路的输出电压 , 应引入负反馈 ; (2 为了稳定放大电路的输出电流 , 应引入负反馈 ; (3 为了增大放大电路的输入电阻 , 应引入负反馈 ; (4 为了减小放大电路的输入电阻 , 应引入负反馈 ; (5 为了增大放大电路的输出电阻 , 应引入负反馈 ; (6 为了减小放大电路的输出电阻 , 应引入负反馈。

51单片机AD89电路设计程序+原理图

AD0809在51单片机中的应用 我们在做一个单片机系统时,常常会遇到这样那样的数据采集,在这些被采集的数据中,大部分可以通过我们的I/O口扩展接口电路直接得到,由于51单片机大部分不带AD转换器,所以模拟量的采集就必须靠A/D或V/F实现。下现我们就来了解一下AD0809与51单片机的接口及其程序设计。 1、AD0809的逻辑结构 ADC0809是8位逐次逼近型A/D转换器。它由一个8路模拟开关、一个地址锁存译码器、一个A/D转换器和一个三态输出锁存器组成(见图1)。多路开关可选通8个模拟通道,允许8路模拟量分时输入,共用A/D转换器进行转换。三态输出锁器用于锁存A/D转换完的数字量,当OE端为高电平时,才可以从三态输出锁存器取走转换完的数据。

2、AD0809的工作原理 IN0-IN7:8条模拟量输入通道 ADC0809对输入模拟量要求:信号单极性,电压围是0-5V,若信号太小,必须进行放大;输入的模拟量在转换过程中应该保持不变,如若模拟量变化太快,则需在输入前增加采样保持电路。 地址输入和控制线:4条 ALE为地址锁存允许输入线,高电平有效。当ALE线为高电平时,地址锁存与译码器将A,B,C三条地址线的地址信号进行锁存,经译码后被选中的通道

的模拟量进转换器进行转换。A,B和C为地址输入线,用于选通IN0-IN7上的一路模拟量输入。通道选择表如下表所示。 C B A 选择的通道 0 0 0 IN0 0 0 1 IN1 0 1 0 IN2 0 1 1 IN3 1 0 0 IN4 1 0 1 IN5 1 1 0 IN6 1 1 1 IN7 数字量输出及控制线:11条 ST为转换启动信号。当ST上跳沿时,所有部寄存器清零;下跳沿时,开始进行A/D转换;在转换期间,ST应保持低电平。EOC为转换结束信号。当EOC为高电平时,表明转换结束;否则,表明正在进行A/D转换。OE为输出允许信号,用于控制三条输出锁存器向单片机输出转换得到的数据。OE=1,输出转换得到的数据;OE=0,输出数据线呈高阻状态。D7-D0为数字量输出线。 CLK为时钟输入信号线。因ADC0809的部没有时钟电路,所需时钟信号必须由外界提供,通常使用频率为500KHZ, VREF(+),VREF(-)为参考电压输入。

三极管负反馈电路分析

难点电路详解之——负反馈放大器电路(一) 2008-04-14 17:56:17 来源:古木电子社区 (摘自电子工程师识图速成手册) (1)正反馈和负反馈概念 (2)全面了解负反馈电路的种类 (3)负反馈电路的分析方法 (4)电压并联负反馈放大器 (5)电流串联负反馈放大器 (6)电压串联负反馈放大器 (7)电流并联负反馈放大器 (8)变形负反馈电路的特点和分析方法 (9)LC并联谐振电路参与的负反馈电路 (10)LC串联谐振电路参与的负反馈电路 (11)RC负反馈式电路 (12)可控制负反馈量的负反馈电路 (13)负反馈放大器分析小结 4.1 负反馈放大器 在放大器中采用负反馈电路,其目的是为了改善放大器的工作性能,提高放大器的输出信号质量。在引入负反馈电路之后,放大器的增益要比没有负反馈时的增益小,但是可以改善放大器的许多性能,主要有四项:减小放大器的非线性失真、扩宽放大器的频带、降低放大器的噪声和稳定放大器的工作状态。 4.1.1 正反馈和负反馈概念 放大器的信号传输都是从放大器的输入端传输到放大器输出端,但是反馈过程则不同,它是从放大器输出端取出一部分输出信号作为反馈信号,再加到放大器的输入端,与原放大器输入信号进行混合,这一过程称为反馈。 1.反馈方框图 如图4-1所示是反馈方框图。从图中可以看出,输入信号Ui从输入端加到放大器中进行放大,放大后的输出信号Uo其中的一部分加到下一级放大器中,另有一部分信号经过反馈电路作为反馈信号UF,与输入信号Ui合并,作为净输入信号VI加到放大器中。 图4-1 反馈方框图

2.反馈种类 反馈电路有两种:正反馈电路和负反馈电路。这两种反馈的结果(指对输出信号的影响)完全相反。 3.正反馈概念 正反馈可以举一个例子来说明,吃某种食品,由于它很可可,所以在吃了之后更想吃,这是正反过程。 如图4-2所示正反馈方框图,当反馈信号UF与输入信号Ui是同相位时,?这两个信号混合后是相加的关系,所以净输入放大器的信号UI?比输入信号Ui更大,而放大器的放大倍数没有变化,这样放大器的输出信号Uo比不加入反馈电路时的大,这种反馈称为正反馈。 图4-2 正反馈方框图 在加入正反馈之后的放大器,输出信号愈反馈愈大(当然不会无限制地增大,这一点在后面的振荡器电路中介绍),这是正反馈的特点。正反馈电路在放大器电路中通常不用,它只是用于振荡器中。 4.负反馈概念 负反馈也可以举一例说明,一盆开水,当手指不小心接触到热水时,手指很快缩回,而不是继续向里面伸,手指的回缩过程就是负反馈过程。 如图4-3所示是负反馈方框图,当反馈信号UF相位和输入信号Ui的相位相反时,它们混合的结果是相减,结果净输入放大器的信号UI比输入信号Ui要小,?使放大器的输出信号Uo减小,引起放大器电路这种反馈过程的电路称为负反馈电路。 图4-3 负反馈方框图 5.反馈量 负反馈的结果使净输入放大器的信号变小,放大器的输出信号减小,这等效成放大器的

工程师应该掌握的20个模拟电路(详细分析与参考答案)

一、桥式整流电路 1二极管的单向导电性:二极管的PN结加正向电压,处于导通状态;加反向电压,处于截止状态。 伏安特性曲线; 理想开关模型和恒压降模型: 理想模型指的是在二极管正向偏置时,其管压降为0,而当其反向偏置时,认为它的电阻为无穷大,电流为零.就是截止。恒压降模型是说当二极管导通以后,其管压降为恒定值,硅管为0.7V,锗管0.5 V 2桥式整流电流流向过程: 当u 2是正半周期时,二极管Vd1和Vd2导通;而夺极管Vd3和Vd4截止,负载R L 是的电流是自上而下流过负载,负载上得到了与u 2正半周期相同的电压;在u 2的负半周,u 2的实际极性是下正上负,二极管Vd3和Vd4导通而Vd1和Vd2 截止,负载R L 上的电流仍是自上而下流过负载,负载上得到了与u 2正半周期相同的电压。 3计算:Vo,Io,二极管反向电压 Uo=0.9U 2, Io=0.9U 2 /R L ,U RM =√2 U 2 二.电源滤波器

1电源滤波的过程分析:电源滤波是在负载R L 两端并联一只较大容量的电容器。由于电容两端电压不能突变,因而负载两端的电压也不会突变,使输出电压得以平滑,达到滤波的目的。 波形形成过程:输出端接负载R L 时,当电源供电时,向负载提供电流的同时也 向电容C充电,充电时间常数为τ 充=(Ri∥R L C)≈RiC,一般Ri〈〈R L, 忽略Ri压 降的影响,电容上电压将随u 2迅速上升,当ωt=ωt 1 时,有u 2=u 0,此后u 2 低于u 0,所有二极管截止,这时电容C通过R L 放电,放电时间常数为R L C,放 电时间慢,u 0变化平缓。当ωt=ωt 2时,u 2=u 0, ωt 2 后u 2又变化到比u 0 大,又开始充电过程,u 0迅速上升。ωt=ωt 3时有u 2=u 0,ωt 3 后,电容通 过R L 放电。如此反复,周期性充放电。由于电容C的储能作用,R L 上的电压波动 大大减小了。电容滤波适合于电流变化不大的场合。LC滤波电路适用于电流较大,要求电压脉动较小的场合。 2计算:滤波电容的容量和耐压值选择 电容滤波整流电路输出电压Uo在√2U 2~0.9U 2 之间,输出电压的平均值取决于 放电时间常数的大小。 电容容量R L C≧(3~5)T/2其中T为交流电源电压的周期。实际中,经常进一步 近似为Uo≈1.2U 2整流管的最大反向峰值电压U RM =√2U 2 ,每个二极管的平均电 流是负载电流的一半。 三.信号滤波器

51单片机的若干电路原理图

51单片机的若干电路原理图 单片机 2007-10-23 20:36:31 阅读198 评论0 字号:大中小订阅 利用下面这些原理图,就可以自己动手做个简单的实验板啦~~~~ 1 外接电源供电电路及电源指示灯 在单片机实训板上为系统设计了一个外接电源供电电路,这个电源电路具备两种电源供电方式:一种是直接采用PC的USB接口5V直流电源给实训板供电,然后在电源电路中加入一个500mA电流限制的自恢复保险丝给PC的USB电源提供了保护的作用;另一种是采用小型直流稳压电源供电,输出的9V直流电源加入到电源电路中,通过LM7805稳压芯片的降压作用,给实训板提供工作所需的5V电源。 如图2.4所示为采用LM7805稳压芯片进行降压供电的电源电路。 图2.4 外接电源供电电路 同时,为了显示外接电源给实训板提供了电源,在系统中增加了电源指示灯电路,如图2.5。 发光二极管工作在正常工作状态时,流过LED的电流只需要5~10mA左右就行,在电路中采用白发红高亮LED,所以可以取5mA左右

的电流值,通过计算,可知:连接LED的限流电阻的阻值可以采用680Ω。 图2.5 电源指示灯电路 2 系统复位电路 复位是单片机的初始化操作,只要给RESET引脚加上2个机器周期以上的高电平信号,即可使单片机复位。除了进入系统的正常初始化之外,当程序运行出错或是操作错误使系统处于死锁状态时,为了摆脱死锁状态,也需要按复位键重新复位。 在系统中,为了实现上述的两项功能,采用常用的按键电平复位电路,如图2.6所示。 2.6 按键电平复位电路 从途中可以看出,当系统得到工作电压的时候,复位电路工作在上电自动复位状态,通过外部复位电路的电容充电来实现,只要Vcc

模拟电子技术基础中的常用公式必备

word 资料 模拟电子技术基础中的常用公式 第7章 半导体器件 主要内容:半导体基本知识、半导体二极管、二极管的应用、特殊二极管、双极型晶体管、晶闸管。 重点:半导体二极管、二极管的应用、双极型晶体管。 难点:双极型晶体管。 教学目标:掌握半导体二极管、二极管的应用、双极型晶体管。了解特殊二极管、晶闸管。 第8章 基本放大电路 主要内容:放大电路的工作原理、放大电路的静态分析、共射放大电路、共集放大电路。 重点:放大电路的工作原理、共射放大电路。 难点:放大电路的工作原理。 教学目标:掌握 放大电路的工作原理、共射放大电路。理解 放大电路的静态分析。了解共集放大电路。 第9章 集成运算放大器

主要内容:运算放大器的简单介绍、放大电路中的反馈、基本运算电路。 重点:基本运算电路。难点:放大电路中的反馈。 教学目标:掌握运算放大器在信号运算与信号处理方面的应用。了解运算放大器的简单介绍、放大电路中的反馈。 第10章直流稳压电源 主要内容:直流稳压电源的组成、整流电路、滤波电路、稳压电路。 重点和难点:整流电路、滤波电路、稳压电路。 教学目标:掌握直流电源的组成。理解整流、滤波、稳压电路。第11章组合逻辑电路 主要内容:集成基本门电路、集成复合门电路、组合逻辑电路的分析、组合逻辑电路的设计、编码器、译码器与数码显示。 重点:集成复合门电路、组合逻辑电路的分析。难点:组合逻辑电路的设计。 教学目标:掌握集成复合门电路、组合逻辑电路的分析。了解组合逻辑电路的设计、编码器、译码器与数码显示。 - 71 -

word 资料 第12章 时序逻辑电路 主要内容:双稳态触发器、寄存器、计数器。 重点:双稳态触发器。 难点:寄存器、计数器。 教学目标:掌握双稳态触发器。了解寄存器、计数器。 7.1 半导体器件基础 GS0101 由理论分析可知,二极管的伏安特性可近似用下面的数学表达式来表示: )1()(-=T D V u sat R D e I i 式中,i D 为流过二极管的电流,u D 。为加在二极管两端的电压,V T 称为温度的电压当量,与热力学温度成正比,表示为V T = kT/q 其中T 为热力学温度,单位是K ;q 是电子的电荷量,q=1.602×10-19 C ;k 为玻耳兹曼常数,k = 1.381×10-23 J /K 。室温下,可求得V T = 26mV 。I R(sat)是二极管的反向饱和电流。 GS0102 直流等效电阻R D 直流电阻定义为加在二极管两端的直流电压U D 与流过二极管的直流电流I D 之比,即

单片机电路图详解

单片机:交通灯课程设计(一)(2007-04-21 13:28:54) 目录 摘要--------------------------------------------------------- 1 1.概述 -------------------------------------------------------- 2 2.硬件设计----------------------------------------------------- 3 2.1单片机及其外围--------------------------------------------3 2.1.1单片机的选择-----------------------------------------3 2.1.2单片机的特点及其应用范围----------------------------- 3 2.1.3存储器的扩展----------------------------------------- 4 2.1.4内存的扩展------------------------------------------- 6 2.1.5MCS-52的I/O接口扩展--------------------------------- 8 2.2电路部分--------------------------------------------------11 2.2.1元器件选用-------------------------------------------11 2.2.2电路完成功能-----------------------------------------13 3.软件设计------------------------------------------------------15 3.1软件概述-------------------------------------------------15 3.2汇编语言指令说明-----------------------------------------16 3.3定时/计数器的原理----------------------------------------16 3.3.1定时/计数器的概述-----------------------------------16 3.3.2 8255A片选及各端口地址-------------------------------18 3.3.3信号控制码------------------------------------------18 3.3.4工作方式寄存器--------------------------------------19 3.3.5定时/计数器初值及定时器T0的工作方式----------------20

反馈电路详解备课讲稿

反馈电路详解

第六章反馈放大电路 第一节反馈的概念和分类 1.反馈的基本概念 2.负反馈放大电路的类型 1.1反馈的基本概念 ●基本概念 反馈是指把输出电压或输出电流的一部分或全部通过反馈网络,用一定的方式送回到放 大电路的输入回路,以影响输入电量的过程。 1.2 反馈的基本类型 ●反馈的分类: (1)反馈产生的途径:内部反馈和外部反馈。 (2)反馈信号:直流反馈和交流反馈 反馈信号中只含有直流分量的称为直流反馈,反馈信号中只含有交流分量的称为交流反馈。(3)反馈的作用效果:负反馈与正反馈 反馈信号X F送回到输入回路与原输入信号X I共同作用后,使净输入信号X ID比没有引入反馈时减小,有X ID=X I-X F,称这种反馈为负反馈;另一种是使净输入信号X ID比没有引入反馈时增加了,有 X ID=X I-X F,称这种反馈为正反馈。 反馈极性的判定——瞬时极性法, 步骤: (1) 首先在基本放大器输入端设定一个递增(或递减)的净输入信号, (2) 在上述设定下, 推演出反馈信号的变化极性。 (3) 判定在反馈信号的影响下, 净输入信号的变化极性。若该极性与前面设定的变化极性相反, 则为负反馈;若相同, 则为正反馈。 (4)反馈的信号取样的方式:电压反馈与电流反馈 (a)电压反馈 反馈信号是输出电压的一部分或全部,即反馈信号与输出电压成正比,称为电压反馈, (b)电流反馈 如果反馈信号是输出电流的一部分或全部,即反馈信号与输出电流成正比,称为电流反馈,。 (c)判断是电压反馈还是电流反馈的方法 判断是电压反馈还是电流反馈时,常用“输出短路法”,即假设负载短路(R L=0),使输出电压v o=0,看反馈信号是否还反馈信号还存在。若存在,则说明反馈信号与输出电压成比例,是电压反

反馈控制电路

反馈控制电路 一、自动增益控制(AGC) 1、AGC电路的作用与组成 (1) 作用 当输入信号变化时,保证输出信号幅度基本恒定。包括: ①能够产生一个随输入信号大小而变化的控制电压,即AGC电压(±UAGC); ②利用AGC电压去控制某些级的增益,实现AGC。 (2) 组成——具有AGC电路的接收机框图 2、AGC电压的产生 (1) 平均值式AGC电路 中频信号电压经检波后,除得到所需音频信号之外,还得到一个平

均直流分量。音频信号由RL2两端取出。平均直流分量(反映了输入信号的幅度)从C3两端取出,经低通后,作为AGC电压,加到中放管上去控制中放的增益。

(2) 延迟式AGC电路 V1、R7和C4组成AGC检波电路,运放A为直流放大器,UREF为延迟电平。当输入信号较小时,AGC不起作用。当输入信号较大时,AGC将起作用。可见,该AGC电路具有延迟功能

3、实现AGC的方法 (1) 改变发射极电流IE 正向AGC 反向AGC (2) 改变放大器负载 由于放大器的增益与负载密切相关,因此通过改变负载就可以控制放大器的增益 。 (3) 改变放大器的负反馈深度 通过控制负反馈的深度来控制放大器的增益。

6.2 自动频率控制(AFC) 1、AFC的工作原理 2、组成 3、工作原理 4、AFC的应用:调幅接收机中的AFC系统 具有AFC电路的调频发射机一、AFC——电路组成

作用:自动控制振荡器频率稳定 组成:鉴相器、低通滤波器和压控振荡器 标准频率fr;输出频率fo;误差电压uD(t) ;直流控制电压 uC(t)。 二、AFC——工作原理 压控振荡器的输出频率fo与标准频率fr在鉴频器中进行比较,当fo=fr时,鉴频器无输出,压控振荡器不受影响;当fo≠fr时,鉴频器即有误差电压输出,其大小正比于(fo-fr),经低通滤波器滤除交流成分后,输出的直流控制电压uc(t),加到压控振荡器上,迫使压控振荡器的振荡频率fo与fr接近,而后在新的振荡频率基础上,再经历上述同样的过程,使误差频率进一步减小,如此循环下去,最后fo和fr的误差减小到某一最小值△f时,自动微调过程停止,环路

相关主题
文本预览
相关文档 最新文档