当前位置:文档之家› 开关电源反馈设计

开关电源反馈设计

开关电源反馈设计
开关电源反馈设计

第六章 开关电源反馈设计

除了磁元件设计以外,反馈网络设计也是开关电源了解最少、且非常麻烦的工作。它涉及到模拟电子技术、控制理论、测量和计算技术等相关问题。

开关电源环路设计的目标是要在输入电压和负载变动范围内,达到要求的输出(电压或电流)精度,同时在任何情况下应稳定工作。当负载或输入电压突变时,快速响应和较小的过冲。同时能够抑制低频脉动分量和开关纹波等等。

为了较好地了解反馈设计方法,首先复习模拟电路中频率特性、负反馈和运算放大器基本知识,然后以正激变换器为例,讨论反馈补偿设计基本方法。并介绍如何通过使用惠普网络分析仪HP3562A 测试开环响应,再根据测试特性设计校正网络和验证设计结果。最后对仿真作相应介绍。

6.1 频率响应

在电子电路中,不可避免存在电抗(电感和电容)元件,对于不同的频率,它们的阻抗随着频率变化而变化。经过它们的电信号不仅发生幅值的变化,而且还发生相位改变。我们把电路对不同频率正弦信号的输出与输入关系称为频率响应。

6.1.1 频率响应基本概念

电路的输出与输入比称为传递函数或增益。传递函数与频率的关系-即频率响应可以用下式表示

)()(f f G G ?∠= 其中G (f )表示为传递函数的模(幅值)与频率的关系,称为幅频响应;而∠?(f )表示输出信号与输入信号的相位差与频率的关系,称为相频响应。

典型的对数幅频响应如图6.1所示,图6.1(a)为幅频特性,它是画在以对数频率f 为横坐标的单对数坐标上,纵轴增益用20log G (f )表示。图6.1(b)为相频特性,同样以对数频率f 为横坐标的单对数坐标上,纵轴表示相角?。两者一起称为波特图。

在幅频特性上,有一个增益基本不变的频率区间,而当频率高于某一频率或低于某一频率,增益都会下降。当高频增高时,当达到增益比恒定部分低3dB 时的频率我们称为上限频率,或上限截止频率f H ,大于截止频率的区域称为高频区;在低频降低时,当达到增益比恒定部分低3dB 时的频率我们称为下限频率,或下限截止频率f L ,低于下限截止频率的区域称为低频区;在高

频截止频率与低频截止频率之间称为中频区。在这个区域内增益基本不变。同时定义

L H f f BW -= (6-1) 为系统的带宽。

6.1.2

基本电路的频率响应

1. 高频响应

在高频区,影响系统(电路)的高频响应的电路如图6.2所示。以图6.2a 为例,输出电压与输入电压之比随频率增高而下降,同时相位随之滞后。利用复变量s 得到

R s C

sC R sC s U s U s G i o +=+==

11

/1/1)()()( (6-2) 对于实际频率,s =j ω=j 2πf ,并令

BW f H

103

103 (b)

图6.1 波特图

RC

f H π21

=

(6-3)

就可以得到电路高频电压增益

()H i

o H f f j U U G +==11 (6-4) 由此得到高频区增益的模(幅值)和相角与频率的关系 2

)

(11)(H H f f f G += (6-5)

对数幅频特性为

2

)

(11

log

20log 20)dB (H H f f G G +== (6-5a )

)arctan(H H f f -=?

(6-6)

幅频响应 1) 当f<

01l o g 20)(11log 20)dB (2

=≈+=H H f f G dB

即增益为1,位于横坐标的一条水平线;

2) 当f>>f H 时

)log(20)(11log 20)dB (2H H H f f f f G ≈+= 可见,对于对数频率坐标,上式为一斜线,斜率为-20dB/十倍频(-20dB/dec ),与0dB 直线在f=f H 处相交,所以f H 称为转折频率。当f=f H 时,3)2/1l o g(20)dB (-==H G dB,即=H G 2/1=0.707。高频响应以0dB 直线与-20dB/dec 为渐近线,在转折频率处相差最大为-3dB 。幅频特性如图6.3a 所示。 当频率等于转折频率时,电容电抗正好等于电阻阻值。当频率继续增加时,电容C 的阻抗以-20dB/dec 减少,即频率增加10倍,容抗减少10倍,所以输出以-20dB 衰减。

相频特性

相位与频率的关系(式(6.6))可以用以下方式作出: 1)当f<>f H 时,?H →90°,得到一条?H =90°直线。 3)当f =f H 时,?H =45°。

当f =0.1f H 和f =10f H 时, ?H 分别为-5.7°和-84.3°,故可近似用斜率为dec /45

-斜线表示。相频特性如图6.3(b)所示。

由幅频和相频可以看到,当频率增加时,电路增益越来越小,相位滞后越来越大。当相位达到90°时,增益为0。幅频和相频特性都由上限频率f H 决定。从式(6.3)可以看到,上限截止频率由电路的时间常数

R

L

R

i U o

U

(a )

(b )

图6.2 高频响应

10 f/f

10

f/f H

-90

(b)

图6.3 图2电路的高频波特图

(RC )决定。如果图6.2b 的时间常数L/R 与图6.2a 的时间常数RC 相等,则图6.2b 电路的波特图与图6.2a 完全相同。

从图6.3可以看出,高频信号大大衰减,而低频信号得以保存。因此,这种电路也称为低通滤波器。 对于图6.2a 电路,如果时间常数对研究的时间来说大的多,即电阻和电容数值很大,我们有

t

U C R U c

i d d ≈ 因为U o =U c ,可以得到 ?=

dt U RC

U i o 1

(6-7)

这是一个积分电路。可见,相同的电路对不同的研究目的表现出不同的功能。

2. 低频特性

我们来研究图6.4所示两个电路在低频区的特性。利用复变量s ,由图6.4(a )可以得到

sRC

sC R R s U s U s G i o L 111

1)()()(+=

-==

按照实际频率,ωj s =,并令 RC

f L π21

=

(6-8)

得到 )

(11f f j U U G L i

o L -=

= (6-9)

因此电路低频区的增益(模)和相角分别为

2

)(11

)(f f f G L L +=

(6-10a )

2)(11log 20)dB (f f G L L += (6-10b)

)arctan(f f L =? (16-11)

采用与高频响应相似直线近似的方法,可以画出低频响应的波特图,如图6.5所示。图中f L 为下限频率,即低频转折频率。在转折频率以下,电路增益随频率下降而下降,特性斜率为20dB/dec 。相位随频率降低超前输入相位。最大超前90°,这时增益为0(-∞dB )。 下限转折频率也与电路时间常数RC (L/R )有关,如果图6.4(a)与(b)时间常数相同,则它们的波特图也完全相同。 从图6.5还可以看到,电路对低频信号衰减;而高频信号由于容抗减少而顺利通过。因此这种电路也称为高通滤波器。

对于图6.4(a)电路的时间常数远远小于我们研究的时间间隔时,输出获得输入信号的变化部分,则

R

R

U

(a)

(b) 图6.4 低频响应

10

f/f

10 0

f/f L

(b)

图6.5 图4电路的低频波特图

t

U RC t U RC Ri U i

c o

d d d d === (6-12) 电路表现为一个微分电路。

3. LC 滤波电路特性

在开关电源中,正激类的输出滤波器(图6.6)是一个LC 网络,并有负载电阻与输出电容并联,且负载电阻可以从某定值(满载)变化到无穷大(空载)。

对于图6电路我们同样可以用复变量得到

L

L L i o R sL CL s sC R sL sC R s U s U s G ++=

+==

211

)1//()1//()()()( 按照实际频率ωj s =,并令

LC

f π21

0=

(6-13) 得到

)

2()(11

20L R fL j f f G π+-=

(6-14)

C R L

图6.6 LC 滤波电路频率特性

电路的特征阻抗为C

L

Z =0,在f →f 0

很小范围内,=-20)(1f

f

02f f ?,令L

R Z R D L

L ω≈

=

0,于是增益幅频和相频特性分别为

??????+??? ???-=-22

02log 10)dB (D f f G (6-15) f

D f ?-=2arctan 0?

(6-16)

由式(6-15

)和(6-16)可以做出LC 滤波电路的波特图,如图6.7所示。当f<>f 0时,式(6-14)分母中第二项远远大于其余两项,感抗以20dB/dec 增加,容抗以-20dB/dec 减少,负载阻抗远远大于容抗,幅频特性-40dB/dec 下降, ?趋于-180°。在f 接近f 0时,不同的D 值,幅值提升也不一样:D 值越大,相当于轻载,电路欠阻尼,幅值提升幅度越高。随着负载加大,等效负载电阻减少,D 值下降,提升峰值也减少;当D =1时,临界阻尼,由低频趋向f 0时,只有很小的提升,并在f =f 0时,回到0dB ,在f >f 0后,增益逐渐趋向-40dB/dec 。而当D <1时,即过阻尼,相当于满载或过载,在f →f 0附近,幅值非但没有提升,而且随频率增加而衰减,大约在20倍f 0以后衰减斜率达到-40dB/dec 。

图6.7(b )示出了相移与规化频率(f/f c )和不同D 之间的关系。可以看到,不管D 值如何,输出与输入之间的相位差在转折频率f 0处均为90°。而对于高欠阻尼滤波器(R o > 5Z o ),相频特性随频率迅速改变。对于R o =5Z o ,在频率1.5f 0时,相移几乎达到170°。而在增益斜率为-20dB/dec 的电路中,决不可能产生大于90°相移,而相频特性随频率的变化率远低于图6.7b 的-90°/dec 的相移变化率。

如果图6.6中输出电容具有ESR -等效串联电阻R esr ,一般ESR 很小,在低频段1/ωC<

πL

R f esr

esr 2=

此时,L f R esr esr π2=,相位提升45°。当频率继续升高,输出滤波电路变成LR esr 电路。LC 滤波器在频率f esr 之后从-40dB/dec 转换为-20dB/dec 衰减,相移趋向滞后90°,而不是180°。这就是说,电容的ESR 提供一个零点。

6.1.3基本电路的时域响应

电路分析方法分稳态分析和瞬态分析。前面以正弦波为基本信号分析了电路的幅值和相位的频率响应,是稳态响应。这种方法称为频域分析法。

电路分析另一种方法是瞬态分析法。它是以阶跃信号为输入信号,研究电路输出随时间变化规律,称为阶跃响应。它是以波形的上升时间和平顶降落大小为评判标志。称为时域分析法。 1. 阶跃信号

图6.8表示一个阶跃电压,可表示为

D= 7

3 2

1

-40dB/dec

0.1 -40

0.1 1.0 10 f/f c

? (a) 1 -160

-180 f/f c

(b)

图6.7 输出LC 滤波器幅频(a)和相频(b)特性

??

?><=0

,0

,0)(t U t t u (6-17)

可以看到,阶跃信号波形转换时变化率为无穷大,而在转换前和转换以后是一个不变化的常数。从频率分析的观点看,极快的变化率包含从直流到极高频率的谐波分量。电路输出能否重复输入信号的波形:输出的上升时间反映了电路的高频响应;而平顶降落反映了电路的低频响应。 2. 单时间常数的阶跃响应

我们来研究图6.2电路的阶跃响应,重画于图6.8。阶跃响应由上升时间t r 和平顶降落δ表示。

上升时间t r

当阶跃信号加在图6.8(a)电路输入端,根据RC 电路一般规律有

0/0)1)((U e U U U t c +--=-∞τ 式中U 0-初值;U ∞-终值;τ=RC -时间常数。

电容初始电压U 0为零,得到

)1(τt

i c o e U U U --== (6-18)

式中τ=L/R ,U i 为阶跃信号平顶部分电压值。U o /U i 与时间关系如图6.9所示。(RC 电路三要素:初值、终值和时间常数。)输入在极短时间上升到终值,而输出电压随时间指数变化,要

经过一段时间才达到终值,这种现象称为前沿失真。一般将输出终值的10%到终值的90%的时间间隔定义为上升时间t r 。

由式(6-18)可见,当t =t 1时

1.01)(1

=-=-τ

t i

o e U t u ,即9.01=-τt e

同理得到t =t 2时 1.02

=-τ

t e

因为

91

.09

.0)

(122

1==

==---τ

τ

τ

τr

t t t t t e

e

e

e 所以,上升时间为

RC t r 197.29ln ==τ 电路的高频响应)π2/(1RC f H =,可以得到 H

H r f f t 35

.0π2197.2=

=

(6-19) 可见,上升时间与上限频率成反比,f H 越高,上升时间t r 就越小,前沿失真越小。例如某电路带宽1MHz ,

阶跃响应上升时间35.0=r t μs 。

同样我们利用图6.4(a)来研究平顶降落。当阶跃输入时,可以得到输出为

τ

t

i o e

U t u -=)(

u o 与时间关系如图6.10所示。如果研究的时间t p <<τ,在此时间内虽然输入电压不变,但输出电压仍按指数规律下降,下降速度与时间常数有关。这种现象称为平顶降落。由于t p <<τ,可以近似得到

t=0 R L

R

i U o U

(a )

(b) u o /U i

t

1 2

图6.9 阶跃响应u o /U I 与时间t 的关系

???

?

??-=τp i o t U t u 1)(

考虑到)π2/(1RC f L =,于是得到

i p L i

p U t f RC

U t π2==δ 可见,平顶降落δ与下限频率f L 成正比,f L 越低,平顶降落越小。

在开关电源中,负载和输入电源电压突变也是阶跃响应。以上研究中,系统仍处于线性状态,但在开关电源中,有高增益放大器,在阶跃信号作用下,通常进入非线性状态,大信号响应往往低于小信号响应。

3. LC 电路阶跃响应

LC 电路如图6.11所示。如果电路损耗电阻为零,电感初始电流和电容初始电压为零,在阶跃信号作用下,则有

)2/sin(0πω-+=t U U u i i C

t Z U t I i i

o m L 00

sin sin ωω=

= 式中:

U i 为阶跃输入信号稳定电压; LC 电路的谐振角频率

LC

f 1

π200==ω; 谐振电路的特征阻抗

C

L C L Z o 001

ωω=

==

电感电流峰值为 L

U

Z U I i i m 00ω==

不同的初始值、激励和电路条件,波形的幅值初始值和终值都不一样,但相位关系是固定的。

附注:复数概念 复数

一个复数由实部和虚部两个部分组成,即

A=(Re)+j(Im) (F-1) 这里j =1-。

因为一个复数用两个数组成,我们可以用x 轴作为实数,y 轴作为虚轴画出来,如附图1所示。重新画这个图为附图2,可以看到,复数可以用两个量表示:一个是到坐标(0,0)距离22(Im)(Re)+=r ;而

另一个是由实轴反时针到该点的夹角Re

Im

arctan

=φ。数值r 称为复数的模,夹角φ称为复数的幅角。 在电学中,我们要表达数值和相位自然就想到了使用复数。例如,表达一个正弦波电量,正弦量为坐标距离在虚轴上投影,余弦量为在实轴上投影,因此一个复数也可以表示为

()????

s i n c o s s i n c o s j r jr r A +=+= (F-2)

δ

t

t p

图6.10 平顶降落

i L ωt

(a) ωt

π 2π (b )

图6.11 LC 电路(a )的阶跃响应(b)

根据欧拉公式

2cos ?

??j j e e -+= 和

j e

e j j 2sin ???--= 式(F-2)可解为

?j re A =

(F-3) 或简化为

?∠=r A (F-4) 可见,一个复数可用上述几种形式表示:式(F-2)为复数直角坐标式;式(F-3)为指数式;式(F-4)为极坐标式三者之间可以互相转换。复数加减可以用直角坐标式,乘除运算可以用指数式或极坐标式。

从式(F-3),(F-2)可见,如果=?90°,则有

j j j e j ±=±=±=*

±090sin 90cos 90

可见任意相量乘以j ,相位旋转90°:+号逆时针旋转;-号顺时针旋转。如果在虚轴为j ,乘以j 后旋转到

实轴变为-1,因此

1-=?j j

所以1-=j 是虚数 单位。 复函数

可以用一个复数去表达瞬时的幅值和相位,如果表达一个正弦电量,在电路中复数与频率有关。稳态设计时感兴趣的是两个方面:函数在什么参数为零?而在何时函数为无穷?这两种情况分别表示函数的零点和极点。 例: 3

2

--=

x x y 很明显,此函数在x =2时为零,即复数幅值为2,相位是0,实部2,而虚部0(附图1)。在x=3函数变成无穷。它的复数图象数值3和相位为0.

作为另一个例子我们立刻可以看到电容具有与频率有关的复数1/sC (s -复变量,与频率有关);而感抗为sL 。附图3示出了开关电源输出滤波器(电容有ESR ,电感有线圈电阻,这里未考虑)。形成一个分压器,输出与输入比为 1

1

11)()()(2

+=+==

LC s sC sL sC s U s U s G i o (F-5) 此函数不会为零,只是当sLC =-1,即s =±

LC j 时,有两个极点。两个极点出现在谐振频率点,并且相角为90°和270°(是纯虚数,没有实部,如附图4所示)。

当然这里的物理意义是LC 网络在此频率谐振,输出在此频率被无限放大。当然实际电路总是存在电阻,所以放大倍数不是无穷,即两个极点不是在虚轴上,实部不为零。 C 和L 的变换

r

?

附图2 复数用距离和角度表示

附图3 电感和电容 附图4 LC 谐振频率的极点

复数阻抗

对于电容电流有

t

U

C

I d d = 如果我们st Ue s U =)(,因此电压是正弦波[因为()()t j t e t j ωωωsin cos +=,这是相同的],我们得到

)()(s CsU CsUe s I st == 则阻抗为

sC

s I s U Z 1

)()(==

在定义拉氏变换中我们不必实际去求积分,因为在求解微分方程时积分是隐含的。相似的,我们可以求得电感阻抗

t

I L

U d d = 同样将U (s )用U st

e 代替,得到

s

s U s Ue s LI st )

()(== 则阻抗sL Z =。

开关电源反馈设计

第六章 开关电源反馈设计 除了磁元件设计以外,反馈网络设计也是开关电源了解最少、且非常麻烦的工作。它涉及到模拟电子技术、控制理论、测量和计算技术等相关问题。 开关电源环路设计的目标是要在输入电压和负载变动范围内,达到要求的输出(电压或电流)精度,同时在任何情况下应稳定工作。当负载或输入电压突变时,快速响应和较小的过冲。同时能够抑制低频脉动分量和开关纹波等等。 为了较好地了解反馈设计方法,首先复习模拟电路中频率特性、负反馈和运算放大器基本知识,然后以正激变换器为例,讨论反馈补偿设计基本方法。并介绍如何通过使用惠普网络分析仪HP3562A 测试开环响应,再根据测试特性设计校正网络和验证设计结果。最后对仿真作相应介绍。 6.1 频率响应 在电子电路中,不可避免存在电抗(电感和电容)元件,对于不同的频率,它们的阻抗随着频率变化而变化。经过它们的电信号不仅发生幅值的变化,而且还发生相位改变。我们把电路对不同频率正弦信号的输出与输入关系称为频率响应。 6.1.1 频率响应基本概念 电路的输出与输入比称为传递函数或增益。传递函数与频率的关系-即频率响应可以用下式表示 )()(f f G G ?∠= 其中G (f )表示为传递函数的模(幅值)与频率的关系,称为幅频响应;而∠?(f )表示输出信号与输入信号的相位差与频率的关系,称为相频响应。 典型的对数幅频响应如图6.1所示,图6.1(a)为幅频特性,它是画在以对数频率f 为横坐标的单对数坐标上,纵轴增益用20log G (f )表示。图6.1(b)为相频特性,同样以对数频率f 为横坐标的单对数坐标上,纵轴表示相角?。两者一起称为波特图。 在幅频特性上,有一个增益基本不变的频率区间,而当频率高于某一频率或低于某一频率,增益都会下降。当高频增高时,当达到增益比恒定部分低3dB 时的频率我们称为上限频率,或上限截止频率f H ,大于截止频率的区域称为高频区;在低频降低时,当达到增益比恒定部分低3dB 时的频率我们称为下限频率,或下限截止频率f L ,低于下限截止频率的区域称为低频区;在高 频截止频率与低频截止频率之间称为中频区。在这个区域内增益基本不变。同时定义 L H f f BW -= (6-1) 为系统的带宽。 6.1.2 基本电路的频率响应 1. 高频响应 在高频区,影响系统(电路)的高频响应的电路如图6.2所示。以图6.2a 为例,输出电压与输入电压之比随频率增高而下降,同时相位随之滞后。利用复变量s 得到 R s C sC R sC s U s U s G i o +=+== 11 /1/1)()()( (6-2) 对于实际频率,s =j ω=j 2πf ,并令 BW f H 103 103 (b) 图6.1 波特图

相关开关电源原理及电路图

相关开关电源原理及电路图 2012-06-03 17:39:37 来源:21IC 关键字:开关电源电路图 什么是开关电源?所谓开关电源,故名思议,就是这里有一扇门,一开门电源就通过,一关门电源就停止通过,那么什么是门呢,开关电源里有的采用可控硅,有的采用开关管,这两个元器件性能差不多,都是靠基极、(开关管)控制极(可控硅)上加上脉冲信号来完成导通和截止的,脉冲信号正半周到来,控制极上电压升高,开关管或可控硅就导通,由220V整流、滤波后输出的300V电压就导通,通过开关变压器传到次级,再通过变压比将电压升高或降低,供各个电路工作。振荡脉冲负半周到来,电源调整管的基极、或可控硅的控制极电压低于原来的设置电压,电源调整管截止,300V电源被关断,开关变压器次级没电压,这时各电路所需的工作电压,就靠次级本路整流后的滤波电容放电来维持。待到下一个脉冲的周期正半周信号到来时,重复上一个过程。这个开关变压器就叫高频变压器,因为他的工作频率高于50HZ低频。那么推动开关管或可控硅的脉冲如何获得呢,这就需要有个振荡电路产生,我们知道,晶体三极管有个特性,就是基极对发射极电压是0.65-0.7V是放大状态,0.7V以上就是饱和导通状态,-0.1V- -0.3V就工作在振荡状态,那么其工作点调好后,就靠较深的负反馈来产生负压,使振荡管起振,振荡管的频率由基极上的电容充放电的时间长短来决定,振荡频率高输出脉冲幅度就大,反之就小,这就决定了电源调整管的输出电压的大小。那么变压器次级输出的工作电压如何稳压呢,一般是在开关变压器上,单绕一组线圈,在其上端获得的电压经过整流滤波后,作为基准电压,然后通过光电耦合器,将这个基准电压返回振荡管的基极,来调整震荡频率的高低,如果变压器次级电压升高,本取样线圈输出的电压也升高,通过光电耦合器获得的正反馈电压也升高,这个电压加到振荡管基极上,就使振荡频率降低,起到了稳定次级输出电压的稳定,太细的工作情况就不必细讲了,也没必要了解的那么细的,这样大功率的电压由开关变压器传递,并与后级隔开,返回的取样电压由光耦传递也与后级隔开,所以前级的市电电压,是与后级分离的,这就叫冷板,是安全的,变压器前的电源是独立的,这就叫开关电源。 图开关电源原理图1

如何判断电压反馈与电流反馈(1)

如何判断电压反馈与电流反馈? 若反馈量与输出电压成正比则为电压反馈;若反馈量与输出电流成正比则为电流反馈。通常可以采用负载短路法来判断。 从概念上说,若反馈量与输出电压(有时不一定是输出电压,而是取样处的电压)成正比则为电压反馈;若反馈量与输出电流(有时不一定是输出电流,而是取样处的电流)成正比则为电流反馈。在判断电压反馈和电流反馈时,除了上述方法外,也可以采用负载短路法。负载短路法实际上是一种反向推理法,假设将放大电路的负载电阻RL短路(此时,),若输入回路中仍然 存在反馈量,即,则为电流反馈;若输入回路中已不存在反馈,即则为电压反馈。 判断电压反馈和电流反馈更直观的方法是根据负载电阻与反馈网络的连接方式来区分电 压反馈与电流反馈。将负载电阻与反馈网络看作双端网络(在反馈放大电路中其中一端通常为公共接地端),若负载电阻与反馈网络并联,则反馈量对输出电压采样,为电压反馈。否则,反馈量无法直接对输出电压进行采样,则只能对输出电流进行采样,即为电流反馈。 电压负反馈可以稳定输出电压;而电流负反馈则可以稳定输出电流。区分电压反馈与电流反馈只有在负载电阻RL变动时才有意义。如果RL固定不变,因输出电压与输出电流成正比,所以,在稳定输出电压的同时也必然稳定输出电流,反之亦然,二者效果相同。但是当负载电阻 RL改变时,二者的效果则完全不同,电压负反馈在稳定输出电压时,输出电流将更不稳定; 而电流负反馈在稳定输出电流时,输出电压将更不稳定。 图6 电压反馈与电流反馈的判断 如图5(a),反馈电压,反馈量与输出电压成正比,故为电压反馈。

图6(a),反馈电压,反馈量与输出电流成正比,故为电流反馈。 图6 (b),反馈电流,反馈量与输出电流成正比,故为电流反馈。也可用负载短路法来判断,如图5(a)中,将RL短路时(此时,),如图7(a)所示。由于输 入回路中不存在反馈(),所以图5(a)电路为电压反馈。将图6(a) 中RL短路时(此 时,,如图7(b)所示,输入回路中仍然存在反馈量(),说明反馈对输出电流取样,所以图6(a)电路应为电流反馈。 图7 负载短路法判断电压反馈与电流反馈

开关电源闭环反馈响应及测试

开关电源闭环反馈响应及测试 开关电源依靠反馈控制环路来保证在不同的负载情况下得到所需的电压和电流。反馈控制环路的设计影响到许多因素,包括电压调整、稳定性和瞬态响应。当某个反馈控制环路在某个频率的环路增益为单位增益或更高且总的相位延迟等于360 时,反馈控制环路将会产生振荡。稳定性通常用下面两个参数来衡量: 相位裕量:当环路增益为单位增益时实际相位延迟与360 间的差值,以度为单位表示。 增益裕量:当总相位延迟为360 时,增益低于单位增益的量,以分贝为单位表示。 对多数闭环反馈控制系统,当环路增益大于0dB时,相位裕量都大于45 (小于315 )。当环路相位延迟达到360 时,增益裕量为-20dB或更低。 如果这些条件得到满足,控制环将具有接近最优的响应;它将是无条件稳定的,即不会阻尼过小也不会阻尼过大。通过测量在远远超出控制环通常操作带宽的情况下控制环的频率响应,可以保证能够反映出所有可能的情况。 一个单输出开关电源的控制环增益和相位响应曲线。测量是利用一个GP102增益相位分析仪(一种独立的用来评价控制环增益和相位裕量的仪器)进行的,然后输入到电子表软件中。 在这一例子中,从0dB增益交点到360 测量得到的相位裕量为82 (360 到 278 )。从0dB增益交点到相位达到360 的增益裕量为-35dB。把这些增益和相位裕量值与-20dB增益裕量和60 相位裕量的目标值相比较,可以肯定被测试电源的瞬态响应和调节是过阻尼的,也是不可接受的。 0dB交点对应的频率为160Hz,这导致控制环的响应太慢。理想情况下,在1或2KHz处保持正的环增益是比较合适的,考虑到非常保守的增益和相位裕量,不必接近不稳定区即可改善控制环的动态特性。当然需要对误差放大器补偿器件进行一些小的改动。进行修改后,可以对控制环重新进行测试以保证其无条件稳定性。通常可利用频率响应分析仪(FRA)或增益-相位分析仪进行这种测量。这些仪器采用了离散傅里叶变换(DFT)技术,因为被测信号经常很小且被掩盖在噪声和电源开关台阶所产生的失真中。DFT用来从中提取出感兴趣的信号。 测试信号注入 为进行测量,FRA向控制环中注入一个已知频率的误差信号扰动。利用两个FRA通道来判断扰动要多长时间才能从误差放大器输入到达电源输出。 扰动信号应该在控制环反馈信号被限制在单条路径的地方注入,并且来自低阻抗的驱动源。连接到电源输出或误差放大器输出的反馈路径是注入扰动信号的好地方。 通过信号发生器通过一个隔离变压器连接到测试电路,以保证FRA信号发生器和被测试电路间的电气隔离。注入方法将扰动信号注入到误差放大器的输入。对于电源输出电压在FRA最大输入电压限制以内的情况,这一方法是合适的。 如果被测量电源的输出电压比FRA最大输入电压还要高,那么第一种注入方法就不适用了。扰动信号被注入到误差放大器的输出,此处的控制环对地电压比较低。如果电源电压超过FRA输入范围则应采用这种注入方法。

开关电源电路组成及各部分详解

一、开关电源的电路组成 开关电源的主要电路是由输入电磁干扰滤波器(EMI)、整流滤波电路、功率变换电路、PWM控制器电路、输出整流滤波电路组成。辅助电路有输入过欠压保护电路、输出过欠压保护电路、输出过流保护电路、输出短路保护电路等。 开关电源的电路组成方框图如下: 二、输入电路的原理及常见电路 1、AC输入整流滤波电路原理: ①防雷电路:当有雷击,产生高压经电网导入电源时,由MOV1、MOV2、MOV3:F1、F2、F3、FDG1组成的电路进行保护。当加在压敏电阻两端的电压超过其工作电压时,其阻值降低,使高压能量消耗在压敏电阻上,若电流过大,F1、F2、F3会烧毁保护后级电路。 ②输入滤波电路:C1、L1、C2、C3组成的双π型滤波网络主要是对输入电

源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。当电源开启瞬间,要对C5充电,由于瞬间电流大,加RT1(热敏电阻)就能有效的防止浪涌电流。因瞬时能量全消耗在RT1电阻上,一定时间后温度升高后RT1阻值减小(RT1是负温系数元件),这时它消耗的能量非常小,后级电路可正常工作。 ③整流滤波电路:交流电压经BRG1整流后,经C5滤波后得到较为纯净的直流电压。若C5容量变小,输出的交流纹波将增大。 2、DC输入滤波电路原理: ①输入滤波电路:C1、L1、C2组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。C3、C4为安规电容,L2、L3为差模电感。 ②R1、R2、R3、Z1、C6、Q1、Z2、R4、R5、Q2、RT1、C7组成抗浪涌电路。在起机的瞬间,由于C6的存在Q2不导通,电流经RT1构成回路。当C6上的电压充至Z1的稳压值时Q2导通。如果C8漏电或后级电路短路现象,在起机的瞬间电流在RT1上产生的压降增大,Q1导通使Q2没有栅极电压不导通,RT1将会在很短的时间烧毁,以保护后级电路。 三、功率变换电路 1、MOS管的工作原理:目前应用最广泛的绝缘栅场效应管是MOSFET(MOS管),是利用半导体表面的电声效应进行工作的。也称为表面场效应器件。由于它的栅极处于不导电状态,所以输入电阻可以大大提高,最高可达105欧姆,MOS管是利用栅源电压的大小,来改变半导体表面感生电荷的多少,从而控制漏极电流的大小。 2、常见的原理图:

基于UC3843的反激式开关电源反馈电路的设计

2006年9月25日第23卷第5期 通信电源技术 Telecom Power Technologies Sep.25,2006,Vol.23No.5 收稿日期:2006204205 作者简介:陈小敏(19822),男,湖北荆门人,硕士研究生,研究方向为电力电子与电力传动。 文章编号:100923664(2006)0520038202设计应用 基于UC 3843的反激式开关电源反馈电路的设计 陈小敏,黄声华,万山明 (华中科技大学电气与电子工程学院,湖北武汉430074) 摘要:介绍了UC 3843的工作特点,利用UC 3843设计了反激式开关稳压电源,分析了新型反馈电路的工作过程及优点,与传统方法相比,此方法使电源的动态响应更快,调试更简单。最后提出了反馈电路详细的设计方法,仿真结果证明了设计的可行性。 关键词:UC 3843;开关电源;反馈电路中图分类号:TN 86 文献标识码:A The Design of Feedback Circuit of t he Flyback Switching Mode Power Supply Based on UC 3843 CH EN Xiao 2min ,HUAN G Sheng 2hua ,WAN Shan 2ming (Huazhong University of Science and Technology ,Wuhan 430074,China ) Abstract :This paper introduces the characteristic of the UC 3843,designs a flyback switching mode voltage 2stabilized source circuit by using the UC 3843,analyzes the operation course and advantages of a novel feedback https://www.doczj.com/doc/1b6955794.html,paring to the traditional method ,this method makes faster dynamic response to the power ,and it is more convenient to debug.In the end of the article ,it presents the detailed design method ,the simulation result proves the feasibility of the design. Key words :UC 3843;switching mode power supply ;feedback circuit 0 引 言 UC 3843是高性能固定频率电流模式控制器,专 为低压应用而设计,广泛用于100W 以下的反激式开关电源中。目前大多数开关电源都采用离线式结构,一般从辅助供电绕组回路中通过电阻分压取样,该反馈方式的电路简单,但由于反馈不能直接从输出电压取样,没有隔离,抗干扰能力也差,所以输出电压中仍有2%的纹波,对于负载变化大和输出电压变化大的情况下响应慢,不适合精度要求较高或负载变化范围较宽的场合[1],为了解决这些问题,可以采用可调式精密并联稳压器TL 431配合光耦构成反馈回路。 1 UC 3843简介[2] UC 3843芯片内部具有可微调的振荡器(能进行 精确的占空比控制)、温度补偿的参考、高增益误差放大器,电流取样比较器。其低启动电流,带滞后的欠压锁定,工作频率可达500k Hz ,大电流的图腾柱式输出,是驱动功率MOSFET 的理想器件。UC 3843芯片内部简化方框图如图1所示。 2 应用电路分析 以UC 3843为核心的单端反激式开关稳压电源应 用电路如图2所示。 图1 UC 3843 简化方框图 图2 UC 3843应用电路 如图2所示,采用TL 431配合光耦PC 817A 作为参考、隔离、取样,电路中将UC 3843内部的误差放大器反向输入端2脚直接接地,PC 817A 的三极管集电极直接接在误差放大器的输出端1脚,跳过芯片内部的误差放大器,直接用1脚做反馈,然后与电流检测输入的第3脚进行比较,通过锁存脉宽调制器输出PWM 驱动信号。当输出电压升高时,经电阻R up ,R low 分压后输入到TL 431的参考端的电压也升高,此时流 ? 83?

电压负反馈和电流正反馈自动调速系统的选择

电压负反馈和电流正反馈自动调速系统的选择 转速负反馈自动调速系统,其调速指标是很好的,但是它需要一个测速发电机,增加了设备投资,维修较麻烦,有时安装也困难。从A-G-M开环系统中可以看出,当负载电流增加时,由于发电机端电压的下降以及发电机、电动机换向绕组压降及电动机电枢压降的增加,使电动机反电动势及转速下降,可用发电机端电压作为负反馈以维持发电机电压近似不变;可用负载电流作为正反馈以补偿换向绕组及电动机电枢绕组压降。这样既可得到近似转速负反馈的性能。 下图为电压负反馈调速系统电路图。 图2.5.1电压负反馈系统电路图 Figure 2.5 .1 negative feedback system voltage circuit 发电机电枢两端并联电阻RV,从中引出反馈电压UV,此即为信号引出点。Rv的选择应使流进其电流而引起发电机内部压降可略而不计。UV与给定电压Us是反向的,因而构成了电压负反馈环节。由于是电压反馈,故应选择高阻控制绕组作为CI。图中Rsa是给定回路附加电阻。 式中, 为给定电位器分压比;

为电压负反馈系数; 上图中各环节的电压平衡方程式为 式中,分别为发电机及电动机电枢绕组及换向绕组电阻; 为主回路换向绕组的电阻和。 根据框图,写出电压负反馈调速系统静特性方程: 式中,KV为电压负反馈闭环系统开环放大倍数

图2.5.2具有电压负反馈及电流正反馈系统电路图 Figure 2.5 .2 a negative feedback voltage and current positive feedback system circuit 从图2.5(b)可得静特性方程式

最详细的开关电源反馈回路设计

最详细的开关电源反馈回 路设计 Prepared on 22 November 2020

开关电源反馈回路设计 开关电源反馈回路主要由光耦(如PC817)、电压精密可调并联稳压器(如TL431)等器件组成。要研究如何设计反馈回路,首先先要了解这两个最主要元器件的基本参数。 1、光耦 PC817的基本参数如下表: 2、可调并联稳压器 由TL431的等效电路图可以看到,Uref是一个内部的基准源,接在运放的反相输入端。由运放的特性可知,只有当REF端(同相端)的电压非常接近Uref()时,三极管中才会有一个稳定的非饱和电流通过,而且随着REF端电压的微小变化,通过三极管VT的电流将从1到100mA变化。当然,该图绝不是TL431的实际内部结构,所以不能简单地用这种组合来代替它。但如果在设计、分析应用TL431的电路时,这个模块图对开启思路,理解电路都是很有帮助的。 前面提到TL431的内部含有一个的基准电压,所以当在REF端引入输出反馈时,器件可以通过从阴极到阳极很宽范围的分流,控制输出电压。如图2所示的电路,当R1和R2的阻值确定时,两者对Vo的分压引入反馈,若Vo增大,反馈量增大,TL431的分流也就增加,从而又导致Vo下降。显见,这个深度的负反馈电路必然在Uref等于基准电压处稳定,此时Vo=(1+R1/R2)Vref。 图2 选择不同的R1和R2的值可以得到从到36V范围内的任意电压输出,特别地,当R1=R2时,Vo=5V。需要注意的是,在选择电阻时必须保证TL431工作的必要条件,就是通过阴极的电流要大于1mA。 了解了TL431和PC817的基本参数后,来看实际电路: 图3 反馈回路主要关注R6、R8、R13、R14、C8这几个器件的取值。 首先来看R13。R13、R14是TL431的分压电阻,首先应先确定R13的值,再根据Vo=(1+R14/R13)Vref公式来计算R14的值。 1.确定R13.、R14取值

电压串联反馈原理

放大电路负反馈的原理特点 一、提高放大倍数的稳定性 引入负反馈以后,放大电路放大倍数稳定性的提高通常用相对变化量来衡量。 因为: 所以求导得: 即: 二、减小非线性失真和抑制噪声 由于电路中存在非线性器件,会导致输出波形产生一定的非线性失真。如果在放大电路中引入负反馈后,其非线性失真就可以减小。 需要指出的是:负反馈只能减小放大电路自身产生的非线性失真,而对输入信号的非线性失真,负反馈是无能为力的。 放大电路的噪声是由放大电路中各元器件内部载流子不规则的热运动引起的。而干扰来自于外界因素的影响,如高压电网、雷电等的影响。负反馈的引入可以减小噪声和干扰,但输出端的信号也将按同样规律减小,结果输出端的信号与噪声的比值(称为信噪比)并没有提高。 三、负反馈对输入电阻的影响 由于负反馈可以提高放大倍数的稳定性,所以引入负反馈后,在低频区和高频区放大倍数的下降程度将减小,从而使通频带展宽。 引入负反馈后,可使通频带展宽约(1+AF)倍。 四、负反馈对输入电阻的影响 (a)串联反馈(b)并联反馈

图1 求输入电阻 1、串联负反馈使输入电阻提高 引入串联负反馈后,输入电阻可以提高(1+AF)倍。即: 式中:ri为开环输入电阻 rif为闭环输入电阻 2、并连负反馈使输入电阻减小引入并联负反馈后,输入电阻减小为开环输入电阻的 1/(1+AF )倍。 即: 五、负反馈对输出电阻的影响 1、电压负反馈使输出电阻减小 放大电路引入电压负反馈后,输出电压的稳定性提高了,即电路具有恒压特性。 引入电压负反馈后,输出电阻rof减小到原来的1/(1+AF)倍。 2、电流负反馈使输出电阻增大 放大电路引入电流负反馈后,输出电流的稳定性提高了,即电路具有恒流特性。 引入电流负反馈后,使输出电阻rof增大到原来的(1+AF)倍。 3、负反馈选取的原则 (1)要稳定静态工作点,应引入直流负反馈。 (2)要改善交流性能,应引入交流负反馈。 (3)要稳定输出电压,应引入电压负反馈; 要稳定输出电流,应引入电流负反馈。 (4)要提高输入电阻,应引入串联负反馈; 要减小输入电阻,应引入并联负反馈。 六、深度负反馈的特点 1、串联负反馈的估算条件 反馈深度(1+AF)>>1的负反馈,称为深度负反馈。通常,只要是多级负反馈放大电路,都可以认为是深度负反馈.此时有: 因为:, 所以:xi≈xf 估算条件:

开关电源设计重难点问答剖析

开关电源设计重难点问答剖析 如何为开关电源电路选择合适的元器件和参数? 很多未使用过开关电源设计的工程师会对它产生一定的畏惧心理,比如担心开关电源的EMI问题、PCB layout问题、元器件的参数和类型选择问题等。其实只要了解了,使用开关电源设计还是非常方便的。 一个开关电源一般包含有开关电源控制器和输出两部分,有些控制器会将MOSFET集成到芯片中去,这样使用就更简单了,也简化了PCB设计,但是设计的灵活性就减少了一些。 开关控制器基本上就是一个闭环的反馈控制系统,所以一般都会有一个反馈输出电压的采样电路以及反馈环的控制电路。因此这部分的设计在于保证精确的采样电路,还有来控制反馈深度,因为如果反馈环响应过慢的话,对瞬态响应能力是会有很大影响。 输出部分设计包含了输出电容,输出电感以及MOSFET等等,这些器件的选择基本上就是要满足性能和成本的平衡,比如高的开关频率就可以使用小的电感值(意味着小的封装和便宜的成本),但是高的开关频率会增加干扰和对MOSFET的开关损耗,从而效率降低。低的开关频率带来的结果则是相反的。 对于输出电容的ESR和MOSFET的Rds_on参数选择也是非常关键的,小的ESR可以减小输出纹波,但是电容成本会增加,好的电容会贵嘛。开关电源控制器驱动能力也要注意,过多的MOSFET是不能被良好驱动的。 一般来说,开关电源控制器的供应商会提供具体的计算公式和使用方案供工程师借鉴的。 如何调试开关电源电路? (1)电源电路的输出通过低阻值大功率电阻接到板内,这样在不焊电阻的情况下可以先做到电源电路的先调试,避开后面电路的影响。 (2)一般来说开关控制器是闭环系统,如果输出恶化的情况超过了闭环可以控制的范围,开关电源就会工作不正常,所以这种情况就需要认真检查反馈和采样电路。特别是如果采

电脑开关电源原理及电路图

2.1、输入整流滤波电路 只要有交流电AC220V输入,ATX开关电源,无论是否开启,其辅助电源就一直在工作,直接为开关电源控制电路提供工作电压。图1中,交流电AC220V经过保险管FUSE、电源互感滤波器L0,经BD1—BD4整流、C5和C6滤波,输出300V左右直流脉动电压。C1为尖峰吸收电容,防止交流电突变瞬间对电路造成不良影响。TH1为负温度系数热敏电阻,起过流保护和防雷击的作用。L0、R1和C2组成Π型滤波器,滤除市电电网中的高频干扰。C3和C4为高频辐射吸收电容,防止交流电窜入后级直流电路造成高频辐射干扰。 2.2、高压尖峰吸收电路 D18、R004和C01组成高压尖峰吸收电路。当开关管Q03截止后,T3将产生一个很大的反极性尖峰电压,其峰值幅度超过Q03的C极电压很多倍,此尖峰电压的功率经D18储存于C01中,然后在电阻R004上消耗掉,从而降低了Q03的C极尖峰电压,使Q03免遭损坏。 2.3、辅助电源电路 整流器输出的300V左右直流脉动电压,一路经T3开关变压器的初级①~②绕组送往辅助电源开关管Q03的c极,另一路经启动电阻R002给Q03的b极提供正向偏置电压和启动电流,使Q03开始导通。Ic流经T3初级①~②绕组,使T3③~④反馈绕组产生感应电动势(上正下负),通过正反馈支路C02、D8、R06送往Q03的b极,使Q03迅速饱和导通,Q03上的Ic电流增至最大,即电流变化率为零,此时D7导通,通过电阻R05送出一个比较电压至IC3(光电耦合器Q817)的③脚,同时T3次级绕组产生的感应电动势经D50整流滤波后一路经R01限流后送至IC3的①脚,另一路经R02送至IC4(精密稳压电路TL431),由于Q03饱和导通时次级绕组产生的感应电动势比较平滑、稳定,经IC4的K端输出至IC3的②脚电压变化率几乎为零,使IC3发光二极管流过的电流几乎为零,此时光敏三极管截止,从而导致Q1截止。反馈电流通过R06、R003、Q03的b、e极等效电阻对电容C02充电,随着C02充电电压增加,流经Q03的b极电流逐渐减小,使③~④反馈绕组上的感应电动势

电压反馈放大器与电流反馈放大器的区别

1.电压反馈放大器与电流反馈放大器的区别: 1.带宽VS增益 电压反馈型放大器的-3DB带宽由R1、Rf和跨导gm共同决定,这就是所谓的增益帯宽积的概念,增益增大,带宽成比例下降。同时运放的稳定性有输入阻抗R1和反馈阻抗Rf共同决定。而对于电流反馈型运放,它的增益和带宽是相互独立的,其-3DB带宽仅由Rf决定,可以通过设定Rf得到不同的带宽。再设定R1得到不同的增益。同时,其稳定性也仅受Rf影响。 2.反馈电阻的取值 电流型运放的反馈电阻应根据数据手册在一个特定的范围内选取,而电压反馈型的反馈电阻的选取就相对而言宽松许多。需要注意的是电容的阻抗随着频率的升高而降低,因而在电流反馈放大器的反馈回路中应谨慎使用纯电容性回路,一些在电压反馈型放大器中应用广泛的电路在电流反馈型放大器中可能导致振荡。比如在电压反馈型放大器我们常会在反馈电阻Rf上并联一个电容Cf来限制运放的带宽从而减少运放的带宽噪声(Cf也常常可以帮助电压反馈型放大器稳定),这些如果运用到电流反馈放大器上,则十有八九会使你的电路振荡。 3.压摆率 当信号较大时,压摆率常常比带宽更占据主导地位,比如同样用单位增益为280MHZ的放大器来缓冲10MHZ,5V的信号,电流反馈放大器能轻松完成,而电压反馈放大器的输出将呈现三角波,这是压

摆率不足的典型表现。通常来说,电压反馈放大器的压摆率在500V每us,而电流反馈放大器拥有数千V每us. 4.如何选择两类芯片 a,在低速精密信号处理中,基本看不到电流反馈放大器的身影,因为其直流精度远不如精密电压反馈放大器。 b.在高速信号处理中,应考虑设计中所需要的压摆率和增益帯宽积;一般而言,电压反馈放大器在10MHZ以下,低增益和小信号条件下会拥有更好的直流精度和失真性能;而电流反馈放大器在10MHZ以上,高增益和大信号调理中表现出更好的带宽和失真度。当下面两种情况出现一种时,你就需要考虑一下选择电流反馈放大器:1,噪声增益大于4;2,信号频率大于10MHZ。 编辑本段2.应用时需要注意的问 1、电流反馈型放大器不能用做积分器 2、电流反馈型放大器在反馈电阻两端不能用并联电容的方法消除振荡 3、电流反馈型放大器的输出和反向输入端不能跨接电容 4、电流型反馈放大器的反馈误差量是运放负管脚的电流值,Vout=Zt×In 5、电流型反馈放大器的反馈电阻不能选择过大的值 6、电流型反馈放大器的反馈阻值会影响放大的稳定性和带宽 7、电流型反馈放大器不能用作电压跟随器的接法 8、电流型反馈放大器的压摆率比较高 9、电流型反馈放大器无增益带宽积这一个参数10、电流型反馈放大器的增益和闭环带宽可以分别的设置11、反馈电阻有一个最佳值,既可以保证最大带宽,也可以保证稳定的放大的不振荡。

电流电压串联并联负反馈分析

一.电压串联负反馈: 图Z0303(a)为两级电压串联负反馈放大电路,图(b)是它的交流等效电路方框图。 1.反馈类型的判断 (1)找出联系输出回路与输入回路的反馈元件。图Z0303(a)中Rf、Cf、Re1是联系输出回路与输入回路的元件,故Rf、Cf、Re1是反馈元件,它们组成反馈网络,引入级间反馈。 (2)判断是电压反馈还是电流反馈。 可用两种方法来判别,一是反馈网络直接接在放大电路电压输出端,故为电压反馈;二是令Uo = 0,因Uf由Rf、Re1 对Uo分压而得,故Uf= 0反馈消失,所以为电压反馈; (3)判别是串联反馈还是并联反馈。 由图Z0303(a)可以看出:Ube = Ui - Uf 即输入端反馈信号与输入信号以电压形式相迭加,故为串联反馈,也可令Ui=0,此时Uf仍能作用到放大电路输入端,故为串联反馈;还可以根据反馈信号引至共射电路发射极则为串联反馈。 (4)判别反馈极性。 假定Ui为+,则经两级共射电路放大后,Uo为+,经Rf与Re1 分压得到的Uf也为+,结果使得放大电路有效输入信号减弱,故为负反馈。 综上判断结果、该电路为电压串联负反馈放大电路。 2、反馈对输出电量的稳定作用 放大电路引入电压负反馈后,能够使输出电压稳定。任何外界因素引起输出电压不稳时,输出电压的变化将通过反馈网络立即回送到放大电路的输入端,并与原输入信号进行比较,得出与前一变化相反的有效输人信号,从而使输出电压的变化量得到削弱,输出电压便趋于稳定。 可见,负反馈使放大电路具有了自动调节能力。电压负反馈能够稳定输出电压。 3、信号源内阻对串联反馈效果的影响 由上面的讨论可见,对串联反馈Ube = Ui - Uf ,显然,UI越稳定,Uf 对Ube 的影响就越强,控制作用就越灵敏。当信号源内阻Rs = 0时,信号源为恒压源,Us就为恒定值,则Uf的增加量就全部转化为Ube 的减小量,此时,反馈效果最强。因此,串联反馈时,Rs 越小越好,或者说串联反馈适用于信号源内阻Rs 小的场合。 4、放大倍数及反馈系数的含义 对电压串联负反馈电路, Xi = Ui, Xo = Uo,Xf = Uf 故: AUf、FU,分别称为闭环电压放大倍数和电压反馈系数。

开关电源反馈电路

电流型开关电源中电压反馈电路的设计 2007-11-29 09:35:15| 分类:电源| 标签:|字号大中小订阅 尚修香侯振义空军工程大学电讯工程学院 在传统的电压型控制中,只有一个环路,动态性能差。当输入电压有扰动时,通过电压环反馈引起占空比的改变速度比较慢。因此,在要求输出电压的瞬态误差较小的场合,电压型控制模式是不理想的。为了解决这个问题,可以采用电流型控制模式。电流型控制既保留了电压型控制的输出电压反馈,又增加了电感电流反馈,而且这个电流反馈就作为PWM控制变换器的斜坡函数,从而不再需要锯齿波发生器,使系统的性能具有明显的优越性。电流型控制方法的特点如下: 1、系统具有快速的输入、输出动态响应和高度的稳定性; 2、很高的输出电压精度; 3、具有内在对功率开关电流的控制能力; 4、良好的并联运行能力。 由于反馈电感电流的变化率直接跟随输入电压和输出电压的变化而变化。电压反馈回路中,误差放大器的输出作为电流给定信号,与反馈的电感电流比较,直接控制功率开关通断的占空比,所以电压反馈是电流型电源设计中很重要的问题。本文介绍使用电流型控制芯片uc3842时,电压反馈电路的设计。 一、uc3842简介 图1为UC3842PWM控制器的内部结构框图。其内部基准电路产生+5V基准电压作为UC3842内部电源,经衰减得2.5V电压作为误差放大器基准,并可作为电路输出5V/50mA的电源。振荡器产生方波振荡,振荡频率取决于外接定时元件,接在4脚与8脚之间的电阻R与接在4脚与地之间的电容C共同决定了振荡器的振荡频率,f=1.8/RC。反馈电压由2脚接误差放大器反相端。1脚外接RC网络以改变误差放大器的闭环增益和频率特性,6脚输出驱动开关管的方波为图腾柱输出。3脚为电流检测端,用于检测开关管的电流,当3脚电压≥1V时,UC3842就关闭输出脉冲,保护开关管不至于过流损坏。UC3842PWM 控制器设有欠压锁定电路,其开启阈值为16V,关闭阈值为10V。正因如此,可有效地防止电路在阈值电压附近工作时的振荡。 图1UC3842的内部结构框图如下: UC3842具有以下特点: 1、管脚数量少,外围电路简单,价格低廉; 2、电压调整率很好; 3、负载调整率明显改善; 4、频响特性好,稳定幅度大; 5、具有过流限制、过压保护和欠压锁定功能。 UC3842具有良好的线性调整率,因为输入电压Vi 的变化立即反应为电感电流的变化,它不经过任何误差放大器就能在比较器中改变输出脉冲宽度,再增加一级输出电压Vo至误差放大器的控制,能使线性调整率更好;可明显地改善负载调整率,因为误差放大器可专门用于控制由于负载变化造成的输出电压

电压电流反馈控制模式

电压、电流的反馈控制模式 现在的高频开关稳压电源主要有五种PWM反馈控制模式。电源的输入电压、电流等信号在作为取样控制信号时,大多需经过处理。针对不同的控制模式其处理方式也不同。下面以由VDMOS开关器件构成的稳压正激型降压斩波器为例,讲述五种PWM反馈控制模式的发展过程、基本工作原理、电路原理示意图、波形、特点及应用要`氪,以利于选择应用及仿真建模研究。 (1)电压反馈控制模式 电压反馈控制模式是20世纪60年代后期高频开关稳压电源刚刚开始发展而采用的一种控制方法。该方法与一些必要的过电流保护电路相结合,至今仍然在工业界被广泛应用。如图1(a)所示为Buck降压斩波器的电压模式控制原理图。电压反馈控制模式只有一个电压反馈闭环,且采用的是脉冲宽度调制法,即将经电压误差放大器放大的慢变化的直流采样信号与恒定频率的三角波上斜坡信号相比较,经脉冲宽度调制得到一定宽度的脉冲控制信号,电路的各点波形如图1(a)所示。逐个脉冲的限流保护电路必须另外附加。电压反馈控制模式的优点如下。 ①PWM三角波幅值较大,脉冲宽度调节时具有较好的抗噪声裕量。 ②占空比调节不受限制。 ③对于多路输出电源而言,它们之间的交互调节特性较好。 ④单一反馈电压闭环的设计、调试比较容易。 ⑤对输出负载的变化有较好的响应调节。 电压反馈控制模式的缺点如下。 ①对输入电压的变化动态响应较慢。当输入电压突然变小或负载阻抗突然变小时,因为主电路中的输出电容C及电感L有较大的相移延时作用,输出电压的变小也延时滞后,而输出电压变小的信息还要经过电压误差放大器的补偿电路延时滞后,才能传至PWM比较器将脉宽展宽。这两个延时滞后作用是动态响应慢的主要原因。 ②补偿网络设计本来就较为复杂,闭环增益随输入电压而变化的现象使其更为复杂。 ③输出端的LC滤波器给控制环增加了双极点,在补偿设计误差放大器时,需要将主极点低频衰减,或者增加一个零点进行补偿。 ④在控制磁芯饱和故障状态方面较为麻烦和复杂。 改善及加快电压模式控制动态响应速度的方法有两种:一种是增加电压误差放大器的带宽,以保证其具有一定的高频增益。但是这样容易受高频开关噪声干扰的影响,需要在主电路及反馈控制电路上采取措施进行抑制或同相位衰减平滑处理。另一种是采用电压前馈控制模式。电压前馈控制模式的原理图如图1(b)所示。用输入电压对电阻、电容(Rt、Ctt)充电,以产生具有可变化的上斜坡的三角波,并且用它取代传统电压反馈控制模式中振荡器产生的固定三角波。此时输入电压变化能立刻在脉冲宽度的变化上反映出来,因此该方法明显提高了由输入电压的变化引起的动态响应速度。在该方法中对输入电压的前馈控

最详细的开关电源反馈回路设计说课讲解

最详细的开关电源反馈回路设计

开关电源反馈回路设计 开关电源反馈回路主要由光耦(如PC817)、电压精密可调并联稳压器(如TL431)等器件组成。要研究如何设计反馈回路,首先先要了解这两个最主要元器件的基本参数。 1、光耦 PC817的基本参数如下表:

2、可调并联稳压器 由TL431的等效电路图可以看到,Uref是一个内部的2.5V 基准源,接在运放的反相输入端。由运放的特性可知,只有当REF 端(同相端)的电压非常

接近Uref(2.5V)时,三极管中才会有一个稳定的非饱和电流通过,而且随着REF 端电压的微小变化,通过三极管VT的电流将从1 到100mA 变化。当然,该图绝不是TL431 的实际内部结构,所以不能简单地用这种组合来代替它。但如果在设计、分析应用TL431 的电路时,这个模块图对开启思路,理解电路都是很有帮助的。 前面提到TL431 的内部含有一个2.5V 的基准电压,所以当在REF 端引入输出反馈时,器件可以通过从阴极到阳极很宽范围的分流,控制输出电压。如图2 所示的电路,当R1 和R2 的阻值确定时,两者对Vo 的分压引入反馈,若Vo 增大,反馈量增大,TL431 的分流也就增加,从而又导致Vo 下降。显见,这个深度的负反馈电路必然在Uref等于基准电压处稳定,此时 Vo=(1+R1/R2)Vref。 图2 选择不同的R1 和R2 的值可以得到从2.5V 到36V 范围内的任意电压输出,特别地,当R1=R2 时,Vo=5V。需要注意的是,在选择电阻时必须保证 TL431 工作的必要条件,就是通过阴极的电流要大于1 mA。

一种24V开关电源的反馈控制及过压保护电路的设计与应用

一种24V开关电源的反馈控制及过压保护电路的设计与应用 发表时间:2019-03-12T16:30:12.327Z 来源:《电力设备》2018年第27期作者:刘华美[导读] 摘要:开关电源的可靠性直接影响到电子产品系统的可靠性,为了使开关电源安全可靠的工作,必须设计相关的反馈控制及过压保护。 (西藏自治区广电局032台) 摘要:开关电源的可靠性直接影响到电子产品系统的可靠性,为了使开关电源安全可靠的工作,必须设计相关的反馈控制及过压保护。本文采用光耦PC817和TL431结合设计出反馈控制及保护电路。理论和实践证明:该设计方案具有可靠的稳定性和可靠性。 关键词:开关电源;反馈控制;过压保护 The reliability of the switching power supply has a direct impact on the reliability of the electronic product system. In order to make the switching power supply work safely and reliably, relevant feedback control and over-voltage protection must be designed. In this paper, a feedback control and protection circuit is designed by using optocoupler PC817 and TL431. Theory and practice have proved that the design has reliable stability and reliability. Key words: switching power supply; feedback control; overvoltage protection 引言 目前,在各个电子通信系统中,反馈控制及保护电路已经得到广泛的应用。作为一种自动调节,反馈控制及保护电路就是当系统受到一定干扰后,能通过自身反馈控制及保护电路的调节作用使系统参数得到修正和保护。 开关电源中的反馈控制及过压保护电路是用来调整开关电源输出电压及电流稳定,保证开关电源所带负载能稳定工作。 图反馈控制及保护电路图 1、反馈控制及过压保护电路 本文设计的反馈控制及保护电路如下图所示,其基本原理为:在24V开关电源电路中,24V输出与控制芯片是相互隔离的,因此反馈采用光耦隔离形式,R4、RP1、R9是采样电阻,经分压后送至N1的输入端。当某种原因使24V升高时,TL431输入端的电压相应升高,当此电压超过TL431的内部基准电压(2.5V)时,光耦的初级导通,因此次级也导通,A点电压随之降低,从而使输出脉冲变窄,使输出的24V电压降低,达到调整目的。 保护电路同理,当输出电压超过28V时,R6、RP2、R11对电压采样,在N2的输入端的检测电压超过2.5V,使N2导通,光耦N4导通,不导通时B点电压为低,N4导通使B点电压升高,而B点电压经过V13送至SG1525的10脚,从而关闭输出脉冲。 2、电路实验结果 通过电路在实验中的实现,当24V电压升高时,通过反馈控制可以使24V输出电压降低,达到调整目的。在过压保护电路中24V电压达到28V时,能起到保护作用。 3、结束语 本文采用光耦PC817和TL431结合设计出反馈控制及保护电路。实验证明:电源具有更好的稳定性和可靠性。更重要的是,输入电压的正常与否直接影响开关电源的输出,这样直接关系到与开关电源相关设备是否能正常工作,及时给予保护。 参考文献: [1] 陈治明等. 电力电子技术的回顾与前瞻[J]. 电源技术应用, 1999.2:1-3. [2]催东风,王晓梅等.一种小型直流电源的反馈控制设计 [M]. 科技信息,2012.24:235-236. [3] 张勇虎,欧刚.电源保护电路的设计 [J]. 电子测量技术,2006.29(4):129-130.

相关主题
文本预览
相关文档 最新文档