当前位置:文档之家› 开关电源的反馈控制模式研究

开关电源的反馈控制模式研究

开关电源的反馈控制模式研究
开关电源的反馈控制模式研究

开关电源的反馈控制模式研究

[摘要] 本文比较详细地说明了电压模式、峰值电流模式、平均电流模式、滞环电流模式、相加模式等pwm反馈控制模式的基本工作原理、发展过程、关键波形、性能特点及应用要点。

[关键词] 开关电源反馈控制模式控制

1.引言

pwm开关稳压或稳流电源基本工作原理就是在输入电压变化、内部参数变化、外接负载变化的情况下,控制电路通过被控制信号与基准信号的差值进行闭环反馈,调节主电路开关器件的导通脉冲宽度,使得开关电源的输出电压或电流等被控制信号稳定。pwm的开关频率一般为恒定,控制取样信号有:输出电压、输入电压、输出电流、输出电感电压、开关器件峰值电流。由这些信号可以构成单环、双环或多环反馈系统,实现稳压、稳流及恒定功率的目的,同时可以实现一些附带的过流保护、抗偏磁、均流等功能。

2.开关电源pwm的五种反馈控制模式

一般来讲,根据选用不同的pwm反馈控制模式,电路中的输入电压、输出电压、开关器件电流、电感电流均可作为取样控制信号。输出电压在作为控制取样信号时,通常经过处理,得到电压信号,再经处理或直接送入pwm 控制器。电压运算放大器的作用有三:①将输出电压与给定电压的差值进行放大及反馈,保证稳态时的稳压精度。该运放的直流放大增益理论上为无穷大,实际上为运放的开环放大增益。②将开关电源主电路输出端的附带有较宽频带开关噪

相关开关电源原理及电路图

相关开关电源原理及电路图 2012-06-03 17:39:37 来源:21IC 关键字:开关电源电路图 什么是开关电源?所谓开关电源,故名思议,就是这里有一扇门,一开门电源就通过,一关门电源就停止通过,那么什么是门呢,开关电源里有的采用可控硅,有的采用开关管,这两个元器件性能差不多,都是靠基极、(开关管)控制极(可控硅)上加上脉冲信号来完成导通和截止的,脉冲信号正半周到来,控制极上电压升高,开关管或可控硅就导通,由220V整流、滤波后输出的300V电压就导通,通过开关变压器传到次级,再通过变压比将电压升高或降低,供各个电路工作。振荡脉冲负半周到来,电源调整管的基极、或可控硅的控制极电压低于原来的设置电压,电源调整管截止,300V电源被关断,开关变压器次级没电压,这时各电路所需的工作电压,就靠次级本路整流后的滤波电容放电来维持。待到下一个脉冲的周期正半周信号到来时,重复上一个过程。这个开关变压器就叫高频变压器,因为他的工作频率高于50HZ低频。那么推动开关管或可控硅的脉冲如何获得呢,这就需要有个振荡电路产生,我们知道,晶体三极管有个特性,就是基极对发射极电压是0.65-0.7V是放大状态,0.7V以上就是饱和导通状态,-0.1V- -0.3V就工作在振荡状态,那么其工作点调好后,就靠较深的负反馈来产生负压,使振荡管起振,振荡管的频率由基极上的电容充放电的时间长短来决定,振荡频率高输出脉冲幅度就大,反之就小,这就决定了电源调整管的输出电压的大小。那么变压器次级输出的工作电压如何稳压呢,一般是在开关变压器上,单绕一组线圈,在其上端获得的电压经过整流滤波后,作为基准电压,然后通过光电耦合器,将这个基准电压返回振荡管的基极,来调整震荡频率的高低,如果变压器次级电压升高,本取样线圈输出的电压也升高,通过光电耦合器获得的正反馈电压也升高,这个电压加到振荡管基极上,就使振荡频率降低,起到了稳定次级输出电压的稳定,太细的工作情况就不必细讲了,也没必要了解的那么细的,这样大功率的电压由开关变压器传递,并与后级隔开,返回的取样电压由光耦传递也与后级隔开,所以前级的市电电压,是与后级分离的,这就叫冷板,是安全的,变压器前的电源是独立的,这就叫开关电源。 图开关电源原理图1

开关电源浪涌吸收方法

开关电源的冲击电流控制方法 开关电源的输入一般有滤波器来减小电源反馈到输入的纹波,输入滤波器一般有电容和电感组成∏形滤波器,图1. 和图2. 分别为典型的AC/DC电源输入电路和DC/DC电源输入电路。 由于电容器在瞬态时可以看成是短路的,当开关电源上电时,会产生非常大的冲击电流,冲击电流的幅度要比稳态工作电流大很多,如对冲击电流不加以限制,不但会烧坏保险丝,烧毁接插件,还会由于共同输入阻抗而干扰附近的电器设备。

图3.通信系统的最大冲击电流限值(AC/DC电源) 图4.通信系统在标称输入电压和最大输出负载时的冲击电流限值(DC/DC电源) 欧洲电信标准协会(the European Telecommunications Standards Institute)对用于通信系统的开关电源的冲击电流大小做了规定,图3为通信系统用AC/DC电源供电时的最大冲击电流限值[4],图4为通信系统在DC/DC电源供电,标称输入电压和最大输出负载时的最大冲击电流限值[5]。图中It为冲击电流的瞬态值,Im为稳态工作电流。 冲击电流的大小由很多因素决定,如输入电压大小,输入电线阻抗,电源内部输入电感及等效阻抗,输入电容等效串连阻抗等。这些参数根据不同的电源系统和布局不同而不同,很难进行估算,最精确的方法是在实际应用中测量冲击电流的大小。在测量冲击电流时,不能因引入传感器而改变冲击电流的大小,推荐用的传感器为霍尔传感器。

2. AC/DC开关电源的冲击电流限制方法 2.1 串连电阻法 对于小功率开关电源,可以用象图5的串连电阻法。如果电阻选得大,冲击电流就小,但在电阻上的功耗就大,所以必须选择折衷的电阻值,使冲击电流和电阻上的功耗都在允许的范围之内。 图5. 串连电阻法冲击电流控制电路(适用于桥式整流和倍压电路,其冲击电流相同)串连在电路上的电阻必须能承受在开机时的高电压和大电流,大额定电流的电阻在这种应用中比较适合,常用的为线绕电阻,但在高湿度的环境下,则不要用线绕电阻。因线绕电阻在高湿度环境下,瞬态热应力和绕线的膨胀会降低保护层的作用,会因湿气入侵而引起电阻损坏。 图5所示为冲击电流限制电阻的通常位置,对于110V、220V双电压输入电路,应该在R1和R2位置放两个电阻,这样在110V输入连接线连接时和220V输入连接线断开时的冲击电流一样大。对于单输入电压电路,应该在R3位置放电阻。 2.2 热敏电阻法 在小功率开关电源中,负温度系数热敏电阻(NTC)常用在图5中R1,R2,R3位置。在开关电源第一次启动时,NTC的电阻值很大,可限制冲击电流,随着NTC的自身发热,其电阻值变小,使其在工作状态时的功耗减小。 用热敏电阻法也由缺点,当第一次启动后,热敏电阻要过一会儿才到达其工作状态电阻值,如果这时的输入电压在电源可以工作的最小值附近,刚启动时由于热敏电阻阻值还较大,它的压降较大,电源就可能工作在打嗝状态。另外,当开关电源关掉后,热敏电阻需要一段冷却时间来将阻值升高到常温态以备下一次启动,冷却时间根据器件、安装方式、环境温度的不同而不同,一般为1分钟。如果开关电源关掉后马上开启,热敏电阻还没有变冷,这时对冲击电流失去限制作用,这就是在使用这种方法控制冲击电流的电源不允许在关掉后马上开启的原因。

开关电源闭环反馈响应及测试

开关电源闭环反馈响应及测试 开关电源依靠反馈控制环路来保证在不同的负载情况下得到所需的电压和电流。反馈控制环路的设计影响到许多因素,包括电压调整、稳定性和瞬态响应。当某个反馈控制环路在某个频率的环路增益为单位增益或更高且总的相位延迟等于360 时,反馈控制环路将会产生振荡。稳定性通常用下面两个参数来衡量: 相位裕量:当环路增益为单位增益时实际相位延迟与360 间的差值,以度为单位表示。 增益裕量:当总相位延迟为360 时,增益低于单位增益的量,以分贝为单位表示。 对多数闭环反馈控制系统,当环路增益大于0dB时,相位裕量都大于45 (小于315 )。当环路相位延迟达到360 时,增益裕量为-20dB或更低。 如果这些条件得到满足,控制环将具有接近最优的响应;它将是无条件稳定的,即不会阻尼过小也不会阻尼过大。通过测量在远远超出控制环通常操作带宽的情况下控制环的频率响应,可以保证能够反映出所有可能的情况。 一个单输出开关电源的控制环增益和相位响应曲线。测量是利用一个GP102增益相位分析仪(一种独立的用来评价控制环增益和相位裕量的仪器)进行的,然后输入到电子表软件中。 在这一例子中,从0dB增益交点到360 测量得到的相位裕量为82 (360 到 278 )。从0dB增益交点到相位达到360 的增益裕量为-35dB。把这些增益和相位裕量值与-20dB增益裕量和60 相位裕量的目标值相比较,可以肯定被测试电源的瞬态响应和调节是过阻尼的,也是不可接受的。 0dB交点对应的频率为160Hz,这导致控制环的响应太慢。理想情况下,在1或2KHz处保持正的环增益是比较合适的,考虑到非常保守的增益和相位裕量,不必接近不稳定区即可改善控制环的动态特性。当然需要对误差放大器补偿器件进行一些小的改动。进行修改后,可以对控制环重新进行测试以保证其无条件稳定性。通常可利用频率响应分析仪(FRA)或增益-相位分析仪进行这种测量。这些仪器采用了离散傅里叶变换(DFT)技术,因为被测信号经常很小且被掩盖在噪声和电源开关台阶所产生的失真中。DFT用来从中提取出感兴趣的信号。 测试信号注入 为进行测量,FRA向控制环中注入一个已知频率的误差信号扰动。利用两个FRA通道来判断扰动要多长时间才能从误差放大器输入到达电源输出。 扰动信号应该在控制环反馈信号被限制在单条路径的地方注入,并且来自低阻抗的驱动源。连接到电源输出或误差放大器输出的反馈路径是注入扰动信号的好地方。 通过信号发生器通过一个隔离变压器连接到测试电路,以保证FRA信号发生器和被测试电路间的电气隔离。注入方法将扰动信号注入到误差放大器的输入。对于电源输出电压在FRA最大输入电压限制以内的情况,这一方法是合适的。 如果被测量电源的输出电压比FRA最大输入电压还要高,那么第一种注入方法就不适用了。扰动信号被注入到误差放大器的输出,此处的控制环对地电压比较低。如果电源电压超过FRA输入范围则应采用这种注入方法。

开关电源的数字控制实现方案

开关电源的数字控制实现方案 类别:电子综合阅读:5732 尽管业内不少人都认为,模拟和数字技术很快将争夺电源调节器件控制电路的主导权,但实际情况是,在反馈回路控制方面,这两种技术看起来正愉快地共存着。 的确,许多电源管理供应商都提供了不同的方案。一些数字控制最初的可编程优势现在甚至在采用模拟反馈回路的控制器和稳压器中也有了。当然,数字电源还是有一些吸引人之处。 本文主要讨论脉冲宽度调制(PWM)、脉冲密度调制(PDM)和脉冲频率调制(PFM)开关稳压器和控制器IC。其中一些集成了控制实际开关的一个或多个晶体管的驱动器,另一些则没有。还有一些甚至集成了开关FET,如果它们提供合适的负荷的话。因此,数字还是模拟的问题取决于稳压器的控制回路如何闭合。 图1显示了两种最常见的PWM开关拓朴布局的变化,降压和升压(buck/boost)转换器。在同步配置中,第二只晶体管将取代二极管。在某种意义上来讲,脉冲宽度调制的采用使得这些转换器“准数字化”,至少可与基于一个串联旁路元件的723型线性稳压器相比。事实上,PWM使得采用数字控制回路成为可能。不过,图1中的转换器缺少控制一个或几个开关占空比的电路,它可在模拟或数字域中实现。 不管采用模拟还是数字技术,都有两种方式实现反馈回路:电压模式和电流模式。简单起见,首先考虑它在模拟域中如何实现。 图1: 没有控制器的开关模式DC-DC电源十分简单。不论用于升压还是降压,其成功与否取决于设计者如何安排一些基本的元器件。 在电压模式拓朴中,参考电压减去输出电压样本就可得到一个与振荡器斜坡信号相比较的小误差信号(图2),当电路输出电压变化时,误差电压也产生变化,后者反过来改变比较器的门限值。反过来,这将使输出信号宽度发生变化。这些脉冲控制稳压器开关晶体管的导通时间。随着输出电压升高,脉冲宽度将变小。 图2: 电压模式反馈(本例中在模拟域)包含一个控制回路。 电流模式控制的一个优势在于其管理电感电流的能力。一个采用电流模式控制的稳压器具有一个嵌套在一个较慢的电压回路中的电流回路。该内回路感应开关晶体管的峰值电流,并通过一个脉冲一个脉冲地控制各晶体管的导通时间,使电流保持恒定。 与此同时,外回路感应直流输出电压,并向内回路提供一个控制电压。在该电路中,电感电流的斜率生成一个与误差信号相比较的斜坡。当输出电压下跌时,控制器就向负载提供更大的电流(图3)。 图3: 电流模式反馈采用了嵌套反馈回路。与电压模式不同,它需要计入电感上的电流。 在这些控制拓朴中,在回路的相移达到360°的任意频率处,控制回路的增益不能超过1。相移包括了将控制信号馈入反馈运放的倒相输入端所产生的固有180°相移、放大器和其它有源元件的附加延迟、以及由电容和电感(特别是输出滤波器的大电容)引入的延迟。 稳定回路要求对一定频率范围内的增益变化和相移进行补偿。传统上,采用模拟PWM 来稳定电源通常需要采用经验方法:你在一块与生产型电路板相同布局的实际电路板上,实

开关电源电路组成及各部分详解

一、开关电源的电路组成 开关电源的主要电路是由输入电磁干扰滤波器(EMI)、整流滤波电路、功率变换电路、PWM控制器电路、输出整流滤波电路组成。辅助电路有输入过欠压保护电路、输出过欠压保护电路、输出过流保护电路、输出短路保护电路等。 开关电源的电路组成方框图如下: 二、输入电路的原理及常见电路 1、AC输入整流滤波电路原理: ①防雷电路:当有雷击,产生高压经电网导入电源时,由MOV1、MOV2、MOV3:F1、F2、F3、FDG1组成的电路进行保护。当加在压敏电阻两端的电压超过其工作电压时,其阻值降低,使高压能量消耗在压敏电阻上,若电流过大,F1、F2、F3会烧毁保护后级电路。 ②输入滤波电路:C1、L1、C2、C3组成的双π型滤波网络主要是对输入电

源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。当电源开启瞬间,要对C5充电,由于瞬间电流大,加RT1(热敏电阻)就能有效的防止浪涌电流。因瞬时能量全消耗在RT1电阻上,一定时间后温度升高后RT1阻值减小(RT1是负温系数元件),这时它消耗的能量非常小,后级电路可正常工作。 ③整流滤波电路:交流电压经BRG1整流后,经C5滤波后得到较为纯净的直流电压。若C5容量变小,输出的交流纹波将增大。 2、DC输入滤波电路原理: ①输入滤波电路:C1、L1、C2组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。C3、C4为安规电容,L2、L3为差模电感。 ②R1、R2、R3、Z1、C6、Q1、Z2、R4、R5、Q2、RT1、C7组成抗浪涌电路。在起机的瞬间,由于C6的存在Q2不导通,电流经RT1构成回路。当C6上的电压充至Z1的稳压值时Q2导通。如果C8漏电或后级电路短路现象,在起机的瞬间电流在RT1上产生的压降增大,Q1导通使Q2没有栅极电压不导通,RT1将会在很短的时间烧毁,以保护后级电路。 三、功率变换电路 1、MOS管的工作原理:目前应用最广泛的绝缘栅场效应管是MOSFET(MOS管),是利用半导体表面的电声效应进行工作的。也称为表面场效应器件。由于它的栅极处于不导电状态,所以输入电阻可以大大提高,最高可达105欧姆,MOS管是利用栅源电压的大小,来改变半导体表面感生电荷的多少,从而控制漏极电流的大小。 2、常见的原理图:

开关电源常见故障维修方法

开关电源常见故障及维修方法: 1.保险烧或炸 主要检查300V上的大滤波电容、整流桥各二极管及开关管等部位,抗干扰电路出问题也会导致保险烧、发黑。需要注意的是:因开关管击穿导致保险烧一般会把电流检测电阻和电源控制芯片烧坏。负温度系数热敏电阻也很容易和保险一起被烧坏。 2.无输出,保险管正常 这种现象说明开关电源未工作或进入了保护状态。首先要测量电源控制芯片的启动脚是否有启动电压,若无启动电压或者启动电压太低,则要检查启动电阻和启动脚外接的元件是否漏电,此时如电源控制芯片正常,则经上述检查可以迅速查到故障。若有启动电压,则测量控制芯片的输出端在开机瞬间是否有高、低电平的跳变,若无跳变,说明控制芯片坏、外围振荡电路元件或保护电路有问题,可先代换控制芯片,再检查外围元件;若有跳变,一般为开关管不良或损坏。 3.有输出电压,但输出电压过高 这种故障一般来自于稳压取样和稳压控制电路。在直流输出、取样电阻、误差取样放大器如TL431、光耦、电源控制芯片等电路共同构成一个闭合的控制环路,任何一处出问题就会导致输出电压升高。 4.输出电压过低 除稳压控制电路会引起输出电压低,还有下面一些原因也会引起输出电压低: a.开关电源负载有短路故障(特别是DC/DC变换器短路或性能不良等),此时,应该 断开开关电源电路的所有负载,以区分是开关电源电路还是负载电路有故障。若断 开负载电路电压输出正常,说明是负载过重;或仍不正常说明开关电源电路有故障。 b.输出电压端整流二极管、滤波电容失效等,可以通过代换法进行判断。 c.开关管的性能下降,必然导致开关管不能正常导通,使电源的内阻增加,带负载能 力下降。 d.开关变压器不良,不但造成输出电压下降,还会造成开关管激励不足从而屡损开关 管 e.300V滤波电容不良,造成电源带负载能力差,一接负载输出电压便会下降。

开关电源反馈设计

第六章 开关电源反馈设计 除了磁元件设计以外,反馈网络设计也是开关电源了解最少、且非常麻烦的工作。它涉及到模拟电子技术、控制理论、测量和计算技术等相关问题。 开关电源环路设计的目标是要在输入电压和负载变动范围内,达到要求的输出(电压或电流)精度,同时在任何情况下应稳定工作。当负载或输入电压突变时,快速响应和较小的过冲。同时能够抑制低频脉动分量和开关纹波等等。 为了较好地了解反馈设计方法,首先复习模拟电路中频率特性、负反馈和运算放大器基本知识,然后以正激变换器为例,讨论反馈补偿设计基本方法。并介绍如何通过使用惠普网络分析仪HP3562A 测试开环响应,再根据测试特性设计校正网络和验证设计结果。最后对仿真作相应介绍。 6.1 频率响应 在电子电路中,不可避免存在电抗(电感和电容)元件,对于不同的频率,它们的阻抗随着频率变化而变化。经过它们的电信号不仅发生幅值的变化,而且还发生相位改变。我们把电路对不同频率正弦信号的输出与输入关系称为频率响应。 6.1.1 频率响应基本概念 电路的输出与输入比称为传递函数或增益。传递函数与频率的关系-即频率响应可以用下式表示 )()(f f G G ?∠= 其中G (f )表示为传递函数的模(幅值)与频率的关系,称为幅频响应;而∠?(f )表示输出信号与输入信号的相位差与频率的关系,称为相频响应。 典型的对数幅频响应如图6.1所示,图6.1(a)为幅频特性,它是画在以对数频率f 为横坐标的单对数坐标上,纵轴增益用20log G (f )表示。图6.1(b)为相频特性,同样以对数频率f 为横坐标的单对数坐标上,纵轴表示相角?。两者一起称为波特图。 在幅频特性上,有一个增益基本不变的频率区间,而当频率高于某一频率或低于某一频率,增益都会下降。当高频增高时,当达到增益比恒定部分低3dB 时的频率我们称为上限频率,或上限截止频率f H ,大于截止频率的区域称为高频区;在低频降低时,当达到增益比恒定部分低3dB 时的频率我们称为下限频率,或下限截止频率f L ,低于下限截止频率的区域称为低频区;在高 频截止频率与低频截止频率之间称为中频区。在这个区域内增益基本不变。同时定义 L H f f BW -= (6-1) 为系统的带宽。 6.1.2 基本电路的频率响应 1. 高频响应 在高频区,影响系统(电路)的高频响应的电路如图6.2所示。以图6.2a 为例,输出电压与输入电压之比随频率增高而下降,同时相位随之滞后。利用复变量s 得到 R s C sC R sC s U s U s G i o +=+== 11 /1/1)()()( (6-2) 对于实际频率,s =j ω=j 2πf ,并令 BW f H 103 103 (b) 图6.1 波特图

DCDC开关电源管理芯片的设计

DC-DC开关电源管理芯片的设计 引言 电源是一切电子设备的心脏部分,其质量的好坏直接影响电子设备的可靠性。而开关电源更为如此,越来越受到人们的重视。目前的计算机设备和各种高效便携式电子产品发展趋于小型化,其功耗都比较大,要求与之配套的电池供电系统体积更小、重量更轻、效率更高,必须采用高效率的DC/ DC开关稳压电源。 目前电力电子与电路的发展主要方向是模块化、集成化。具有各种控制功能的专用芯片,近几年发展很迅速集成化、模块化使电源产品体积小、可靠性高,给应用带来极大方便。 从另一方面说在开关电源DC-DC变换器中,由于输入电压或输出端负载可能出现波动, 应保持平均直流输出电压应能够控制在所要求的幅值偏差范围内,需要复杂的控制技术,于是各种PWM空制结构的研究就成为研究的热点。在这样的前提下,设计开发开关电源DC-DC控制芯片,无论是从经济,还是科学研究上都是是很有价值的。 1.开关电源控制电路原理分析 DC- DC变换器就是利用一个或多个开关器件的切换,把某一等级直流输入电压变换成 另一等级直流输出电压。在给定直流输入电压下,通过调节电路开关器件的导通时间来控制平均输出电压控制方法之一就是采用某一固定频率进行开关切换,并通过调整导通区间 长度来控制平均输出电压,这种方法也称为脉宽调制[PWM法。 PWM从控制方式上可以分为两类,即电压型控制(voltage mode con trol )和电流型 控制(current modecontrol )。电压型控制方式的基本原理就是通过误差放大器输出信号与一固定的锯齿波进行比较,产生控制用的PW信号。从控制理论的角度来讲,电压型控制方式是一种单环控制系统。电压控制型变换器是一个—阶系统,它有两个状态变量:输出滤波电容的电压和输出滤波电感的电流。二阶系统是一个有条件稳定系统,只有对控制电路进行精心的设计和计算后,在满足一定的条件下,闭环系统方能稳定的工作。图即为电压型控制的原理框图。 1

(完整版)开关电源的用途

开关电源的用途 开关电源产品广泛应用于工业自动化控制、军工设备、科研设备、LED照明、工控设备、通讯设备、电力设备、仪器仪表、医疗设备、半导体制冷制热、空气净化器,电子冰箱,液晶显示器,LED灯具,通讯设备,视听产品,安防,电脑机箱,数码产品和仪器类等领域 开关电源的主要类型和分类 开关电源的主要类型 现代开关电源有两种:一种是直流开关电源;另一种是交流开关电源。这里主要介绍的只是直流开关电源,其功能是将电能质量较差的原生态电源(粗电),如市电电源或蓄电池电源,转换成满足设备要求的质量较高的直流电压(精电)。直流开关电源的核心是DC/DC转换器。因此直流开关电源的分类是依赖DC/DC转换器分类的。也就是说,直流开关电源的分类与DC/DC 转换器的分类是基本相同的,DC/DC转换器的分类基本上就是直流开关电源的分类。

直流DC/DC转换器按输入与输出之间是否有电气隔离可以分为两类:一类是有隔离的称为隔离式DC/DC转换器;另一类是没有隔离的称为非隔离式DC/DC转换器 隔离式DC/DC转换器也可以按有源功率器件的个数来分类。单管的DC/DC转换器有正激式(Forward)和反激式(Flyback)两种。双管DC/DC转换器有双管正激式(DoubleTransistor Forward Converter),双管反激式(Double Transistr Flyback Converter)、推挽式(Push-Pull Converter)和半桥式(Half-Bridge Converter)四种。四管DC/DC转换器就是全桥DC/DC转换器(Full-Bridge Converter)。 非隔离式DC/DC转换器,按有源功率器件的个数,可以分为单管、双管和四管三类。单管DC/DC转换器共有六种,即降压式(Buck)DC/DC转换器,升压式(Boost)DC/DC转换器、升压降压式(Buck Boost)DC/DC转换器、Cuk DC/DC转换器、Zeta DC/DC转换器和SEPIC DC/DC转换器。在这六种单管DC/DC 转换器中,Buck和Boost式DC/DC转换器是基本的,Buck-Boost、Cuk、Zeta、SEPIC式DC/DC转换器是从中派生出来的。双管DC/DC转换器有双管串接的升压式(Buck-Boost)DC/DC转换器。四管DC/DC转换器常用的是全桥DC/DC转换器(Full-Bridge Converter)。

开关电源控制模式的探讨

开关电源控制模式的探讨 随着科学技术的发展,开关电源数字化、模块化、高频化的实现,促进了开关电源控制技术的不断发展。文章主要对开关电源控制模式进行分析,结合开关电源发展的历程,探讨了开关电源数字化控制技术以及电流型控制模式,以供参考。 标签:开关电源;控制模式;电子技术 1 开关电源概述 开关电源是在现代电子电力技术的发展基础上,控制开关管的开通及关断时间比率,以稳定输出电压的一种特殊的电源。一般来说,开关电源由脉冲宽度调制控制IC、MOSFET组成。随着科学技术的发展,开关电源技术也不断进行改革和创新。开关电源效率能够高达85%,与普通线性电源相比,开关电源的利用效率提高了一倍。同时,开关电源采用了小体积的滤波元件及散热器,可靠性、安全性也较高。从开关电源的类别来看,可以分成AC/AC、DC/DC等类型,其中,DC/DC开关电源的变换器已经实现了模块化设计和发展,因而得到用户普遍认可。 从开关电源的产生和发展来看,自上个世纪六十年代以来,由于晶闸管控制模式的出现,大大促进了开关电源的发展。到七十年代初期,开关电源进入了长时期的瓶颈时期,开关电源的效率问题更加突出。直至七十年代后期,由于集成电技术的创新,催生了各种开关电源芯片的产生。当前,集成化电源已经广泛应用于航天、彩电、计算机等各个领域中,随着半导体技术、电子技术的快速发展,电子设备的总量和体积不断减小,导致电源体积与电子设备的体积不相匹配。因此,开关电源体积成为当前研究的重点。 从我国开关电源的研究情况来看,在上个世纪六十年代,我国已经成功研制出稳压电源。经过十年的发展,稳压电源已经成功应用于电视机和中小型计算机。到八十年代,我国已经成功研制出了0.5~5MHz谐振的软开关电源。从八十年代起,我国开关电源进入了大规模更新换代的时期,现代晶闸管稳压电源逐渐取代了传统铁磁稳压电源,对办公自动化产生了很大的影响。进入九十年代,我国成功研制了新型专用的开关电源,供特殊行业使用,如卫星及远程导弹系统所使用的开关电源。经历了约半个世纪的发展,我国开关电源技术研发已经取得了较大的成就,开关电源应用范围也逐渐扩展,但与国外开关电源技术相比,在使用方法和集成度方面,我国还存在很大的不足,还应该继续加强开关电源研究及应用。 2 开关电源数字控制技术分析 近年来,随着计算机技术及网络技术的快速发展,数字控制技术在社会生产生活中广泛应用。数字控制技术的产生,是由于控制领域的监控和计算任务的要

最详细的开关电源反馈回路设计

最详细的开关电源反馈回 路设计 Prepared on 22 November 2020

开关电源反馈回路设计 开关电源反馈回路主要由光耦(如PC817)、电压精密可调并联稳压器(如TL431)等器件组成。要研究如何设计反馈回路,首先先要了解这两个最主要元器件的基本参数。 1、光耦 PC817的基本参数如下表: 2、可调并联稳压器 由TL431的等效电路图可以看到,Uref是一个内部的基准源,接在运放的反相输入端。由运放的特性可知,只有当REF端(同相端)的电压非常接近Uref()时,三极管中才会有一个稳定的非饱和电流通过,而且随着REF端电压的微小变化,通过三极管VT的电流将从1到100mA变化。当然,该图绝不是TL431的实际内部结构,所以不能简单地用这种组合来代替它。但如果在设计、分析应用TL431的电路时,这个模块图对开启思路,理解电路都是很有帮助的。 前面提到TL431的内部含有一个的基准电压,所以当在REF端引入输出反馈时,器件可以通过从阴极到阳极很宽范围的分流,控制输出电压。如图2所示的电路,当R1和R2的阻值确定时,两者对Vo的分压引入反馈,若Vo增大,反馈量增大,TL431的分流也就增加,从而又导致Vo下降。显见,这个深度的负反馈电路必然在Uref等于基准电压处稳定,此时Vo=(1+R1/R2)Vref。 图2 选择不同的R1和R2的值可以得到从到36V范围内的任意电压输出,特别地,当R1=R2时,Vo=5V。需要注意的是,在选择电阻时必须保证TL431工作的必要条件,就是通过阴极的电流要大于1mA。 了解了TL431和PC817的基本参数后,来看实际电路: 图3 反馈回路主要关注R6、R8、R13、R14、C8这几个器件的取值。 首先来看R13。R13、R14是TL431的分压电阻,首先应先确定R13的值,再根据Vo=(1+R14/R13)Vref公式来计算R14的值。 1.确定R13.、R14取值

开关电源CCM和DCM工作模式

开关电源Buck 电路CCM 及DCM 工作模式 一、Buck 开关型调整器: 图1 二、CCM 及DCM 定义: 1、CCM (Continuous Conduction Mode),连续导通模式:在一个开关周期内,电感电流从不会到0。或者说电感从不“复位”,意味着在开关周期内电感磁通从不回到0,功率管闭合时,线圈中还有电流流过。 2、DCM ,(Discontinuous Conduction Mode)非连续导通模式:在开关周期内,电感电流总会会到0,意味着电感被适当地“复位”,即功率开关闭合时,电感电流为零。 3、BCM (Boundary Conduction Mode ),边界或边界线导通模式:控制器监控电感电流,一旦检测到电流等于0,功率开关立即闭合。控制器总是等电感电流“复位”来激活开关。如果电感值电流高,而截至斜坡相当平,则开关周期延长,因此,BCM 变化器是可变频率系统。BCM 变换器可以称为临界导通模式或CRM (Critical Conduction Mode )。 图1通过花电感电流曲线表示了三种不同的工作模式。 图2 电感工作的三种模式 电流斜坡的中点幅值等于直流输出电流o I 的平均值,峰值电流Ip 与谷值电流V I 之差为纹波电流。 三、CCM 工作模式及特点 根据CCM 定义,测试出降压变换器工作于连续模式下的波形,如下图3所示。 图3 波形1表示PWM 图形,将开关触发成导通和截止。当开关SW 导通时,公共点SW/D 上的电压为Vin 。相反,当开关断开时,公共点SW/D 电压将摆到负,此时电感电流对二极管D 提供偏置电流,出现负降压——续流作用。 波形3描述了电感两端电压的变化。在平衡点,电感L 两端的平均电压为0,及S1+S2=0。S1面积对应于开关导通时电压与时间的乘积,S2面积对应于开关关断时电压与时间的乘积。S1简单地用矩形高度(in V -out V )乘以D sw T ,而S2也是矩形高度-out V t 乘以(1-D )sw T 。如果对S1和S2求和,然后再整个周期sw T 内平均,得到 (D (in V -out V )sw T -out V (1-D )sw T )/ sw T =0 化简上式可以到CCM 的降压DC 传递函数: out V = D in V =M in V 或M= out V /in V

基于PID控制方式的8A开关电源Psim

基于PID控制方式的8A开关电源Psim 仿真研究 学院:电气与光电学院 专业:电气工程及其自动化 班级: 姓名: 学号: 时间:2016年04月04日

1、绪论 开关调节系统常见的控制对象,包括单极点型控制对象、双重点型控制对象等。为了使某个控制对象的输出电压保持恒定,需要引入一个负反馈。粗略的讲,只要使用一个高增益的反相放大器,就可以达到使控制对象输出电压稳定的目的。但就一个实际系统而言,对于负载的突变、输入电压的突升或突降、高频干扰等不同情况,需要系统能够稳、准、快地做出合适的调节,这样就使问题变得复杂了。例如,已知主电路的时间常数较大、响应速度相对缓慢,如果控制的响应速度也缓慢,使得整个系统对外界变量的响应变得很迟缓;相反如果加快控制器的响应速度,则又会使系统出现振荡。所以,开关调节系统设计要同时解决稳、准、快、抑制干扰等方面互相矛盾的稳态和动态要求,这就需要一定的技巧,设计出合理的控制器,用控制器来改造控制对象的特性。 常用的控制器有比例积分(PI)、比例微分(PD)、比例-积分-微分(PID)等三种类型。PD控制器可以提供超前的相位,对于提高系统的相位裕量、减少调节时间等十分有利,但不利于改善系统的控制精度;PI控制器能够保证系统的控制精度,但会引起相位滞后,是以牺牲系统的快速性为代价提高系统的稳定性;PID控制器兼有二者的优点,可以全面提高系统的控制性能,但实现与调试要复杂一些。本文中介绍基于PID控制器的Buck电路设计。 2、基于PID控制方式的Buck电路的综合设计 Buck变换器最常用的电力变换器,工程上常用的正激、半桥、全桥及推挽等均属于Buck族。现以Buck变换器为例,根据不同负载电流的要求,设计功率电路,并采用单电压环、电流-电压双环设计控制环路。 2.1设计指标 输入直流电压(V IN):10V; 输出电压(V O):5V; 输出电流(I I N):8A; 输出电压纹波(V rr):50mV; 基准电压(V ref):1.5V; 开关频率(f s):100kHz。 Buck变换器主电路如图1所示,其中Rc为电容的等效电阻ESR。

电脑开关电源原理及电路图

2.1、输入整流滤波电路 只要有交流电AC220V输入,ATX开关电源,无论是否开启,其辅助电源就一直在工作,直接为开关电源控制电路提供工作电压。图1中,交流电AC220V经过保险管FUSE、电源互感滤波器L0,经BD1—BD4整流、C5和C6滤波,输出300V左右直流脉动电压。C1为尖峰吸收电容,防止交流电突变瞬间对电路造成不良影响。TH1为负温度系数热敏电阻,起过流保护和防雷击的作用。L0、R1和C2组成Π型滤波器,滤除市电电网中的高频干扰。C3和C4为高频辐射吸收电容,防止交流电窜入后级直流电路造成高频辐射干扰。 2.2、高压尖峰吸收电路 D18、R004和C01组成高压尖峰吸收电路。当开关管Q03截止后,T3将产生一个很大的反极性尖峰电压,其峰值幅度超过Q03的C极电压很多倍,此尖峰电压的功率经D18储存于C01中,然后在电阻R004上消耗掉,从而降低了Q03的C极尖峰电压,使Q03免遭损坏。 2.3、辅助电源电路 整流器输出的300V左右直流脉动电压,一路经T3开关变压器的初级①~②绕组送往辅助电源开关管Q03的c极,另一路经启动电阻R002给Q03的b极提供正向偏置电压和启动电流,使Q03开始导通。Ic流经T3初级①~②绕组,使T3③~④反馈绕组产生感应电动势(上正下负),通过正反馈支路C02、D8、R06送往Q03的b极,使Q03迅速饱和导通,Q03上的Ic电流增至最大,即电流变化率为零,此时D7导通,通过电阻R05送出一个比较电压至IC3(光电耦合器Q817)的③脚,同时T3次级绕组产生的感应电动势经D50整流滤波后一路经R01限流后送至IC3的①脚,另一路经R02送至IC4(精密稳压电路TL431),由于Q03饱和导通时次级绕组产生的感应电动势比较平滑、稳定,经IC4的K端输出至IC3的②脚电压变化率几乎为零,使IC3发光二极管流过的电流几乎为零,此时光敏三极管截止,从而导致Q1截止。反馈电流通过R06、R003、Q03的b、e极等效电阻对电容C02充电,随着C02充电电压增加,流经Q03的b极电流逐渐减小,使③~④反馈绕组上的感应电动势

开关电源中几种过流保护方式的电路比较分析

找电源工作上----------------------------电源英才网 开关电源中几种过流保护方式的电路比较分析 引言 电源作为一切电子产品的供电设备,除了性能要满足供电产品的要求外,其自身的保护措施也非常重要,如过压、过流、过热保护等。一旦电子产品出现故障时,如电子产品输入侧短路或输出侧开路时,则电源必须关闭其输出电压,才能保护功率MOSFET和输出侧设备等不被烧毁,否则可能引起电子产品的进一步损坏,甚至引起操作人员的触电及火灾等现象,因此,开关电源的过流保护功能一定要完善。 1开关电源中常用的过流保护方式 过电流保护有多种形式,如图1所示,可分为额定电流下垂型,即フ字型;恒流型;恒功率型,多数为电流下垂型。过电流的设定值通常为额定电流的110%~130%。一般为自动恢复型。 图1中①表示电流下垂型,②表示恒流型,③表示恒功率型。 图1过电流保护特性 1.1用于变压器初级直接驱动电路中的限流电路 在变压器初级直接驱动的电路(如单端正激式变换器或反激式变换器)的设计中,实现限流是比较容易的。图2是在这样的电路中实现限流的两种方法。 图2电路可用于单端正激式变换器和反激式变换器。图2(a)与图2(b)中在MOSFET的源极均串入一个限流电阻Rsc,在图2(a)中,Rsc提供一个电压降驱动晶体管S2导通,在图2(b)中跨接在Rsc上的限流电压比较器,当产生过流时,可以把驱动电流脉冲短路,起到保护作用。 图2(a)与图2(b)相比,图2(b)保护电路反应速度更快及准确。首先,它把比较放大器的限流驱动的门槛电压预置在一个比晶体管的门槛电压Vbe更精确的范围内;第二,它把所预置的门槛电压取得足够小,其典型值只有100mV~200mV,因此,可以把限流取样

一种24V开关电源的反馈控制及过压保护电路的设计与应用

一种24V开关电源的反馈控制及过压保护电路的设计与应用 发表时间:2019-03-12T16:30:12.327Z 来源:《电力设备》2018年第27期作者:刘华美[导读] 摘要:开关电源的可靠性直接影响到电子产品系统的可靠性,为了使开关电源安全可靠的工作,必须设计相关的反馈控制及过压保护。 (西藏自治区广电局032台) 摘要:开关电源的可靠性直接影响到电子产品系统的可靠性,为了使开关电源安全可靠的工作,必须设计相关的反馈控制及过压保护。本文采用光耦PC817和TL431结合设计出反馈控制及保护电路。理论和实践证明:该设计方案具有可靠的稳定性和可靠性。 关键词:开关电源;反馈控制;过压保护 The reliability of the switching power supply has a direct impact on the reliability of the electronic product system. In order to make the switching power supply work safely and reliably, relevant feedback control and over-voltage protection must be designed. In this paper, a feedback control and protection circuit is designed by using optocoupler PC817 and TL431. Theory and practice have proved that the design has reliable stability and reliability. Key words: switching power supply; feedback control; overvoltage protection 引言 目前,在各个电子通信系统中,反馈控制及保护电路已经得到广泛的应用。作为一种自动调节,反馈控制及保护电路就是当系统受到一定干扰后,能通过自身反馈控制及保护电路的调节作用使系统参数得到修正和保护。 开关电源中的反馈控制及过压保护电路是用来调整开关电源输出电压及电流稳定,保证开关电源所带负载能稳定工作。 图反馈控制及保护电路图 1、反馈控制及过压保护电路 本文设计的反馈控制及保护电路如下图所示,其基本原理为:在24V开关电源电路中,24V输出与控制芯片是相互隔离的,因此反馈采用光耦隔离形式,R4、RP1、R9是采样电阻,经分压后送至N1的输入端。当某种原因使24V升高时,TL431输入端的电压相应升高,当此电压超过TL431的内部基准电压(2.5V)时,光耦的初级导通,因此次级也导通,A点电压随之降低,从而使输出脉冲变窄,使输出的24V电压降低,达到调整目的。 保护电路同理,当输出电压超过28V时,R6、RP2、R11对电压采样,在N2的输入端的检测电压超过2.5V,使N2导通,光耦N4导通,不导通时B点电压为低,N4导通使B点电压升高,而B点电压经过V13送至SG1525的10脚,从而关闭输出脉冲。 2、电路实验结果 通过电路在实验中的实现,当24V电压升高时,通过反馈控制可以使24V输出电压降低,达到调整目的。在过压保护电路中24V电压达到28V时,能起到保护作用。 3、结束语 本文采用光耦PC817和TL431结合设计出反馈控制及保护电路。实验证明:电源具有更好的稳定性和可靠性。更重要的是,输入电压的正常与否直接影响开关电源的输出,这样直接关系到与开关电源相关设备是否能正常工作,及时给予保护。 参考文献: [1] 陈治明等. 电力电子技术的回顾与前瞻[J]. 电源技术应用, 1999.2:1-3. [2]催东风,王晓梅等.一种小型直流电源的反馈控制设计 [M]. 科技信息,2012.24:235-236. [3] 张勇虎,欧刚.电源保护电路的设计 [J]. 电子测量技术,2006.29(4):129-130.

开关电源中的电流型控制模式

開關電源中的電流型控制模式 摘要:討論了開關電源中電流迴授控制模式的工作原理、優缺點,以及與之有關的斜波補償技術。關鍵詞:開關電源;電流型控制;斜波補償 1、前言 PWM型開關穩壓電源是一個閉迴路控制系統,其基本工作原理就是在輸入電壓、內部元件參數、外接負載等因素發生變化時,通過檢測被控制信號與基準信號的差值,利用差值調整主電路功率開關元件的導通脈波寬度,從而改變輸出電壓的平均值,使得開關電源的輸出電壓保持穩定。 以開關電源中的降壓型變換為例(其它類型如正激型、推挽型等,均可由降壓型衍生得到),圖1表示了該變換器的主電路的基本拓撲結構。 圖1降壓型開關電源 根據選用不同的PWM控制模式,圖1電路中的輸入電壓U in、輸出電壓U o、開關功率元件電流(可從A 點取樣)、輸出電感電流(可從B或C點採樣)均可作為控制信號,用於完成穩壓調整過程。 目前在開關電源中廣泛使用的控制方式是通過對輸出電壓或電流(功率開關元件或輸出電感上流過的電流)進行取樣,即形成2類控制方式:電壓控制模式與電流控制模式。

2電流控制模式的工作原理 圖2為檢測輸出電感電流的電流型控制的基本原理圖。它的主要特點是:將取樣得到的電感電流直接回授去控制功率開關的責任週期,使功率開關的峰值電流直接跟隨電壓迴授電路中誤差放大器輸出的信號。 從圖2中可以看出,與單一迴路的電壓控制模式相比,電流模式控制是雙閉迴路控制系統,外迴路由輸出電壓迴授電路形成,內迴路由電感器取樣輸出電感電流形成。在該雙迴路控制中,由電壓外迴路控制電流內迴路,即內迴路電流在每一開關週期內上升,直至達到電壓外迴路設定的誤差電壓閾值。電流內迴路是瞬時快速進行逐個脈衝比較工作的,並且監測輸出電感電流的動態變化,電壓外迴路只負責控制輸出電壓。因此電流型控制模式具有比起電壓型控制模式大得多的頻寬。 圖2檢測輸出電感電流的電流型控制原理圖 實際電路以單端正激型電源為例,如圖3所示。誤差電壓信號U e送至PWM比較器後,並不是像電壓模式那樣與振盪電路產生的固定三角波狀電壓斜波比較調寬,而是與一個變化的、峰值代表功率開關上的電流信號(由Rs上採樣得到)的三角狀波形信號(電感電流不連續)或矩形波上端疊加三角波合成波形信號(電感電流連續)比較,然後得到PWM脈衝關斷時刻。在電路中,電流的取樣通常使用一

PID控制方式的3A开关电源MATLAB

基于PID控制方式的3A开关电源MATLAB仿真研究 学院:电气与光电工程学院 专业:电气工程及其自动化 班级: 一绪论 Buck变换器是最常用的变换器,工程上常用的拓扑如正激、半桥、全桥、推挽等也属于Buck 族,现以Buck变换器为例,依据不同负载电流的要求,设计主功率电路,并采用单电压环、电

流-电压双环设计控制环路。开关调节系统常见的控制对象,包括单极点型控制对象、双重点型控制对象等。为了使某个控制对象的输出电压保持恒定,需要引入一个负反馈。粗略的讲,只要使用一个高增益的反相放大器,就可以达到使控制对象输出电压稳定的目的。但就一个实际系统而言,对于负载的突变、输入电压的突升或突降、高频干扰等不同情况,需要系统能够稳、准、快地做出合适的调节,这样就使问题变得复杂了。所以,开关调节系统设计要同时解决稳、准、快、抑制干扰等方面互相矛盾的稳态和动态要求,这就需要一定的技巧,设计出合理的控制器,用控制器来改造控制对象的特性。

常用的控制器有比例积分(PI)、比例微分(PD)、比例-积分-微分(PID)等三种类型。PD控制器可以提供超前的相位,对于提高系统的相位裕量、减少调节时间等十分有利,但不利于改善系统的控制精度;PI控制器能够保证系统的控制精度,但会引起相位滞后,是以牺牲系统的快速性为代价提高系统的稳定性;PID控制器兼有二者的优点,可以全面提高系统的控制性能,但实现与调试要复杂一些。本次设计就采用PID控制方式。 二设计过程 各项技术指标: 输入直流电压(V IN):10; 输出电压(V O):5V; 输出电流(I N):3A; 输出电压纹波(V rr):50mV; 基准电压(V ref):1.5V; 开关频率(f s):100kHz。 设计任务: 1.依据技术指标设计主功率电路,采用参数扫描法,对所设计的主功率电路进行仿真; 2.掌握小信号建模的方法,建立Buck变换器原始回路增益函数; 3.采用Matlab绘制控制对象的Bode图; 4.补偿网络设计,根据控制对象的Bode图,分析所需设计的补偿网络特性,采用PID调节方 式。 5.采用Matlab绘制补偿器和变换器的Bode图; 6.综合仿真,采用所选择的仿真软件进行系统仿真,要求有突加、突卸80%负载和满载时的 负载特性,分析系统的静态稳压精度和动态响应速度。 2.1 主电路设计:

相关主题
文本预览
相关文档 最新文档