当前位置:文档之家› 电液比例位置系统控制的simulink仿真

电液比例位置系统控制的simulink仿真

电液比例位置系统控制的simulink仿真
电液比例位置系统控制的simulink仿真

电液比例阀工作原理 (2)

电液比例阀就是阀内比例电磁铁输入电压信号产生相应动作,使工作阀阀芯产生位移,阀口尺寸发生改变并以此完成与输入电压成比例压力、流量输出元件。阀芯位移也可以以机械、液压或电形式进行反馈。电液比例阀具有形式种类多样、容易组成使用电气及计算机控制各种电液系统、控制精度高、安装使用灵活以及抗污染能力强等多方面优点,应用领域日益拓宽。近年研发生产插装式比例阀与比例多路阀充分考虑到工程机械使用特点,具有先导控制、负载传感与压力补偿等功能。它出现对移动式液压机械整体技术水平提升具有重要意义。特别就是电控先导操作、无线遥控与有线遥控操作等方面展现了其良好应用前景。 2 工程机械电液比例阀种类与形式 电液比例阀包括比例流量阀、比例压力阀、比例换向阀。工程机械液压操作特点,以结构形式划分电液比例阀主要有两类:一类就是螺旋插装式比例阀(screwin cartridge proportional valve),另一类就是滑阀式比例阀(spool proportional valve)。 螺旋插装式比例阀就是螺纹将电磁比例插装件固定油路集成块上元件,螺旋插装阀具有应用灵活、节省管路与成本低廉等特点,近年来工程机械上应用越来越广泛。常用螺旋插装式比例阀有二通、三通、四通与多通等形式,二通式比例阀主比例节流阀,它常它元件一起构成复合阀,对流量、压力进行控制;三通式比例阀主比例减压阀,也就是移动式机械液压系统中应用较多比例阀,它主对液动操作多路阀先导油路进行操作。利用三通式比例减压阀可以代替传统手动减压式先导阀,它比手动先导阀具有更多灵活性与更高控制精度。可以制成如图1所示比例伺服控制手动多路阀,不同输入信号,减压阀使输出活塞具有不同压力或流量进而实现对多路阀阀芯位移进行比例控制。四通或多通螺旋插装式比例阀可以对工作装置实现单独控制。 滑阀式比例阀又称分配阀,就是移动式机械液压系统最基本元件之一,就是能实现方向与流量调节复合阀。电液滑阀式比例多路阀就是比较理想电液转换控制元件,它保留了手动多路阀基本功能,还增加了位置电反馈比例伺服操作与负载传感等先进控制手段。它就是工程机械分配阀更新换代产品。 出于制造成本考虑与工程机械控制精度要求不高特点,一般比例多路阀内不配置位移感应传感器,具有电子检测与纠错功能。,阀芯位移量容易受负载变化引起压力波动影响,操作过程中要靠视觉观察来保证作业完成。电控、遥控操作时更应注意外界干涉影响。近来,电子技术发展,人们越来越多采用内装差动变压器(LDVT)等位移传感器构成阀芯位置移动检测,实现阀芯位移闭环控制。这种由电磁比例阀、位置反馈传感器、驱动放大器与其它电子电路组成高度集成比例阀,具有一定校正功能,可以有效克服一般比例阀缺点,使控制精度到较大提高。 3 电液比例多路阀负载传感与压力补偿技术 节约能量、降低油温与提高控制精度,同时也使同步动作几个执行元件运动时互不干扰,现较先进工程机械都采用了负载传感与压力补偿技术。负载传感与压力补偿就是一个很相似概念,都就是利用负载变化引起压力变化去调节泵或阀压力与流量以适应系统工作需求。负载传感对定量泵系统来讲就是将负载压力负载感应油路引至远程调压溢流阀上,当负载较小时,溢流阀调定压力也较小;负载较大,调定压力也较大,但也始终存一定溢流损失。变量泵系统就是将负载传感油路引入到泵变量机构,使泵输出压力随负载压力升高而升高(始终为较小固定压差),使泵输出流量与系统实际需要流量相等,无溢流损失,实现了节能。 压力补偿就是提高阀控制性能而采取一种保证措施。将阀口后负载压力引入

电液控制技术及其应用

电液控制技术及其应用 作者:机械电子工程10级机自103班王名洲 [摘要] 20世纪70年代以来,随着人们对各类工艺过程的深入研究,电液比例控制技术作为连接现代微电子技术和大功率工程控制设备之间的桥梁,已经成为现代控制工程的基本技术构成之一。在实际生产中,电液比例控制技术涉及流量、压力、速度、转速、位移等,能随控制信号连续成比例地控制。电液比例控制技术起源于20世纪,并且经过了电液控制技术、电液比例控制技术以及电液伺服技术等发展阶段。电液比例技术覆盖很多工程机械,如起混凝土搅拌运输车液压系统,电液比例控制技术的广泛应用让工程简单化、高效化、信息化、安全化。[关键词] 电液控制技术控制工程机械混凝土搅拌运输车机电一体化0.前言 在当前的形式下,电液控制技术已经成为工业机械、工程建设机械及国防极端产品不可或缺的重要手段。以挖掘机、推土机、振动压路机等为代表的工程机械对国家基础设施建设起到了至关重要的作用,而火炮控制系统、导弹运输车中的电液控制技术则推动了我国国防实力的提升。电液控制技术在机床加工、交通运输、汽车工业等部门也有非常广阔的应用。他对我国国民经济的推动作用不可估量。 就所学机械电子工程专业来讲,电液控制技术与其密不可分。电液控制技术的调控精密度对于机械控制有着重要的意义。在电子计算机大行其道的今天,将电控、液压与机械紧密结合在一起,才是机械电子工程的发展新方向。 1.电液控制技术概述 1.1电液控制技术发展历程 液压技术早在公元前240年的古埃及就已经出现。在第一次工业革命时期,液压技术的到快速发展,在此期间,许多非常实用的发明涌现出来,多种液压机械装置特别是液压阀得到开发和利用,使液压技术的影响力大增。18世纪出现了泵、水压机及水压缸等。19世纪初液压技术取得了一些重大的进展, 其中包括采用油作为工作流体及首次用电来驱动方向控制阀等。第二次世界大战期间及战后,电液技术的发展加快。出现了两级电液伺服阀、喷嘴挡板元件以及反馈装置等。20世纪50~60年代则是电液元件和技术发展的高峰期,电液伺服阀控制技术在军事应用中大显身手,特别是在航空航天上的应用。这些应用最初包括雷达驱动、制导平台驱动及导弹发射架控制等,后来又扩展到导弹的飞行控制、雷达天线的定位、

国内外主要电液比例插装阀产品现状分析

中国地质大学 研究生课程论文 课程名称电液伺服控制技术教师姓名 研究生姓名 研究生学号 研究生专业机械工程 所在院系机械与电子信息学院类别: 硕士日期:

评语 对课程论文的评语 注: 1、无评阅人签名成绩无效; 2、必须用钢笔或圆珠笔批阅,用铅笔阅卷无效; 3、如有平时成绩,必须在上面评分表中标出,并计算入总成绩。

国内外主要电液比例插装阀产品现状分析 摘要:电液比例插装阀是电液比例技术、插装阀技术、传感技术、测试技术、微电子技术、精密加工技术等高度融合的高科技产品。本文主要对电液比例插装阀的工作原理和分类进行了概述,并对国内外相关公司及产品进行介绍、对比分析,最后对对电液比例控制技术的未来的发展趋势进行了分析和展望。关键词:电液比例插装阀;分类;产品现状;电液比例控制技术;发展趋势 Major domestic and foreign electro-hydraulic proportional valves Cartridge Situation Analysis Abstract: Electro-hydraulic proportional cartridge valves are electro-hydraulic proportional technology, cartridge valve technology, sensor technology, test technology, microelectronics, precision machining technology, high degree of integration of high-tech products. This article mainly discusses the working principle of electrohydraulic proportional cartridge valve and classification were summarized, and the related companies and products both at home and abroad is introduced, and comparison analysis. Keyword: Electro-hydraulic proportional cartridge valves; classify; products present situation; electricity liquid proportion controlling technology; development tendency. 1 概述 电液比例插装阀是电液比例技术、插装阀技术、传感技术、测试技术、微电子技术、精密加工技术等高度融合的高科技产品,能方便地和微机控制系统相结合,连续、成比例地调节受控腔的压力、速度、流量等,有效地改善系统稳态控制精度和动态品质。比例控制和插装技术相结合符合模块化、集成化和可配阻等液压发展趋势。电液比例插装阀属于电液比例阀中的一大类,其阀内比例电磁铁根据输入的电压信号产生相应动作,使工作阀阀芯产生位移,阀口尺寸发生改变并以此完成与输入电压成比例的压力、流量输出的元件。它是以传统的工业用液压控制阀为基础,采用电──机械转换装置,将电信号转换为位移信号,按输人电信号指令连续、成比例地控制液压系统的压力、流量或方向等参数。[1] 插装式比例阀就是根据机电装备发展需要而研发的新型液压元件,它将电的快速性、灵活性等优点与液压传动力量大的优点结合起来,因此其具备响应快、密封性好、小型化、耐高压和使用寿命长等优点,并减少了元件的使用量,并能防止压力或速度变换时的冲击现象。 比例阀与伺服控制系统中的伺服阀相比,在某些方而还有一定的性能差距,但它显著的优点是抗污染能力强,大大地减少了因污染所造成的工作故障,提高了液压系统的工作稳定性和可靠性。另一方面比例阀的成本比伺服阀低,结构也简单,己在许多场合获得广泛应用。 比例阀相对伺服阀和开关阀的主要性能比较如表1所示。[2] 表 1 三种阀类主要性能比较

浅识电液比例控制系统

浅识电液比例控制系统 张明飞机械设计及理论TS14050104 17世纪帕斯卡提出著名的帕斯卡定律,奠定了液压传动的理论基础,而到1940年底在飞机上首先出现了电液伺服系统,其滑阀由伺服电机拖动,但伺服电机惯量很大,成了限制系统动态性的主要环节。50年代初出现了高速响应的永磁式力矩马达,后期又出现了以喷嘴挡板阀作为先导级的电液伺服阀,使电液伺服系统成为当时响应最快,控制精度最高的伺服系统。1958年美国学者勃莱克布恩等公布了他们在麻省理工学院的研究工作,为现代电液伺服系统的理论和实践奠定了基础。但是由于电液伺服器件的价格过于昂贵,对油质要求十分严格,控制损失(阀压降)较大,使伺服技术难以为更广泛的工业应用所接受。随着现代电子技术和测试技术的发展为工程界提供了可靠而廉价的检测、校正技术,这也为电液比例技术的发展提供了有利的条件。 电液比例技术的发展可以划分为下面四个阶段: 第一阶段,从1967年瑞士Beringer公司生产KL比例复合阀起,到70年代初日本油公司申请了压力和流量比例阀两项专利为止,是比例技术的诞生时期。这一阶段的比例阀,仅仅是将比例型的电一机械转换器(如比例电磁铁)用于工业液压阀,以代替开关电磁铁或调节手柄。阀的结构原理和设计准则几乎没有变化,大多不含受控参数的反馈闭环,其工作频宽仅在1~5Hz之间,稳态滞环在4.7%之间,多用于开环控制。 第二阶段,1975年至1980年间可以认为比例技术的发展进入了第二阶段。采用各种内反馈原理的比例元件大量问世,耐高压比例电磁铁和比例放大器在技术上日趋成熟,比例元件工作频宽己经达到5一1SHz,稳态滞环亦减少到3%左右。其应用领域日渐扩大,不仅用于开环控制,也被应用于闭环控制。 第三阶段,20世纪80年代,比例技术的发展进入了第三阶段。比例元件的设计原理进一步完善,采用了压力、流量、位移内反馈和动压反馈及电校正手段,使阀的稳态精度、动态响应和稳定性都有了进一步提高。除了因制造成本所限,比例阀在中位仍保留死区外,它的稳态和动态特性均己和工业伺服阀无异。另一项重大进展是,比例技术开始和插装阀相结合,己开发出各种不同功能和规格的

电液比例控制系统的实验分析的毕业论文

电液比例控制系统的实验分析的毕业论文 目录 第1章序论 (1) 1.1电液比例控制技术的形成和发展趋势 (1) 1.2F ESTO D IDACTIC自动化控制技术培训简介 (3) 1.3研究思路与容 (4) 第2章电液比例控制技术概述 (5) 2.1电液比例控制技术的含义与容 (5) 2.2电液比例控制的特点 (5) 2.3比例控制的基本原理 (6) 2.4比例控制的应用 (6) 2.5电液比例控制元件的围 (6) 第3章电液比例控制系统主要元件 (7) 3.1额定值信号给定单元 (7) 3.2放大器 (8) 3.3比例溢流阀。 (11) 3.4液压缸 (14) 3.5三位四通比例阀 (16)

第4章电液比例控制系统实验研究 (20) 4.1F ESTO试验台须知 (20) 4.2压力机(单向放大器的特性曲线) (20) 4.3滚轧机的接触滚轮(比例压力阀) (25) 4.4夹紧装置(压力回路) (29) 4.5铣床(双向放大器的特性曲线) (33) 4.6压印机(斜坡额定值的设定) (37) *4.7车斗(额定值的外部控制) (42) 第5章总结 (49) 参考文献 (50) 致谢 (51) 诚信声明

第1章序论 电液比例控制技术,是在以开环传动为主要特征的传统液压传动技术,和以闭环控制为特征的电液伺服控制技术基础上,为适应一般工程系统对传动与控制特性或有所侧重或兼而有之的特别要求,从20世纪60、70年代开始,逐步发展起来的流体传动与控制领域中一个具有旺盛生命力的新分支。现今,电液比例控制技术已成为工业机械、工程建设机械及国防尖端产品不可或缺的重要手段,引起相关工业界、技术界的格外目重视。但由于所具有的一些特点,对这种技术的了解、掌握、运用,不论是理论上,还是实践上,都有很多问题研究、探讨、总结、提髙,使其形成相应的科学体系,以更好地推动技术的发展和相关人才的培养。 电液比例技术本来就是流体传动与控制技术中的一个新的分支。所以,原来一般液压传动技术和电液伺服技术所共有的主要特点、优点与缺点、电液比例技术照样具备。但由于它是新发展起来的技术分支,所以,在应用电子技术,计算机技术、位息技术、自动控制技术、摩擦磨损技术及新工艺、新材料等方面,往往表现出更前卫,这给电液比例技术带来更多新的特点。此外,诸如数字技术、高速开关技术等,也与电液比例技术结合得非常紧密。 1.1电液比例控制技术的形成和发展趋势 电液比例控制技术从形成至今,大致上可划分为四个阶段: 从1967年瑞士Beringer公司生产XL比例复合阀,到70年代初日本油研公司申请压力和流量两项比例阀专利,标志着比例技术的诞生时期。此间,比例技术开始在液压控制领域中作为独立的分支,并以开环控制应用为主。这一阶段的比例阀仅仅是将新型

电液控制操作指南

pm32型 电液控制系统 操作指南 MARCO系统分析和开发有限公司 目录 前言 1. 安全规程 2. pm32电液控制系统原理 3. pm32电液控制系统元件 4. pm32电液控制系统功能 5. pm32控制器操作指南 6. XALZ 界面操作指南 7. 综采工作面自动化 8. pm32电液控制系统维护指南

前言 随着上世纪80年代电子技术,现场控制技术和信息技术的快速发展,煤矿井工 开采迫切需要利用先进的控制技术,改变其落后的生产工艺和控制水平。煤矿井工 生产的核心是综采工作面,如何大幅度提升综采工作面现代化和自动化控制水平成为当时煤矿现代化的首要任务。 在综采工作面装备中,液压支架占据着核心的位置,一方面液压支架要保障对工作面的有效支护,另外一方面又要作为推进动力,保障工作面推进效率。如何提高液压支架对工作面的支护质量,如何提高采煤工作面的推进速度,成为煤矿现代化控制的重要要求。 在电液控制系统应用之前,液压支架采用手动操纵阀的控制方式,经历了本架手动控制,邻架手动控制,邻架液压先导控制的发展过程,手动控制方式的改进主要集中在控制的安全保障上,没有涉及到控制质量和控制效率的提高。 在上个世纪70年代末,英国人第一次提出了液压支架电液控制的概念,采用控制器,传感器和液压主阀替代手动操作阀,控制液压支架动作,保障对工作面顶板和煤壁的支护质量,提高工作面的推进速度。 随着电液控制系统在煤矿生产上的不断发展,支架电液控制系统已经超出了起初的控制范畴,从单纯控制液压支架,逐渐延伸到三机控制,泵站控制,采煤机等设备控制。从本世纪初开始,网络技术逐步引进到煤矿生产中来,在融合电液控制系统后,实现了综采工作面自动化,实现了综采工作面设备高效管理,实现综采工作面生产过程优化控制。 在1996年,液压支架电液控制系统随着德国DBT公司成套综采设备进入到中国,应用在当时的神府矿区。经过5年的使用和适应,电液控制系统高效性,高可靠性的优势逐渐显现出来,为国内各大煤矿所接受。随着marco公司pm3型电液控制系统进入中国,通过和国内支架厂配套,解决了成套设备进口价格昂贵的劣势,尤其在2003年之后,以marco公司pm3系统为代表的液压支架电液控制系统在国内逐渐推广开来,电液控制系统应用也逐渐从简单的地质结构扩展到复杂的地质结构,从高端客户逐渐扩展到了绝大多数的煤矿用户,从支架控制扩展到综采工作面自动化。 液压支架电液控制系统在控制层面上由三部分组成, 1. 单个液压支架层面上的机电一体化控制, 2. 工作面层面上的现场总线控制 3. 顺槽层面上的SCADA控制(生产过程控制).

电液比例阀工作原理

电液比例阀工作原理-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

电液比例阀是阀内比例电磁铁输入电压信号产生相应动作,使工作阀阀芯产生位移,阀口尺寸发生改变并以此完成与输入电压成比例压力、流量输出元件。阀芯位移也可以以机械、液压或电形式进行反馈。电液比例阀具有形式种类多样、容易组成使用电气及计算机控制各种电液系统、控制精度高、安装使用灵活以及抗污染能力强等多方面优点,应用领域日益拓宽。近年研发生产插装式比例阀和比例多路阀充分考虑到工程机械使用特点,具有先导控制、负载传感和压力补偿等功能。它出现对移动式液压机械整体技术水平提升具有重要意义。特别是电控先导操作、无线遥控和有线遥控操作等方面展现了其良好应用前景。 2 工程机械电液比例阀种类和形式 电液比例阀包括比例流量阀、比例压力阀、比例换向阀。工程机械液压操作特点,以结构形式划分电液比例阀主要有两类:一类是螺旋插装式比例阀(screwin cartridge proportional valve),另一类是滑阀式比例阀(spool proportional valve)。 螺旋插装式比例阀是螺纹将电磁比例插装件固定油路集成块上元件,螺旋插装阀具有应用灵活、节省管路和成本低廉等特点,近年来工程机械上应用越来越广泛。常用螺旋插装式比例阀有二通、三通、四通和多通等形式,二通式比例阀主比例节流阀,它常它元件一起构成复合阀,对流量、压力进行控制;三通式比例阀主比例减压阀,也是移动式机械液压系统中应用较多比例阀,它主对液动操作多路阀先导油路进行操作。利用三通式比例减压阀可以代替传统手动减压式先导阀,它比手动先导阀具有更多灵活性和更高控制精度。可以制成如图1所示比例伺服控制手动多路阀,不同输入信号,减压阀使输出活塞具有不同压力或流量进而实现对多路阀阀芯位移进行比例控制。四通或多通螺旋插装式比例阀可以对工作装置实现单独控制。 滑阀式比例阀又称分配阀,是移动式机械液压系统最基本元件之一,是能实现方向与流量调节复合阀。电液滑阀式比例多路阀是比较理想电液转换控制元件,它保留了手动多路阀基本功能,还增加了位置电反馈比例伺服操作和负载传感等先进控制手段。它是工程机械分配阀更新换代产品。 出于制造成本考虑和工程机械控制精度要求不高特点,一般比例多路阀内不配置位移感应传感器,具有电子检测和纠错功能。,阀芯位移量容易受负载变化引起压力波动影响,操作过程中要靠视觉观察来保证作业完成。电控、遥控操作时更应注意外界干涉影响。近来,电子技术发展,人们越来越多采用内装差动变压器(LDVT)等位移传感器构成阀芯位置移动检测,实现阀芯位移闭环控制。这种由电磁比例阀、位置反馈传感器、驱动放大器和其它电子电路组成高度集成比例阀,具有一定校正功能,可以有效克服一般比例阀缺点,使控制精度到较大提高。 3 电液比例多路阀负载传感与压力补偿技术

PID控制系统的Simulink仿真分析

实验报告 课程名称:MATLAB语言与控制系统仿真 实验项目:PID控制系统的Simulink仿真分析专业班级: 学号: 姓名: 指导教师: 日期: 机械工程实验教学中心

注:1、请实验学生及指导教师实验前做实验仪器设备使用登记; 2、请各位学生大致按照以下提纲撰写实验报告,可续页; 3、请指导教师按五分制(优、良、中、及格、不及格)给出报告成绩; 4、课程结束后,请将该实验报告上交机械工程实验教学中心存档。 一、实验目的和任务 1.掌握PID 控制规律及控制器实现。 2.掌握用Simulink 建立PID 控制器及构建系统模型与仿真方法。 二、实验原理和方法 在模拟控制系统中,控制器中最常用的控制规律是PID 控制。PID 控制器是一 种线性控制器,它根据给定值与实际输出值构成控制偏差。PID 控制规律写成传递 函数的形式为 s K s Ki K s T s T K s U s E s G d p d i p ++=++==)1 1()() ()( 式中,P K 为比例系数;i K 为积分系数;d K 为微分系数;i p i K K T =为积分时间常数; p d d K K T =为微分时间常数;简单来说,PID 控制各校正环节的作用如下: (1)比例环节:成比例地反映控制系统的偏差信号,偏差一旦产生,控制器立即产 生控制作用,以减少偏差。 (2)积分环节:主要用于消除静差,提高系统的无差度。积分作用的强弱取决于积 分时间常数i T ,i T 越大,积分作用越弱,反之则越强。 (3)微分环节:反映偏差信号的变化趋势(变化速率),并能在偏差信号变得太大 之前,在系统中引入一个有效的早期修正信号,从而加快系统的动作速度,减少调 节时间。 三、实验使用仪器设备(名称、型号、技术参数等) 计算机、MATLAB 软件 四、实验内容(步骤) 1、在MATLAB 命令窗口中输入“simulink ”进入仿真界面。 2、构建PID 控制器:(1)新建Simulink 模型窗口(选择“File/New/Model ”),在 Simulink Library Browser 中将需要的模块拖动到新建的窗口中,根据PID 控制器的 传递函数构建出如下模型:

电液伺服控制系统的设计

。 电液伺服控制系统的设计与仿真 引言 电液伺服系统具有响应速度快、输出功率大、控制精确性高等突出优点,因而在航空航天、军事、冶金、交通、工程机械等领域得到广泛应用。随着电液伺服阀的诞生,使液压伺服技术进入了电液伺服时代,其应用领域也得到广泛的扩展。随着液压系统逐渐趋于复杂和对液压系统仿真要求的不断提高,传统的利用微分方程和差分方程建模进行动态特性仿真的方法已经不能满足需要。因此,利用AMESim、Matlab/Simulink等仿真软件对电液伺服控制系统进行动态仿真,对于改进系统的设计以及提高液压系统的可靠性都具有重要意义。 1 液压系统动态特性研究概述 随着液压技术的不断发展与进步和应用领域与范围的不断扩大,系统柔性化与各种性能要求更高,采用传统的以完成执行机构预定动作循环和限于系统静态性能的系统设计远远不能满足要求。因此,现代液压系统设计研究人员对系统动态特性进行研究,了解和掌握液压系统动态工作特性与参数变化,以提高系统的响应特性、控制精度以及工作可靠性,是非常必要的。 液压系统动态特性简述 … 液压系统动态特性是其在失去原来平衡状态到达新的平衡状态过程中所表现出来的特性,原因主要是由传动与控制系统的过程变化以及外界干扰引起的。在此过程中,系统各参变量随时间变化性能的好坏,决定系统动态特性的优劣。系统动态特性主要表现为稳定性(系统中压力瞬间峰值与波动情况)以及过渡过程品质(执行、控制机构的响应品质和响应速度)问题。 液压系统动态特性的研究方法主要有传递函数分析法、模拟仿真法、实验研究法和数字仿真法等。数字仿真法是利用计算机技术研究液压系统动态特性的一种方法。先是建立液压系统动态过程的数字模型——状态方程,然后在计算机上求出系统中主要变量在动态过程的时域解。该方法适用于线性与非线性系统,可以模拟出输入函数作用下系统各参变量的变化情况,从而获得对系统动态过程直接、全面的了解,使研究人员在设计阶段就可预测液压系统动态性能,以便及时对设计结果进行验证与改进,保证系统的工作性能和可靠性,具有精确、适应性强、周期短以及费用低等优点。 仿真环境简介 基于Matlab平台的Simulink是动态系统仿真领域中著名的仿真集成环境,它在众多领域得到广泛应用。Simulink借助Matlab的计算功能,可方便地建立各种模型、改变仿真参数,有效解决了仿真技术中的问题。Simulink提供了交互的仿真环境,既可通过下拉菜单进行仿真,也可通过命令进行仿真。虽然Simulink提供了丰富的模块库,但是在Matlab/Simulink下对液压系统进行建模及仿真需要做很多简化工作,而模型的简化使得仿真结果往往出现一定的误差。AMESim (Advanced Modeling Environment for Simulation of Engineering Systems)是法国IMAGINE公司开发的一套高级仿真软件。它是一个图形化的开发环境,用于工程系统的建模、仿真和动态性能分析。AMESim的特点是面向工程应用从而使其成为

电液伺服系统速度的实时控制

1 引言 随着科学技术的高速发展,机电液控制技术在各行业得到了广泛的应用。在机械制造业中,机电液控制技术用于电液自动控制的机器人,以替代人完成海底作业和有毒现场的施工;用于电液控制的机械手,以替代人完成自动生产线上的焊接,喷漆,装配等;用于自动生产线的位置,速度与时间的控制;用于加工机械零件的加工中心,以实现六面体的高精度自动加工。在汽车及工程车辆中,机电液控制技术用于机液伺服转向系统;用于汽车的无人驾驶,自动换挡。在军事工业中机电液控制技术用于飞机的操纵系统;雷达跟踪和舰船的舵机装置;导弹的位置控制和发射架的自动控制等。液压技术被应用到工业领域已有80年的历史,然而液压伺服系统的出现到现在还不到50年。尽管它在各个工业领域都有广泛的应用,并随着数学,控制理论,计算机,电子器件和液压流体力学的发展获得了很大的进展,有力的推动了我国机械工业的飞速发展。 液压伺服控制技术是早已成熟的液压传动技术的新发展,是自动控制领域一个重要组成部分。 技术进步的需要的是液压控制技术发展的推动力。20世纪40年代由于军事刺激,高速喷气式飞行器要求响应快且精度高的操纵控制,1940年底,在飞机上出现了电液伺服系统。作为电液转换器,当时滑阀由伺服电机驱动,由于电机惯量大,所构成的电液转换器时间常数大,限制了整个系统的响应速度。到了50年代初,出现了快速响应的永磁力矩马达,该力矩马达拖动滑阀,提高了电液伺服阀的响应速度。60年代,结构多样的电液伺服阀相继出现,尤其是干式力矩马达的研制成功,使电液伺服阀的性能日趋完善,促使电液伺伺服系统迅速发展。近20年来,随着材料和工艺技术的进步,电液伺服阀的成本不断降低,性能明显提高,使得电液伺服系统应用更加广泛。但是,由于电液伺服阀对液体的清洁度要求十分苛刻,系统效率底,能耗大,综合费用还是相当高。 我国液压(含液力),大致可分为三个阶段,即:20世纪50年代初到60年代初为起步阶段;60~70年代为专业化生产体系成长阶段;80~90年代为快速发展阶段。其中,液压工业于50年代初从机床行业生产仿苏的磨床、拉床、仿形车床等液压传动起步。进入60年代后,液压技术的应用从机床逐渐推广到农业机械和工程机械等领域,这时,液压件产品已从仿苏产品发展为引进技术与自行设计相结合的产品,压

复杂过程控制系统设计与Simulink仿真

银河航空航天大学 课程设计 (论文) 题目复杂过程控制系统设计与Simulink仿 真 班级 学号 学生姓名 指导教师

目录 0. 前言 (1) 1. 总体方案设计 (2) 2. 三种系统结构和原理 (3) 2.1 串级控制系统 (3) 2.2 前馈控制系统 (3) 2.3 解耦控制系统 (4) 3. 建立Simulink模型 (5) 3.1 串级 (5) 3.2 前馈 (5) 3.3 解耦 (7) 4. 课设小结及进一步思想 (15) 参考文献 (15) 附录设备清单 (16)

复杂过程控制系统设计与Simulink仿真 姬晓龙银河航空航天大学自动化分校 摘要:本文主要针对串级、前馈、解耦三种复杂过程控制系统进行设计,以此来深化对复杂过程控制系统的理解,体会复杂过程控制系统在工业生产中对提高产品产量、质量和生产效率的重要作用。建立Simulink模型,学习在工业过程中进行系统分析和参数整定的方法,为毕业设计对模型进行仿真分析及过程参数整定做准备。 关键字:串级;前馈;解耦;建模;Simulink。 0.前言 单回路控制系统解决了工业过程自动化中的大量的参数定制控制问题,在大多数情况下这种简单系统能满足生产工艺的要求。但随着现代工业生产过程的发展,对产品的产量、质量,对提高生产效率、降耗节能以及环境保护提出了更高的要求,这便使工业生产过程对操作条件要求更加严格、对工艺参数要求更加苛刻,从而对控制系统的精度和功能要求更高。为此,需要在单回路的基础上,采取其它措施,组成比单回路系统“复杂”一些的控制系统,如串级控制(双闭环控制)、前馈控制大滞后系统控制(补偿控制)、比值控制(特殊的多变量控制)、分程与选择控制(非线性切换控制)、多变量解耦控制(多输入多输出解耦控制)等等。从结构上看,这些控制系统由两个以上的回路构成,相比单回路系统要多一个以上的测量变送器或调节器,以便完成复杂的或特殊的控制任务。这类控制系统就称为“复杂过程控制系统”,以区别于单回路系统这样简单的过程控制系统。 计算机仿真是在计算机上建立仿真模型,模拟实际系统随时间变化的过程。通过对过程仿真的分析,得到被仿真系统的动态特性。过程控制系统计算机仿真,为流程工业控制系统的分析、设计、控制、优化和决策提供了依据。同时作为对先进控制策略的一种检验,仿真研究也是必不可少的步骤。控制系统的计算机仿真是一门涉及到控制理论、计算机数学与计算机技术的综合性学科。控制系统仿真是以控制系统的模型为基础,主要用数学模型代替实际控制系统,以计算机为工具,对控制系统进行实验和研究的一种方法。在进行计算机仿真时,十分耗费时间与精力的是编制与修改仿真程序。随着系统规模的越来越大,先进过程控制的出现,就需要行的功能强大的仿真平台Math Works公司为MATLAB提供了控制系统模型图形输入与仿真工具Simulink,这为过程控制系统设计与参数整定的计算与仿真提供了一个强有力的工具,使过程控制系统的设计与整定发生了革命性的变化。

实验四 PID控制系统的Simulink

自动控制理论 上 机 实 验 报 告 学院:机电工程学院 班级:13级电信一班 姓名: 学号:

实验四 PID 控制系统的Simulink 仿真分析 一、实验目的和任务 1.掌握PID 控制规律及控制器实现。 2.掌握用Simulink 建立PID 控制器及构建系统模型与仿真方法。 二、实验原理和方法 在模拟控制系统中,控制器中最常用的控制规律是PID 控制。PID 控制器是一种线性控制器,它根据给定值与实际输出值构成控制偏差。PID 控制规律写成传递函数的形式为a s K s Ki K s T s T K s U s E s G d p d i p ++=++==)11()()()( 式中,P K 为比例系数;i K 为积分系数;d K 为微分系数;i p i K K T = 为积分时间常数;p d d K K T =为微分时间常数; 简单来说,PID 控制各校正环节的作用如下: (1)比例环节:成比例地反映控制系统的偏差信号,偏差一旦产生,控制器立 即产生控制作用,以减少偏差。 (2)积分环节:主要用于消除静差,提高系统的无差度。积分作用的强弱取决 于积分时间常数i T ,i T 越大,积分作用越弱,反之则越强。 (3)微分环节:反映偏差信号的变化趋势(变化速率),并能在偏差信号变得太大之前,在系统中引入一个有效的早期修正信号,从而加快系统的动作速度,减少调节时间。 三、实验使用仪器设备 计算机、MATLAB 软件 四、实验内容(步骤) 1、在MATLAB 命令窗口中输入“simulink ”进入仿真界面。 2、构建PID 控制器:(1)新建Simulink 模型窗口(选择“File/New/Model ”),在Simulink Library Browser 中将需要的模块拖动到新建的窗口中,根据PID 控制器的传递函数构建出如下模型:

对电液比例及伺服控制系统的综述

摘要 本文详尽阐述了电液比例控制系统构成、分类和特点,结合对液压伺服控制系统的控制结构及其特点和基本要求的论述,分析了两种控制系统目前的发展状况。回顾电液控制系统发展历史,展望电液控制系统的发展趋势。 关键词:比例控制伺服控制发展趋势 Abstract The paper expounded the composition, classification and the characteristics of the electro-hydraulic proportional control system. Combined with the discussion of the control structure, basic requirements and the characteristics of hydraulic servo control system, the paper analyzed the state of the development of the two kinds of control systems. Reviewing the development history of the electro-hydraulic control system, the paper elaborated the development trend of the electro-hydraulic control system. Keywords: proportional control , servo control, development trend

电液控制系统

电液系统 摘要:电液系统具有相应快速、控制灵活等优点而广泛应用于现代工业中,对促进工业发展具有重要的作用。本文从电液控制系统的建模以及电液元件(伺服阀、比例阀)研究状况、电液系统的未来发展趋势三方面进行了阐述。 关键词:电液系统;建模;比例阀;伺服阀;发展趋势 1前言 18世纪欧洲工业革命时期,多种液压机械装置特别是液压阀得 到开发和利用,19世纪液压技术取得进展,包括采用油作为工作流 体和采用电来驱动方向控制阀,20世纪50-60年代是电液元件和技术发展的高峰期,在军事应用中得到广泛应用[1]。液压技术是以液体为工作介质,实现能量传递、转换、分配及控制的一门技术。液压系统因其响应快、功率体积比较大、抗负载刚度大以及传递运动平稳等优点而广泛应用于冶金、化工、机械制造、航空航天、武器装备等领域[2]。随着液压技术与微电子技术、传感器技术、计算机控制等技术的结合,电液技术成为现代工程控制中不可或缺的重要技术手段和环节。电液技术既有电气系统快速响应和控制灵活的优点,又有液压系统输出功率大和抗冲击性好等优点[3]。 韩俊伟对电液伺服系统的发展历史、研究现状和系统集成技术的应用进行了全面阐述,通过介绍电液伺服系统在力学环境模拟实验系统中的应用,分析了电液伺服系统的集成设计,比较了我国在电液伺服系统技术研究中的优劣势,指出电液伺服系统的未来发展趋势与挑

战[4]。许梁等从电液元件、电液控制系统、现代电液控制策略三方面对电液系统进行了阐述,指出了电液发展趋势[5]。陈刚等从电液元件、电液控制系统、计算机在电液系统中应用、现代控制理论的电液技术方面对电液系统进行了阐述,对于现代控制理论的电液技术,从PID 调节、状态反馈控制、自适应控制、变结构控制、模糊逻辑控制、神经网络控制进行了探究[6]。本文从电液系统的建模、电液元件(比例阀、伺服阀)、发展趋势研究进行综述。 2系统的建模 伺服系统是一个由多个环节构成的复杂的动力学系统,而且是一种典型的非线性时变系统。一方面由于阀口固有的流量一压力非线性、液体可压缩性、电液转换、摩擦特性、阔的工作死区等非线性,以 及阻尼系数、流量系数、油液温度等的时变性[7];另一方面由于系 统的负载及所处的现场环境的变化,导致电液伺服系统参数变化大、非线性程度高、易受外界干扰。在工作过程中容易出现非线性振动、噪声、冲击和爬行等异常现象,而且其诱因不易确定,影响设备的 稳定运行[8]。对电液系统进行准确建立模型是分析电液系统的基础。电液伺服系统本身是非线性系统 ,传统上对电液伺服系统非线性问 题的处理方式是在稳态工作点处进行泰勒级数展开。如果把工作范围限制在工作点附近,高阶无穷小就可以忽略 ,并可以把控制滑阀的 流量方程局部线性化,变量的变化范围小 ,线性化的精确性就高 ,阀 特性的线性度高,所允许的变量变化范围就大[9]。当电液伺服系统工作在远离系统的工作点时,使增量线性化模型难于奏效 ,可能得到错

第六章电液比例阀与比例控制回路(2015)

第六章
电液比例阀及 比例控制回路
6.1 概述
本 章 介 绍
6.2 电液比例阀 6.3 电液比例控制基本回路 6.4 电液比例控制工业应用

6.1 概述
从广义讲,凡是输出量,如压力、流量、位移、速度、加速 度等,能随输入信号连续地按比例地变化的控制系统,都称 为比例控制系统。从这个意义上说,伺服控制也是一种比例 控制。电液比例控制可以分为开环控制和闭环控制。
图6-1 电液比例开环控制系统方框图
图6-2 电液比例闭环控制系统方框图

目前,最常用的分类方式是按被控对象(量或参数)来进行分 类。则电液比例控制系统可以分为: 比例流量控制系统 比例压力控制系统 比例流量压力控制系统 比例速度控制系统 比例位置控制系统 比例力控制系统 比例同步控制系统

电液比例控制技术的发展动力
1.传统的液压控制方式是开关型控制。它通过电磁驱动或手动驱动来 实现液压流体的通、断和方向控制,从而实现被控对象的机械化和自 动化。但是这种方式无法实现对液流流量、压力连续地按比例地控制 ,同时控制的速度比较低、精度差、换向时冲击比较大。
2.当需要高性能的速度或位置控制时,以前电液伺服阀曾经是唯一实 用的解决办法。电液伺服阀是一种高技术条件的方向和流量控制阀, 不可避免地带来成本高、不耐污染、维修不便等问题。在并不需要伺 服阀的全部性能潜力的应用场合,这些问题可能成为主要的缺点。
3.发展电液比例阀的主要目的在于填补从简单的通/断电磁阀控制与复 杂的电液伺服控制之间的空白。虽然比例阀的部分性能指标不如伺服 阀,但对许多应用场合来已经够用了,同时可以体现出明显的成本和维 护优势。

电液比例阀工作原理

电液比例阀是阀内比例电磁铁输入电压信号产生相应动作,使工作阀阀芯产生位移,阀口尺寸发生改变并以此完成与输入电压成比例压力、流量输出元件。阀芯位移也可以以机械、液压或电形式进行反馈。电液比例阀具有形式种类多样、容易组成使用电气及计算机控制各种电液系统、控制精度高、安装使用灵活以及抗污染能力强等多方面优点,应用领域日益拓宽。近年研发生产插装式比例阀和比例多路阀充分考虑到工程机械使用特点,具有先导控制、负载传感和压力补偿等功能。它出现对移动式液压机械整体技术水平提升具有重要意义。特别是电控先导操作、无线遥控和有线遥控操作等方面展现了其良好应用前景。 2 工程机械电液比例阀种类和形式 电液比例阀包括比例流量阀、比例压力阀、比例换向阀。工程机械液压操作特点,以结构形式划分电液比例阀主要有两类:一类是螺旋插装式比例阀(screwin cartridge proportional valve),另一类是滑阀式比例阀(spool proportional valve)。 螺旋插装式比例阀是螺纹将电磁比例插装件固定油路集成块上元件,螺旋插装阀具有应用灵活、节省管路和成本低廉等特点,近年来工程机械上应用越来越广泛。常用螺旋插装式比例阀有二通、三通、四通和多通等形式,二通式比例阀主比例节流阀,它常它元件一起构成复合阀,对流量、压力进行控制;三通式比例阀主比例减压阀,也是移动式机械液压系统中应用较多比例阀,它主对液动操作多路阀先导油路进行操作。利用三通式比例减压阀可以代替传统手动减压式先导阀,它比手动先导阀具有更多灵活性和更高控制精度。可以制成如图1所示比例伺服控制手动多路阀,不同输入信号,减压阀使输出活塞具有不同压力或流量进而实现对多路阀阀芯位移进行比例控制。四通或多通螺旋插装式比例阀可以对工作装置实现单独控制。 滑阀式比例阀又称分配阀,是移动式机械液压系统最基本元件之一,是能实现方向与流量调节复合阀。电液滑阀式比例多路阀是比较理想电液转换控制元件,它保留了手动多路阀基本功能,还增加了位置电反馈比例伺服操作和负载传感等先进控制手段。它是工程机械分配阀更新换代产品。 出于制造成本考虑和工程机械控制精度要求不高特点,一般比例多路阀内不配置位移感应传感器,具有电子检测和纠错功能。,阀芯位移量容易受负载变化引起压力波动影响,操作过程中要靠视觉观察来保证作业完成。电控、遥控操作时更应注意外界干涉影响。近来,电子技术发展,人们越来越多采用内装差动变压器(LDVT)等位移传感器构成阀芯位置移动检测,实现阀芯位移闭环控制。这种由电磁比例阀、位置反馈传感器、驱动放大器和其它电子电路组成高度集成比例阀,具有一定校正功能,可以有效克服一般比例阀缺点,使控制精度到较大提高。 3 电液比例多路阀负载传感与压力补偿技术 节约能量、降低油温和提高控制精度,同时也使同步动作几个执行元件运动时互不干扰,现较先进工程机械都采用了负载传感与压力补偿技术。负载传感与压力补偿是一个很相似概念,都是利用负载变化引起压力变化去调节泵或阀压力与流量以适应系统工作需求。负载传感对定量泵系统来讲是将负载压力负载感应油路引至远程调压溢流阀上,当负载较小时,溢流阀调定压力也较小;负载较大,调定压力也较大,但也始终存一定溢流损失。变量泵系统是将负载传感油路引入到泵变量机构,使泵输出压力随负载压力升高而升高(始终为较小固定压差),使泵输出流量与系统实际需要流量相等,无溢流损失,实现了节能。

电液控制系统

简易控制系统 前言 目前国内市场上应用的电液控制系统主要集中在高端支架。高端支架占支架市场的10-15%。绝大多数的新建工作面仍采用手动控制。 电液控制系统的优势在于提高生产效率,降低工人劳动强度,安全生产。其劣势也非 常明显,价格高,投资大。 对于如何扩大电液控制系统的市场容量,许多电液控制系统供应商希望通过降低成 本,生产经济型电液控制系统的方法,比如marco公司在韩城地区提供的简易型电液 控制系统,天玛公司提供的SAC型电液控制系统,以及通过进行国产化降低生产成 本。 上述的经济型电液控制系统仍旧在原有的电液控制系统的基础上进行简单的删减。 如何从技术的角度上,真正的设计出适合目前国内大多数煤矿工矿和生产条件的经济 型电液控制系统是目前扩大市场容量的关键所在.。 Marco公司自从2010年自己进行市场开发以来,根据中国市场的情况,研发出真正意 义上的简易经济型电液控制系统:pm32/vt简易电液控制系统。 系统配置 液压主阀,按键型驱动器,附属设备(电源箱,耦合器,邻架电缆) 系统功能 可以完成支架上所有的液压功能,可以进行单键单动作 ,邻架动作,隔架动作。 根据操作人员的井下观察,通过按键对液压主阀进行控制。 和其他形式的控制系统比较 1. 和手动片阀的比较 简易控制系统大幅度降低了工人的劳动强度,将从前的手动操作片阀,变成简单的进 行按键操作。 copy? 2009 Marco Systemanalyse und Entwicklung GmbH Seite 1 / 2

显著的提高支架动作速度,提高采煤机的割煤速度,从而增加生产效率。 在提高效率的同时,也减少支架操作人员的人数,为安全生产提供保证。 2. 和手动先导控制的比较 不存在着复杂的邻架控制管路。通过和左右邻架相连的电缆,对左右邻架以及再相邻 的邻架进行控制,即可以对四个支架进行直接的控制。大幅度的提高控制的效率。 3. 和经济型电液控制系统的比较 在目前的很多井下综采工作面上,支架操作人员通过直接的观察对支架进行控制。 在这种情况下,传感器的利用率不高。控制器是通过对传感器的测量数值进行计算, 从而来控制液压主阀的动作。如上所说,在实际情况下,传感器的使用效率也很低。 简易控制系统的程序可以为手动模式,进行邻架控制, 本架控制和隔架控制。这就 满足了绝大多数井下采煤的要求。 4. 和电液控制系统的比较 简易型控制系统的成本为标准电液控制系统的50%。增加控制器后,可以方便的改造 将简易型控制系统转化成成标准电液控制系统。 copy? 2009 Marco Systemanalyse und Entwicklung GmbH Seite 2 / 2

相关主题
文本预览
相关文档 最新文档