当前位置:文档之家› (2)遗传算法作业

(2)遗传算法作业

(2)遗传算法作业

用遗传算法计算最优化问题()[]3103,x ,

x x f max ∈=,设下面表格是第k 次迭代

的过程(变异操作省略),试完成表格中相应的计算。

用遗传算法实现PID参数整定

用遗传算法实现PID参数整定 作者:万佑红, 李新华 作者单位:万佑红(南京邮电学院,电子工程系,江苏,南京,210003), 李新华(安徽大学,电子工程系,安徽,合肥,230001) 刊名: 自动化技术与应用 英文刊名:TECHNIQUES OF AUTOMATION AND APPLICATIONS 年,卷(期):2004,23(7) 被引用次数:17次 参考文献(5条) 1.Bennet S Development of the PID controllers 1993(02) 2.张晓缋;方浩;戴冠遗传算法的编码机制研究 1997(02) 3.薛定宇控制系统计算机辅助设计 1996 4.赵洁基于神经网络-遗传算法的双轴运动PID控制[期刊论文]-自动化技术与应用 2003(07) 5.陶永华;尹怡欣;葛芦生新型PID控制及其应用 1998 本文读者也读过(6条) 1.席育凡.曾光.张静刚.XI Yu-fan.ZENG Guang.ZHANG Jing-gang基于改进遗传算法的数字PID参数整定[期刊论文]-西安理工大学学报2006,22(4) 2.陈永红.朱从乔.王基基于自适应在线遗传算法的PID参数整定与优化[会议论文]- 3.李俊丽.张光辉.LI Jun-li.ZHANG Guang-hui鲁棒PID控制器参数整定与仿真[期刊论文]-自动化与仪表 2005,20(3) 4.谢勤岚.陈红基于遗传算法的PID控制器优化设计[期刊论文]-光学与光电技术2003,1(3) 5.宋洪法.靳其兵.赵梅.SONG Hong-fa.JIN Qi-bing.ZHAO Mei基于改进遗传算法的PID参数整定策略[期刊论文]-北京化工大学学报(自然科学版)2005,32(2) 6.陈敏.谭思云.黄玉清.CHEN Min.TAN Si-yun.HUANG Yu-qing遗传算法在PID参数整定中的应用[期刊论文]-仪表技术2010(5) 引证文献(17条) 1.张付祥.付宜利.王树国基于遗传算法的多PID控制器参数整定[期刊论文]-制造业自动化 2005(5) 2.唐锐.文忠波.文广一种基于遗传PID控制的力反馈双向伺服系统研究[期刊论文]-机床与液压 2009(4) 3.刘国联.谭冠政.何燕基于改进人工免疫算法的PID参数优化研究[期刊论文]-计算机工程与应用 2008(19) 4.赵语涛.张健成二次速度调节中的遗传PID控制方法[期刊论文]-液压与气动 2005(10) 5.邓长春.朱儒明.李咏霞.许波一种求解TSP问题的多种群并行遗传算法[期刊论文]-计算机仿真 2008(9) 6.唐锐.文忠波.文广一种基于BP神经网络的模糊PID控制算法研究[期刊论文]-机电产品开发与创新 2008(2) 7.张建平.刘庆滨生物制氢过程实现温度控制的解决方案[期刊论文]-自动化技术与应用 2005(5) 8.董红生基于多点频率特性辨识的自整定 PID控制器的研究[期刊论文]-自动化技术与应用 2005(5) 9.张索峰.李平基于改进粒子群算法的PID参数整定[期刊论文]-工业仪表与自动化装置 2010(2) 10.张俐基于小生境遗传算法的MTSP问题求解[期刊论文]-系统工程 2009(7) 11.吴春富基于遗传算法优化的模糊PID控制研究[期刊论文]-自动化技术与应用 2005(7) 12.乔志杰.程翠翠基于遗传算法优化的模糊PID控制研究及其仿真[期刊论文]-皖西学院学报 2009(5) 13.乔志杰.程翠翠基于遗传算法优化的模糊PID控制研究及其仿真[期刊论文]-安徽电气工程职业技术学院学报

遗传算法

基于新的混合遗传算法的订单生产工序顺序相关的流水车 间调度问题研究 A novel hybrid genetic algorithm to solve the make-to-order sequence-dependent flow-shop scheduling problem Mohammad Mirabi ?S. M. T. Fatemi Ghomi ?F. Jolai 2013年5月29号收到该文献,2014年3月18号录取,2014年4月9日出版.作者(2014).这篇文章在开放存取的https://www.doczj.com/doc/199496577.html, 网站发表 摘要流水车间调度问题(FSP)用于处理m台机器n个工序的流水作业。尽管FSP是典 型的NP-hard问题,依然没有有效的算法以找到这个问题的最优解。为了减少库存,延迟和安装成本,在工作时间一定,序列相关的每台机器上解决流水车间调度排序问题,在这提出了一种有三个遗传算子的新型混合遗传算法(HGA)。该算法应用一种改进的方法来生成初始种群,并使用一种应用迭代交换过程改进初始解的改进启发式算法。我们认为订单式生产方式,工序间隔时间是基于最大安装成本的禁忌搜索算法的解。此外,与最近开发的启发式算法通过计算实验结果比较表明,该算法在解\的精度和效率方面表现出非常强的竞争力。 关键词:混合遗传算法流水作业调度序列相关 引言 流车间调度问题(FSP)作为在制造业研究的主要问题已经近七十年。在一个有M台机器的流水作业车间中有m个工位,每个工序又有一台或几台机器。此外,有n个工件在m个工位上依次加工。在经典的流水作业问题里,每个工位都有一台机器,这一领域的研究吸引了最多的人次。FSP的两个主要子问题是序列独立时间设置(SIST)和顺序相关时间设置(SDST)。SDST流水作业问题更具有现实意义,但是吸引的注意力却少得多,特别是2000年以前(Allahverdi等,2008) 在流水车间调度问题的目标是找到一个序列的机器加工的作业,以便一个给定的标准进行了优化。这里有n个工件在每台机器上操作的可能的顺序,以及(N!)*M个的可能处理顺序。流水作业调度的研究通常只参加置换序列,其中操作的处理顺序是所有机器。在这里,我们也采用这种限制。 最小化所有最大完工时间作业(成为完工期并通过的Cmax表示)是公知的,也是在文献M. Mirabi (&) Group of Industrial Engineering, Ayatollah Haeri University of Meybod, P.O. Box 89619-55133, Meybod, Iran e-mail: M.Mirabi@https://www.doczj.com/doc/199496577.html, S. M. T. Fatemi Ghomi Department of Industrial Engineering, Amirkabir University of Technology, P.O. Box 15916-34311, Tehran, Iran e-mail: Fatemi@aut.ac.ir F. Jolai Department of Industrial Engineering, College of Engineering, University of Tehran, P.O. Box 14395-515, Tehran, Iran

遗传算法在图像处理中的应用

遗传算法在图像处理中的应用 束道胜 P201002117 1引言 遗传算法( genetic algorithm, GA)是一种自适应启发式群体型概率性迭代式的全局收敛搜索算法,其基本思想来源于生物进化论和群体遗传学,体现了适者生存、优胜劣汰的进化原则。使用遗传算法求解科学研究工作和工程技术中各种组合搜索和优化计算问题这一基本思想早在20世纪60年代初期就由美国Michigan大学的Holland教授提出,其数学框架也于20世纪60年代中期形成。由于GA的整体搜索策略和优化计算不依赖于梯度信息,所以它的应用范围非常广泛,尤其适合于处理传统方法难以解决的高度复杂的非线性问题。它在自适应控制、组合优化、模式识别、机器学习、规划策略、信息处理和人工生命等领域的应用中越来越展示出优越性。 图像处理是计算机视觉中的一个重要研究领域,在图像处理过程中,如扫描、特征提取、图像分割等不可避免地会存在一些误差,从而影响图像的效果。如何使这些误差最小是使计算机视觉达到实用化的重要要求, GA 在这些图像处理中的优化计算方面找到了用武之地,目前已在图像分割、图像恢复、图像重建、图像检索和图像匹配等方面得到了广泛的应用。 2 遗传算法的原理、基本性质和改进 GA把问题的解表示成染色体(也称串) , GA的求解步骤如下: (1) 编码定义问题的解空间到染色体编码空间的映射,一个候选解(个体)用一串符号表示。 (2) 初始化种群在一定的限制条件下初始化种群,该种群是解空间的一个子空间。 (3) 设计适应度函数将种群中的每个染色体解码成适于计算机适应度函数的 形式,计算其数值。 (4) 选择根据适应度大小选择优秀个体繁殖下一代,适应度越高,则选择概率越大。 (5) 交叉随机选择两个用于繁殖下一代的个体的相同位置,在选中的位置实行交换。 (6) 变异对某个串中的基因按突变概率进行翻转。 (7) 从步骤4开始重复进行,直到满足某一性能指标或规定的遗传代数。 步骤1、2和3是实际应用中的关键,步骤4~步骤6进行3种基本基因操作,选择实现

MATLAB遗传算法作业

MATLAB遗传算法 一:遗传算法简介: 遗传算法(Genetic Algorithm)是一类借鉴生物界的进化规律(适者生存,优胜劣汰遗传机制)演化而来的随机化搜索方法。它是由美国的J.Holland教授1975年首先提出,其主要特点是直接对结构对象进行操作,不存在求导和函数连续性的限定;具有内在的隐并行性和更好的全局寻优能力;采用概率化的寻优方法,能自动获取和指导优化的搜索空间,自适应地调整搜索方向,不需要确定的规则。遗传算法的这些性质,已被人们广泛地应用于组合优化、机器学习、信号处理、自适应控制和人工生命等领域。它是现代有关智能计算中的关键技术。 二:遗传算法的基本步骤 a)初始化:设置进化代数计数器t=0,设置最大进化代数T,随机生成M个个体作为初始群体P(0)。 b)个体评价:计算群体P(t)中各个个体的适应度。 c)选择运算:将选择算子作用于群体。选择的目的是把优化的个体直接遗传到下一代或通过配对交叉产生新的个 体再遗传到下一代。选择操作是建立在群体中个体的适应度评估基础上的。

d)交叉运算:将交叉算子作用于群体。遗传算法中起核心作用的就是交叉算子。 e)变异运算:将变异算子作用于群体。即是对群体中的个体串的某些基因座上的基因值作变动。 群体P(t)经过选择、交叉、变异运算之后得到下一代群体P(t+1)。 f)终止条件判断:若t=T,则以进化过程中所得到的具有最大适应度个体作为最优解输出,终止计算。 三:matlab实现 例子:f(x)=10*sin(5x)+7*cos(4x)x∈[0,10]将变量域[0,10]离散化为二值域[0,1023],x=0+10*b/1023。 1.初始化 initpop.m function pop=initpop(popsize,chromlength) pop=round(rand(popsize,chromlength));%rand随机产生每个单元为0或者1 行数(种群数量)为popsize,列数为chromlength(个体所含基因数)的矩阵, 2.计算目标函数值 2.1将二进制数转化为十进制数(1) decodebinary.m %产生[2^n2^(n-1)...1]的行向量,然后求和,将二进制转化为十进制function pop2=decodebinary(pop) [px,py]=size(pop)%Pop的行和列数 for i=1:px pop2(i)=0 for j=1:py pop2(i)=pop2(i)+2.^(py-j)*pop(i,j) end end 2.2将二进制编码转化为十进制数(2) Decodechrom.m %函数的功能是将染色体(或二进制编码)转换为十进制,参数spoint表示待解码的二进制串的

智能信息处理导论简答题

1、简述可拓思想及其拓展工具 可拓思想是利用物元理论、事元理论和可拓集合理论,结合各应用理论和方法去处理该领域中的矛盾问题,以化不可行为可行,不可知为可知,化不属于为属于、化对立为共存。 可拓拓展工具定性工具物元和事元是可拓学的基本概念,可拓变换是解决矛盾问题的基本工具,可拓分析方法是寻求可拓变换的依据。利用它们可以从定性的角度分析事物开拓的可能性。 定量工具可拓集合是描述事物具有某种性质的程度和量变与质变的定量化工具。 2、什么是云计算?云计算为什么备受关注?为什么要实现云计算? 云计算的基本原理是通过使计算分布在大量的分布式计算机上,而非本地计算机或远程服务中,企业数据中心的运行将更与互联网相似。这使得企业能够将资源切换到需要的应用上,根据需求访问计算机和存储系统 云计算是一种革命性的举措,打个比方,这就好比是从古老的单台发电机模式转向了电厂集中供电的模式。它意味着计算能力也可以作为一种商品进行流通。它最大的不同在于它是通过互联网进行传输的。 在未来只需一台笔记本或者手机,就可以通过网络服务来满足人们一切甚至包括超级计算这样的任务。最终用户才是云计算的真正拥有者。云计算的思想:把力量联合起来,给其中的每一个成员使用。 3、简述粗集理论. ①利用抽象代数来研究粗糙集代数空间这种特殊的代数结构。②利用拓扑学描述粗糙空间。 ③还有就是研究粗糙集理论和其他软计算方法或者人工智能的方法相接合,例如和模糊理论、神经网络、支持向量机、遗传算法等。④针对经典粗糙集理论框架的局限性,拓宽粗糙集理论的框架,将建立在等价关系的经典粗糙集理论拓展到相似关系甚至一般关系上的粗糙集理论 4、比较协同进化遗传算法与普通遗传算法。 遗传算法虽然实现简单,操作方便,但是存在很多的缺陷:①很容易导致“早熟”,陷入局部最优;②随着问题规模的增大,其计算复杂度明显增加,收敛性显著降低,搜索问题空间能力也下降;③依靠简单的交叉、变异操作,很容易产生不可行解;④交叉产生的子代可能一个适应度很高,另一个很低,低的个体虽然含有较好的基因,但是会被淘汰。 两种算法的比较结果很明显就可以看出两种算法的优劣:CGA、要明显优于GA,计算是时间短,收敛速度快,而且收敛精度也比较高。在求解分类神经网络训练问题计算工作量大大减少,同样达到90%的分类精度,CGA的遗传代数只有GA的1/3.在求解Manipulator Path Planning问题CGA占用CPU的时间只有GA的1/9 5、比较免疫算法与遗传算法。 (1)免疫算法与遗传算法起源于抗原与抗体之间的内部竞争,其相互作用的环境既包括外部也包括内部的环境;而遗传算法起源于个体与自私基因之间的外部竞争。(2)免疫算假设免疫元素互相作用,即每一个免疫细胞等个体可以相互作用,而遗传算法不考虑个体之间的作用。(3)免疫算法中,基因可以由个体自己选择,而在遗传算法中基因有环境选择。(4)免疫算法中,基因组合是为了获得多样性,一般不用交叉算子,因为免疫算法中基因是在同一代个体进行进化,这种情况下设交叉概率为0;而遗传算法后代个体基因通常是由父代交叉的结果,交叉用于混合基因(5)免疫算法选择个变异阶段明显不同,而遗传算法中它们是交替进行的。 6、请描述遗传算法特点。 (1)遗传算法从问题解的串集开始搜索,而不是从单个解开始。这是遗传算法与传统优化算法的极大区别。传统优化算法是从单个初始值迭代求最优解的;容易误入局部最优解。遗传

机器学习大作业

机器学习大作业Revised on November 25, 2020

题目:机器学习 授课老师:韩红 基于BP 神经网络的非线性函数拟合 摘要:BP(Back Propagation)神经网络是 1986年由 Rumelhart和 McCelland 提出的,它是一种误差按反向传播的多层前馈网络,是目前应用最广泛的神经网络模型之一。 BP神经网络具有非常强的非线性映射能力,能以任意精度逼近任意连续函数,因此在人工智能的许多领域都得到了广泛的应用。 通常,BP算法是通过一些学习规则来调整神经元之间的连接权值,在学习过程中,学习规则以及网络的拓扑结构不变。然而一个神经网络的信息处理功能不仅取决于神经元之间的连接强度,而且与网络的拓扑结构(神经元的连接方式)、神经元的输入输出特性和神经元的阈值有关,因而神经网络模型要加强自身的适应和学习能力,应该知道如何合理地自组织网络的拓扑结构,知道改变神经元的激活特性以及在必要时调整网络的学习参数等。 1 BP神经网络概述 BP神经网络是一种多层前馈神经网络,该网络的主要特点是信号前向传递,误差反向传播。在前向传递中,输入信号从输入层经隐含层逐层处理, 直至输出层。每一层的神经元状态只影响下一层神经元状态。如果输出层得不到期望输出, 则转入反向传播,根据预测误差调整网络权值和阈值,从而使B P神经网络预测输出不断逼近期望输出。BP神经网络的拓扑结构如图 图1中, X1, X2, …, X n是BP神经网络的输入值, Y1, Y2, …, Y m是BP神经网络的预测值,ωij和ωjk为BP神经网络权值。从图2可以看出, BP神经网络可以看成一个非线性函数, 网络输入值和预测值分别为该函数的自变量和因变量。当输入节

(整理)遗传算法作业

作业 土规1101班刘迈克2011306200521 求下面加权有向图中从A到G的最短路径。 A B1 B2 C1 C2 C3 C4 D1 D2 D3 E1 E2 E3 F1 F2 G 5 3 1 3 6 8 7 6 6 5 8 3 3 3 8 4 2 2 2 1 3 3 3 5 5 2 6 6 4 3 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 5 3 1 3 6 8 7 6 6 5 8 3 3 3 8 4 2 2 2 1 3 3 3 5 5 2 6 6 4 3

解: 基本思路: 第一步:确定决策变量及其约束条件。 第二步:建立优化模型。 第三步:确定编码方法。 第四步:确定解码方法。 第五步:确定个体评价方法。 第六步:设计遗传算子。 选择运算使用比例选择算子; 交叉运算使用单点交叉算子; 变异运算使用基本位变异算子。 第七步:确定遗传算法的运行参数。 程序: % n ---- 种群规模 % ger ---- 迭代次数 % pc ---- 交叉概率 % pm ---- 变异概率 % v ---- 初始种群(规模为n) % f ---- 目标函数值 % fit ---- 适应度向量 % vx ---- 最优适应度值向量 % vmfit ---- 平均适应度值向量 clear all; close all; clc; tic; % 生成初始种群 %power=[0 5 3 100 100 100 100 100; % 100 0 100 1 3 6 100 100; % 100 100 0 100 8 7 6 100; % 100 100 100 0 100 100 100 8; % 100 100 100 100 0 100 100 5; % 100 100 100 100 100 0 100 3; % 100 100 100 100 100 100 0 3; % 100 100 100 100 100 100 100 0]; power=[0 5 3 100 100 100 100 100 100 100 100 100 100 100 100 100; 100 0 100 1 3 6 100 100 100 100 100 100 100 100 100 100; 100 100 0 100 8 7 6 100 100 100 100 100 100 100 100 100;

智能算法实验报告

人工智能实验—智能算法 实验一蚂蚁算法 一、实验目的: 理解蚂蚁算法的本质,会编写蚂蚁算法来求解TSP问题。 二、实验原理: 蚂蚁在寻找食物源时,能在其走过的路上释放一种特殊的分泌物——信息素(随着时间的推移该物质会逐渐挥发), 后来的蚂蚁选择该路径的概率与当时这条路径上该物质的强度成正比。当一定路径上通过的蚂蚁越来越多时,其留下的信息素轨迹也越来越多,后来蚂蚁选择该路径的概率也越高,从而更增加了该路径的信息素强度。 而强度大的信息素会吸引更多的蚂蚁,从而形成一种正反馈机制, 通过这种正反馈机制,蚂蚁最终可以发现最短路径。特别地,当蚂蚁巢穴与食物源之间出现障碍物时,蚂蚁不仅可以绕过障碍物,而且通过蚁群信息素轨迹在不同路径上的变化,经过一段时间的正反馈,最终收敛到最短路径上。 三、实验内容: #include #include #include using namespace std; const int MaxInt=~(unsigned int)0 / 2; /*double d[5][5]={ {0, 7, 6,10,13}, {7, 0, 7,10,10}, {6, 7, 0,5 ,9 }, {10,10,5,0, 6 }, {13,10,9,6, 0 } }; //表示路径(i,j)之间的长度 */ class Ant { private: int AntNum;//蚂蚁个数; int NodeNum;//节点个数; int MaxRunNum;//最大运行次数 int RunNum;//运行次数 double **d;//表示路径(i,j)之间的长度 double **n;//边弧(i,j)的能见度(visibility), 或称局部启发因子,一般取1/d 表示路径(i,j)之间的长度; double **t;//边弧(i,j)的信息素轨迹强度(intensity) double INITINFO;//初始的信息素值 //double **deltaT;//蚂蚁k 于弧上(i,j)留下的单位长度轨迹信息素数量;

大工19秋《数据挖掘》大作业题目及要求答案

网络教育学院 《数据挖掘》课程大作业 题目:题目一:Knn算法原理以及python实现 姓名: XXX 报名编号: XXX 学习中心:奥鹏XXX 层次:专升本 专业:计算机科学与技术 第一大题:讲述自己在完成大作业过程中遇到的困难,解决问题的思路,以及相关感想,或者对这个项目的认识,或者对Python与数据挖掘的认识等等,300-500字。 答: 数据挖掘是指从大量的数据中通过一些算法寻找隐藏于其中重要实用信息的过程。这些算法包括神经网络法、决策树法、遗传算法、粗糙集法、模糊集法、关联规则法等。在商务管理,股市分析,公司重要信息决策,以及科学研究方面都有十分重要的意义。数据挖掘是一种决策支持过程,它主要基于人工智能、机器学习、模式识别、统计学、数据库、可视化技术,从大量数据中寻找其肉眼难以发现的规律,和大数据联系密切。如今,数据挖掘已经应用在很多行业里,对人们的生产生活以及未来大数据时代起到了重要影响。

第二大题:完成下面一项大作业题目。 2019秋《数据挖掘》课程大作业 注意:从以下5个题目中任选其一作答。 题目一:Knn算法原理以及python实现 要求:文档用使用word撰写即可。 主要内容必须包括: (1)算法介绍。 (2)算法流程。 (3)python实现算法以及预测。 (4)整个word文件名为 [姓名奥鹏卡号学习中心](如 戴卫东101410013979浙江台州奥鹏学习中心[1]VIP ) 答: KNN算法介绍 KNN是一种监督学习算法,通过计算新数据与训练数据特征值之间的距离,然后选取K(K>=1)个距离最近的邻居进行分类判(投票法)或者回归。若K=1,新数据被简单分配给其近邻的类。 KNN算法实现过程 (1)选择一种距离计算方式, 通过数据所有的特征计算新数据与

遗传算法在图像处理中应用

课程:新技术讲座 题目:遗传算法在图像处理中的应用XX: 学号:

目录 摘要2 1.引言3 2.遗传算法的基本原理和基本性质4 3.遗传算法在图像处理中的应用6 3.1在图像增强中的应用6 3.2在图像恢复中的应用7 3.3在图像分割中的应用8 3.4在图像压缩中的应用10 3.5在图像匹配中的应用11 4.遗传算法在图像处理中的问题及发展方向12 参考文献12

遗传算法在图像处理中的应用 摘要 遗传算法是一种模拟生命进化机制,基于生物自然选择与遗传机理的随机搜索与优化方法。近几年来,遗传算法广泛应用在生物信息学、系统发生学、计算科学、工程学、经济学、化学、制造、数学、物理、药物测量学和其他领域之中,这种算法得到快速发展,尤其是在计算机科学人工智能领域中。本文将在系统并且深入的介绍遗传算法基本理论的基础上,重点综述遗传算法在数字图像处理中的主要应用,深入研究目前遗传算法在图像处理领域中存在的问题,并对这些问题作出了一些个人的见解,阐述了遗传算法在图像处理应用的发展方向。 关键词:遗传算法,数字图像处理 Abstract Genetic Algorithm is a simulation of the life evolution mechanism,random search and optimization method which is based on the natural selection and genetic mechanism.In recent years,due to the enormous potential of solving plex optimization problems and the successful applications in the industrial field,the Genetic Algorithm developed rapidly,Especially in the field of artificial intelligence in puter science.This article not only describes the basic theoretical foundation of genetic algorithms,but also focus on

自适应PID控制综述(完整版)

自适应PID控制 摘要:自适应PID控制是一门发展得十分活跃控制理论与技术,是自适应控制理论的一个重要组成部分,本文简要回顾PID控制器的发展历程,对自适应PID控制的主要分支进行归类,介绍和评述了一些有代表性的算法。 关键词:PID控制,自适应,模糊控制,遗传算法。 Abstract: The adaptive PID control is a very active developed control theory and technology and is an important part of adaptive control theory.This paper briefly reviews the development process PID controller.For adaptive PID control of the main branches, the paper classifies,introduces and reviews some representative algorithms. Keywords: PID control, adaptive, fuzzy control, genetic algorithm 1 引言 从问世至今已历经半个世纪的PID控制器广泛地应用于冶金、机械、化工、热工、轻工、电化等工业过程控制之中,PID控制也是迄今为止最通用的控制方法, PID控制是最早发展起来的控制策略之一,因为他所涉及的设计算法和控制结构都很简单,并且十分适用于工程应用背景,所以工业界实际应用中PID 控制器是应用最广泛的一种控制策略(至今在全世界过程控制中用的80% 以上仍是纯PID调节器,若改进型包含在内则超过90%)。由于实际工业生产过程往往具有非线性和时变不确定性,应用常规PID控制器不能达到理想控制效果,长期以来人们一直寻求PID控制器参数的自动整定技术,以适应复杂的工况和高指标的控制要求。随着微机处理技术和现代控制理论诸如自适应控制、最优控制、预测控制、鲁棒控制、智能控制等控制策略引入到PID控制中,出现了许多新型PID控制器。人们把专家系统、模糊控制、神经网络等理论整合到PID控制器中,这样既保持了PID控制器的结构简单、适用性强和整定方便等优点,又通过先进控制技术在线调整PID控制器的参数,以适应被控对象特性的变化。 2 自适应PID控制概念及发展 2.1 PID控制器 常规PID控制系统原理框图如下图所示,系统由模拟PID控制器和被控对象组成。

遗传算法在图像处理中的应用

. . 课程:新技术讲座 题目:遗传算法在图像处理中的应用姓名: 学号:

目录 摘要 (2) 1.引言 (3) 2.遗传算法的基本原理和基本性质 (3) 3.遗传算法在图像处理中的应用 (5) 3.1在图像增强中的应用 (5) 3.2在图像恢复中的应用 (6) 3.3在图像分割中的应用 (7) 3.4在图像压缩中的应用 (8) 3.5在图像匹配中的应用 (9) 4.遗传算法在图像处理中的问题及发展方向 (10) 参考文献 (10)

遗传算法在图像处理中的应用 摘要 遗传算法是一种模拟生命进化机制,基于生物自然选择与遗传机理的随机搜索与优化方法。近几年来,遗传算法广泛应用在生物信息学、系统发生学、计算科学、工程学、经济学、化学、制造、数学、物理、药物测量学和其他领域之中,这种算法得到快速发展,尤其是在计算机科学人工智能领域中。本文将在系统并且深入的介绍遗传算法基本理论的基础上,重点综述遗传算法在数字图像处理中的主要应用,深入研究目前遗传算法在图像处理领域中存在的问题,并对这些问题作出了一些个人的见解,阐述了遗传算法在图像处理应用的发展方向。 关键词:遗传算法,数字图像处理 Abstract Genetic Algorithm is a simulation of the life evolution mechanism, random search and optimization method which is based on the natural selection and genetic mechanism.In recent years,due to the enormous potential of solving complex optimization problems and the successful applications in the industrial field,the Genetic Algorithm developed rapidly,Especially in the field of artificial intelligence in computer science.This article not only describes the basic theoretical foundation of genetic algorithms,but also focus on Genetic Algorithm in digital image processing.Moreover,it studies the problems of the Genetic Algorithm in the field of image processing and the direction of development in the future,Moreover,the author elaborates the personal opinion in the end. keyword :Genetic Algorithm,Digital image processing

机器学习大作业

机器学习大作业 题目机器学习大报告 学院电子工程学院 专业 学生姓名 学号

目录 第一章机器学习的基本理论及算法 (3) 1.1机器学习的基本理论 (3) 1.1.1 机器学习的概念 (3) 1.1.2 机器学习的发展历程 (3) 1.1.3 机器学习的模型 (4) 1.2机器学习主要算法 (5) 1.2.1 决策树算法 (5) 1.2.2 人工神经网络 (6) 1.2.3贝叶斯学习算法 (7) 1.2.4 遗传算法 (8) 1.2.5 支持向量机 (9) 第二章支持向量机(SVM)原理 (11) 2.1 SVM的产生与发展 (11) 2.2 统计学习理论基础 (12) 2.3 SVM原理 (12) 2.3.1.最优分类面和广义最优分类面 (13) 2.3.2 SVM的非线性映射 (16) 2.3.3.核函数 (17) 第三章支持向量机的应用研究现状 (19) 3.1 应用概述 (19) 3.2支持向量机的应用 (19) 3.2.1 人脸检测、验证和识别 (19) 3.2.2说话人/语音识别 (20) 3.2.3 文字/手写体识别 (20) 3.2.4 图像处理 (20) 3.2.5 其他应用研究 (21) 第四章基于SVM的实例及仿真结果 (23) 4.1 16棋盘格数据分类 (23) 4.2 UCI中iris数据分类 (25)

第一章机器学习的基本理论及算法 1.1机器学习的基本理论 1.1.1 机器学习的概念 机器学习是人工智能的一个分支,是现代计算机技术研究一个重点也是热点问题。顾名思义,机器学习就是计算机模仿人类获取知识的模式,通过建立相应的模型,对外界输入通过记忆"归纳"推理等等方式,获得有效的信息和经验总结,进而不断的自我完善,提高系统的功能。目前,机器学习的定义尚不统一,不同专业背景的学者出于不同的立场,对于机器学习的看法是不同的。下面主要介绍两位机器学习专业研究者赋予机器学习的定义。兰利(https://www.doczj.com/doc/199496577.html,ngley)认为:“机器学习是一门人工智能的科学,该领域的主要研究对象是人工智能,特别是如何在经验学习中改善具体算法的性能”。米切尔(T.M.Mitchell)在其著作《机器学习》中谈到“机器学习”关注的问题是“计算机程序如何随着经验积累自动提高自身的性能”,也就是主要指的是归纳学习,另外“分析学习和增强学习也是学习的一个不可或缺组成部分”。两位学者的观点类似,都把机器学习看成是计算机或人工智能的一个分支学科,都强调的是归纳学习算法。 机器学习在人工智能领域中是一个相对比较活跃的研究领域,其研究目的就是要促进机器像人样可以源源不断获取外界的知识,建立相关学习的理论,构建学习系统,并将这些发明应用于各个领域。 1.1.2 机器学习的发展历程 机器学习(machine learning)是继专家系统之后人工智能应用的又一重要研究领域,也是人工智能和神经计算的核心研究课题之一。作为人工智能研究的一个新崛起的分支,机器学习的发展历程大至可分为如下几个时期: (1)热烈时期:20 世纪50 年代的神经模拟和决策理论技术,学习系统在运行时很少具有结构或知识。主要是建造神经网络和自组织学习系统, 学习表现为阈值逻辑单元传送信号的反馈调整。 (2)冷静时期:20 世纪60 年代早期开始研究面向概念的学习, 即符号学习。

MATLAB遗传算法PID大作业.

遗传算法在调节控制系统参数中的应用 【摘要】自动化控制系统多采用PID 控制器来调节系统稳定性和动态性,PID 的 Kp,Ki,Kd 参数需要合理选择方能达到目标。遗传算法是一种模拟生物进化寻求最优解的有效算法,本文通过利用GAbx 工具箱实现对控制电机的PID 进行参数优化,利用matlab 的仿真功能可以观察控制效果。 1. 直流伺服电机模型 1.1物理模型 图1 直流伺服电机的物理模型 αu ---电枢输入电压(V ) a R ---电枢电阻(Ω) S L ---电枢电感(H ) q u ---感应电动势(V ) g T ---电机电磁转矩(N m ?) J---转动惯量(2m kg ?) B---粘性阻尼系数(s m N ??) g i ---流过电枢的电流(A ) θ---电机输出的转角(rad ) 1.2传递函数 利用基尔霍夫定律和牛顿第二定律得出电机基本方程并进行拉布拉斯变换 ) ()()()()()()()()()()(2s s K s U K s I s T s Bs s Js s T s I s L R s I s U s U e q t a g g a a a a q a θθθ?=?=?+?=?+?=- 式中:t K 为电机的转动常数(m N ?)A ;e K 为感应电动势常数(s V ?)rad

图2 直流伺服电机模型方框图 消去中间变量得系统的开环传递函数: s K K B Js R s L K s U s s G C t a d t a ]))([() () ()(+++= = θ 系统参数如下:s m uN B m mg J ??=?=51.3,23.32 A m N K K uH L R e t a a )(03.0,75.2,4?===Ω= 2. PID 校正 图3 PID 校正 s K s K K s G d i p c ++ =)( Kp,Ki,Kd 为比例,积分,微分系数 令Kp=15、Ki=0.8 、Kd=0.6 M 文件:J=3.23E-6; B=3.51E-6; Ra=4; La=2.75E-6; Kt=0.03; num= Kt; den=[(J*La) ((J*Ra)+(La*B)) ((B*Ra)+Kt*Kt) 0]; t=0:0.001:0.2; step(num,den,t); Kp=15; Ki=0.8; Kd=0.6; numcf=[Kd Kp Ki]; dencf=[1 0]; numf=conv(numcf,num); denf=conv(dencf,den); [numc,denc]=cloop(numf,denf); t=0:0.001:0.04; step(numc,denc,t); matlab 进行仿真,我们可以看出不恰当的PID 参数并不能使系统达到控制系统的要求,

人工智能大作业

第一章 1.3 什么是人工智能?它的研究目标是什么? 人工智能(Artificial Intelligence),英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。 研究目标:人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。 1.7 人工智能有哪几个主要学派?各自的特点是什么? 主要学派:符号主义,联结主义和行为主义。 1.符号主义:认为人类智能的基本单元是符号,认识过程就是符号表示下的符号计算,从 而思维就是符号计算; 2.联结主义:认为人类智能的基本单元是神经元,认识过程是由神经元构成的网络的信息 传递,这种传递是并行分布进行的。 3.行为主义:认为,人工智能起源于控制论,提出智能取决于感知和行动,取决于对外界 复杂环境的适应,它不需要只是,不需要表示,不需要推理。 1.8 人工智能有哪些主要研究和应用领域?其中有哪些是新的研究热点? 1.研究领域:问题求解,逻辑推理与定理证明,自然语言理解,自动程序设计,专家系 统,机器学习,神经网络,机器人学,数据挖掘与知识发现,人工生命,系统与语言工具。 2.研究热点:专家系统,机器学习,神经网络,分布式人工智能与Agent,数据挖掘与 知识发现。 第二章 2.8 用谓词逻辑知识表示方法表示如下知识: (1)有人喜欢梅花,有人喜欢菊花,有人既喜欢梅花又喜欢菊花。 三步走:定义谓词,定义个体域,谓词表示 定义谓词 P(x):x是人 L(x,y):x喜欢y y的个体域:{梅花,菊花}。 将知识用谓词表示为: (?x)(P(x)→L(x, 梅花)∨L(x, 菊花)∨L(x, 梅花)∧L(x, 菊花)) (2) 不是每个计算机系的学生都喜欢在计算机上编程序。 定义谓词 S(x):x是计算机系学生

遗传算法作业

遗传、蚁群算法作业 1、利用遗传算法求出下面函数的极小值:z=2-exp[-(x2+y2)], x,y∈[-5,+5] 解: 第一步确定决策变量及其约束条件:x,y∈[-5,+5] 第二步建立优化模型:min z(x,y)=2-exp[-(x2+y2)] 第三步确定编码方法。用长度为50位的二进制编码串来表示决策变量x,y。第四步确定解码方法。解码时将50位长的二进制编码前25位转换为对应的十进制整数代码,记为x,后25位转换后记为y。 第五步确定个体评价方法。 第六步设计遗传算子。选择运算用比例选择算子,交叉运算使用单点交叉算子,变异运算使用基本位变异算子。 第七步确定遗传算法的运行参数。 实现代码: % n ---- 种群规模 % ger ---- 迭代次数 % pc ---- 交叉概率 % pm ---- 变异概率 % v ---- 初始种群(规模为n) % f ---- 目标函数值 % fit ---- 适应度向量 % vx ---- 最优适应度值向量 % vmfit ---- 平均适应度值向量 clear all; close all; clc; tic; n=30; ger=200; pc=0.65; pm=0.05; % 生成初始种群 v=init_population(n,50); [N,L]=size(v); disp(sprintf('Number of generations:%d',ger)); disp(sprintf('Population size:%d',N)); disp(sprintf('Crossover probability:%.3f',pc)); disp(sprintf('Mutation probability:%.3f',pm));

基于遗传算法的PID控制概述

龙源期刊网 https://www.doczj.com/doc/199496577.html, 基于遗传算法的PID控制概述 作者:张亚飞 来源:《卷宗》2013年第08期 摘要:基于PID控制应用的广泛性,本文简要阐述了遗传算法理论的关键思想及其在PID 控制中的应用策略,并用Matlab软件对一个控制实例进行了仿真研究。 关键词:PID控制;遗传算法;Matlab仿真 0 引言 PID控制作为最早实用化的控制算法已有70多年历史,现在仍然是控制系统中应用最为 普遍的一种控制规律。它所涉及的算法和控制结构简单,实际经验以及理论分析都表明,这种控制规律对许多工业过程进行控制时,一般都能得到较为满意的控制效果。随着控制理论的 发展,尤其是人工智能研究的日趋成熟,许多先进的算法理论逐渐被应用到传统的PID控制中,并取得了更为优越的控制效果。本文就以传统PID控制和遗传算法理论为基础,简述了基于遗传算法整定的PID控制基本理论和方法。 1 PID控制 通过将偏差的比例(Proportional)、积分(Integral)、微分(Derivative)进行线性组合构成控制量,对被控对象进行控制,这种控制方法叫做PID控制。在自动控制发展的历程中,常规PID控制得到了广泛的应用,整个控制系统由常规PID控制器和被控对象组成,根据系统给定值r(t)与实际输出值y(t)存在的控制偏差e(t)=r(t)-y(t)组成控制规律。PID控制器将偏差e(t)的比例-积分-微分通过线性组合构成控制量,对被控对象进行控制。其基本控制规律为 式中,Kp为比例增益,Ti为积分时间常数,Td为微分时间常数,u(t)为控制量,e (t)为偏差。 2 遗传算法基本操作 遗传算法,简称GA(Genetic Algorithms),是由美国Michigan大学的Holland教授于上世纪六十年代率先提出的一种高效并行全局最优搜索方法。遗传算法是模拟达尔文生物进化论的自然选择和孟德尔遗传学机理的生物进化过程的计算模型,它将“优胜劣汰,适者生存”的生物进化理论引入优化参数形成的编码串联群体中,按所选择的适配值函数通过遗传中的复制、交叉和变异对种群个体进行筛选,并保留适配值高的种群个体,组成新的群体。新的群体既继承了上一代的种群信息,又包含有优于上一代的个体信息,这样周而复始,种群中个体的适应度不断提高,直到满足一定的特定条件而停止运算,从而得到最优解。

相关主题
文本预览
相关文档 最新文档