当前位置:文档之家› 第15章 电路方程的矩阵形式

第15章 电路方程的矩阵形式

第15章电路方程的矩阵形式

本章重点

(1)图的矩阵表示

关联矩阵A 单连支回路矩阵B 单树支割集矩阵Q (2)矩阵形式的KCL、KVL

(3)节点电压方程的建立

§15-1 图的基本概念

i 1

i 2

i 3

i 1

i 2i 3

i 1

i 2i 3

抽象

i

= 0

抽象支路

+-一. 图的基本概念

R 2

C

L u S

R 1

抽象

无向图

有向图

+

-

连通图图

不连通图+

-抽象连通图

抽象不连通图

1. 图

G={支路,节点}

二. 名词和定义

2.子图

路径:从图G的一个节点出发沿着一些支路连续移动到达另一节点所经过的支路构成路经。

3. 连通图

图G的任意两节点间至少有

一条路经时称G为连通图。

4.有向图

图中的方向表示原电路中支路电压和

电流关联参考方向。

§15-2. 回路、树、割集

一. 回路

(1)连通;

(2)每个节点关联支路数恰好为2。

123

4

56

782

53

127

58

4

回路

不是回路

回路L 是连通图G 的一个子图。具有下述性质

树不唯一

树支:组成树的支路

连支:属于G 而不属于T 的支路

二. 树(Tree)

树T 是连通图G 的一个子图,具有下述性质:(1)连通;

(2)包含G 的所有节点和部分支路;(3)

不包含回路。

16个

树支数b

t

= n-1

连支数b

l =b-(n

-1)

单连支回路(基本回路)1

23

4

56

7

1

4

5

树支数4

连支数3

单连支回路独立回路

三. 割集

(1) 把Q 中全部支路移去,将图分成两个分离部分;(2)保留Q 中的一条支路,其余都移去,G 还是连通的。

43

2

1

56

1

3

42

56

Q 1: { 2 , 5 , 4 , 6 }

割集Q 是连通图G 中一个支路的集合,具有下述性质:

4

3

21

②④

56

4

3

2

1②④

56

4

3

2

1②

56

Q 4: { 1 , 5 , 2 }

Q 3: { 1 , 5 , 4}Q 2: { 2 , 3 , 6 }

由于KCL 适用于任何一个闭合面,对于每一个割集来说,组成割集的所有支路的电流应满足KCL 。

对于一个连通图,可有多个割集,可以列出与割集数相等的KCL 方程。这些方程彼此之间并不独立。

借助于“树”来确定独立割

单树支割集(基本割集)

4

3

2

1②

56

4

3

2

1②

56

Q 3: { 1 , 5 ,3 , 6 }

Q 2: { 3 , 5 , 4}①

4

3

21

56

Q 1: { 2 , 3 , 6 }连支集合不能构成割集。即使所有连支都去掉,剩下的树支仍然构成连通图,与割集的定义矛盾。

由一条树支和部分连支可以构成割集。对于一个有n 个节点和b 条支路组成的电路,树支数有(n-1)个,因此可以构成(n-1)单树支割集。称之为基本割集组。

单树支割集

独立割集

单树支割集独立割集

1 2

3 4

{1,2,3,4} 割集三个分离部分

1

2

34 {1,2,3,4} 割集

4

保留4支路,图不连通的。

§15-3 关联矩阵、回路矩阵、割集矩阵一. 关联矩阵A

用矩阵形式描述节点和支路的关联性质

a

ij

a ij = 1 有向支路j 与节点i 关联且背离节点i

a ij= -1 有向支路j与节点i 关联且指向节点i

a ij=0 j支路与i节点无关

关联矩阵A

a

={a ij }n b

节点数支路数

一条支路连接于某两个结点,则称该支路与这两个结点相关联。

6

4

532

1

A a =1234

1 2 3 4 5 6支节 1 0 0 -1 0 1-1 -1 0 0 1 00 1 1 0 0 -10 0 -1 1 -1 0

A a =

1234

1 2 3 4 5 6支节

1-1000-110001-1-1001010-110-10每一支路,连接在两个节点上,必然要背离一个节点,指向另一节点。-1 -1 0 0 1 0A=123

1 2 3 4 5 6支节 1 0 0 -1 0 10 1 1 0 0 -1

称A 为降阶关联矩阵(n -1) b ,表征独立节点与支路的关联性质

设④为参考节点

设:

6

4

532

1

-1 -1 0 0 1 0

A=123

1 2 3 4 5 6支节 1 0 0 -1 0 10 1 1 0 0 -1

[]????????

?

???????????=654321u u u u u u u 支路电压[]????????????????????=654321i i i i i i i 支路电流[]?????

?????=321n n n n u u u u 节点电压

矩阵形式的KCL

A i =

????

??????-++--+-=632521641i i i i i i i i i

-1 -1 0 0 1 01 0 0 -1 0 10 1 1 0 0 -1

6

54321

i i i i i i 6

4

5

321

A i = 0

=

矩阵形式KVL =??

??

????

?

???????????--+--=312

1332

21n n n n n n n n n u u u u u u u u u ????????

?

?????????u u u u u u 654321??????????????????????????????----321

101010001100110011n n n u u u u

u n =T

A 6

4

532

1

支路电压

结点电压

-1 -1 0 0 1 0

A=123

1 2 3 4 5 6支节 1 0 0 -1 0 10 1 1 0 0 -1

二. 基本回路矩阵B

2. 支路排列顺序为先连(树)支后树(连)支。1 支路j 在回路i 中且与回路i 关联,方向一致-1 支路j 在回路i 中且与回路i 关联,方向相反0 支路j 不在回路i 中

b ij

=

12

365

约定:

1. 回路的绕行方向取连支电流方向。用矩阵形式描述基本回路和支路的关联性质

B = { b i j } l b

基本回路数

支路数

1

365

选4、5、6为树,连支顺序为1、2、3。

123B = 4 5 6 1 2 3 支回

1 -1 0 1 0 01 -1 1 0 1 0

= [ B t 1 ]

T

i i i i i i i ]

[][321654=矩阵形式的KVL

T

l

t

u u u u u u u u u ]

[][321654

=0 1 -1 0 0 1

B t

B l

B u = 0

1

2

3

????????????

??????

?

?????????---321100110010111001011i i i ??????????????????=??????????????????-+--+=321654321

323

2121i i i i i i i i i i i i i i i i 1

365

B=[ B t 1 ]

??

????=1B B T T

t

?

?????=??????l t l t

i i i 1B T l

t t i

i T B =用连支电流表示树支电流

B

T i l = i

矩阵形式的KCL

KCL 的另一种形式

三. 基本割集矩阵Q

约定(1) 割集方向与树支方向相同。

(2)支路排列顺序先树(连)支, 后连(树)支。q ij =

1 j 支路在割集i 中且与割集i 方向一致

-1 j 支路在割集i 中且与割集i 方向相反0 j 支路不在割集i 中

12

365

用矩阵形式描述基本割集和支路的关联性质

Q = { q i j } n-1 b

基本割集数

支路数

网络拓扑和电路的矩阵形式

第十五章网络拓扑和电路方程的矩阵形式 第一节网络的拓扑图 一、网络的图:1、拓扑图: 在电路的分析中,不管电路元件的性质差别,只注意连接方式即网络拓扑的问题。若将每一条支路用一条线段(线段的长短、曲直不限)来表示,就组成拓扑图。如图15-1-1(a)对应电路的拓扑图为(b)。图15-1-2(a)对应电路的拓扑图为(b)。图15-1-3(a)对应电路在低频下的拓扑图为(b)。 此拓扑图是连通图。 (b) 是互感 电路的 分离图。 (b)是在低频下的拓扑图,是分离图,包括自环(自回路)、悬支、孤立结点。

2、有向图:如果标以支路电压、电流的(关联)参考方向,即成有向图。 3、子图:如果图G1的所有结点和支路是图G的结点和支路,则G1是G的子图。子图可以有很多。 第二节树、割集 一、树: 1、定义:连通图G的树T是G的一个子图。(1)它是连同的。(2)包括G中的所有结点。(3)不包含任何回路。树是连接图中所有结点但不包含回路的最少的支路集合。同一拓扑图可以有不同的树。对于一个有n个结点的全连通图可以选择出n n-2种不同的树。 2、树支和连支:当树确定后,凡是图G的支路又属于T的,称为树支,其它是连支。树支数T=n-1;连支数L=b-(n-1)。 二、割集: 定义:对连通图来说,割集C是一组支路的集合,如果把C的全部支路移去,将使原来的连通图分成两个分离部分,但在C的全部支路中,只要少移去一条支路,剩下的拓扑图仍是连通的。因此割集是把连通图分成两个分离部分的最少支路集合。 三、独立回路组的确定: 可以通过树确定一组独立回路,称为单连支回路组。如图15-2-1。 选择支路1、2、3、7为树支,4、5、6、 8为连支,则单连支回路组为: {1、2、4},{2、3、5},{2、3、6、7}, {1、3、7、8}。 又称为单连支回路组。 四、独立割集组的确定: 可以通过树确定一组独立割集,称为单树支割集组。如图15-2-2。 选择支路1、2、3、7为树支,4、5、 6、8为连支,则单树支割集组为: {1、4、8},{2、4、5、6},{3、5、6、 8},{6、7、8}。 又称为单树支割集组。 第三节关联矩阵、回路矩阵、

第十五章电路方程的矩阵形式

第十五章电路方程的矩阵形式 一、本章的核心、重点及前后联系 (一)本章的核心 列出结点电压方程的矩阵形式。 (二)本章重点 1.关联矩阵、回路矩阵、割集矩阵; 2.结点电压方程的矩阵形式。 (三)本章前后联系 本章是第三章电阻电路一般分析方法的扩充。 二、本章的基本概念、难点及学习方法指导 (一)本章的基本概念 1.割集定义 定义:连通图G 的一个割集是G 的一个支路集合,把这些支路移去将使G 分离为两个部分,但是如果少移去其中一条支路,图仍将是连通的。 割集:Q 1(a 、d 、f );Q 2(a 、b 、e );Q 3(b 、c 、f );Q 4(c 、d 、e );Q 5(b 、d 、e 、f ); Q 6(a 、c 、e 、f );Q 7(a 、b 、c 、d )。 图G 的割集 2.关联矩阵定义 定义:对于具有n 个节点、b 条支路的图,其关联矩阵(节点、支路关联矩阵)为一个 )(b n ?的矩阵,用a A 表示。行对应节点,列对应支路,它的任意元素jk a 定义如下: 1+=jk a ,表示支路k 与节点j 关联并且它的方向背离节点; 1-=jk a ,表示支路k 与节点j 关联并且它的方向指向节点; 0=jk a ,表示支路k 与节点j 不关联。 ? ???? ???????---++-++--++=0111001 0011001001110100143216 54321a A 划去a A 中的任意一行,剩下的b n ?-)1(矩阵用 A 表示,称为降阶关联矩阵: a b c d e f 5 Q 6 Q 7Q a b c d e f 1 Q 2 Q 3Q 4 Q 13

同济大学线性代数教案第一章线性方程组与矩阵

线性代数教学教案 第一章线性方程组与矩阵 授课序号01 1112121 2 n n m m mn a a a a a a ?? ?? ??? ,有时为了强调矩阵的行数和列数,也记为

n a ???. 212 n n n nn a a a ? ??? . 1112 00n n nn a a a a ?? ?? ? ? ?与上三角矩阵200 n nn a ? ??? . 000 0n a ??? ??? ,或记为100 1? ???? . 负矩阵的定义:对于矩阵()ij m n a ?=A ,称矩阵21 22 n m m m mn mn b a b a b ?? +++? ,

a b+

21 2 n m m mn a a a ????,转置矩阵212.m n n nm a ? ??? 矩阵的转置满足的运算规律(这里k 为常数,A 与B 为同型矩阵)阶方阵()ij a =A 如果满足222n n m mn n a x +21 2 n m m mn a a a ????称为该线性方程组的系数矩阵n x ???,m b = ? ??? β,有:

2221122221 21122n n n m m mn n m m mn n a a a x a x a x a x ??? ? =??? ???? ? ++ +????? . 再根据矩阵相等的定义,该线性方程组可以用矩阵形式来表示:=Ax β.

授课序号02 21 2 t s s st ????A A A ,21 2 t s s st ? = ? ??? B B B B ,的行数相同、列数相同,则有 21 22 t s s s st st ?? ±±±? B A B A B . 111221 2 t s s st ? ? ??? A A A A A ,都有21 2 t s s st k k ? ??? A A A .

知识点总结 矩阵的初等变换与线性方程组

第三章 矩阵的初等变换与线性方程组 第一节 矩阵的初等变换 初等行变换 ()1()i j r r ?对调两行,记作。 ()20()i k r k ≠?以数乘以某一行的所有元素,记作。 ()3()i j k r kr +把某一行所有元素的倍加到另一行对应的元素上去,记作。 初等列变换:把初等行变换中的行变为列,即为初等列变换,所用记号是把“r ”换成“c ”。 扩展 矩阵的初等列变换与初等行变换统称为初等变换,初等变换的逆变换仍为初等变换, 且类型相同。 矩阵等价 A B A B 如果矩阵经有限次初等变换变成矩阵,就称矩阵与等价。 等价关系的性质 (1)反身性 A~A 2 A ~B , B ~A;()对称性若则 3 A ~B,B ~C, A ~C ()传递性若则。(课本P59) 行阶梯形矩阵:可画出一条阶梯线,线的下方全为零,每个台阶只有一行,台阶数即是非零行的行数阶梯线的竖线(每段竖线的长度为一行)后面的第一个元素为非零元,也是非零行的第一个非零元。 行最简形矩阵:行阶梯矩阵中非零行的第一个非零元为1,且这些非零元所在的列的其他元素都为0. 标准型:对行最简形矩阵再施以初等列变换,可以变换为形如r m n E O F O O ???= ???的矩阵,称为标准型。标准形矩阵是所有与矩阵A 等价的矩阵中形状最简单的矩阵。 初等变换的性质

设A 与B 为m ×n 矩阵,那么 (1);r A B m P PA B ?=:存在阶可逆矩阵,使 (2)~;c A B n Q AQ B ?=存在阶可逆矩阵,使 (3)P ;A B m P n Q AQ B ?=:存在阶可逆矩阵,及阶可逆矩阵,使 初等矩阵:由单位矩阵经过一次初等变换得到的方阵称为初等矩阵。 初等矩阵的性质 设A 是一个m ×n 矩阵,则 (1)对A 施行一次初等行变换,相当于在A 的左边乘以相应的m 阶初等矩阵; ~;r A B m P PA B ?=即存在阶可逆矩阵,使 (2)对A 施行一次初等列变换,相当于在A 的右边乘以相应的n 阶初等矩阵; 即~;c A B n Q AQ B ?=存在阶可逆矩阵,使 (3)~P ;A B m P n Q AQ B ?=存在阶可逆矩阵,及阶可逆矩阵,使 (4)方阵A 可逆的充分必要条件是存在有限个初等方阵1212,,,,l l P P P A PP P =L L 使。 (5)~r A A E 可逆的充分必要条件是。(课本P ? ) 初等变换的应用 (1)求逆矩阵:()1(|)|A E E A -????→初等行变换或1A E E A -????????→ ? ????? 初等列变换。 (2)求A -1B :A (,) ~ (,),r A B E P 即() 1(|)|A B E A B -??→行,则P =A -1B 。或1E A B BA -????????→ ? ????? 初等列变换. 第二节 矩阵的秩

线性方程组的矩阵求解算法

线性方程组的矩阵求解算法 摘要 线性方程组的矩阵求解算法,只需在约当消元法的基础上,再对方程组的 增广矩阵的行最简形进行行(列)删除和增加行,交换行等运算即可得到方程组的解,并且这种方法既可求解有唯一解的方程组.因而算法简单,易于实现. 关键词 线性方程组;解向量;解法;约当消元法 1 矩阵求解算法 设有线性方程组m n A X b ?=,其增广矩阵())(1,m n A A b ?+=,算法的步骤如下: 第一步:利用约当消元法,把增广矩阵A 化为行最简形,设行最简形为()1m n B ?+.若()t i (),r A r =则方程组无解;否则设(),r A R =并执行以下步骤; 第二步:删除B 中的所有零行和每一行第一个非零元素(这个非零元素一定是1)所在的列,得到矩阵()1,r n r D ?-+并记录每行的第一个非零元所在的列标,放在一维数组()1,,t r L 中,如第i 行的第一个非零元在第j 列,则()t i j =; 第三步:构造矩阵() 1m n r D H F ?-+?? = ? ??,其中 ()()1100 001 0000 10n r n r F -?-+-?? ?- ? = ? ? -??L L L L L L L L 第四步:对矩阵H 中的行作交换运算:把H 中的第i 行(,1,1,i r r =-L 即从第r 行开始直到第一行)依次与其下一行交换,使之成为第()t i 行,交换运算结果后的矩阵记为G ,则G 中的前n r -个n 维列向量即为方程组的一个基础解系,最后一列向量即为方程组的一个特解; 第五步:写出方程组的通解. 2 算法证明 先证一个特殊情形,增广矩阵A 的行最简形矩阵B 的左上角为一r 阶的单位矩阵,即第i 行的第一个非零元的列标为i ,即()()1t i i i r =≤≤,所以设B 为

总结求线性方程组的方法

总结求线性方程组的方法-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

华北水利水电大学 总结求线性方程组的方法 课程名称:线性代数 专业班级: 成员组成: 联系方式: 2014年12月31日

摘要:线性方程组的求解是当代代数学中的一个重要组成部分。它广泛应用在数学以及其他领域。它与矩阵、线性变换、行列式、向量组的线性相关性,二次型,这些型之间有着相当密切的联系。线性方程组是线性代数中一个相当基础的内容必须要学会以及熟悉内容。本文章主要说明和讨论线性方程组的基本结构,然后应用克拉莫法则,高斯消元法来来求解。 关键词:线性方程组、高斯消元法、克拉莫法则; Summary for the method of liner equations Abstract: Solution of the system of linear equations is an important component part of algebra. It is widely used in mathematics and other areas. It and determinant, matrix, linear transformation, linear correlation vector group, quadratic form, has the close relation. System of linear equations is a very basic content in linear algebra must grasp and familiar with the content. This article mainly explain and discuss the basic structure of system of linear equations, then apply law of kramer, gauss elimination method to solve.

第三章知识点总结 矩阵的初等变换与线性方程组

第三章矩阵的初等变换与线性方程组 第一节 矩阵的初等变换 初等行变换 ()1()i j r r ?对调两行,记作。 ()20()i k r k ≠?以数乘以某一行的所有元素,记作。 ()3()i j k r kr +把某一行所有元素的倍加到另一行对应的元素上去,记作。 初等列变换:把初等行变换中的行变为列,即为初等列变换,所用记号是把“r ”换成“c ”。 扩展 矩阵的初等列变换与初等行变换统称为初等变换,初等变换的逆变换仍为初等变换, 且类型相同。 矩阵等价 A B A B 如果矩阵经有限次初等变换变成矩阵,就称矩阵与等价。 等价关系的性质 (1)反身性 A~A 2 A ~B , B ~A;()对称性若则 3 A ~B,B ~C, A ~C ()传递性若则。(课本P59) 行阶梯形矩阵:可画出一条阶梯线,线的下方全为零,每个台阶只有一行,台阶数即是非零行的行数阶梯线的竖线(每段竖线的长度为一行)后面的第一个元素为非零元,也是非零行的第一个非零元。 行最简形矩阵:行阶梯矩阵中非零行的第一个非零元为1,且这些非零元所在的列的其他元素都为0. 标准型:对行最简形矩阵再施以初等列变换,可以变换为形如r m n E O F O O ???= ???的矩阵,称为标准型。标准形矩阵是所有与矩阵A 等价的矩阵中形状最简单的矩阵。 初等变换的性质 设A 与B 为m ×n 矩阵,那么 (1);r A B m P PA B ?= 存在阶可逆矩阵,使 (2)~;c A B n Q AQ B ?=存在阶可逆矩阵,使 (3)P ;A B m P n Q AQ B ?= 存在阶可逆矩阵,及阶可逆矩阵,使 初等矩阵:由单位矩阵经过一次初等变换得到的方阵称为初等矩阵。 初等矩阵的性质 设A 是一个m ×n 矩阵,则 (1)对A 施行一次初等行变换,相当于在A 的左边乘以相应的m 阶初等矩阵; ~;r A B m P PA B ?=即存在阶可逆矩阵,使

线性方程组与矩阵

高代小练习 专业课研究部 一、填空题 1.设n 元齐次线性方程组的系数矩阵的秩r < n ,则方程组的基础解系由_n-r__个解向量组成. 2.向量组123,,ααα线性无关,则122331(,,)rank αααααα+++=__3____. 3.设向量组12,,,r βββ 可以由向量组12,,,s ααα 线性表出.如果向量组12,,,r βββ 线性无关,则r __<=___s (填大小关系). 4.在数域K 上的4维向量空间K 4内,给定向量组α1 =(1,-3,0,2)α2 =(-2,1,1,1)α3 =(-1,-2, 1,3),则此向量组的秩是_2____. 5.若V={(a+bi ,c+di)|a,b,c,d 属于R},则V 对于通常的加法和数乘,在复数域上是__2____维的,而在实数域上是__4_____维的. 6.设线性方程组AX=0的解都是线性方程组BX=0的解,则秩A ?>=??秩B. 7.设t ηηη,,,21 及t t ηληληλ+++ 2211都是)0(≠=b b AX 的解向量,则 =+++t λλλ 21______。 8.设任意一个n维向量都是齐次线性方程組0=AX 的解向量,则=)(A r ______。 9.已知321,,ααα是齐次方程组0=AX 的基础解系,那么基础解系还可以是______. (A) 332211αααk k k ++ (B) 133221,,αααααα+++ (C) 3221,αααα-- (D) 233211,,αααααα-+- 10.在三维几何空间中,用V 1表示通过原点的直线,V 2表示通过原点且与V 1垂直的平面,试求 21V V ?=_原点____,和21V V ?=_整个空间R 3 ____。 二.解答题 1.在4维向量空间中, (1)求基 到基 的过渡矩阵。

矩阵分解与线性方程组求解

一、 用列主元素高斯削去法求解下述线性方程组: ?????? ?-=+--=++---=--+=--+36 15531495102210762133421342143214 3214321x x x x x x x x x x x x x x x 程序: function x=gaussa(a) m=size(a); n=m(1); x=zeros(n,1); for k=1:n-1 [c,i]=max(abs(a(k:n,k))); q=i+k-1; if q~=k d=a(q,:);a(q,:)=a(k,:);a(k,:)=d end for i=k+1:n a(i,:)=a(i,:)-a(k,:)*a(i,k)/a(k,k) end end for j=n:-1:1 x(j)=(a(j,n+1)-a(j,j+1:n)*x(j+1:n))/a(j,j) end 执行过程: >> a=[1 13 -2 -34 13;2 6 -7 -10 -22;-10 -1 5 9 14; -3 -5 0 15 -36] a = -10 -1 5 9 14 2 6 -7 -10 -22 1 13 -2 -34 13 -3 -5 0 15 -36 >> gaussa(a) a = -10.0000 -1.0000 5.0000 9.0000 14.0000 0 5.8000 -6.0000 -8.2000 -19.2000 1.0000 13.0000 -2.0000 -34.0000 13.0000 -3.0000 -5.0000 0 15.0000 -36.0000 a = -10.0000 -1.0000 5.0000 9.0000 14.0000 0 5.8000 -6.0000 -8.2000 -19.2000 0 12.9000 -1.5000 -33.1000 14.4000 -3.0000 -5.0000 0 15.0000 -36.0000 a = -10.0000 -1.0000 5.0000 9.0000 14.0000 0 5.8000 -6.0000 -8.2000 -19.2000 0 12.9000 -1.5000 -33.1000 14.4000 0 -4.7000 -1.5000 12.3000 -40.2000

线性方程组的矩阵求法

线性方程组的矩阵求法 摘要: 关键词: 第一章引言 矩阵及线性方程组理论是高等代数的重要内容, 用矩阵 方法解线性方程组又是人们学习高等代数必须掌握的基本 技能,本文将给出用矩阵解线性方程组的几种方法,通过对线性方程组的系数矩阵(或增广矩阵)进行初等变换得到其解,并列举出几种用矩阵解线性方程组的简便方法。 第二章用矩阵消元法解线性方程组 第一节预备知识 定义1:一个矩阵中不等于零的子式的最大阶数叫作这个矩阵的秩。定理1:初等变换把一个线性方程组变为一个与它同解的线性方程组。 定义2:定义若阶梯形矩阵满足下面两个条件: (1)B的任一非零行向量的第一个非零分量(称为的 一个主元)为1; (2)B中每一主元是其所在列的唯一非零元。 则称矩阵为行最简形矩阵。 第二节 1.对一个线性方程组施行一个初等变换,相当于对它的增广矩

阵施行一个对应的行初等变换,而化简线性方程组相当于用行初等变换化简它的增广矩阵,因此,我们将要通过花间矩阵来讨论化简线性方程组的问题。这样做不但讨论起来比较方便,而且能给我们一种方法,就一个线性方程组的增广矩阵来解这个线性方程组,而不必每次都把未知量写出来。 下面以一般的线性方程组为例,给出其解法: (1) 11112211 21122222 1122 , , . n n n n m m mn n m a x a x a x b a x a x a x b a x a x a x b +++= +++= +++= L L L L L L L L L L L L L L L 根据方程组可知其系数矩阵为: (2) 11121 21222 12 n n m m mn a a a a a a a a a ?? ? ? ? ? ??? L L L L L L L L L L L L 其增广矩阵为: (3) 111211 212222 12 n n m m mn m a a a b a a a b a a a b ?? ? ? ? ? ??? L L L L L L L L L L L L L L L 根据(2)及矩阵的初等变换我们可以得到和它同解的线性方程组,并很容易得到其解。 定理2:设A是一个m行n列矩阵

矩阵在线性方程组中的应用

矩阵在线性方程组中的应用 摘要 矩阵和线性方程组都是高等数学的重要教学内容。在高等数学教学中利用矩阵解线性方程组的方法基本上是所知的固定几种:利用矩阵初等变换、克拉默法则、高斯—若尔当消去法。但是解一个线性方程组有时需要几种方法配合使用,有时则需要选择其中的最简单的方法。而对于一些特殊的线性方程组的解法很少有进行归类、讲解。我们希望可以通过对本课题的研究,总结和归纳用特殊矩阵解几类特殊线性方程组的解法。 关键词矩阵;线性方程组;齐次线性方程组;非齐次线性方程组

MATRICES IN THE APPLICATIONS OF THE SYSTEM OF LINEAR EQUATIONS ABSTRACT Matrices and system of linear equations are important content of advanced mathematics. We often use several fixed methods to solve system of linear equations in advanced mathematics,such as Matrix transformations;Cramer's Ruleand Gauss-Jordan elimination method. But sometimes, we need to choose one of the most simple ways,or we need to use several methods to solve system of linear equations. For some special solution method of system of linear equations, there are few classification and explanation in detail. We hope that we can research, summarizes and induces solution method of some special system of linear equations with special matrices. KEY WORDS matrices; system of linear equations; homogeneous system of linear equations; nonhomogeneoussystem of linear equations

电路方程的矩阵形式

第十五章电路方程的矩阵形式 重点:1. 关联矩阵; 2. 结点电压方程的矩阵形式; 3. 状态方程。 难点: 电路状态方程列写的直观法和系统法。 §15.1 图的矩阵表示 1.有向图的关联矩阵 2.电路的图是电路拓扑结构的抽象描述。若图中每一支路都赋予一个参考方向,它成为有向图。有向图的拓扑性质可以用关联矩阵、回路矩阵和割集矩阵描述 3.关联矩阵是用结点与支路的关系描述有向图的拓扑性质。 4.回路矩阵是用回路与支路的关系描述有向图的拓扑性质。 5.割集矩阵是用割集与支路的关系描述有向图的拓扑性质。 6.本节仅介绍关联矩阵以及用它表示的基尔霍夫定律的矩阵形式。 7.一条支路连接某两个结点,则称该支路与这两个结点相关联。支路与结点的关联性质可以用关联矩阵描述。设有向图的结点数为n ,支路数为b ,且所有结点与支路均加以编号。 于是,该有向图的关联矩阵为一个阶的矩阵,用表示。它的每一行对应一个结 点,每一列对应一条支路,它的任一元素定义如下: 8.,表示支路k 与结点j 关联并且它的方向背离结点; 9.,表示支路k 与结点j 关联并且它指向结点; 10.,表示支路k 与结点j 无关联。 对于图 15.1 所示的有向图,它的关联矩阵是 关联矩阵的特点:图 15.1 ① 每一列只有两个非零元素,一个是+1,一个是-1,的每一列元素之和为零。

② 矩阵中任一行可以从其他 n-1 行中导出,即只有 n-1 行是独立的。 如果把的任一行划去,剩下的矩阵用表示,并称为降阶关联矩阵(今后主要用这种降阶关联矩阵,所以往往略去“降阶”二字),被划去的行对应的结点可以当作参考结点。 例如,若以结点 4 为参考结点,把上式中的第 4 行划去,得 若以结点 3 为参考结点,把上式中的第 3 行划去,得 矩阵的某些列将只具有一个 +1 或一个- 1 ,每一个这样的列必对应于与参考结点相关联的一条支路。 注意:给定可以确定,从而画出有向图。 2.用A表示矩阵形式的KCL 电路中的 b 个支路电流可以用一个 b 阶列向量表示,即 若用矩阵左乘电流列向量,则乘积是一个阶列向量,由矩阵相乘规则可知,它的每一元素即为关联到对应结点上各支路电流的代数和,即 因此,有 上式是用矩阵表示的KCL的矩阵形式。例如对图15.1,以结点4 为参考结点,有: 上式为n-1 个独立方程。

线性代数习题第三章 矩阵的初等变换与线性方程组

习题3-1 矩阵的初等变换及初等矩阵 1、用初等行变换化矩阵 1021 2031 3043 A - ?? ?? =?? ?? ?? 为行最简形、 2、用初等变换求方阵 321 315 323 A ?? ?? =?? ?? ?? 的逆矩阵、 3、设 412 221 311 A - ?? ?? =?? ?? - ?? , 3 22 31 - ?? ?? ?? ?? - ?? 1 B=,求X使AX B =、 4、设A就是n阶可逆矩阵,将A的第i行与第j行对换后得矩阵B、 (1) 证明B可逆(2)求1 AB-、

习题 3-2 矩阵的秩 1、求矩阵的秩: (1)310211211344A ????=--????-?? (2)111212122212n n n n n n a b a b a b a b a b a b B a b a b a b ??????=??????L L L L L L L 01,2,,i i a b i n ≠????=?? L 2、设12312323k A k k -????=--????-?? 问k 为何值,可使 (1)()1R A =; (2)()2R A =; (3)()3R A =、

3、 从矩阵A 中划去一行,得矩阵B ,则)(A R 与)(B R 的关系就是 、 .()()a R A R B = .()()b R A R B <; .()()1c R B R A >-; .()()() 1.d R A R B R A ≥≥- 4、 矩阵???? ??????-------815073*********的秩R= 、 a 、1; b 、 2; c 、 3; d 、 4、 5、 设n (n ≥3)阶方阵????? ???????=111ΛΛΛΛΛΛΛΛa a a a a a a a a A 的秩R (A )=n -1,则a = 、 a 、 1; b 、 n -11; c 、 –1; d 、 1 1-n 、 6、设A 为n 阶方阵,且2A A =,试证: ()()R A R A E n +-=

线性方程组AX=B的数值计算方法实验

线性方程组AX=B的数值计算方法实验 【摘要】在自然科学与工程技术中很多问题的解决常常归结为解线性代数方程组。例如电学中的网络问题,船体数学放样中建立三次样条函数问题,用最小二乘法验数据的曲线拟合问题,解非线性方程组的问题,用差分法或者有限元法解常微分方程,偏微分方程边值问题等都导致求解线性方程组。线性代数方面的计算方法就是研究求解线性方程组的一些数值解法与研究计算矩阵的特征值及特征向量的数值方法。关于线性方程组的数值解法一般有两类:直接法和迭代法。 关键字高斯消元法、三角分解法、高斯-赛德尔迭代、稀疏矩阵 一、实验目的 1.掌握高斯消元法、三角分解法、高斯—赛德尔迭代发的编程技巧。 2.掌握线性方程组AX=B的数值计算方法。 3.掌握矩阵的基本编程技巧。 二、实验原理 1.高斯消元法

数学上,高斯消元法是线性代数规划中的一个算法,可用来为线性方程组求解。高斯(Gauss )夏鸥按法其实是将一般的线性方程组变换为三角形(上三角)方程组求解问题(消元法),只是步骤规,便于编写计算机程序。 一般高斯消元法包括两过程:先把方程组化为同解的上三角形方程组,再按相反顺序求解上三角方程组。前者称为消去或消元过程,后者称回代过程。消去过程实际上是对增广矩阵作行初等变换。 对一般的n 阶方程组,消去过程分n-1步:第一步消去11a 下方元素。第二步消去22a 下方元素,......,第n-1步消去1-n 1-n a ,下方元素。即第k 步将第k 行的适当倍数加于其后各行,或可说是从k+1~n 行减去第k 行的适当倍数,使它们第k 列元素变为零,而其余列元素减去第k 行对应列元素的倍数。 2.三角分解法 三角分解法是将原正方 (square)矩阵分解成一个上三角形矩阵或是排列(permuted) 的上三角形矩阵和一个 下三角形矩阵,这样的分解法又称为LU 分解法。它的用途主要在简化一个大矩阵的行列式值的计算过程,求 反矩阵,和求解联立方程组。不过要注意这种分解法所得到的上下三角形矩阵并非唯一,还可找到数个不同 的一对上下三角形矩阵,此两三角形矩阵相乘也会得到原矩阵。

常系数线性方程组基解矩阵的计算

常系数线性方程组基解矩阵的计算

常系数线性方程组基解矩阵的计算 董治军 (巢湖学院数学系,安徽巢湖238000) 摘要:微分方程组在工程技术中的应用时非常广泛的,不少问题都归结于它的求解问题,基解矩阵的存在和具体寻求是不同的两回事,一般齐次线性微分方程组的基解矩阵是无法通过积分得到的,但当系数矩阵是常数矩阵时,可以通过方法求出基解矩阵,这时可利用矩阵指数exp A t,给出基解矩阵的一般形式,本文针对应用最广泛的常系数线性微分方程组,结合微分方程,线性代数等知识,讨论常系数齐次线性微分方程的基解矩阵的几个一般的计算方法. 关键词;常系数奇次线性微分方程组;基解矩阵;矩阵指数 Calculation of Basic solution Matrix of

Linear Homogeneous System with Constant Coefficients Zhijun Dong (Department of Mathematics, Chaohu College Anhui, Chaohu) Abstract: Differential equations application in engineering technology is very extensive, when many problems are attributable to its solving problem, base solution matrix existence and specific seek is different things, general homogeneous linear differential equations is not the base solution matrix by integral get, but when coefficient matrix is constant matrix, can pass out the base solution matrix method, then are available matrix exponential t, the general form base solution matrix, the paper discusses the most widely used differential equations with constant coefficients, combined with differential equations, linear algebra, discuss knowledge of homogeneous linear differential equation with constant coefficients of base solution matrix several general calculation method. Keyword: linear homogeneous system with constant coefficients; matrix of basic solutions; matrix exponent 引言: 线性微分方程组的求解历来是常微分方程的重点,根据线性微分方程组的解的结构理论,求解线性微分方程组的关键在于求出对应齐次线性微分方程组的基解矩阵,本文主要讨论齐次线性微分方程组 X ’=AX ★ 的基解矩阵的计算问题,这里A 是n n ?常数矩阵. 一.矩阵指数exp A 的定义和性质: 1.矩阵范数的定义和性质 定义:对于n n ?矩阵A =ij a ???? n ×n 和n 维向量X =()1,...,T n X X 定义A 的范数为A =,1 n ij i j a =∑ ,X =1 n i i x =∑ 设A ,B 是n ×n 矩阵,x ,y 是n 维向量,易得下面两个性质:

第十五章电路方程的矩阵形式

第十五章 电路方程的矩阵形式 一、本章的核心、重点及前后联系 (一)本章的核心 列出结点电压方程的矩阵形式。 (二)本章重点 1. 关联矩阵、回路矩阵、割集矩阵; 2. 结点电压方程的矩阵形式。 (三)本章前后联系 本章是第三章电阻电路一般分析方法的扩充。 二、本章的基本概念、难点及学习方法指导 (一)本章的基本概念 1. 割集定义 定义:连通图G 的一个割集是G 的一个支路集合,把这些支路移去将使G 分离为两个部分,但是如果少移去其中一条支路,图仍将是连通的。 割集:Q 1(a 、d 、f );Q 2(a 、b 、e );Q 3(b 、c 、f );Q 4(c 、d 、e );Q 5(b 、d 、e 、f ); Q 6(a 、c 、e 、f );Q 7(a 、b 、c 、d )。 图G 的割集 2. 关联矩阵定义 定义:对于具有n 个节点、b 条支路的图,其关联矩阵(节点、支路关联矩阵)为一个 )(b n ?的矩阵,用a A 表示。行对应节点,列对应支路,它的任意元素jk a 定义如下: 1+=jk a ,表示支路k 与节点j 关联并且它的方向背离节点; 1-=jk a ,表示支路k 与节点j 关联并且它的方向指向节点; 0=jk a ,表示支路k 与节点j 不关联。 a b c d e f 5 Q 6 Q 7 Q a b c d e f 1 Q 2 Q 3 Q 4 Q

????? ? ??? ???---++-++--++=01110010011001001110100143216 54321a A 划去a A 中的任意一行,剩下的b n ?-)1(矩阵用 A 表示,称为降阶关联矩阵: ?? ?? ??????++-++--++=10011001001110100 1A A 阵表示的KCL 、KVL 方程: KCL :0Ai = KCL :n T u A u = 3. 回路矩阵定义 回路矩阵(回路、支路关联矩阵)用B 表示,行对应回路,列对应支路,任意元素b jk 定义如下: 1+=jk b ,表示支路k 与回路j 关联,且他们的方向一至; 1-=jk b ,表示支路k 与回路j 关联,且他们的方向相反; 0=jk b ,表示支路k 与回路j 不关联。 选树(1、2、5),则有单连支回路(1、4、5),(1、2、6),(2、3、5),回路方向为连支方向,所以: ?? ?? ? ?????-+++++-+-=0101101000110110013216 54321B 1 3 21 3

矩阵的初等变换与线性方程组习题含答案

第三章 矩阵的初等变换与线性方程组 3.4.1 基础练习 1.已知121011251-?? ? = ? ?-??A ,求()R A . 2.已知3210 1032 100000200000-?? ?- ? = ?- ? ?? ?B ,求()R B . 3.若矩阵,,A B C 满足=A BC ,则( ). (A)()()R R =A B (B) ()()R R =A C (C)()()R R ≤A B (D) ()max{(),()}R R R ≥A B C 4. 设矩阵X 满足关系2=+AX A X ,其中423110123?? ? = ? ?-??A ,求X . 5. 设矩阵101210325?? ?= ? ?--?? A ,求1 ()--E A . 6.A 是m n ?矩阵,齐次线性方程组0=Ax 有非零解的充要条件是 . 7.若非齐次线性方程组=Ax b 中方程个数少于未知数个数,那么( ). (A) =Ax b 必有无穷多解; (B) 0=Ax 必有非零解; (C) 0=Ax 仅有零解; (D) 0=Ax 一定无解. 8. 求解线性方程组 (1)12312312312333332x x x x x x x x x +-=??+-=??-+=?, (2)72315 532151011536 x y z x y z x y z ++=?? -+=??-+=? (3)123412341 23420 202220 x x x x x x x x x x x x ++-=?? ++-=??+++=?

9.若方程组 12323232132(3)(4)(2)x x x x x x x λλλλλλ+-=-?? -=-??-=--+-? 有无穷多解,则λ= . 10.若12(1,0,2),(0,1,1)T T ==-αα都是线性方程组0=Ax 的解,则=A ( ). (A)()2,1,1- (B)201011-?????? (C)102011-????-?? (D)011422010-?? ??--?? ???? 3.4.2 提高练习 1.设A 为5阶方阵,且()3R =A ,则* ()R A = . 2.设矩阵12332354445037a a -????=-?? ??-?? A ,以下结论正确的是( ). (A)5a =时,()2R =A (B) 0a =时,()4R =A (C)1a =时,()5R =A (D) 2a =时,()1R =A 3.设A 是43?矩阵,且()2R =A ,而102020103?? ? = ? ?-??B ,则()R =AB . 4.设12243311t -?? ? = ? ?-??A ,B 为3阶非零矩阵,且0=AB ,则t = . 5.设12312323k k k -?? ? =-- ? ?-?? A , 问k 为何值,可使 (1)()1R =A (2)()2R =A (3)()3R =A . 6.设矩阵111111111111k k k k ?? ? ? = ? ? ??? A ,且()3R =A ,则k = .

线性方程组的几种求解方法

线性方程组的几种解法 线性方程组形式如下: 常记为矩阵形式 其中 一、高斯消元法 高斯(Gauss)消元法的基本思想是:通过一系列的加减消元运算,也就是代数中的加减消去法,将方程组化为上三角矩阵;然后,再逐一回代求解出x 向量。现举例说明如下: (一)消元过程 第一步:将(1)/3使x 1的系数化为1 得 再将(2)、(3)式中x 1的系数都化为零,即由(2)-2×(1)(1) 得 )1(32)2( (03) 4 32=+x x )1(321)1(......23132=++ x x x

由(3)-4×(1)(1) 得 第二步:将(2)(1) 除以2/3,使x 2系数化为1,得 再将(3)(1) 式中x 2系数化为零,即 由(3)(1) -(-14/3)*(2)(2) ,得 第三步:将(3)(2) 除以18/3,使x 3系数化为1,得 经消元后,得到如下三角代数方程组: (二)回代过程 由(3)(3) 得 x 3=1, 将x 3代入(2)(2) 得x 2=-2, 将x 2 、x 3代入(1)(1) 得x 2=1 所以,本题解为[x]=[1,2,-1]T (三)、用矩阵演示进行消元过程 第一步: 先将方程写成增广矩阵的形式 第二步:然后对矩阵进行初等行变换 初等行变换包含如下操作 (1) 将某行同乘或同除一个非零实数 ) 3(3)3(......1-=x )2(3)3( (63) 18-=x ) 2(32) 2(......02=+x x ) 1(32)3( (63) 10 314-=-- x x

(2)将某行加入到另一行 (3)将任意两行互换 第三步:将增广矩阵变换成上三角矩阵,即主对角线全为1,左下三角矩阵全为0,形式如下: 示例: (四)高斯消元的公式 综合以上讨论,不难看出,高斯消元法解方程组的公式为 1.消元 (1)令 a ij(1) = a ij , (i,j=1,2,3,…,n) b i(1) =b i , (i=1,2,3,…,n) (2)对k=1到n-1,若a kk(k)≠0,进行 l ik = a ik(k) / a kk(k) , (i=k+1,k+2,…,n) a ij(k+1) = a ij(k) - l ik * a kj(k), (i,j= k+1,k+2,…,n) b i(k+1) = b i(k) - l ik * b k(k), (i= k+1,k+2,…,n) 2.回代 若a nn(n) ≠0 x n = b n(n) / a nn(n) x i = (b i(i) – sgm(a ij(i) * x j)/- a ii(i),(i = n-1,n-2,…,1),( j = i+1,i+2,…,n ) (五)高斯消元法的条件 消元过程要求a ii(i) ≠0 (i=1,2,…,n),回代过程则进一步要求a nn(n) ≠0,但就方程组Ax=b 讲,a ii(i)是否等于0时无法事先看出来的。 注意A的顺序主子式D i(i=1,2,…,n),在消元的过程中不变,这是因为消元所作的变换是“将某行的若干倍加到另一行”。若高斯消元法的过程进行了k-1步(a ii(i) ≠0,i

相关主题
文本预览
相关文档 最新文档