当前位置:文档之家› 二次函数在闭区间上的最值例题

二次函数在闭区间上的最值例题

二次函数在闭区间上的最值例题
二次函数在闭区间上的最值例题

二次函数在闭区间上的最值问题的解法

一、知识要点:

一元二次函数的区间最值问题,核心是函数对称轴与给定区间的相对位置关系的讨论。一般分为:对称轴在区间的左边,中间,右边三种情况.

设f x a x b xc a ()()

=++≠2

0,求f x ()在x m n ∈[],上的最大值与最小值。 分析:将f x ()配方,得顶点为--?? ???b a

a c

b a 2442,、对称轴为x b a =-

2 当a >0时,它的图象是开口向上的抛物线,数形结合可得在[m ,n]上f x ()的最值:

(1)当[]

-∈b

a

m n 2,时,f x ()的最小值是f b a a c b a

f x -?? ???=-24

42

,()的最大值是f m f n ()()、中的较大者。

(2)当[]

-

?b

a

m n 2,时 若-

a

m 2,由f x ()在[]

m n ,上是增函数则f x ()的最小值是f m (),最大值是f n () 若n b

a

<-

2,由f x ()在[]

m n ,上是减函数则f x ()的最大值是f m (),最小值是f n () 当a <0时,可类比得结论。 二、例题分析归类: (一)、正向型

是指已知二次函数和定义域区间,求其最值。对称轴与定义域区间的相互位置关系的讨论往往成为解决这类问题的关键。此类问题包括以下四种情形:(1)轴定,区间定;(2)轴定,区间变;(3)轴变,区间定;(4)轴变,区间变。 1. 轴定区间定

二次函数是给定的,给出的定义域区间也是固定的,我们称这种情况是“定二次函数在定区间上的最值”。

例1. 函数y x x =-+-2

42

在区间[0,3]上的最大值是_________,最小值是_______。 解:函数y x x x =-+-=--+2

2

4222()是定义在区间[0,3]上的二次函数,其对称轴

方程是x =2

,顶点坐标为(2,2),且其图象开口向下,显然其顶点横坐标在[0,3]上, 如图1所示。函数的最大值为f ()22=,最小值为f ()02=-。

图1

练习. 已知232

x x ≤,求函数f x x x (

)=++2

1的最值。 解:由已知232

x x ≤,

可得032≤≤x ,即函数f x ()是定义在区间032,?

?

????上的二次函数。将二次函数配方得f x x ()=+?? ???+1234

2

,其对称轴方程x =-12,顶点坐标-?? ?

?

?1

234,

,且图象开口向上。显然其顶点横坐标不在区间032,

?

?

??

?

?内,如图2所示。函数f x ()的最小值为f ()01=,最大值为f 3219

4

?? ???=

图2

2、轴定区间变

二次函数是确定的,但它的定义域区间是随参数而变化的,我们称这种情况是“定函数在动区间上的最值”。

例2. 如果函数f x x ()()=-+112

定义在区间[]

t t ,+1上,求f x ()的最小值。

解:函数f x x ()()=-+112

,其对称轴方程为x =1,顶点坐标为(1,1),图象开口向上。

如图1所示,若顶点横坐标在区间[]

t t ,+1左侧时,有1

t =时,函数取得最小值fx ft t ()()()m i n

==-+112

图1

如图2所示,若顶点横坐标在区间[]

t t ,+1上时,有t t ≤≤+11,即01≤≤t 。当x =1时,函数取得最小值f x f ()()m i n

==11。

图2

如图3所示,若顶点横坐标在区间[]

t t ,+1右侧时,有t +<11,即t <0。当x t =+1时,函数取得最小值fx ft t ()()m i n

=+=+112

综上讨论,??

?

??<+≤≤>+-=0110,11

,1)1()(22min

t t t t t x f

图8

例3. 已知2

()23f x x x =-+,当[1]()x t t t ∈+∈R ,时,求()f x 的最大值.

解:由已知可求对称轴为1x =.

(1)当1t >时,

2

min max ()()23()(1)2f x f t t t f x f t t ∴==-+=+=+,. (2)当11t t +≤≤,即01t ≤≤时,. 根据对称性,若

2

1

21≤++t t 即1

02t ≤≤

时,2

max ()()23f x f t t t ==-+.

若2121>++t t 即1

12t <≤时,

2

max ()(1)2f x f t t =+=+. (3)当11t +<即0t <时,

2max ()()23f x f t t t ==-+.

综上,???

????≤+->+=21,3221,2)(22

max

t t t t t x f 观察前两题的解法,为什么最值有时候分两种情况讨论,而有时候又分三种情况讨论呢?这些问题其实仔细思考就很容易解决。不难观察:二次函数在闭区间上的的最值总是在闭区间的端点或二次函数的顶点取到。第一个例题中,这个二次函数是开口向上的,在闭区间上,它的最小值在区间的两个端点或二次函数的顶点都有可能取到,有三种可能,所以分三种情况讨论;而它的最大值不可能是二次函数的顶点,只可能是闭区间的两个端点,哪个端点距离对称轴远就在哪个端点取到,当然也就根据区间中点与左右端点的远近分两种情况讨论。根据这个理解,不难解释第二个例题为什么这样讨论。 对二次函数的区间最值结合函数图象总结如下:

当a >0时???

????+<-+≥-=)

)((212)())((212)()(21max

如图如图,,n m a b n f n m a b m f x f ??

?

?

?

?

???

<-≤-≤->-=)(2)()(2)2()(2)()(543min

如图如图如图,,,m a b m f n a b m a b f n a b n f x f

当a <0时???

?

?????

<-≤-≤->-=)(2)()(2)2()(2)()(876max

如图如图如图,,,m a b m f n a b m a b f n a b n f x f f x f m b a m n f n b a m n ()()()()()()()min =-≥+-<+??

???

??,,如图如图212212910

3、轴变区间定

二次函数随着参数的变化而变化,即其图象是运动的,但定义域区间是固定的,我们称这

种情况是“动二次函数在定区间上的最值”。

例4. 已知x 2

1≤,且a -≥20

,求函数f x x a x ()=++2

3的最值。 解:由已知有-≤≤≥112x a ,,于是函数f x ()是定义在区间[]

-11,上的二次函数,

将f x ()配方得:f x x a a ()=+?? ?

??+-234

2

2

二次函数f x ()的对称轴方程是x a =-2顶点坐标为--?? ?

??a a 2

342,,图象开口向上

由a ≥2可得x a

=-

≤-2

1,显然其顶点横坐标在区间[]

-11,的左侧或左端点上。 函数的最小值是f a ()-=-14,最大值是f a

()14=+。

图3

例5. (1) 求2

f (x )x 2ax 1=++在区间[-1,2]上的最大值。

(2) 求函数)(a x x y --=在]1,1[-∈x 上的最大值。 解:(1)二次函数的对称轴方程为x a =-, 当1a 2-<即1

a 2>-时,max f (x )f (2)4a 5==+; 当1a 2-≥

即1

a 2

≤-时,max f (x )f (1)2a 2=-=+。 综上所述:max

12a 2,a 2f (x )14a 5,a 2

?

-+≤-??=??+>-

??。

(2)函数4)2(2

2a a x y +--=图象的对称轴方程为2a x =,应分121≤≤-a ,12-a 即

22≤≤-a ,2-a 这三种情形讨论,下列三图分别为

(1)2-

a

f x f =

(3) 2>a 时;由图可知max ()(1)f x f =

∴????

???>≤≤--<-=2,)1(22,)2

(2

,)1(a f a a f a f y 最大

;即???????>-≤≤--<+-=2

,122,42,)1(2a a a a a a y 最大

4. 轴变区间变

二次函数是含参数的函数,而定义域区间也是变化的,我们称这种情况是“动二次函数在动区间上的最值”。

例6. 已知24()(0),y a x a a =->,求22

(3)u x y =-+的最小值。 解:将

24()y a x a =-代入u 中,得

①,即时,

②,即

时,

所以

(二)、逆向型

是指已知二次函数在某区间上的最值,求函数或区间中参数的取值。

例7. 已知函数2

()21f x ax ax =++在区间[3,2]-上的最大值为4,求实数a 的值。 解:2

()(1)1,[3,2]f x a x a x =++-∈-

(1)若0,()1,a f x ==,不符合题意。 (2)若0,a >则max ()(2)81f x f a ==+ 由814a +=,得38

a =

(3)若0a <时,则max ()(1)1f x f a =-=- 由14a -=,得3a =- 综上知3

8

a =

或3a =- 例8.已知函数2

()2

x f x x =-+在区间[,]m n 上的最小值是3m 最大值是3n ,求m ,n 的值。 解法1:讨论对称轴

中1与,

,2

m n

m n +的位置关系。 ①若

,则max min

()()3()()3f x f n n f x f m m ==??==?

解得

②若

12m n

n +≤<,则max min ()(1)3()()3f x f n f x f m m

==??==?,无解 ③若12m n

m +≤<

,则max min

()(1)3()()3f x f n f x f n m ==??==?,无解 ④若

,则max min ()()3()()3f x f m n

f x f n m

==??

==?,无解

综上,4,0m n =-= 解析2:由211()(1)22f x x =-

-+,知11

3,,26

n n ≤≤,则[,](,1]m n ?-∞, 又∵在[,]m n 上当x 增大时)(x f 也增大所以max min

()()3()()3f x f n n

f x f m m ==??

==?

解得4,0m n =-=

评注:解法2利用闭区间上的最值不超过整个定义域上的最值,缩小了m ,n 的取值范围,避开了繁难的分类讨论,解题过程简洁、明了。

例9. 已知二次函数2f (x )ax (2a 1)x 1=+-+在区间3,22??

-

????

上的最大值为3,求实数a 的值。这是一个逆向最值问题,若从求最值入手,需分a 0>与a 0<两大类五种情形讨论,过程繁琐不堪。若注意到最大值总是在闭区间的端点或抛物线的顶点处取到,因此先计算这些点的函数值,再检验其真假,过程就简明多了。 具体解法为: (1)令2a 1f ()32a

--

=,得1

a 2=-

此时抛物线开口向下,对称轴方程为x 2=-,且32,22??

-?-????

,故12-不合题意;

(2)令f (2)3=,得1

a 2

=

此时抛物线开口向上,闭区间的右端点距离对称轴较远,故1

a 2

=符合题意; (3)若3f ()32

-

=,得2a 3=-

此时抛物线开口向下,闭区间的右端点距离对称轴较远,故2

a 3

=-符合题意。 综上,1a 2=

或2a 3

=- 解后反思:若函数图象的开口方向、对称轴均不确定,且动区间所含参数与确定函数的参数一致,可采用先斩后奏的方法,利用二次函数在闭区间上的最值只可能在区间端点、顶点处取得,不妨令之为最值,验证参数的资格,进行取舍,从而避开繁难的分类讨论,使解题过程简洁、明了。

二次函数在闭区间上的最值(可用)

二次函数在闭区间上的最值 一、 知识要点: 一元二次函数的区间最值问题,核心是函数对称轴与给定区间的相对位置关系的讨论。一般分为:对称轴在区间的左边,中间,右边三种情况. 设f x ax bx c a ()()=++≠2 0,求f x ()在x m n ∈[],上的最大值与最小值。 分析:将f x ()配方,得顶点为--?? ?? ?b a ac b a 2442,、对称轴为x b a =- 2 当a >0时,它的图象是开口向上的抛物线,数形结合可得在[m ,n]上f x ()的最值: (1)当[] -∈b a m n 2,时,f x ()的最小值是f b a ac b a f x -?? ???=-2442 ,()的最大值是 f m f n ()()、中的较大者。 (2)当[] - ?b a m n 2,时 若-< b a m 2,由f x ()在[] m n ,上是增函数则f x ()的最小值是f m (),最大值是f n () 若n b a <-2,由f x ()在[] m n ,上是减函数则f x ()的最大值是f m (),最小值是f n () 当a <0时,可类比得结论。 二、例题分析归类: (一)、正向型 是指已知二次函数和定义域区间,求其最值。对称轴与定义域区间的相互位置关系的讨论往往成为解决这类问题的关键。此类问题包括以下四种情形:(1)轴定,区间定;(2)轴定,区间变;(3)轴变,区间定;(4)轴变,区间变。 1. 轴定区间定 二次函数是给定的,给出的定义域区间也是固定的,我们称这种情况是“定二次函数在定区间上的最值”。 例1. 函数y x x =-+-2 42在区间[0,3]上的最大值是_________,最小值是_______。 解:函数y x x x =-+-=--+2 2 4222()是定义在区间[0,3]上的二次函数,其对称轴方程是x =2,顶点坐标为(2,2),且其图象开口向下,显然其顶点横坐标在[0,3]上, 如图1所示。函数的最大值为f ()22=,最小值为f ()02=-。 图1

高中数学-二次函数定区间上最值问题

高中数学-二次函数定区间上最值问题 一、二次函数知识点回顾 (一)二次函数的概念: 一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数. (二)二次函数2y ax bx c =++的性质 1. 当0a >时,抛物线开口向上,对称轴为2b x a =-,顶点坐标为2424b ac b a a ??-- ??? ,. 当2b x a <- 时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大; 当2b x a =-时,y 有最小值244ac b a -. 2. 当0a <时,抛物线开口向下,对称轴为2b x a =-,顶点坐标为2424b ac b a a ??-- ??? ,. 当2b x a <- 时,y 随x 的增大而增大;当2b x a >-时,y 随x 的增大而减小; 当2b x a =-时,y 有最大值244ac b a -. (三)二次函数基本形式: 1、2y ax =的性质: a 的绝对值越大,抛物线的开口越小。 2. 2y ax c =+的性质: 上加下减。

3. ()2 y a x h =-的性质: 左加右减。 4. ()2 y a x h k =-+的性质: 二、二次函数闭区间上的最值解题思路分析 一元二次函数的区间最值问题,核心是函数对称轴与给定区间的相对位置关系的讨论。一般分为:对称轴在区间的左边,中间,右边三种情况. 如设: f x a x b xc a ()() =++≠2 0,求f x ()在x m n ∈[],上的最大值与最小值。 方法思路分析:将f x ()配方,得顶点为--?? ???b a a c b a 2442,、对称轴为x b a =- 2 当a >0时,它的图象是开口向上的抛物线,数形结合可得在[m ,n]上 f x ()的最值:

二次函数最值问题及解题技巧(个人整理)

一、二次函数线段最值问题 1、平行于x轴的线段最值问题 1)首先表示出线段两个端点的坐标 2)用右侧端点的横坐标减去左侧端点的横坐标 3)得到一个线段长关于自变量的二次函数 4)将其化为顶点式,并根据a的正负及自变量的取值范围判断最值 2、平行于y轴的线段最值问题 1)首先表示出线段两个端点的坐标 2)用上面端点的纵坐标减去下面端点的纵坐标 3)得到一个线段长关于自变量的二次函数解析式 4)将其化为顶点式,并根据a的正负及自变量的取值范围判断最值 3、既不平行于x轴,又不平行于y轴的线段最值问题 1)以此线段为斜边构造一个直角三角形,并使此直角三角形的两条直角边分别平行于x轴、y轴 2)根据线段两个端点的坐标表示出直角顶点坐标 3)根据“上减下,右减左”分别表示出两直角边长 4)根据勾股定理表示出斜边的平方(即两直角边的平方和) 5)得到一个斜边的平方关于自变量的二次函数 6)将其化为顶点式,并根据a的正负及自变量的取值范围判断最值 7)根据所求得的斜边平方的最值求出斜边的最值即可 二、二次函数周长最值问题 1、矩形周长最值问题 1)一般会给出一点落在抛物线上,从这点向两坐标轴引垂线构成一个矩形,求其周长最值 2)可先设此点坐标,点p到x轴、y轴的距离和再乘以2,即为周长 3)将其化为顶点式,并根据a的正负及自变量的取值范围判断最值 2、利用两点之间线段最短求三角形周长最值 1)首先判断图形中那些边是定值,哪些边是变量 2)利用二次函数轴对称性及两点之间线段最短找到两条变化的边,并求其和的最小值3)周长最小值即为两条变化的边的和最小值加上不变的边长 三、二次函数面积最值问题 1、规则图形面积最值问题(这里规则图形指三角形必有一边平行于坐标轴,四边形必有一组对边平行于坐标轴) 1)首先表示出所需的边长及高 2)利用求面积公式表示出面积 3)得到一个面积关于自变量的二次函数 4)将其化为顶点式,并根据a的正负及自变量的取值范围判断最值 2、不规则图形面积最值问题 1)分割。将已有的不规则图形经过分割后得到几个规则图形 2)再分别表示出分割后的几个规则图形面积,求和 3)得到一个面积关于自变量的二次函数 4)将其化为顶点式,并根据a的正负及自变量的取值范围判断最值 或1)利用大减小,不规则图形的面积可由规则的图形面积减去一个或几个规则小图形的面积来得到

中考数学-二次函数在闭区间上的最值-轴变区间定

中考数学 二次函数在闭区间上的最值-轴变区间定 一、 知识要点: 一元二次函数的区间最值问题,核心是函数对称轴与给定区间的相对位置关系的讨论。一般分为:对称轴在区间的左边,中间,右边三种情况. 设f x a x b xc a ()()=++≠2 0,求f x ()在x m n ∈[],上的最大值与最小值。 分析:将f x ()配方,得顶点为--?? ???b a a c b a 2442,、对称轴为x b a =-2 当a >0时,它的图象是开口向上的抛物线,数形结合可得在[m ,n]上f x ()的最值: (1)当[] -∈b a m n 2,时,f x ()的最小值是f b a a c b a f x -?? ???=-2442,()的最大值是f m f n ()()、中的较大者。 (2)当[]-?b a m n 2,时 若-

【精校版】初中二次函数(最值问题)

二次函数最值问题专题资料

名校冲刺班一题80问(最值篇) 01、如图,二次函数212124 y x x =-++与x 轴交于B C 、两点,与y 轴交于D 点,对称轴为直线l . (1)若E 为l 上一动点,求DE BE +的最小值,并求出此时E 点的坐标; (2)若E 为l 上一动点,求DE EC -的最大值,并求出此时E 点的坐标; (3)若K 为直线CD 上一动点,求BK OK +的最小值,并求出此时K 点坐标; (4)若F N 、分别为直线CD 、x 轴上的动点,求DN FN BF ++的最小值,并求出此时F N 、的坐标;

(5)若R 为y 轴上一点,满足CR BD ⊥,S T 、为直线CD 上的动点,且满足2ST =,求 RS ST TO ++的最小值,并求出此时tan TOC ∠的值; (6)若M 点从C 点出发,以1个单位每秒的速度运动到y 轴,再以10个单位每秒的速度 沿着y 轴运动到D 点,求从C 点到D 点的最短时间; (7)若一点从O 点出发以1个单位每秒的速度先到达直线BD 上一点Z ,再从Z 到达y 轴 上一点K ,求整个过程的最短时间; (8)E 为对称轴与x 轴的交点,从E 出发以1个单位每秒的速度运动到直线CD 上一点F , 再从F 运动到y 轴,求整个运动过程的最短时间;

(9)如图,Q 为一象限抛物线上一点,过Q 作y 轴平行线交线段CD 于R ,求线段QR 的 最大值; (10)如图,Q 为一象限抛物线上一点,过Q 作QS 垂直于直线CD ,求QS 的最大值; (11)如图,Q 为一象限抛物线上一点,连接BQ 交直线CD 于点R ,求QR BR 的最大值; (12)如图,Q 为一象限抛物线上一点,求DQC 面积的最大值;

二次函数在给定区间上的最值问题

二次函数在给定区间上的最值问题 【学前思考】 二次函数在闭区间上取得最值时的X ,只能是其图像的顶点的横坐标或给定区间的端点?因此,影响二次函数在闭区间上的最值主要有三个因素:抛物线的开口方向、对称轴以及给定区间的位置.在这三大因素中,最容易确定的是抛物线的开口方向(与二次项系数的正负有关),而关于对称轴与给定区间的位置关系的讨论是解决二次函数在给定区间上的最值问题的关键.本节,我 们将以若干实例说明解决此类问题的具体方法. 【知识要点&例题精讲】 二次函数在给定区间上的最值问题,常见的有以下三种类型,分别是: CaSe l、给定区间确定,对称轴位置也确定 说明:此种类型是较为简单的一种,只要找到二次函数的对称轴,画出其函数 图像,再将给定区间标出,那么二次函数的最值一目了然. 解法:若二次函数的给定区间是确定的,其对称轴的位置也确定,则要求二次函数在给定区间上的最值,只需先考察其对称轴的横坐标是否在给定区间内 (i) 当其对称轴的横坐标在给定区间内时,二次函数在给定区间上不具有单调性,此时其一个最值在顶点处取得,另一个最值在离对称轴的横坐标较远的端点处取得;(ii )当其对称轴的横坐标不在给定区间内时,二次函数在给定区间上具有单调性,此时可利用二次函数的单调性确定其最值. 例1、二次函数y = χ2-2χ+3在闭区间[-1,2】上的最大值是_________ . 例2、函数f(X)= -X2 +4x-2在区间【0,3】上的最大值是_________ 最小值是

例3、已知2χ2≤3x,则函数f(χ)=χ2+χ+1的最大值是 ____________ ,最小值是 CaSe n、给定区间确定,对称轴位置变化 说明:此种类型是非常重要的,是考试必考点,主要是讨论二次函数的对称轴与给定区间的位置关系,一般需要分对称轴在给定区间的左侧、内部以及右侧三种情况进行分类讨论,然后根据不同情况求出相应的最值. 解法:若二次函数的给定区间是确定的,而其对称轴的位置是变化的,则要求 二次函数y=aχ2?bx ?c ( a =O)在给定区间[p,q 1上的最值,需对其对称轴与 给定区间的位置关系进行分类讨论.这里我们以a 0的情形进行分析: (i)若一A P ,即对称轴在给定区间∣p,q 1的左侧,贝U函数f(χ)在给定区间 2a l-P,q ]上单调递增,此时[f (X)]max = f(q),[f (X)]min = f ( P); (ii) 若^-―

二次函数最值问题解答题专项练习60题(有答案)

二次函数最值专项练习60题 1.画出抛物线y=4(x﹣3)2+2的大致图象,写出它的最值和增减性. 2.如图,二次函数y=ax2+bx+c的图象经过A(﹣1,0)、B(2,3)两点,求出此二次函数的解析式;并通过配方法求出此抛物线的对称轴和二次函数的最大值. 3.已知二次函数y=x2﹣x﹣2及实数a>﹣2,求 (1)函数在一2<x≤a的最小值; (2)函数在a≤x≤a+2的最小值. 4.已知函数y=x2+2ax+a2﹣1在0≤x≤3范围内有最大值24最小值3,求实数a的值. 5.我们知道任何实数的平方一定是一个非负数,即:(a+b)2≥0,且﹣(a+b)2≤0.据此,我们可以得到下面的推理: ∵x2+2x+3=(x2+2x+1)+2=(x+1)2+2,而(x+1)2≥0 ∴(x+1)2+2≥2,故x2+2x+3的最小值是2. 试根据以上方法判断代数式3y2﹣6y+11是否存在最大值或最小值?若有,请求出它的最大值或最小值.

6.如图所示,已知平行四边形ABCD的周长为8cm,∠B=30°,若边长AB=x(cm). (1)写出?ABCD的面积y(cm2)与x的函数关系式,并求自变量x的取值范围. (2)当x取什么值时,y的值最大?并求最大值. 7.求函数y=2x2﹣ax+1当0≤x≤1时的最小值. 8.已知m,n是关于x的方程x2﹣2ax+a+6=0的两实根,求y=(m﹣1)2+(n﹣1)2的最小值. 9.当﹣1≤x≤2时,求函数y=f(x)=2x2﹣4ax+a2+2a+2的最小值,并求最小值为﹣1时,a的所有可能的值.10.已知二次函数y=x2﹣6x+m的最小值为1,求m的值.

二次函数在闭区间上的最值(详解)

二次函数在闭区间上的最值 一、 知识要点: 一元二次函数的区间最值问题,核心是函数对称轴与给定区间的相对位置关系的讨论。 一般分为:对称轴在区间的左边,中间,右边三种情况. 设fx a x b xc a ()()=++≠2 0,求f x ()在x m n ∈[],上的最大值与最小值。 分析:将f x ()配方,得顶点为--?? ???b a a c b a 2 442,、对称轴为x b a =-2 当a >0 时,它的图象是开口向上的抛物线,数形结合可得在[m ,n]上f x ()的最值: (1)当[]-∈b a m n 2,时,f x ()的最小值是f b a a c b a f x -?? ???=-2442,()的最大值是f m f n ()()、中的较大者。 (2)当[]-?b a m n 2,时 若-

(整理)二次函数在各种区间上的最值.

二次函数在各区间上的最值 一、知识要点: 一元二次函数的区间最值问题,核心是函数对称轴与给定区间的相对位置关系的讨论。一般分为:对称轴在区间的左边,中间,右边三种情况. 设,求在上的最大值与最小值。 分析:将配方,得顶点为、对称轴为 当时,它的图象是开口向上的抛物线,数形结合可得在[m,n]上的最值: (1)当时,的最小值是的最大值是中的较大者。 (2)当时 若,由在上是增函数则的最小值是,最大值是 若,由在上是减函数则的最大值是,最小值是 当时,可类比得结论。 二、例题分析归类: (一)、正向型 是指已知二次函数和定义域区间,求其最值。对称轴与定义域区间的相互位置关系的讨论往往成为解决这类问题的关键。此类问题包括以下四种情形:(1)轴定,区间定;(2)轴定,区间变;(3)轴变,区间定;(4)轴变,区间变。 1. 轴定区间定 二次函数是给定的,给出的定义域区间也是固定的,我们称这种情况是“定二次函数在定区间上的最值”。 例1.函数在区间[0,3]上的最大值是_________,最小值是_______。 解:函数是定义在区间[0,3]上的二次函数,其对称轴方程是,顶点坐标为(2,2),且其图象开口向下,显然其顶点横坐标在[0,3]上, 如图1所示。函数的最大值为,最小值为。 图1 练习. 已知,求函数的最值。 解:由已知,可得,即函数是定义在区间上的二次函数。将二次函数配方得,其对称轴方程,顶点坐标,且图象开口向上。显然其顶点横坐标不在区间内,如图2所示。函数的最小值为,最大值为。

图2 2、轴定区间变 二次函数是确定的,但它的定义域区间是随参数而变化的,我们称这种情况是“定函数在动区间上的最值”。 例2. 如果函数定义在区间上,求的最小值。 解:函数,其对称轴方程为,顶点坐标为(1,1),图象开口向上。 如图1所示,若顶点横坐标在区间左侧时,有,此时,当时,函数取得最小值。 图1 如图2所示,若顶点横坐标在区间上时,有,即。当时,函数取得最小值。 图2 如图3所示,若顶点横坐标在区间右侧时,有,即。当时,函数取得最小值 综上讨论,?? ? ??<+≤≤>+-=0110,11 ,1)1()(22min t t t t t x f 图8 例3. 已知 2 ()23f x x x =-+,当[1]()x t t t ∈+∈R ,时,求()f x 的最大值. 解:由已知可求对称轴为1x =.

中考数学-二次函数在闭区间上的最值-轴定区间变

中考数学 求二次函数在闭区间上的最值-轴定区间变 一、 知识要点: 一元二次函数的区间最值问题,核心是函数对称轴与给定区间的相对位置关系的讨论。一般分为:对称轴在区间的左边,中间,右边三种情况. 设f x a x b xc a ()()=++≠2 0,求f x ()在x m n ∈[],上的最大值与最小值。 分析:将f x ()配方,得顶点为--?? ???b a a c b a 2442,、对称轴为x b a =-2 当a >0时,它的图象是开口向上的抛物线,数形结合可得在[m ,n]上f x ()的最值: (1)当[] -∈b a m n 2,时,f x ()的最小值是f b a a c b a f x -?? ???=-2442,()的最大值是f m f n ()()、中的较大者。 (2)当[]- ?b a m n 2,时 若-

二次函数最值问题(含答案)

二次函数最值问题 一.选择题(共8小题) 1.如果多项式P=a2+4a+2014,则P的最小值是() A.2010 B.2011 C.2012 D.2013 2.已知二次函数y=x2﹣6x+m的最小值是﹣3,那么m的值等于()A.10 B.4 C.5 D.6 3.若二次函数y=ax2+bx+c的图象开口向下、顶点坐标为(2,﹣3),则此函数有() A.最小值2 B.最小值﹣3 C.最大值2 D.最大值﹣3 4.设x≥0,y≥0,2x+y=6,则u=4x2+3xy+y2﹣6x﹣3y的最大值是()A.B.18 C.20 D.不存在 5.二次函数的图象如图所示,当﹣1≤x≤0时,该函数的最大值是() A.3.125 B.4 C.2 D.0 6.已知二次函数y=(x﹣h)2+1(h为常数),在自变量x的值满足1≤x≤3的情况下,与其对应的函数值y的最小值为5,则h的值为() A.1或﹣5 B.﹣1或5 C.1或﹣3 D.1或3 7.二次函数y=﹣(x﹣1)2+5,当m≤x≤n且mn<0时,y的最小值为2m,最大值为2n,则m+n的值为() A.B.2 C.D. 8.如图,抛物线经过A(1,0),B(4,0),C(0,﹣4)三点,点D是直线BC 上方的抛物线上的一个动点,连结DC,DB,则△BCD的面积的最大值是()

A.7 B.7.5 C.8 D.9 二.填空题(共2小题) 9.已知二次函数y=2(x+1)2+1,﹣2≤x≤1,则函数y的最小值是,最大值是. 10.如图,在直角坐标系中,点A(0,a2﹣a)和点B(0,﹣3a﹣5)在y轴上, =6.当线段OM最长时,点M的坐标为. 点M在x轴负半轴上,S △ABM 三.解答题(共3小题) 11.在平面直角坐标系中,O为原点,直线l:x=1,点A(2,0),点E,点F,点M都在直线l上,且点E和点F关于点M对称,直线EA与直线OF交于点P.(Ⅰ)若点M的坐标为(1,﹣1), ①当点F的坐标为(1,1)时,如图,求点P的坐标; ②当点F为直线l上的动点时,记点P(x,y),求y关于x的函数解析式.(Ⅱ)若点M(1,m),点F(1,t),其中t≠0,过点P作PQ⊥l于点Q,当OQ=PQ时,试用含t的式子表示m.

二次函数在闭区间上的最值例题

二次函数在闭区间上的最值问题的解法 一、知识要点: 一元二次函数的区间最值问题,核心是函数对称轴与给定区间的相对位置关系的讨论。一般分为:对称轴在区间的左边,中间,右边三种情况. 设f x a x b xc a ()() =++≠2 0,求f x ()在x m n ∈[],上的最大值与最小值。 分析:将f x ()配方,得顶点为--?? ???b a a c b a 2442,、对称轴为x b a =- 2 当a >0时,它的图象是开口向上的抛物线,数形结合可得在[m ,n]上f x ()的最值: (1)当[] -∈b a m n 2,时,f x ()的最小值是f b a a c b a f x -?? ???=-24 42 ,()的最大值是f m f n ()()、中的较大者。 (2)当[] - ?b a m n 2,时 若-

初中数学之二次函数最值问题

初中数学之二次函数最值问题 一、选择题 1.(2008年山东省潍坊市)若一次函数的图像过第一、三、四象限,则函数() A.有最大值 B..有最大值 C.有最小值 D.有最小值 2.(2008浙江杭州)如图,记抛物线的图象与正半轴的交点为,将线段分成等份.设分点分别为,,,,过每个分点作轴的垂线,分别与抛物线交于点,,…,,再记直角三角形,,…的面积分别为,,…,这样就有,,…;记,当越来越大时,你猜想最接近的常数是()A.B.C.D. 3.(08绵阳市)二次函数y = ax2 + bx + c的部分对应值如下表: 利用二次函数的图象可知,当函数值y<0时,x的取值范围是(). A.x<0或x>2 B.0<x<2 C.x<-1或x>3 D.-1<x <3 4.(2008年浙江省嘉兴市)一个函数的图象如图,给出以下结论: ①当时,函数值最大; ②当时,函数随的增大而减小; ③存在,当时,函数值为0. 其中正确的结论是() A.①②B.①③C.②③D.①②③

5.(2008 湖北恩施)将一张边长为30㎝的正方形纸片的四角分别剪去一个边长为x㎝的 小正方形,然后折叠成一个无盖的长方体.当x取下面哪个数值时,长方体的体积最大() A. 7 B. 6 C. 5 D. 4 6.(2008泰安)如图所示是二次函数的图象在轴上方的一部分,对于这段图象与轴所围成的阴影部分的面积,你认为与其最.接近的值是() A.4 B.C.D. 7.(2008山东泰 安)函数的图象如 图所示,下列对该 的是() 函数性质的论断不可能正确 ..... A.该函数的图象是中心对称图形 B.当时,该函数在时取得最小值2 C.在每个象限内,的值随值的增大而减小 D.的值不可能为1 8.若一次函数的图像过第一、三、四象限,则函数() A.有最大值 B..有最大值 C.有最小值 D.有最小值 二、填空题 1.某商店经营一种水产品,成本为每千克40元的水产品,据市场分析,若按每千克50元

二次函数的区间最值问题知识讲解

二次函数最值问题 二次函数y =ax 2 bx C a = 0)是初中函数的主要内容,也是高中学习的重要基 础?在初中阶段大家已经知道:二次函数在自变量 x 取任意实数时的最值情况(当a ■0时, 本节我们将在这个基础上继续学习当自变量 x 在某个范围内取值时,函数的最值问 题?在高中阶段,求二次函数的最值问题只需要记住“三点一轴”,即题目给出的 x 的取值范 围区间的两个端点, 二次函数的顶点,以及二次函数的对称轴, 注意结合图像学会用数形结 合解题。高中阶段的二次函数最值问题可以分为一下三个方面: 1.定轴定区间。2.动轴定区 间。3.定轴动区间。下面我们来看例题。 【例1】当-2空x 空2时,求函数y =x 2 -2x-3的最大值和最小值. 分析:这个问题十分简单,属于定轴定区间这一类题目, 只需要画出函数图像即可以解 决。 1 5 【例2】当t 兰x 兰t +1时,求函数y = -x 2 -X -一的最小值(其中t 为常数)? 2 2 函数在x 二 b 2a 处取得最小值 4ac -b 2 4a 无最大值;当时 a . 0,函数在x —处取得 2a 最大值 4ac -b 2 4a 无最小值.

分析:这类问题属于定轴动区间的问题,由于 X 所给的范围随着t 的变化而变化,所以 需要比较对称轴与其范围的相对位置. 1 5 解:函数y =-x2—x _-的对称轴是x=1。画出其草图。 2 2 (1) 灯=}12 j_| = —3 ; 1 i 5 1 i A min =尹+1) -(t +1)石=|t -3. 1 2 -t 2 -3,t<0 2 综上所述:y min = -3,0_t_1 】t 2 —t —5,t A 1 I 2 2 【例3】设二次函数f x =-x 2 ? 2ax ? 1-a 在区间0,1 ]上的最大值为2,求实数a 的 值。分析:这类问题属于动轴定区间的问题,由于函数的对称轴随 a 的变化而变化,所 ⑵当对称轴在所给范围左侧.即 1 2 5 t 1时当X"时,畑; (4)当对称轴在所给范围之间?即 t _1 _t 1= 0_t _1 时;当 x = 1 时, ⑹当对称轴在所给范围右侧?即 t 1 :::1= t :: 0时,当 x =t ? 1 时,

二次函数的最值问题(中考题)(含答案)

典型中考题(有关二次函数的最值) 屠园实验 周前猛 一、选择题 1. 已知二次函数y=a (x-1)2+b 有最小值 –1,则a 与b 之间的大小关( ) A. ab D 不能确定 答案:C 2.当-2≤x≤l 时,二次函数 y=-(x-m )2+m 2+1有最大值4,则实数m 的值为( ) A 、- 74 B 、 C 、 2或 D 2或或- 74 答案:C ∵当-2≤x≤l 时,二次函数 y=-(x-m )2+m 2+1有最大值4, ∴二次函数在-2≤x≤l 上可能的取值是x=-2或x=1或x=m. 当x=-2时,由 y=-(x-m )2+m 2+1解得m= - 74 ,2 765 y x 416??=-++ ??? 此时,它在- 2≤x≤l 的最大值是 65 16 ,与题意不符. 当x=1时,由y=-(x-m )2+m 2+1解得m=2,此时y=-(x-2)2+5,它在-2≤x≤l 的最大值是4,与题意相符. 当x= m 时,由 4=-(x-m )2+m 2+1解得m=当m=它在- 2≤x≤l 的最大值是4,与题意相符;当,2≤x≤l 在x=1处取得,最大值小于4,与题意不符. 综上所述,实数m 的值为2或. 故选C . 3. 已知0≤x≤ 1 2 ,那么函数y=-2x 2+8x-6的最大值是( ) A -10.5 B.2 C . -2.5 D. -6 答案:C

解:∵y=-2x2+8x-6=-2(x-2)2+2.∴该抛物线的对称轴是x=2,且在x<2上y随x的增大而 增大.又∵0≤x≤1 2 ,∴当x= 1 2 时,y取最大值,y最大=-2( 1 2 -2)2+2=-2.5.故选:C. 4、已知关于x的函数. 下列结论: ①存在函数,其图像经过(1,0)点; ②函数图像与坐标轴总有三个不同的交点; ③当时,不是y随x的增大而增大就是y随x的增大而减小; ④若函数有最大值,则最大值必为正数,若函数有最小值,则最小值必为负数。 真确的个数是() A,1个B、2个 C 3个D、4个 答案:B 分析:①将(1,0)点代入函数,解出k的值即可作出判断; ②首先考虑,函数为一次函数的情况,从而可判断为假; ③根据二次函数的增减性,即可作出判断; ④当k=0时,函数为一次函数,无最大之和最小值,当k≠0时,函数为抛物线,求 出顶点的纵坐标表达式,即可作出判断. 解:①真,将(1,0)代入可得:2k-(4k+1)-k+1=0, 解得:k=0.运用方程思想; ②假,反例:k=0时,只有两个交点.运用举反例的方法; ③假,如k=1, b5 -= 2a4 ,当x>1时,先减后增;运用举反例的方法; ④真,当k=0时,函数无最大、最小值; k≠0时,y最= 22 4ac-b24k+1 =- 4a8k , ∴当k>0时,有最小值,最小值为负; 当k<0时,有最大值,最大值为正.运用分类讨论思想. 二、填空题: 1、如图,已知;边长为4的正方形截去一角成为五边形ABCDE,其中AF=2,BF=l,在AB 上的一点P,使矩形PNDM有最大面积,则矩形PNDM的面积最大值是

二次函数在闭区间上的值域问题

二次函数在闭区间上的值域问题 题型一【定函数定区间】 例1.函数f (x )=2x 2-6x +3在区间[-1,1]上的最小值是-1,最大值是11. f (x )=2x 2-6x +3=2(x -32)2-32 ,x ∈[-1,1]. 练习:若函数f (x )=x 2-3x -4的定义域为[0,m ],值域为[-254 ,-4],则m 的取值范围是 [32,3]_________ . 题型二【动函数定区间】 例2.求函数y =x 2+tx +1在区间[-1,1]上的最值; 【分类讨论】 解:(1)函数y =x 2+tx +1的对称轴为直线x =-t 2 . 1°若-t 2 ≤-1,即t ≥2时,函数在[-1,1]上单调增, 当x =-1时,y min =2-t ,当x =1时,y max =2+t ; 2°当-1<-t 2 <0,即0<t <2时, 当x =-t 2时,y min =1-t 24 ,当x =1时,y max =2+t ; 3°当0≤-t 2 <1,即-2<t ≤0时, 当x =-t 2时,y min =1-t 24 ,当x =-1时,y max =2-t ; 4°当-t 2 ≥1,即t ≤-2时,函数在[-1,1]上单调减, 当x =1时,y min =2+t ,当x =-1时,y max =2-t . 例3.已知函数f (x )=4x 2-4ax +a 2-2a +2在区间[0,2]上有最小值3,求a 的值. 解:f (x )=4x 2-4ax +a 2-2a +2=4(x -a 2 )2-2a +2,x ∈[0,2]. (1)当a 2 <0,即a <0时,f (x )min =f (0)=a 2-2a +2=3,解得a =1-2或a =1+2(舍); (2)当0≤a 2≤2,即0≤a ≤4时,f (x )min =f (a 2)=-2a +2=3,解得a =-12 (舍); (3)当a 2 >2,即a >4时,f (x )min =f (2)=a 2-10a +18=3,解得a =5+10或a =5-10(舍). 综上,a =1-2或a =5+10. 题型三【定函数动区间】 例4.函数f (x )=x 2-4x -4在区间[t ,t +1](t ∈R )上的最小值记为g (t ).试写出g (t )的表达式,作出g (t )的图象,并求g (t )的最小值. 【分类讨论】 函数f (x )=(x -2)2-8.

(整理)二次函数闭区间最值.

二次函数闭区间最值 要点一:含字母讨论型 1、已知函数f(x)=-x 2+2ax(x ∈[-1,3]),求f(x)的最大值 与最小值。 2、已知f (x )=-4x 2+4ax -4a -a 2在区间[0,1]内有最大 值-5,求a 的值。 3、函数f(x)=x 2-2x(x ∈[a,a+1]) 求f(x)的最大值与最 小值。 4、设函数12)(2 ++=ax ax x f 在[]2,3-上有最大值4,求实数a 的值。 要点二:转化二次函数的最值 5、已知x y x 22322=+,求22y x u +=的取值范围. 要点三:恒成立问题 6、已知f (x )=x 2 +ax +3-a ,若x ∈[-2,2]时,f (x )≥0恒成立,求a 的取值范围.

7、不等式022224≥--++a a x x 恒成立,求实数a 的取值 范围。 练习: 1、已知二次函数 2()(1)()f x ax b x a b =+-≠、是常数,且a 0满足条件:(2)0,f =且方程()f x x =有两个相等的实数根。 (1)求()f x 的解析式; (2)是否存在实数()m n m n <、,使()f x 的定义域和值域分别是[,][2,2]m n m n 和,如存在,求m n 、的值,如不存在,说明理由。 2、设函数2 1()4f x x x =+-,若定义域为[,1]a a +,值域为11[,]216-,求a 的值.

二次方程根的分布 能利用“数形结合”和“韦达定理”讨论二次方程根的情况。 一元二次方程)0(02 ≠=++a c bx ax 有两个根: 1. 当两个根在同一个区间上时,需从以下几个方面考 虑: (1)),(,21m x x -∞∈ (2)),(,21+∞∈n x x (3)),(,21n m x x ∈ 2. 当两个根分别在两个不同区间上时,需从以下几个 方面考虑: (1)),(),,(21+∞∈-∞∈m x m x (2)t s n m t s x n m x <<<∈∈)(,(),,(21) 1.已知关于x 的二次方程0122=+++m mx x (1)若方程有两根,其中一根在区间(-1,0),另一根在区间(1,2)内,求m 的取值范围。 (2)若方程两根均在区间(0,1)内,求m 的取值范围。

二次函数最值知识点总结典型例题及习题

必修一二次函数在闭区间上的最值 一、 知识要点: 一元二次函数的区间最值问题,核心是函数对称轴与给定区间的相对位置关系的讨论。一般分为:对称轴在区间的左边,中间,右边三种情况. 设f x ax bx c a ()()=++≠2 0,求f x ()在x m n ∈[],上的最大值与最小值。 分析:将f x ()配方,得顶点为--?? ???b a ac b a 2442,、对称轴为x b a =-2 当a >0时,它的图象是开口向上的抛物线,数形结合可得在[m ,n]上f x ()的最值: (1)当[] -∈b a m n 2,时,f x ()的最小值是f b a ac b a f x -?? ???=-2442,()的最大值是f m f n ()()、中的较大者。 (2)当[]-?b a m n 2,时 若-

二次函数在闭区间上的最值问题

二次函数在闭区间上的最值问题 湖北省荆州中学 鄢先进 二次函数在闭区间上的最值问题是高中数学的重点和热点问题,频繁出现在函数试题中,很受命题者亲睐。影响二次函数在闭区间上最值问题的主要因素是二次函数图像的开口方向与所给区间和对称轴的位置关系。本文介绍有关二次函数在闭区间上最值问题的常见类型及解题策略,供同学们参考。 类型一 定轴定区间 例1.已知函数2()2f x x x =-,求()f x 的最小值. 解:22()2(1)1f x x x x =-=-- 由图像可知,当1x =时,min ()1f x =- 变式1.已知函数2()2f x x x =-,[2,4]x ∈,求()f x 的最小值。 分析:由图像可知,函数)(x f 在[2,4]为增函数, min ()(2)0f x f ∴== 变式2.已知函数2()2f x x x =-,[0,3]x ∈,求()f x 的最大值. 分析:由图像可知函数()f x 在[0,1]上递减,在[1,3]上递增,且3离对称轴的距离大于0离对称轴的距离。 max ()(3)3f x f ∴== 例2.已知二次函数f x ax ax a ()=++-2241在区间[] -41,上的最大值为5,求实数a 的值。 解:将二次函数配方得f x a x a a ()()=++--24122,函数图像对称轴方程为x =-2,顶点坐标为()---2412,a a ,图像开口方向由a 决定。很明显,其顶点横坐标在区间 []-41,内。 x

①若a <0,函数图像开口向下,如下图1所示。当x =-2时,函数()f x 取得最大值5 即f a a ()-=--=24152,解得a =±210 故a a =-=+210210()舍去 图1 图2 ②若a >0,函数图像开口向上,如上图2所示,当x =1时,函数()f x 取得最大值5 即f a a ()15152=+-=,解得a a ==-16或,故a a ==-16()舍去 综上可知:函数f x ()在区间[] -41,上取得最大值5时,a a =-=2101或 点拨:求解有关二次函数在闭区间上的最值问题,应先配方,作出函数图像,然后结合其图像研究,要特别注意开口方向、对称轴和区间的相对位置。在例1中,二次函数图像的开口,对称轴和区间都是固定的,需引起同学们注意的是,当函数的最值的取得在区间两个端点都有可能的时候,要比较端点与对称轴距离的大小。在例2中,二次函数图像的对称轴和区间是固定的,但图像开口方向是随参数a 变化的,要注意讨论。 小结:二次函数2()()f x a x k h =-+(0)a >在区间[,]m n 最值问题。 ①若[,]k m n ∈,则min ()()f x f k h ==,max ()max{()()}f x f m f n =? ②若[,]k m n ?,当k m <时,min ()()f x f m =,max ()()f x f n = 当k n >时,min ()()f x f n =,max ()()f x f m = 当0a <时,仿此讨论 类型二 定轴动区间 例3.已知函数22,[2,]y x x x a =-∈-,求函数的最小值().g a

文本预览
相关文档 最新文档