当前位置:文档之家› 二次函数在闭区间上的最值-练习题带解析答案

二次函数在闭区间上的最值-练习题带解析答案

二次函数在闭区间上的最值-练习题带解析答案
二次函数在闭区间上的最值-练习题带解析答案

二次函数在闭区间上的最值

一、

知识要点:

一元二次函数的区间最值问题,核心是函数对称轴与给定区间的相对位置关系的讨论。一般分为:对称轴在区间的左边,中间,右边三种情况.

设f x ax bx c a ()()=++≠2

0,求f x ()在x m n ∈[],上的最大值与最小值。

分析:将f x ()配方,得顶点为--?? ?

??

b a

ac b a 2442,、对称轴为x b a =-2 当a >0时,它的图象是开口向上的抛物线,数形结合可得在[,]上f x ()的最值:

()当[]

-∈b a

m n 2,时,f x ()的最小值是f b a ac b

a f x -?? ???=

-2442

,()的最大值是f m f n ()()、中的较大者。

()当[]

-

?b

a m n 2,时 若-<

b a

m 2,由f x ()在[]

m n ,上是增函数则f x ()的最小值是f m (),最大值是f n ()

若n b

a

<-2,由f x ()在[]

m n ,上是减函数则f x ()的最大值是f m (),最小值是f n ()

当a <0时,可类比得结论。

二、例题分析归类: (一)、正向型

是指已知二次函数和定义域区间,求其最值。对称轴与定义域区间的相互位置关系的讨论往往成为解决这类问题的关键。此类问题包括以下四种情形:()轴定,区间定;()轴定,区间变;()轴变,区间定;()轴变,区间变。 . 轴定区间定

二次函数是给定的,给出的定义域区间也是固定的,我们称这种情况是“定二次函数在定区间上的最值”。

例. 函数y x x =-+-2

42在区间[,]上的最大值是,最小值是。

解:函数y x x x =-+-=--+2

2

4222()是定义在区间[,]上的二次函数,其对称轴方程是x =2,顶点坐标为(,),且其图象开口向下,显然其顶点横坐标在[,]上,

如图所示。函数的最大值为f ()22=,最小值为f ()02=-。

练习. 已知232

x x ≤,求函数f x x x ()=++2

1的最值。

解:由已知232x x ≤,可得032≤≤

x ,即函数f x ()是定义在区间032,?

?

????上的二次函

数。将二次函数配方得f x x ()=+?

? ???+1234

2

,其对称轴方程x =-12,顶点坐标

-?? ???1234,,且图象开口向上。显然其顶点横坐标不在区间032,?

?

????内,如图所示。函数f x ()的最小值为f ()01=,最大值为f 3219

4

?? ???=

、轴定区间变

二次函数是确定的,但它的定义域区间是随参数而变化的,我们称这种情况是“定函数在动区间上的最值”。

例. 如果函数f x x ()()=-+112

定义在区间[]

t t ,+1上,求f x ()的最小值。

解:函数f x x ()()=-+112

,其对称轴方程为x =1,顶点坐标为(,),图象开口向上。

如图所示,若顶点横坐标在区间[]

t t ,+1左侧时,有1

如图所示,若顶点横坐标在区间[]

t t ,+1上时,有t t ≤≤+11,即01≤≤t 。当x =1时,函数取得最小值f x f ()()min ==11。

如图所示,若顶点横坐标在区间[]

t t ,+1右侧时,有t +<11,即t <0。当x t =+1

时,函数取得最小值f x f t t ()()min =+=+112

综上讨论,??

?

??<+≤≤>+-=0110,11,1)1()(22min

t t t t t x f

例. 已知2

()23f x x x =-+,当[1]()x t t t ∈+∈R ,时,求()f x 的最大值.

解:由已知可求对称轴为1x =.

()当1t >时,2min max ()()23()(1)2

f x f t t t f x f t t ∴==-+=+=+,.

()当11t t +≤≤,即01t ≤≤时,.

根据对称性,若

2

1

21≤++t t 即1

02t ≤≤

时,2

max ()()23f x f t t t ==-+.

若2121>++t t 即1

12t <≤时,2

max ()(1)2f x f t t =+=+.

()当11t +<即0t <时,2max ()()23f x f t t t ==-+.

综上,???

????≤+->+=21,3221,2)(22

max

t t t t t x f 观察前两题的解法,为什么最值有时候分两种情况讨论,而有时候又分三种情况讨论呢?这些问题其实仔细思考就很容易解决。不难观察:二次函数在闭区间上的的最值总是在闭区间的端点或二次函数的顶点取到。第一个例题中,这个二次函数是开口向上的,在闭区间上,它的最小值在区间的两个端点或二次函数的顶点都有可能取到,有三种可能,所以分三种情况讨论;而它的最大值不可能是二次函数的顶点,只可能是闭区间的两个端点,哪个端点距离对称轴远就在哪个端点取到,当然也就根据区间中点与左右端点的远近分两种情况讨论。根据这个理解,不难解释第二个例题为什么这样讨论。 对二次函数的区间最值结合函数图象总结如下:

当a >0时???

????+<-+≥-=)

)((212)())((2

12)()(21max 如图如图,,n m a b n f n m a b m f x f ??

?

?

?

?

???

<-≤-≤->-=)(2)()(2)2()(2)()(543min

如图如图如图,,,m a b m f n a b m a b f n a b n f x f

当a <0时???

?

????

?

<-≤-≤->-=)(2)()(2)2()(2)()(876max 如图如图如图,,,m a b m f n a b m a b f n a b n f x f f x f m b a m n f n b a m n ()()()()()()()min =-≥+-<+?????

??,,如图如图212212910

、轴变区间定

二次函数随着参数的变化而变化,即其图象是运动的,但定义域区间是固定的,我们称这

种情况是“动二次函数在定区间上的最值”。

例. 已知x 2

1≤,且a -≥20,求函数f x x ax ()=++2

3的最值。

解:由已知有-≤≤≥112x a ,,于是函数f x ()是定义在区间[]

-11,上的二次函数,

将f x ()配方得:f x x a a ()=+?

? ???+-234

2

2

二次函数f x ()的对称轴方程是x a =-2顶点坐标为--?? ?

??a a 2342,,图象开口向上

由a ≥2可得x a

=-

≤-2

1,显然其顶点横坐标在区间[]

-11,的左侧或左端点上。 函数的最小值是f a ()-=-14,最大值是f a ()14=+。

例. () 求2

f (x )x 2ax 1=++在区间[]上的最大值。

() 求函数)(a x x y --=在]1,1[-∈x 上的最大值。 解:()二次函数的对称轴方程为x a =-,

当1a 2-<即1

a 2>-时,max f (x )f (2)4a 5==+; 当1a 2-≥即1

a 2

≤-时,max f (x )f (1)2a 2=-=+。

综上所述:max

12a 2,a 2f (x )14a 5,a 2

?

-+≤-??=??+>-??。 ()函数4)2(22a a x y +--=图象的对称轴方程为2a x =,应分121≤≤-a ,12-

>a

22≤≤-a ,2-a 这三种情形讨论,下列三图分别为

()2-

a f x f = () 2>a 时;由图可知max ()(1)f x f =

∴???????>≤≤--<-=2,)1(22,)2(2

,)1(a f a a

f a f y 最大

;即???????>-≤≤--<+-=2

,122,42,)1(2a a a a

a a y 最大 . 轴变区间变

二次函数是含参数的函数,而定义域区间也是变化的,我们称这种情况是“动二次函数在动区间上的最值”。

例. 已知24()(0),y a x a a =->,求22(3)u x y =-+的最小值。 解:将

24()y a x a =-代入中,得

①,即时,

②,即

时,

所以

(二)、逆向型

是指已知二次函数在某区间上的最值,求函数或区间中参数的取值。 例. 已知函数2

()21f x ax ax =++在区间[3,2]-上的最大值为,求实数的值。 解:2

()(1)1,[3,2]f x a x a x =++-∈- ()若0,()1,a f x ==,不符合题意。 ()若0,a >则max ()(2)81f x f a ==+

由814a +=,得38

a =

()若0a <时,则max ()(1)1f x f a =-=- 由14a -=,得3a =- 综上知3

8

a =

或3a =- 例.已知函数2

()2

x f x x =-+在区间[,]m n 上的最小值是m 最大值是n ,求m ,n 的值。 解法:讨论对称轴

中与,

,2

m n

m n +的位置关系。 ①若

,则max min ()()3()()3f x f n n

f x f m m

==??

==?

解得

②若

12m n

n +≤<,则max min ()(1)3()()3f x f n f x f m m

==??

==?,无解 ③若12m n

m +≤<

,则max min

()(1)3()()3f x f n f x f n m ==??==?,无解

④若

,则max min ()()3()()3f x f m n

f x f n m

==??

==?,无解

综上,4,0m n =-= 解析:由211()(1)22f x x =-

-+,知11

3,,26

n n ≤≤,则[,](,1]m n ?-∞, 又∵在[,]m n 上当x 增大时)(x f 也增大所以max min

()()3()()3f x f n n

f x f m m ==??==?

解得4,0m n =-=

评注:解法利用闭区间上的最值不超过整个定义域上的最值,缩小了m ,n 的取值范围,避开了繁难的分类讨论,解题过程简洁、明了。

例. 已知二次函数2

f (x )ax (2a 1)x 1=+-+在区间3,22??

-

????

上的最大值为,求实数的值。这是一个逆向最值问题,若从求最值入手,需分a 0>与a 0<两大类五种情形讨论,过程繁琐不堪。若注意到最大值总是在闭区间的端点或抛物线的顶点处取到,因此先计算这些点的函数值,再检验其真假,过程就简明多了。 具体解法为: ()令2a 1f ()32a --

=,得1

a 2

=- 此时抛物线开口向下,对称轴方程为x 2=-,且32,22??

-?-????

,故12-不合题意;

()令f (2)3=,得1

a 2

=

此时抛物线开口向上,闭区间的右端点距离对称轴较远,故1

a 2

=符合题意; ()若3f ()32-

=,得2a 3

=- 此时抛物线开口向下,闭区间的右端点距离对称轴较远,故2

a 3

=-符合题意。 综上,1a 2=

或2a 3

=- 解后反思:若函数图象的开口方向、对称轴均不确定,且动区间所含参数与确定函数的参数一致,可采用先斩后奏的方法,利用二次函数在闭区间上的最值只可能在区间端点、顶点处取得,不妨令之为最值,验证参数的资格,进行取舍,从而避开繁难的分类讨论,使解题过程简洁、明了。

三、巩固训练

.函数y 12

++=x x 在]1,1[-上的最小值和最大值分别是 ( )

)(A )

(B 43 ()21- ()4

1-, .函数242

-+-=x x y 在区间]4,1[ 上的最小值是 ( ))(A 7-

)(B 4- )(C 2- )(D

.函数5

48

2

+-=

x x y 的最值为 ( ) )(A 最大值为,最小值为 )(B 不存在最小值,最大值为

()最小值为, 不存在最大值 )(D 不存在最小值,也不存在最大值 .若函数]4,0[,422∈+--=x x x y 的取值范围是 .已知函数f x ax a x a ()()()[]=+---2

21303

2

2≠在区间,上的最大值是,则实数的值为

.如果实数y x ,满足12

2

=+y x ,那么)1)(1(xy xy +-有 ( )

()最大值为 , 最小值为

21 ()无最大值,最小值为4

3

())最大值为 , 无最小值 ()最大值为,最小值为4

3

.已知函数322

+-=x x y 在闭区间],0[m 上有最大值,最小值,则m 的取值范围是

( )

() ),1[+∞ () ]2,0[ () ]2,1[ () ]2,(-∞ .若12,0,0=+≥≥y x y x ,那么2

32y x +的最小值为

.设21,,x x R m ∈是方程0122

2=-+-m mx x 的两个实根,则2

22

1x x +的最小值

.设),](1,[,44)(2

R t t t x x x x f ∈+∈--=求函数)(x f 的最小值)(t g 的解析式。 .已知)(x f 2

2

a

ax x +

-=,在区间]1,0[上的最大值为)(a g ,求)(a g 的最小值。 .(江苏卷)设a 为实数,函数2()2()||f x x x a x a =+--.()若(0)1f ≥,求a 的取值范围;()求()f x 的最小值;()设函数()(),(,)h x f x x a =∈+∞,直接写出....(不需给出演算步骤)不等式()1h x ≥的解集.【解析】本小题主要考查函数的概念、性质、图象及解一元二次不等式等基础知识,考查灵活运用数形结合、分类讨论的思想方法进行探索、分析与解决问题的综合能力。

()若(0)1f ≥,则2

0||111a a a a a

2

()32,

f x x ax a =-+2

2

min

(),02,0()2(),0,033

f a a a a f x a a f a a ?≥≥???==??<

当x a ≤时,22

()2,f x x ax a =+-2

min

2

(),02,0()(),02,0

f a a a a f x f a a a a ?-≥-≥??==??<

min

2,0

()2,03

a a f x a a ?-≥?=?

2

3210x ax a -+-≥,222412(1)128a a a ?=--=-

当a a ≤≥

时,0,(,)x a ?≤∈+∞;

当a >,

得:(0x x x a ??≥?

?>?

讨论得:当a ∈时,解集为(,)a +∞;

当(a ∈

时,解集为()a ?+∞;

当[a ∈

时,解集为)+∞.

二次函数专项复习经典试题集锦(含答案)

二次函数专项复习经典试题集锦(含答案) 一、选择题: 1. 抛物线3)2(2+-=x y 的对称轴是( ) A. 直线3-=x B. 直线3=x C. 直线2-=x D. 直线2=x 2. 二次函数c bx ax y ++=2的图象如右图,则点 ),(a c b M 在( ) A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限 3. 已知二次函数c bx ax y ++=2,且0+-c b a ,则一定有( ) A. 042>-ac b B. 042=-ac b C. 042<-ac b D. ac b 42-≤0 4. 把抛物线c bx x y ++=2向右平移3个单位,再向下平移2个单位,所得图象的解析式 是532+-=x x y ,则有( ) A. 3=b ,7=c B. 9-=b ,15-=c C. 3=b ,3=c D. 9-=b ,21=c 5. 下面所示各图是在同一直角坐标系,二次函数c x c a ax y +++=)(2与一次函数 c ax y +=的大致图象,有且只有一个是正确的,正确的是( ) B D 6. 抛物线322+-=x x y 的对称轴是直线( ) A. 2-=x B. 2=x C. 1-=x D. 1=x

7. 二次函数2)1(2+-=x y 的最小值是( ) A. 2- B. 2 C. 1- D. 1 8. 二次函数c bx ax y ++=2的图象如图所示,若 c b a M ++=24c b a N +-=,b a P -=4,则( ) A. 0>M ,0>N ,0>P B. 0N ,0>P C. 0>M ,0P D. 0N ,0

x 时,求使y ≥2的x 的取值围.

九年级数学二次函数测试题含答案精选5套

九年级数学 二次函数 单元试卷(一) 时间90分钟 满分:100分 一、选择题(本大题共10小题,每小题3分,共30分) 1.下列函数不属于二次函数的是( ) A.y=(x -1)(x+2) B.y= 2 1(x+1)2 C. y=1-3x 2 D. y=2(x+3)2 -2x 2 2. 函数y=-x 2 -4x+3图象顶点坐标是( ) A.(2,-1) B.(-2,1) C.(-2,-1) D.(2, 1) 3. 抛物线()122 1 2++=x y 的顶点坐标是( ) A .(2,1) B .(-2,1) C .(2,-1) D .(-2,-1) 4. y=(x -1)2 +2的对称轴是直线( ) A .x=-1 B .x=1 C .y=-1 D .y=1 5.已知二次函数)2(2 -++=m m x mx y 的图象经过原点,则m 的值为 ( ) A . 0或2 B . 0 C . 2 D .无法确定 6. 二次函数y =x 2 的图象向右平移3个单位,得到新的图象的函数表达式是( ) A. y =x 2+3 B. y =x 2-3 C. y =(x +3)2 D. y =(x -3)2 7.函数y=2x 2 -3x+4经过的象限是( ) A.一、二、三象限 B.一、二象限 C.三、四象限 D.一、二、四象限 8.下列说法错误的是( ) A .二次函数y=3x 2 中,当x>0时,y 随x 的增大而增大 B .二次函数y=-6x 2 中,当x=0时,y 有最大值0 C .a 越大图象开口越小,a 越小图象开口越大 D .不论a 是正数还是负数,抛物线y=ax 2 (a ≠0)的顶点一定是坐标原点 9.如图,小芳在某次投篮中,球的运动路线是抛物线y =-15 x 2 +3.5的一部分,若命中篮 圈中心,则他与篮底的距离l 是( ) A .3.5m B .4m C .4.5m D .4.6m 10.二次函数y=ax 2 +bx +c 的图象如图所示,下列结论错误的是( ) A .a >0. B .b >0. C .c <0. D .abc >0. (第9题) (第10题) 3.05m x y

二次函数经典例题及答案

二次函数经典例题及答案 1.已知抛物线的顶点为P (- 4,—2),与x轴交于A B两点,与y轴交于点C,其中B点坐标为(1 , 0)。 (1) 求这条抛物线的函数关系式; (2) 若抛物线的对称轴交x轴于点D,则在线段AC上是否存在这样的点Q,使得△ ADQ 1 2 9 . 135 y=2 x +4x - 2;存在点Q (-1 , -4 ) , Q (2^5-9,-%'5 ) , Q (--^, -4) ?析 一2 25 试题分析:(1)根据顶点坐标把抛物线设为顶点式形式y=a ( x+4) - 2,然后把点B的坐 标代入解析式求出a的值,即可得解; (2)先根据顶点坐标求出点D 的坐标,再根据抛物线解析式求出点A、C的坐标,从而得 到OA OC AD的长度,根据勾股定理列式求出AC的长度,然后根据锐角三角形函数求出/ OAC勺正弦值与余弦值,再分① AD=QD时,过Q作QE1丄x轴于点E,根据等腰三角形三线合一的性质求出AQ,再利用/ OAC勺正弦求出QE的长度,根据/ OAC勺余弦求出AE的长度,然后求出OE,从而得到点Q的坐标;②AD=AQ时,过Q作QE2丄x轴于点E>,利用/ OAC勺正弦求出QE2的长度,根据/ OAC勺余弦求出AE的长度,然后求出OE,从而得到点Q的坐标;③AQ=DQ时,过Q作QE3丄x轴于点已,根据等腰三角形三线合一的性质求出AE 的长度,然后求出OE,再由相似三角形对应边成比例列式求出QE3的长度,从而得到点Q 的坐标. 试题解析:(1 )???抛物线顶点坐标为( 25 -4 , - 2), ???设抛物线解析式为 2 25 y=a (x+4) - 2 为等腰三角形?若存在,请求出符合条件的点

二次函数单元测试卷(含答案)

二次函数单元测试卷 一、选择题(每小题3分,共30分) 1. 当-2≤ x ≦1,二次函数y=-(x-m )2 + m 2 +1有最大值4,则实数m 值为( ) A.-4 7 B. 3或-3 C.2或-3 D. 2或3或- 4 7 2. 函数 2 2y mx x m =+-(m 是常数)の图像与x 轴の交点个数为( ) A. 0个 B .1个 C .2个 D .1个或2个 3. 关于二次函数 2 y ax bx c =++の图像有下列命题:①当0c =时,函数の图像经过原点;②当0c >,且函数の图像开口向下时,方程2 0ax bx c ++=必有两个不相等の实根;③函数图像最高点の纵坐标是 2 44ac b a -;④当0b =时,函数の图像关于y 轴对称.其中正确命题の个数是( ) A. 1个 B .2个 C .3个 D .4个 4. 关于x の二次函数 2 2(81)8y mx m x m =+++の图像与x 轴有交点,则m の范围是( ) A . 1 16m <- B . 116m - ≥且0m ≠ C . 1 16m =- D . 1 16m >- 且0m ≠ 5. 下列二次函数中有一个函数の图像与x 轴有两个不同の交点,这个函数是( ) A .2 y x = B .24y x =+ C .2325y x x =-+ D .2 351y x x =+- 6. 若二次函数2 y ax c =+,当x 取1x 、2x (12x x ≠)时,函数值相等,则当x 取12x x +时,函数值为( ) A .a c + B .a c - C .c - D .c 7. 下列二次函数中有一个函数の图像与坐标轴有一个交点,这个函数是( ) A .1x y 2 —= B .24y x =+ C .1x 2x y 2+=— D .2 351y x x =+- 8. 抛物线2 321y x x =-+-の图象与坐标轴交点の个数是( ) A .没有交点 B .只有一个交点 C .有且只有两个交点 D .有且只有三个交点 9. 函数2 y ax bx c =++の图象如图所示,那么关于x の一元二次方程2 30ax bx c ++-=の根の情况是( ) A .有两个不相等の实数根 B .有两个异号の实数根

二次函数练习题(含答案..)

6、(2009年上海市)抛物线2 2()y x m n =++(m n ,是常数)的顶点坐标是( ) A .()m n , B .()m n -, C .()m n -, D .()m n --, 8、(2009威海)二次函数2 365y x x =--+的图象的顶点坐标是( ) A .(18)-, B .(18), C .(12)-, D .(14)-, 9、(2009湖北省荆门市)函数y =ax +1与y =ax 2 +bx +1(a ≠0)的图象可能是( ) 10、(2009年贵州黔东南州)抛物线的图象如图所示,根据图象可知,抛物线的解析式可能..是( )A 、y=x 2 -x-2 B 、y=12 1 212++- x C 、y=12 1 212+--x x D 、y=22++-x x 13、(2009丽水市)已知二次函数y =ax 2 +bx +c(a ≠0)的图象如图所示,给出以下结论: ①a >0. ②该函数的图象关于直线1x =对称. ③当13x x =-=或时,函数y 的值都等于0. 其中正确结论的个数是( ) A .3 B .2 C .1 D .0 14、(2009烟台市)二次函数2 y ax bx c =++的图象如图所示,则一次函数2 4y bx b ac =+-与反比例函数a b c y x ++= 在同一坐标系内的图象大致为( ) A . B . C . D . 1 1 1 1 x o y y o x y o x x o y O

17、已知二次函数2 y ax bx c =++(0a ≠)的图象如图4所示,有下列四个结论: 20040b c b ac <>->①②③④0a b c -+<,其中正确的个数有( ) A .1个 B .2个 C .3个 D .4个 2、(2009年嘉兴市)已知0≠a ,在同一直角坐标系中,函数ax y =与2ax y =的图象有可能 是( ▲ ) 23、(2009年新疆)如图,直角坐标系中,两条抛物线有相同的对称轴,下列关系不正确...的是( ) A .h m = B .k n = C .k n > D .00h k >>, 图4 x x B . C . x A . x D . A . C . D .

二次函数解析式的确定(10种)

二次函数解析式的确定2 〈一〉三点式。 1,已知抛物线y=ax 2+bx+c 经过A (3,0),B (32,0),C (0,-3)三点, 求抛物线的解析式。 2,已知抛物线y=a(x-1)2+4 , 经过点A (2,3),求抛物线的解析式。 〈二〉顶点式。 1,已知抛物线y=x 2-2ax+a 2+b 顶点为A (2,1),求抛物线的解析式。 2,已知抛物线 y=4(x+a)2-2a 的顶点为(3,1),求抛物线的解析式。 〈三〉交点式。 1,已知抛物线与 x 轴两个交点分别为(3,0),(5,0),求抛物线y=(x-a)(x-b)的解析式。 2,已知抛物线线与 x 轴两个交点(4,0),(1,0)求抛物线y=21 a(x-2a)(x-b)的解析式。 〈四〉定点式。 1,在直角坐标系中,不论a 取何值,抛物线2225212-+-+-=a x a x y 经过x 轴上一定点Q , 直线2)2(+-=x a y 经过点Q,求抛物线的解析式。 2,抛物线y= x 2 +(2m-1)x-2m 与x 轴的一定交点经过直线y=mx+m+4,求抛物线的解析式。 3,抛物线y=ax 2+ax-2过直线y=mx-2m+2上的定点A ,求抛物线的解析式。

〈五〉平移式。 1,把抛物线y= -2x 2 向左平移2个单位长度,再向下平移1个单位长度,得到抛物线y=a( x-h)2 +k,求此抛物线解析式。 2,抛物线32-+-=x x y 向上平移,使抛物线经过点C(0,2),求抛物线的解析式. 〈六〉距离式。 1,抛物线y=ax 2+4ax+1(a ﹥0)与x 轴的两个交点间的距离为2,求抛物线的解析式。 2,已知抛物线y=m x 2+3mx-4m(m ﹥0)与 x 轴交于A 、B 两点,与 轴交于C 点,且AB=BC,求此抛物 线的解析式。 〈七〉对称轴式。 1、抛物线y=x 2-2x+(m 2-4m+4)与x 轴有两个交点,这两点间的距离等于抛物线顶点到y 轴距离的2 倍,求抛物线的解析式。 2、已知抛物线y=-x 2+ax+4, 交x 轴于A,B (点A 在点B 左边)两点,交 y 轴于点C,且OB-OA=4 3OC ,求此抛物线的解析式。 〈八〉对称式。 1,平行四边形ABCD 对角线AC 在x 轴上,且A (-10,0),AC=16,D (2,6)。AD 交y 轴于E ,将 三角形ABC 沿x 轴折叠,点B 到B 1的位置,求经过A,B,E 三点的抛物线的解析式。 2,求与抛物线y=x 2+4x+3关于y 轴(或x 轴)对称的抛物线的解析式。

高中数学二次函数分类讨论经典例题

例1(1)关于x 的方程0142)3(22=++++m x m x 有两个实根,且一个大于1,一个小于1,求m 的取值范围; (2)关于x 的方程0142)3(22=++++m x m x 有两实根都在)4,0[内,求m 的取值范围; ⑶关于x 的方程0142)3(22=++++m x m x 有两实根在[]3,1外,求m 的取值范围 (4)关于x 的方程0142)3(22=++++m x m mx 有两实根,且一个大于4,一个小于4,求m 的取值范围. 例3已知函数3)12()(2--+=x a ax x f 在区间]2,2 3[-上的最大值为1,求实数a 的值。

解(1)令142)3(2)(2++++=m x m x x f ,∵对应抛物线开口向上,∴方程有两个实根,且一个大于1,一个小于1等价于0)1(?吗?),即.4 21-++++≥+????? ?????≥+-+<+-<≥≥m m m m m m m m m m f f (3)令142)3(2)(2++++=m x m x x f ,原命题等价于 ???<<0)3(0)1(f f 即? ??<++++<++++0142)3(690142)3(21m m m m 得.421-0)4(0g m 或,0 )4(0???>)(恒成立,求实数a 的取 值范围。 解:(1)0)()(恒成立?.)]([min a x f >又当]1,1[-∈x 时, 5)1()]([min -=-=f x f ,所以).5,(--∞∈a 【评注】“有解”与“恒成立”是很容易搞混的两个概念。一般地,对于“有解”与“恒成立”,有下列常用结论:(1)a x f >)(恒成立?a x f >min )]([;(2)a x f <)(恒成立?a x f )(有解?a x f >max )]([;(4)a x f <)(有解?.)]([min a x f < 分析:这是一个逆向最值问题,若从求最值入手,首先应搞清二次项系数a 是否为零,如果)(,0x f a ≠的最大值与二次函数系数a 的正负有关,也与对称轴

二次函数测试卷(含答案)

二次函数单元测试卷 、选择题(每小题 3分,共30 分) 4ac - b 2 4a ;④当b = 0时,函数的图像关于 y 轴对称.其中正确命题的个数是( A. 1 个 B. a — c F 列二次函数中有一个函数的图像与坐标轴有一个交点,这个函数是( 2 抛物线y - -3x - 2x -1的图象与坐标轴交点的个数是( B .只有一个交点 C .有且只有两个交点 D .有且只有三个交点 1.当-2 < x = 1,二次函数 y=- (x-m ) 2 2 + m +1 有最大值4,则实数 m 值为( 7 A.- 4 B. ,3 或-..3 C.2 或-..3 D. 2 或3或-- 4 2.函数y = mx ? x - 2m ( m 是常数) 的图像与 X 轴的交点个数为( A. 0 个 1个或2个 3.关于二次函数 2 y = ax bx c 的图像有下列命题:①当c = 0时, 函数的图像经过原点;②当 c 0,且 函数的图像开口向下时,方程 2 ax bx 必有两个不相等的实根;③函数图像最高点的纵坐标是 2 9.函数y 二ax bx c 的图象如图所示,那么关于 x 的一元二次方程 A .有两个不相等的实数根 B.有两个异号的实数根 4. 关于X 的二次函数 2 y =2mx (8 m 1)x 8m 的图像与x 轴有交点,则 m 的范围是( 1 m - 一 16 1 1 m > m 二一一 B . 16 且 m=0 C . 16 D . 1 m 空一 16且 m^O 5. F 列二次函数中有 个函数的图像与 x 轴有两个不同的交点,这个函数是 C. 2 y 二 3x -2x 5 D. y 二 3x 2 5x 「1 6. 若二次函数 2 =ax c ,当x 取 X 1、 x 2 (Xi = X2 )时,函数值相等, 则当 x 取X 1 X 2时,函数值为 _c 7. 2 .y =x — 1 2 B . y =x 4 C. y =X 2 — 2X 1 2 D. y = 3x 5x -1 8. A .没有交点

二次函数经典测试题及答案解析

二次函数经典测试题及答案解析 一、选择题 1.如图,ABC ?为等边三角形,点P 从A 出发,沿A B C A →→→作匀速运动,则线段AP 的长度y 与运动时间x 之间的函数关系大致是( ) A . B . C . D . 【答案】B 【解析】 【分析】 根据题意可知点P 从点A 运动到点B 时以及从点C 运动到点A 时是一条线段,故可排除选项C 与D ;点P 从点B 运动到点C 时,y 是x 的二次函数,并且有最小值,故选项B 符合题意,选项A 不合题意. 【详解】 根据题意得,点P 从点A 运动到点B 时以及从点C 运动到点A 时是一条线段,故选项C 与选项D 不合题意; 点P 从点B 运动到点C 时,y 是x 的二次函数,并且有最小值, ∴选项B 符合题意,选项A 不合题意. 故选B . 【点睛】 本题考查了动点问题的函数图象:通过分类讨论,利用三角形面积公式得到y 与x 的函数关系,然后根据二次函数和一次函数图象与性质解决问题. 2.二次函数y =x 2+bx 的对称轴为直线x =2,若关于x 的一元二次方程x 2+bx ﹣t =0(t 为实数)在﹣1<x <4的范围内有解,则t 的取值范围是( ) A .0<t <5 B .﹣4≤t <5 C .﹣4≤t <0 D .t ≥﹣4 【答案】B 【解析】 【分析】 先求出b ,确定二次函数解析式,关于x 的一元二次方程x 2+bx ﹣t =0的解可以看成二次函

数y =x 2﹣4x 与直线y =t 的交点,﹣1<x <4时﹣4≤y <5,进而求解; 【详解】 解:∵对称轴为直线x =2, ∴b =﹣4, ∴y =x 2﹣4x , 关于x 的一元二次方程x 2+bx ﹣t =0的解可以看成二次函数y =x 2﹣4x 与直线y =t 的交点, ∵﹣1<x <4, ∴二次函数y 的取值为﹣4≤y <5, ∴﹣4≤t <5; 故选:B . 【点睛】 本题考查二次函数图象的性质,一元二次方程的解;将一元二次方程的解转换为二次函数与直线交点问题,数形结合的解决问题是解题的关键. 3.一列自然数0,1,2,3,…,100.依次将该列数中的每一个数平方后除以100,得到一列新数.则下列结论正确的是( ) A .原数与对应新数的差不可能等于零 B .原数与对应新数的差,随着原数的增大而增大 C .当原数与对应新数的差等于21时,原数等于30 D .当原数取50时,原数与对应新数的差最大 【答案】D 【解析】 【分析】 设出原数,表示出新数,利用解方程和函数性质即可求解. 【详解】 解:设原数为m ,则新数为2 1100 m , 设新数与原数的差为y 则22 11100100 y m m m m =-=-+, 易得,当m =0时,y =0,则A 错误 ∵1 0100 - < 当1m 50 122100b a ﹣﹣﹣===??? ??? 时,y 有最大值.则B 错误,D 正确. 当y =21时,2 1100 m m - +=21 解得1m =30,2m =70,则C 错误.

二次函数解析式的8种求法

二次函数解析式的8种求法 河北 高顺利 二次函数的解析式的求法是数学教学的难点,学不易掌握.他的基本思想方法是待定系数法,根据题目给出的具体条件,设出不同形式的解析式,找出满足解析式的点,求出相应的系数.下面就不同形式的二次函数解析式的求法归纳如下,和大家共勉: 一、定义型: 此类题目是根据二次函数的定义来解题,必须满足二个条件:1、a ≠0; 2、x 的最高次数为2次. 例1、若 y =( m 2+ m )x m 2 – 2m -1是二次函数,则m = . 解:由m 2+ m ≠0得:m ≠0,且 m ≠- 1 由m 2–2m –1 = 2得m =-1 或m =3 ∴ m = 3 . 二、开放型 此类题目只给出一个条件,只需写出满足此条件的解析式,所以他的答案并不唯一. 例2、(1)经过点A (0,3)的抛物线的解析式是 . 分析:根据给出的条件,点A 在y 轴上,所以这道题只需满足c b a y ++=χχ2 中的C =3,且a ≠0即可∴32++=χχy (注:答案不唯一) 三、平移型: 将一个二次函数的图像经过上下左右的平移得到一个新的抛物线.要借此类题目,应先将已知函数的解析是写成顶点式y = a ( x – h )2 + k ,当图像向左(右)平移n 个单位时,就在x – h 上加上(减去)n ;当图像向上(下)平移m 个单位时,就在k 上加上(减去)m .其平移的规律是:h 值正、负,右、左移;k 值正负,上下移.由于经过平移的图像形状、大小和开口方向都没有改变,所以a 得值不变.

例3、二次函数 253212++=χχy 的图像是由22 1χ=y 的图像先向 平移 个 单位,再向 平移 个单位得到的. 解: 253212++= χχy = ()232 12-+χ, ∴二次函数 253212++=χχy 的图像是由221χ=y 的图像先向左平移3个单位,再向下平移2个单位得到的. 这两类题目多出现在选择题或是填空题目中 四、一般式 当题目给出函数图像上的三个点时,设为一般式c b a y ++=χχ2 ,转化成一个三元一次方程组,以求得a ,b ,c 的值; 五、顶点式 若已知抛物线的顶点或对称轴、极值,则设为顶点式()k h x a y +-=2.这顶点坐标为( h ,k ),对称轴方程x = h ,极值为当x = h 时,y 极值=k 来求出相应的系数; 六、两根式 已知图像与 x 轴交于不同的两点()()1200x x ,,, ,设二次函数的解析式为()()21x x x x a y --=,根据题目条件求出a 的值. 例4、根据下面的条件,求二次函数的解析式: 1.图像经过(1,-4),(-1,0),(-2,5) 2.图象顶点是(-2,3),且过(-1,5) 3.图像与x 轴交于(-2,0),(4,0)两点,且过(1,- 29) 解:1、设二次函数的解析式为:c b a ++=χχγ2,依题意得: 40542a b c a b c a b c -=++??=-+??=-+? 解得:?? ???-=-==321c b a

二次函数经典例题与解答

、中考导航图 顶点 对称轴 1. 二次函数的意义 ; 2. 二次函数的图象 ; 3. 二次函数的性质 开口方向 增减性 顶点式: y=a(x-h) 2+k(a ≠ 0) 4. 二次函数 待定系数法确定函数解析式 一般式: y=ax 2+bx+c(a ≠ 0) 两根式: y=a(x-x 1)(x-x 2)(a ≠0) 5. 二次函数与一元二次方程的关系。 6. 抛物线 y=ax 2+bx+c 的图象与 a 、 b 、 c 之间的关系。 三、中考知识梳理 1. 二次函数的图象 在 画二 次函数 y=ax 2+bx+c(a ≠ 0) 的图象 时通常 先通 过配 方配成 y=a(x+ b ) 2+ 2a 公式来求得顶点坐标 . 2. 理解二次函数的性质 抛物线的开口方向由 a 的符号来确定 , 当 a>0 时, 在对称轴左侧 y 随 x 的增大而减小 b 4ac-b 2 反之当 a0时,抛物线开口向上 ; 当 a<0时,?抛物线开口向 下 ;c 的符号由抛物线与 y 轴交点的纵坐标决定 . 当 c>0 时, 抛物线交 y 轴于正半轴 ; 当 c<0 时,抛物线交 y 轴于负半轴 ;b 的符号由对称轴来决定 .当对称轴在 y?轴左侧时 ,b 的符号与 a 二次函数 4ac-b 的形式 , 先确定顶点 4a (- 2b a 4ac-b 2 ), 然后对称找点列表并画图 ,或直接代用顶点 4a 在对称轴的右侧 ,y 随 x 的增大而增大 简记左减右增 , 这时当 x=- b 时 ,y 2a 最小值= 4ac-b 2 4a

二次函数测试题及答案

1. 2. 3. 4. 5. 6. 、选择题: 二次函数 抛物线y =(x-2)2 3的对称轴是( A.直线x = —3 B.直线x =3 二次函数y 二ax 2 在( ) A.第一象限 C.第三象限 已知二次函数 则一定有( 2 A. b —4ac 0 bx c 的图象如右图,则点 = ax 2 把抛物线y =x 2 ? bx B.第二象限 D.第四象限 C. M bx c ,且 a ::: 0,a -b c .0, 2 B. b -4ac =0 C. b 2 -4ac :: 2 D. b —4ac < 0 c 向右平移3个单位,再向下平移 2个单位,所得图象的解析式是 2 y =x -3x 5,则有( A. b = 3 , c -1 C. b =3 , c =3 B. b = -9 , c = -15 D. b = —9 , c =21 下面所示各图是在同 一直 角 坐标 系内,二次 函数y 二ax 2 (a c)x c 与一次 函数 k 已知反比例函数y 的图象如右图所示,则二 x y =ax c 的大致图象,有且只有一个是正确的,正确的是(

11. 已知抛物线y =ax2 bx c与x轴有两个交点,那么一元二次方程ax2 bx 0的根的 情况是_______________________ 12. __________________________________________________________________ 已知抛物线 y=ax2+x+c与x轴交点的横坐标为-1,则a+c= _______________________________ 13. 请你写出函数y=(x+1)2与y=x2+1具有的一个共同性质:_____________________ . 14. 有一个二次函数的图象,三位同学分别说出它的一些特点:甲:对称轴是直线x =4 ; 乙:与x轴两个交点的横坐标都是整数; 丙:与y轴交点的纵坐标也是整数,且以这三个交点为顶点的三角形面积为 3. 请你写出满足上述全部特点的一个二次函数解析式: 15. 已知二次函数的图象开口向上,且与y轴的正半轴相交,请你写出一个满足条件的二次函 数的解析式:________________________. A.x 二-2 B. x =2 C. 8. 二 欠 函 1 数y :=(x -1)2'2的最小值是() A.-2 B. 2 C. D. 1 9. - 二- 次函数y =ax2bx c的图象如图所 M=4 a 2b c N = a —b c , P = 4a-b ,则( A.M0 , N 0, P 0 B.M<0 ,N 0, P 0 C.M0, N :: 0, P 0 D.M0 , N 0, P :::0 、 填空题: 7.抛物线y=x2 -2x 3的对称轴是直线( )x = —1 D. x =1 10.将二次函数y =x2 -2x 3配方成y =(x -h)2? k的形式,则y= ____________________

二次函数基础练习题大全含答案

二次函数基础练习题 练习一 二次函数 1、 一个小球由静止开始在一个斜坡上向下滚动,通过仪器观察得到小球滚动的距离s (米)与时间t 写出用t 表示s 的函数关系式: 2、 下列函数:① y =② ()21y x x x =-+;③ ()224y x x x =+-;④ 2 1y x x =+; ⑤ ()1y x x =-,其中是二次函数的是 ,其中a = ,b = ,c = 3、当m 时,函数()2235y m x x =-+-(m 为常数)是关于x 的二次函数 4、当____m =时,函数()2221m m y m m x --=+是关于x 的二次函数 5、当____m =时,函数()256 4m m y m x -+=-+3x 是关于x 的二次函数 6、若点 A ( 2, m ) 在函数 12-=x y 的图像上,则 A 点的坐标是____. 7、在圆的面积公式 S =πr 2 中,s 与 r 的关系是( ) A 、一次函数关系 B 、正比例函数关系 C 、反比例函数关系 D 、二次函数关系 8、正方形铁片边长为15cm ,在四个角上各剪去一个边长为x (cm )的小正方形,用余下的部分做成一个无盖的盒子. (1)求盒子的表面积S (cm 2)与小正方形边长x (cm )之间的函数关系式; (2)当小正方形边长为3cm 时,求盒子的表面积. 9、如图,矩形的长是 4cm ,宽是 3cm ,如果将长和宽都增加 x cm , 那么面积增加 ycm 2, ① 求 y 与 x 之间的函数关系式. ② 求当边长增加多少时,面积增加 8cm 2. 10、已知二次函数),0(2≠+=a c ax y 当x=1时,y= -1;当x=2时,y=2,求该函数解析式. 11、富根老伯想利用一边长为a 米的旧墙及可以围成24米长的旧木料,建造猪舍三间,如图,它们的平面图是一排大小相等的长方形. (1) 如果设猪舍的宽AB 为x 米,则猪舍的总面积S (米2)与x 有怎样的函数关系? (2) 请你帮富根老伯计算一下,如果猪舍的总面积为32米2,应该如何安排猪舍的长BC 和宽AB 的长度?旧墙的长度是否会对猪舍的长度有影响?怎样影响? 练习二 函数2ax y =的图像与性质 1、填空:(1)抛物线22 1x y =的对称轴是 (或 ),顶点坐标是 ,当x 时,y 随x 的增大而增大,当x 时,y 随x 的增大而减小,当x= 时,该函数有最 值是 ;

二次函数典型例题解析

二次函数典型例题解析 关于二次函数的概念 例1 如果函数1)3(232++-=+-mx x m y m m 是二次函数,那么m 的值为 。 例2 抛物线422-+=x x y 的开口方向是 ;对称轴是 ;顶点为 。 关于二次函数的性质及图象 例3 函数)0(2≠++=a c bx ax y 的图象如图所示, 则a 、b 、c ,?,c b a ++,c b a +-的符号 为 , 例4 (镇江2001中考题)老师给出一个函数y=f (x ),甲,乙,丙,丁四位同学各指出这个函数的一个性质:甲:函数的图像不经过第三象限。乙:函数的图像经过第一象限。丙:当x <2时,y 随x 的增大而减小。丁:当x <2时,y >0,已知这四位同学叙述都正确,请构造出满足上述所有性质的一个函数—————————————————。 例5 (荆州2001)已知二次函数y=x 2+bx +c 的图像过点A (c ,0),且关于直线x=2对称,则这个二次函数的解析式可能是 (只要写出一个可能的解析式) 例6 已知a -b +c=0 9a +3b +c=0,则二次函数y=ax 2+bx +c 的图像的顶点可能在( ) (A ) 第一或第二象限 (B )第三或第四象限 (C )第一或第四象限 (D )第二或第三象限 例7 双曲线x k y = )0(≠k 的两分支多在第二、四象限内,则抛物线222k x kx y +-=的大致图 象是( ) 例8 在同一坐标系中,直线b ax y +=和抛物线c bx ax y ++=2 确定二次函数的解析式 例9 已知:函数c bx ax y ++=2的图象如图:那么函数解析式为((A )322++-=x x y (B )322--=x x y (C )322+--=x x y (D )322---=x x y

二次函数基础练习题含答案

二次函数练习题 练习一 二次函数 1、 一个小球由静止开始在一个斜坡上向下滚动,通过仪器观察得到小球滚动的距离s (米)与时间t 时间t (秒) 1 2 3 4 … 距离s (米) 2 8 18 32 … 写出用t 表示s 的函数关系式: 2、 下列函数:① 23y x =② ()21y x x x =-+;③ ()224y x x x =+-;④ 2 1y x x =+; ⑤ ()1y x x =-,其中是二次函数的是 ,其中a = ,b = ,c = 3、当m 时,函数()2235y m x x =-+-(m 为常数)是关于x 的二次函数 4、当____m =时,函数()2221m m y m m x --=+是关于x 的二次函数 5、当____m =时,函数()256 4m m y m x -+=-+3x 是关于x 的二次函数 6、若点 A ( 2, m ) 在函数 12-=x y 的图像上,则 A 点的坐标是____. 7、在圆的面积公式 S =πr 2 中,s 与 r 的关系是( ) A 、一次函数关系 B 、正比例函数关系 C 、反比例函数关系 D 、二次函数关系 8、正方形铁片边长为15cm ,在四个角上各剪去一个边长为x (cm )的小正方形,用余下的部分做成一个无盖的盒子. (1)求盒子的表面积S (cm 2)与小正方形边长x (cm )之间的函数关系式; (2)当小正方形边长为3cm 时,求盒子的表面积. 9、如图,矩形的长是 4cm ,宽是 3cm ,如果将长和宽都增加 x cm , 那么面积增加 ycm 2, ① 求 y 与 x 之间的函数关系式. ② 求当边长增加多少时,面积增加 8cm 2. 10、已知二次函数),0(2 ≠+=a c ax y 当x=1时,y= -1;当x=2时,y=2, 求该函数解析式. 11、富根老伯想利用一边长为a 米的旧墙及可以围成24米长的旧木料,建造 猪舍三间,如图,它们的平面图是一排大小相等的长方形. (1) 如果设猪舍的宽AB 为x 米,则猪舍的总面积S (米2)与x 有怎样 的函数关系? (2) 请你帮富根老伯计算一下,如果猪舍的总面积为32米2,应该如何安 排猪舍的长BC 和宽AB 的长度?旧墙的长度是否会对猪舍的长度有 影响?怎样影响?

二次函数解析式的确定教案

二次函数解析式的确定教案 0.3二次函数解析式的确定 一.知识要点 若已知二次函数的图象上任意三点坐标,则用一般式求 解析式。 若已知二次函数图象的顶点坐标,则应用顶点式,其中为顶点坐标。 若已知二次函数图象与x轴的两交点坐标,则应用交点式,其中为抛物线与x轴交点的横坐标 二.重点、难点: 重点:求二次函数的函数关系式 难点:建立适当的直角坐标系,求出函数关系式,解决实际问题。 三.教学建议: 求二次函数的关系式,应恰当地选用二次函数关系式的形式,选择恰当,解题简捷;选择不当,解题繁琐;解题时,应根据题目特点,灵活选用。 典型例题 例1.已知某二次函数的图象经过点A,B,c三点,求其函数关系式。 分析:设,其图象经过点c,可得,再由另外两点建立

关于的二元一次方程组,解方程组求出a、b的值即可。 解:设所求二次函数的解析式为 因为图象过点c,「? 又因为图象经过点A, B,故可得到: ???所求二次函数的解析式为 说明:当已知二次函数的图象经过三点时,可设其关系式为,然后确定a、b、c的值即得,本题由c可先求出c的值,这样由另两个点列出二元一次方程组,可使解题过程简便。 例2.已知二次函数的图象的顶点为,且经过点 求该二次函数的函数关系式。 分析:由已知顶点为,故可设,再由点确定a的值即可解:,则 ???图象过点, 即: 说明:如果题目已知二次函数图象的顶点坐标,一般设,再根据其他条件确定a的值。本题虽然已知条件中已设,但我们可以不用这种形式而另设这种形式。因为在这种形式中,我们必须求a、b、c的值,而在这种形式中,在顶点已知的条件下,只需确定一个字母a的值,显然这种形式更能使我们快捷地求其函数关系式。

二次函数练习题含答案

精品文档 二次函数练习题 一、选择题: 1.下列关系式中,属于二次函数的是(x为自变量)( ) D. C. A. B. 2-2x+3的图象的顶点坐标是( 2. 函数y=x) A. (1,-4) B.(-1,2) C. (1,2) D.(0,3) 2的顶点在( 3. 抛物线y=2(x-3)) A. 第一象限 B. 第二象限 C. x轴上 D. y轴上 ) (4. 抛物线的对称轴是D. x=4 C. x=-4 B.x=2 A. x=-2 2) +bx+c的图象如图所示,则下列结论中,正确的是(5. 已知二次函数y=ax c<0 B. ab>0, A. ab>0,c>0 c<0 , D. ab<0 C. ab<0,c>0 2)

(象限+bx+c 的图象如图所示,则点在第___6. 二次函数y=ax D. 四二 C. 三 A. 一B. 2的横坐标是4,图象交+bx+c(a≠0)的图象的顶点7. 如图所示,已知二次函数y=axP ) ,那么AB的长是(x轴于点A(m,0)和点B,且m>4 D. 8-2m C. 2m-8 B. m A. 4+m 2的图象只可能+bx的图象经过第二、三、四象限,则二次函数y=ax8. 若一次函数y=ax+b) (是 在同一直角坐标系中的图象如图所示,抛物线的对称轴为直线已知抛物线和直线 9. 上的点, )是直线(x,y),P(xy)是抛物线上的点,P,y,Px=-1,(x313212123) ,,yy的大小关系是(yx

《二次函数解析式的确定》说课稿

《二次函数解析式的确定》说课稿 王焕义 尊敬的各位、老师: 大家好!很高兴能有这样一个机会与大家一起学习、交流,希望大家多多指教!今天,我说课的课题是《专题复习之二次函数解析式的确定》 教材分析:求函数解析式是初中数学主要内容之一,求二次函数的解析式也是联系高中数学的重要纽带。求函数的解析式,应恰当地选用函数解析式的形式,选择得当,解题简捷,若选择不当,解题繁琐。在新课标里求函数解析式也是中考的必考内容 通过教学,让学生掌握:(1)已知图象上任意三点坐标的二次函数解析式;(2)已知图象的顶点和另一点的坐标的二次函数解析式;(3)已知图象与x轴的两个交点和另一点的坐标的二次函数解析式;(4)会通过对简单现实情境的分析,确定二次函数的解析式。 教学目标:

能根据具体情况确定二次函数的解析式,在学习过程中发展学生的转化、化归思维方式。 教学重点难点 重点:求二次函数的函数关系式 难点:如何选择合理的求函数解析式的方法。 4、突破重难点办法: 通过做题总结归纳待定系数法、顶点式适用的题目 二、学生分析(说学情) 从认知状况来说,学生在此之前已经学习了用待定系数法确定一次函数的关系式,对求函数解析式已经有了初步的认识,这为顺利完成本节课的教学任务打下了基础,但对于顶点式和两根式,学生可能会产生一定的困难,所以教学中应予以简单明白,深入浅出的分析。 三、教法分析(说教法) 本节课主要采用师生合作的学习方式,引导学生运用类比的方式,动手解决问题。 四、教学设计(说过程) 一、导入 1、本节课一起来学习二次函数解析式的确定。二次函数的确定是历年中考的一个重要考点,更

是有些二次函数的中考压轴题后续问题得以解决的先决条件,因此,希望通过这节课的学习,每个同学都能熟练的掌握确定二次函数解析式的方法。 二、自主学习,探究新知 (一)二次函数解析式常见的几种形式 1. 二次函数解析式常见的形式有哪些?各自有何特点?一般式,顶点式,交点式, 2、每种解析式各有几个待定系数,各需几个条件? 设计意图:通过表格回顾二次函数表示方法,为探究如何确定函数解析式服务。 (二) 典例分析 例题: 已知一个二次函数的图像经过A(-1,0)B(3,0)C(1,-4)三点,求此二次函数的解析式。 (1)学生自主完成并集体交流。 (2)学生可能有三种设法: 设一般式、设交点式、顶点式。 (3)通过比较分析发现一般式适用面广,但解法较复杂;交点式与两根式解法简单,但需要特

相关主题
文本预览
相关文档 最新文档