当前位置:文档之家› 大跨极窄人行悬索桥动力特性及风振响应研究

大跨极窄人行悬索桥动力特性及风振响应研究

大跨极窄人行悬索桥动力特性及风振响应研究
大跨极窄人行悬索桥动力特性及风振响应研究

第40卷第9期建 筑 结 构2010年9月

大跨极窄人行悬索桥动力特性及风振响应研究

熊耀清, 何云明, 吴小宾

(中国建筑西南设计研究院有限公司,成都610081)

[摘要] 以一个跨度199m 、宽跨比仅1P 132,且地处峡谷的钢结构柔性悬索桥为工程背景,采用ANSYS 有限元软件进行了大跨极窄人行悬索桥动力特性及非线性风振响应研究。结果表明,该类桥的基本周期较通常的大型公路悬索桥明显偏短,采用抗风缆的抗风措施能够改变结构振型的排列顺序和改善结构抗风性能;采用基于线性滤波法的自回归(AR)模型应用MATLAB 模拟了考虑桥址风特性的水平及竖向脉动风时程,结果表明满足分析与设计需求;比较了水平及水平和竖向风工况下有无抗风措施时悬索桥的非线性风振响应,结果表明结构抗风性能满足安全要求。

[关键词] 大跨极窄悬索桥;动力特性;桥址风特性;非线性风振;抗风措施

Research on dynamic characteristics and wind vibration response of a

pedestrian large -span and slender suspension bridge

Xiong Yaoqing,He Yunming,Wu Xiaobin

(Chi na South west Architectural Design and Research Institute Co.,Ltd.,Chengdu 610081,China)

Abstract :Based on a steel truss flexible suspension bridge in mountainous area,which has the main span of 199m and the wide -span ratio of 1P 132,the dynamic characteristics and nonlinear wind vibration response of the pedestrian large -span and slender suspension bridge were analyzed by ANSYS.The resul ts indicate that the basic period of the bridge is shorter than that of general large high way suspension bridge obviously,and the wind fortification measures can change dynamic characteristic of the suspension brid ge and can increase its wind resistance performance.Considering the wind characteri stics of the bridge si te,the wind load history was simulated with AR model by MATLAB https://www.doczj.com/doc/1714983987.html,pared the nonlinear wind vibration response with and wi thou t forti fication measures under horizontal and horizontal &vertical wind load,i t shows that the wind resistance performance of the brid ge is qualified when i t comes to safety requirement.

Keywords :large -span and slender suspension bridge;dynamic characteristic;wind characteristics of the bridge site;nonlinear wind vibration;wind fortification measures

作者简介:熊耀清,博士,高级工程师,Emai l:xyq729730@https://www.doczj.com/doc/1714983987.html, 。

0 引言

大跨度、窄桥面悬索桥造价低廉、施工方便,在我

国西部山区应用较多。因其上部结构刚度较小,对风敏感,且多建于风场复杂的峡谷、山口等特殊地形山区[1],导致结构所承受的风荷载不同于常规结构,从而对抗风设计提出了更高的要求。而现有的大跨悬索桥的风振响应分析都是基于大型公路桥梁[2,3],现行桥梁设计规范对于大跨极窄的人行悬索桥没有相关规定。为给该类悬索桥的抗风设计及施工提供基本数据,以某景区的人行悬索桥为工程背景,研究了其结构自身的动力特性及桥址处山区风特性,进行了详细的风荷载静力及非线性风振响应分析,并比较了采用加抗

风缆、栏杆、中央扣等抗风措施后悬索桥的抗风性能。1

工程概况

某悬索桥地处低山丘陵地带,山体呈V 形走廊,海拔高度650~700m,桥体横跨东、西两岸,桥面相对谷底的垂直高度约为100m 。该桥主要用于连接两岸,桥型

布置如图1所示。采用单跨钢结构柔性悬索桥形式,跨度199m,主缆间距115m,矢跨比1P 1312,宽跨比达1P 132,吊杆间距310m 。主缆为悬索桥主要承重结构,两端固定于锚碇,两岸桥塔为主缆提供中间支承(在塔顶设置主索鞍)。加劲梁及桥面系通过吊杆悬挂于主缆上,并在主塔处设置支座,提供支承,抗风缆通过抗风拉索与桥面横梁相连,并组成一个与铅垂面呈30b 夹角的平面。主缆采用2根7<38的平行钢丝束索,抗拉强度1770MPa;吊杆采用圆钢<40;抗风缆采用2根<44的钢丝束索,抗拉强度1770MPa 。桥面系包括加劲梁、桥面铺装、栏杆等,加劲梁为梁格体系,由纵、横梁及风联钢构(即桥面水平撑)焊接而成,纵、横梁分别采用工

字钢I14,I20,材质为Q345;桥面铺装为宽300mm 、厚80mm 松木板条,间缝10mm,木板采用锚栓与桥面纵梁连接,栏杆采用<50钢管,间距115m;桥塔为钢筋混凝

148

图1 悬索桥布置图P m

土框架结构;锚碇采用重力式锚。桥面系的断面及加劲梁立面布置如图2所示。图2 悬索桥断面及立面局部图P mm

2

有限元建模

采用ANSYS 参数化设计语言APD L 二次开发,建立大跨极窄悬索桥的三维空间模型。为了准确地模拟桥梁结构的力学特性,所建立的计算模型应如实反映结构构件的质量、几何、材料及边界约束条件等。采用单元为:加劲梁、栏杆、桥塔塔柱与横梁采用三维空间梁单元Beam4模拟;桥面铺装采用三维壳单元Shell63模拟;主缆、吊杆、抗风缆等采用Link10单元模拟并考虑结构自重产生的初始应变及几何非线性的影响;索夹等采用Mass21单元模拟。

边界与约束条件为:主梁横桥向、竖向自由度与主塔横梁为变位主从关系,另四个方向自由;悬索桥的主缆通过主索鞍固定在主塔顶上,成桥后不允许发生相对位移,主缆与主塔顶建立主从关系;悬索桥的主缆在

两端锚碇处做固定处理;两主塔基础为嵌岩基础,塔身底部按固接处理。具体模型见图3

图3 悬索桥有限元模型图

为了掌握桥梁结构的固有动力特性并为提高结构抗风性能,选取分析模型为:模型?为原结构,即在方案设计阶段的结构模型;模型ò,ó,?分别为在方案设计阶段的结构模型的基础上,依次增加抗风缆、栏杆、中央扣(即在主跨跨中设置于主缆和加劲梁间的刚性连接件)等抗风措施后的结构模型,见表1。3

动力特性分析

动力特性分析是结构动力计算的基础。采用具有求解速度快、可以指定特征值范围等特点的Block -Lanczos 方法进行结构特征值及动力特性分析。分别对

四种结构模型进行动力计算,求得在静力荷载作用下的结构动力特性计算结果(即关键振型和频率),对比见表1。

由表1可知,该悬索桥的动力特性有如下特点:1)采用加抗风缆、栏杆、中央扣等三种抗风措施,能够改变结构振型的排列顺序;2)三种抗风措施中,加抗风缆对结构的动力特性影响最大,能够改变结构的关键振型和频率,尤其是结构的一阶正、反对称侧弯振动频率增加明显,提高了结构的抗风稳定性,加栏杆对结构动力特性的影响可以忽略,加中央扣有一定提高,相比加抗风缆来说增加不多。

另外,与通常的大型公路悬索桥相比,该悬索桥也

存在如下特点:1)该桥的基本周期明显偏短(为3~

149

人行悬索桥动力特性对比表1

结构振

型特征

模型?:原结构模型ò:原结构+抗风缆模型ó:原结构+抗风缆+栏杆模型?:原结构+抗风缆+栏杆+

中央扣

振型阶数频率P Hz振型阶数频率P Hz提高倍数振型阶数频率P Hz提高倍数振型阶数频率P Hz提高倍数

一阶侧弯

一阶竖弯

一阶扭转正对称1011601101326521039101309511931101333521079反对称5014219601519611232601505711198501514511283正对称7014935401495811005401485701984301495811005反对称3013512201407411160201420211196201458611305正对称23112927311131891102031113218110221501854601660反对称21111499281123021106926111969110402911371811192

注:表中提高倍数均为增加抗风措施后结构的频率与原结构的频率之比。

612s,而润扬桥及江阴桥的都在20s左右),主要是由于该桥的跨径较小,同时抗风缆的存在也发挥了一定作用;2)该桥的前几阶振型均以桥面系振动为主,扭转振型出现较晚(20阶以后),这也是该类柔性悬索桥的特点之一。分析结果可与文[4],[5]的分析结果印证。图4为模型?的几个关键振型图。

图4悬索桥模型?动力分析关键振型图

4风振响应分析

大跨极窄人行悬索桥结构的风激动力性能分析是其设计计算中的一个关键问题。研究风荷载作用下的结构动力响应,显得十分重要。为此,应用随机模拟法的思路,进行了考虑结构非线性风振响应的分析[5]。首先,根据考虑了桥址地形影响的风的统计特性,将风速模拟成时间的函数,即人工模拟生成风速时程;并利用风的空间相关性,将在结构各个节点处生成的不相关的风速转换成空间相关的风速场;其次,将结构按有限元离散化后,把模拟生成的风速合理地转换为风荷载作用于相应的单元节点上,利用有限元法在时间域内直接求解运动微分方程并求得结构的响应;最后,由响应值中求得所要的统计信息,如结构振动的位移、速度、加速度的均值和均方差,并从中获得结构的风振响应特性。

文中仅做了悬索桥的抖振分析,涡激振动和颤振问题正在研究中,文中没有探讨。

411全桥风场模拟

随着大跨极窄人行悬索桥跨度增大,结构趋向轻柔,振动频率下降,对风的敏感性加大。为了给桥梁抗风设计提供可靠依据,研究桥梁结构在风荷载作用下的气动性能,确定桥址处的风场特性是确保桥梁安全的基础。

悬索桥桥址属于平原或丘陵开阔地带的峡谷或山口,具有峡谷风效应。按照我国规范建议:处于峡谷或山口的桥梁抗风设计时至少应当考虑111的风速修正系数。由文[3]可知,对于山区地形平均风速剖面,当在峡谷风作用下,横桥风向的峡谷风经过通长顺直峡谷到达桥位,在沿峡谷风作用下平均风速垂直分布可以近似采用指数律来描述,其风剖面指数统一规定取为012。当风垂直峡谷吹时,相比靠近边坡的桥塔位置,在桥跨中位置底部一段高度范围平均风速很小且几乎不变,然后接近山顶时随着高度增加急剧增大,由于文中悬索桥跨度相对于文[3]要小得多,因此横桥向和顺桥向的基本风速均取为111倍的当地设计风速,即24110m P s。

脉动风场模拟时,横桥向风速谱和顺桥向风速谱采用沿高度变化的Simiu谱,竖向脉动风速谱采用Panofsky谱。此时,高度z处平均风速为U(z)时的水平及竖向脉动风功率谱密度函数可分别表达为: Simiu谱:

nS u(z,n)

u2*

=200f

(1+50f)53

(1)

Panofsky谱:

nS w(z,n)

u2*

=6f

(1+4f)2

(2)

式中:S

u

(z,n)为水平向风功率谱密度函数;S w(z,n)

150

为竖向风功率谱密度函数;n 为风脉动频率;f 为相似律坐标,f =nZ P U (z );u *为摩阻速度,u *=014u P ln(z P z 0),z 0=0103m 。

脉动风速时程的随机模拟采用线性滤波器法中的自回归AR 模型(Autoregressive Models)。将人工产生的均值为零、具有白色谱的一系列随机数输入到设计好的自回归过滤器,过滤器将输出具有给定风速谱密度的随机数系即风速时间序列[6]。

利用MATLAB615编程模拟以Si miu 谱和Panofsky 谱为目标谱的随机脉动风速时程,实现了对桥主梁、主缆的横向和竖向的三维空间脉动风场的模拟。模拟的脉动风速时程具有空间相关性。风场模拟的基本参数见表2,桥梁结构模拟点见图5。图6,7为主梁跨中水平向、竖向脉动风速时程及风场功率谱,模拟结果表明风场理想。

风场模拟的基本参数

表2

地表粗

糙类别平均风速P m P

s 目标谱AR 模型阶数

模拟步长P s 模拟

时间P s B

2411或2119

Simi u 谱、Panofsky 谱

5

011

20418

图5 桥梁结构模拟点

图6 主梁跨中水平向脉动风速时程及风场功率谱

412风振位移响应分析

对工程结构设计计算来说,风作用的大小一般以风压来表示[6]。由伯努利方程得自由气流的风速在单位面积上的风压为:

w =12

Q v

2

(3)

为了合理确定风荷载,将风压公式转换为风荷载

公式,即:

P (t )=1

2

C P Q Av 2(t )

(4)图7 主梁跨中竖向脉动风速时程及风场功率谱

式中:P (t )为风荷载;C P 为风压分布系数;Q 为空气质量密度;A 为作用面积;v (t )为风速,包含了平均风速和脉动风速。

结构的运动方程为:

M &u (t )+C ?u (t )+Ku (t )=P (t )

(5)

式中:M 为集中质量矩阵;C 采用Rayleigh 阻尼的阻尼矩阵;K 为结构刚度矩阵;u (t ),?u (t ),&u (t )分别为结

构位移、速度及加速度向量;P (t )为采用式(11)得到的荷载矩阵。

进行结构风振时域分析,阻尼比取N =01005。利用Ne wton -Raphson 法求解结构的非线性动力增量平衡方程,计算得到风振响应。

计算2种工况:1)水平风荷载单独作用;2)水平风荷载及竖向风荷载共同作用。

对比四种模型在工况1和2作用下的风振响应分析结果发现,模型ò比原结构模型的位移响应大大减小,而模型ó,?加栏杆、中央扣则对结构位移响应贡献甚微;仅分析了横桥向(即为Y ,Z 向)风荷载,没有考虑顺桥向(即X 向)风荷载。为方便分析,仅列举模型?和模型ò的分析结果,见图8。

为进一步说明结构的风激动力性能并进行比较,将图8计算结果等通过大量的计算,对各节点位移进行概率统计可得到时间平均值和均方差,见表3。计算极大值和极小值,并将结果进行分析,可以得出以下几条规律:

(1)所有模型和工况下,桥面跨中的位移均大于桥面跨边的位移。这是因为跨中的基本风速比跨边大1112倍,更主要是因为跨边的约束要强于跨中。

(2)所有模型和工况下,主缆跨边在Y 向的位移均大于桥面跨边的位移,而在Z 向是几乎不变的。这是因为跨边桥面结构刚度和约束要远强于主缆。

(3)仅在水平风荷载作用下,加抗风缆(模型ò)能够大大减小结构的横桥向位移,而对竖向位移作用不

151

注:1,2分别表示模型?和模型ò;h,h v分别表示工况1和工况2;Y,Z

分别表示Y和Z向位移。

图8位移时程曲线

结构位移对比P mm表3

结构各点风振响应

模型?模型ò

Y向Z向Y向Z向

均值均方差均值均方差均值均方差均值均方差

工况1工况2桥面跨中7161028510-91402100186107919-6011411主缆跨边252109612-281001901121042115-2012110桥面跨边95113715-2719019024171012-20111103桥面跨中808103111036102718189107919-1412151

5主缆跨边28610112

1025137140129104815-1412414桥面跨边10610431225127140241610117-14114146

明显;在水平和竖向风荷载共同作用下,加抗风缆(模型ò)能减小结构的横桥向、竖向位移,而对竖向位移的相对作用更显著。这是因为在水平风荷载作用下,结构的振动也是接近竖向的,风来流方向与结构振动方向接近垂直,对结构的影响不大;而在有竖向风荷载作用时,自然会影响结构的响应值。

(4)无论在水平风荷载还是水平和竖向风荷载共同作用下,悬索桥的横桥风振远大于竖向风振,因此在结构设计时悬索桥的横桥风振应是考虑的重点。

413等效静力风荷载

以悬索桥的横桥风振为例,进行等效静力风荷载风振系数计算。图9给出了利用时域方法得到的桥面结构沿顺桥向各测点的水平风及水平和竖向风共同作用下的横桥向(Y向)峰值位移响应,其表达式为[7]:

R^(z)=

R(z)+g R R(z)(6)式中:

R(z),R R(z)分别为Y向位移响应的均值和均方根;g为峰值因子,通常取310~410,此处对应位移响应取315。

基于阵风荷载因子法计算结构的风振系数,从而确定结构的等效静力风荷载。对于内力响应,峰值因子g在此处取410。

则基于阵风荷载因子法的风振系数表达式为:

G=

R^(z)

R(z)

=1+g

R

R

(z)

R(z)

(7)

等效静力风荷载是指将该荷载以静力形式作用在结构上时产生的响应,与实际风荷载产生的响应相同。由阵风荷载因子法所得的等效静力风荷载为:

P^(z)=G

P(z)(8)式中

P(z)为z高度处静风荷载。

故可将上述时域分析所得位移响应均值和均方根值代入式(7),得到悬索桥沿跨度各测点的风振系数见图10。由式(7)得到的风振系数沿高度变化较小,其数值在2155~2175之间。

图9桥面横桥向的峰值位移

图10桥面横桥向的风振系数

5结论

(1)大跨极窄悬索桥的基本周期较通常的大型公路悬索桥明显偏短,采用抗风缆抗风措施能够改变结构振型的排列顺序和改善结构抗风性能。

(2)采用基于线性滤波法的自回归(AR)模型应用MATLAB模拟了考虑桥址风特性的水平及竖向脉动风时程,结果表明满足分析与设计需求。

(下转第155页)

152

围护桩与下穿隧道协同受力原理图见图4,下穿隧道计算模型见图5,围护桩计算简图见图6,两者协同受力分析计算结果见表2。表中各工况(图6):工况1:开挖至第一次开挖面;工况2:设置预应力锚索,开挖至第二次开挖面;工况3:设置第一道钢支撑,开挖至第三次开挖面;工况4:设置第二道钢支撑,开挖至坑底;工况5:浇筑底板,拆除第二道钢支撑;工况6:浇筑地下层2中板,

拆除第一道钢支撑。

图6 围护桩计算简图

314位移监测情况

2号线车站于2009年3月底基坑开挖,2009年12月上旬封顶覆土,在此期间对下穿隧道侧的车站围护桩顶位移进行监测,分别在2号线车站基坑角部和中部布置测点XC1和XC2。监测结果(图7)显示:1)最终累计水平位移测点XC1为13mm,测点XC2为15mm,与

计算分析数据基本吻合;2)测点XC2在2009年8月中协同受力分析计算结果

表2

计算结果

工况

1

23456桩顶荷载F A P kN 156267316331389490桩顶水平位移f A

P m m 131181212114183141551416914133锚索处水平位移f B P mm 9104816711154111341117911193f A -f B P m m

4114

3154

3129

3121

2190

2140k A c =F A P (f A -f B )P 215P MN P m 215107330111938137641118853152481185f A c -f B c P mm

411431543129312121912139下穿隧道侧向约束弹簧反力F A c P k N P m 62141061712715132121551519519下穿隧道顶点水平位移P mm

24104

22107

24127

23186

23151

22129

注:协同条件为f A -f B =f A c -f B c ,F A =215F A c 。

旬水平位移超过警戒值13mm,接近控制值20mm 。

测点XC2位移异常是由于银石广场于2009年6月上旬在基坑东端下穿隧道处设置售楼部,增大了基坑边活载引起的。通过局部加密内支撑,并加强监测,桩顶位移逐渐减小并最终趋于稳定。

图7 下穿隧道侧围护桩顶水平位移监测图

4 结语

对于需对邻近建(构)筑物进行保护的基坑,其围

护结构设计应考虑与相邻结构协同受力分析。采用APDL 及ANSYS 软件可对基坑开挖、回筑过程进行较好的模拟,计算结果与实测值较接近。

致谢:感谢冯中伟副总工程师对本文提出的宝贵意见。

(上接第152页)

(3)比较了水平及水平和竖向风工况下有无抗风措施时悬索桥的非线性风振响应,结果表明:仅在水平风荷载作用下,加抗风缆能够大大减小结构的横桥向位移,而对竖向位移作用不明显;在水平和竖向风荷载共同作用下,加抗风缆能减小结构的横桥向、竖向位移,而对竖向位移的相对作用更显著。无论在水平风荷载还是水平和竖向风荷载共同作用下,悬索桥的横桥风振远大于竖向风振,因此在结构设计时悬索桥的横桥风振应是重点考虑的问题。

(4)该类大跨极窄人行悬索桥在设计时可采用基于阵风荷载因子法得出的取值为2175的风振系数作为参考值进行等效静力风荷载计算。

参考文献

[1]陈政清,李春光,张志田,等.山区峡谷地带大跨度桥梁风场特性试验[J].实验流体力学,2008,22(3):54-59,67.

[2]GB50009)2001建筑结构荷载规范[S].2006年版.北京:中国

建筑工业出版社,2006.[3]胡峰强.山区风特性参数及钢桁架悬索桥颤振稳定性研究[D].

上海:同济大学,2006.[4]阎卫国.超窄悬索桥抗风稳定性研究及风振响应控制[D].武

汉:武汉理工大学,2008.

[5]武俊彦.大跨窄钢桁架加劲梁悬索桥抖振时域计算分析[D].西安:长安大学,2008.

[6]向阳.薄膜结构的初始形态设计、风振响应分析及风洞实验研究[D].哈尔滨:哈尔滨建筑大学,1998.

[7]张文元,郑朝荣,张耀春,等.某景观烟囱顺风向风振响应分析与

风振系数确定[J].建筑结构,2010,40(2):97-99,69.

155

人行索道桥计算书

官渡镇紫阳台景观人行索桥工程计算书 重庆 二〇一四年九月

目录 1. 工程概况 (3) 1.1人行索桥概况 (3) 1.2设计标准 (3) 1.3计算依据 (3) 2. 计算方法与建模计算 (4) 2.1分析模型 (4) 2.2模型样图 (4) 2.3既有状况下人行索桥承载验算 (4) 2.3.1 自重内力及位移计算 (4) 2.3.2 施加人群荷载内力及位移计算 (6) 3. MIDAS建模结果分析及验算 (9) 4. 人工验算 (9) 4.1基本参数 (9) 4.2验算过程 (9) 4.2.1 内力验算 (9) 4.2.2 位移验算 (10) 4.2.3 抗风索验算 (11) 5. 地锚稳定性验算: (12) 5.1基础抗倾覆稳定性验算 (12) 5.2基础抗滑稳定性验算: (13) 6. 参考文献 (14)

1.工程概况 1.1 人行索桥概况 紫阳台人行索桥,位于官渡河下游1000m处,布置高程324.35m。左右岸与新修人行道相接。桥面总宽2.0m,人行道宽度1.7m,采用6根直径31mm的钢索作承载索,2根直径31mm的钢索作防护索,桥面采用厚3.5cm松木板作人行走道,两侧设有栏杆,全桥总长约66m。该桥主要承担人员过河交通。 1.2 设计标准 设计荷载:业主要求一次能满足通过50人,现偏安全取人群荷载3.4kN/m进行验算。 本桥跨径为66m,矢高为1.65m,按抛物线计算各点高差。 主索采用GB1102-74标准的6×19+1Φ46钢丝绳6根,公称抗拉强度为1870MPa,主索垂跨比约为1/40,矢高1.65m,护栏防护吊杆及抗风索采用Φ16.5钢丝绳;索采用钢丝均为镀锌钢丝,并涂防锈涂料。 桥梁设计线位于桥梁中心线,不设置横坡。 本桥为悬带桥,塔架为钢筋混凝土,桥面为木板,桥面横梁为槽钢。 基底岩石单轴极限抗压强度不小于21.0MPa。 未尽事严格按《公路桥涵施工技术规范》(JTG T/F50-2011)执行。 1.3 计算依据 1)中华人民共和国行业标准.《公路桥涵设计通用规范》(JTG D60-2004); 2)中华人民共和国行业标准.《公路桥涵地基与基础设计规范》(JTGD63-2007); 3)中华人民共和国行业标准.《公路桥梁抗风设计规范》(JTG.T D60-01-2004); 4)中华人民共和国国家标准.《重要用途钢丝绳》(GB8916-2006)。

随机振动名词解释

"脉冲响应函数" 英文对照 impulse response function; "脉冲响应函数" 在学术文献中的解释 1、h(t)是在初始时刻作用以单位脉冲而使单自由度系统产生的响应,所以称为脉冲响应函数.1·1·2频率响应函数H(ω)=1k-ω2m+iωcH(ω)是角频率为ω的单位简谐激励所引起的结构稳态简谐响应的振幅,称为频率响应函数,也称为转换函数 文献来源 2、Yεi,jtt+s作为时间间隔s的一个函数,度量了在其他变量不变的情况下Yi,t+s对Yj,t的一个脉冲的反应,因此称为脉冲响应函数 文献来源 "频率响应函数" 英文对照 frequency response function; "频率响应函数" 在学术文献中的解释 1、频率响应函数是指系统输出信号与输入信号的比值随频率的变化关系它是衡量高速倾斜镜工作性能的一个重要指标.通过抑制谐振峰可以改善高速倾斜镜的使用性能 文献来源 2、经傅利叶变换,得到频域内的导纳(一般用速度导纳来表示)表达式 Hv(ω)=v(ω)F(ω)=jω-ω2M+jωC+K(2)H(ω)又称为频率响应函数 文献来源 3、y(t)=A0eiωty(t)=iωA0eiωt(6)将(6)代入(3)得A0eiωt(RCiω+1)=Ajeiωt(7)和A0Aj=1RCiω+1=U(iω)(8)U(iω)称为频率响应函数 文献来源 "传递函数" 英文对照 transfer function of; transfer function; transfer function - noise; "传递函数" 在学术文献中的解释 1、由于传递函数的定义是两个拉普拉斯变换之比,所以使用时必须准确知道传递函数的类型,即,是位移、速度,还是加速度传递函数,才能避免出错 文献来源 2、而传递函数的定义是两个分量之比为两个传感器之间优势波的传递函数.它给我们的启发是任取两个已知传感器组成一个传递函数通过分析传递函数的特征可以判断两个分量的优势波和非优势波 文献来源

风与结构的耦合作用及风振响应分析(精)

第17卷第5期工程力学Vol.17 No.52000年 10 月ENGINEERING MECHANICS Oct. 2000 收稿日期修订日期 国家自然科学基金资助项目(59578050 作者简介 女 浙江大学土木系副教授 主要从事结构工程研究 文章编号 孙炳楠 (浙江大学土木系 在目前的风振响应计算中 但对于超高层建筑 由于基频较低 本文基于准定常假定推论出 风与结构的耦合作用实质上就是气动阻尼效应就可建立考虑风与结构耦合作用的风振响应模态分析方法确定了风与 结构耦合作用所产生的气动阻尼比较了采用Davenport 谱和Kaimal 谱对计算结果的差异性

采用Kaimal 谱并考虑风与 结构的耦合作用所得计算结果能与风洞试验结果吻合较好 风振响应 气动阻尼 中图分类号 A 1前言 作用于高耸建筑物 地震荷载和风荷载 结构显得越来越柔性振动频率随之降低 建筑物越柔而地震能量集中在高频区 因此 当建筑物总高度超过某一值时 深入分析高耸结构的风振效应就显得十分重要 大部分的研究都集中在顺风向的抖振分析上 从原理上讲 只是在计算过程中针对具体的分析对象有不同的处理方式对结构的计算模式作不同的简化等等 频域分析法比较直接方便

并且所需机时较长 在目前的风振响应计算中这对于一阶频率高于 0.5Hz 的悬臂结构是可以接受的[5] ???ê?t?|?á11 óè ??ê?×è?á??D?μ????á11 ±????ùóú×??¨3£?ù?¨ 风与结构的耦合作用及风振响应分析17 虑风与结构耦合作用的风振响应模态分析方法确定了不同风速下风 与结构耦合作用所产生的气动阻尼采用三维离散的 桁架单元和梁单元模型并着重探讨了两个问题 (2 采用Davenport 谱和Kaimal 谱对结构风振响应的差 异性 2风振响应频域分析法 任一结构采用合适的有限单元离散后在风荷载作用下的运动平衡方程为大气湍流可以看成是一个平稳随机过程为了求得 风振响应的均方根值x σ?????↓? ≥?(1进行求解 并且对于小阻尼体系

单层平面索网幕墙结构的风振响应分析及实用抗风设计方法

第24卷第5期2007年lO月 计算力学学报 ChineseJournalofComputationalMechanics 、bl_24.No.5 October2007 文章编号:1007—4708(2007)05—0633—05单层平面索网幕墙结构的风振响应分析 及实用抗风设计方法 武岳。,冯若强,沈世钊 (略尔滨工业大学空间结构研究中心,黑龙江哈尔滨150090) 摘要:单层平面索网玻璃幕墙结构是广泛应用于大型公共建筑中的一种新型结构形式,由于其具有秉性大’质量轻、阻尼小、自振频率低的特点.属风敏蓐结构.由于单索幕墙具有较高的几何非线性,丰文采用基于随机振葡理论的模态叠加频域方法进行了单索幕墙结构的风振响应分析.将模杰叠加频蛾方法的计算结果和非线性时程分析方法的精确计算结果进行了比较,证明了谈方法的准确性.并且丰文通过分析各阶模态对单索幕墙结构风振响应的重献,得到脉动风荷载下结构的振神以第一阶模态为主的结论.根据该结论本文采用频域方法推导了单索幕墙结构的位移均方差和索内力均方差的实用计算公式.同时考虑单索摹墙的结构特点提出了基于结构响应的单索幕墙结构实用抗风设计方法. 关键词:点支武玻璃幕墙;风振响应;索结构;频蛾方法;抗风设计方法 中图分类号:TU383文献标识码:A 1引言 近年来,随着玻璃工艺的提高和大量公共建筑的兴建,以预应力拉索作为支承结构的单层平面索网玻璃幕墙结构(以下简称单索幕墙)以其简洁、通透的特点在国内得到广泛应用.单层平面索网作为一种新型张力结构体系,具有柔性大、质量轻、阻尼小、自振频率低的特点,属风敏感结构,但由于其为新型结构体系,目前国内外对该类体系的动力性能研究较少,对其风激动力性能缺乏了解。同时现行荷载规范中提出的等效静风荷载法仅适用于高层、高耸等悬臂型结构,幕墙规范提出的阵风系数也仅适用于单块玻璃的抗风设计,不适用于支承结构设}卜“,因此需要提出一套考虑风荷载动力作用且在工程上简便易行的单索幕墙结构实用抗风设计方法。 对于单层平面索网结构,基于随机振动理论的颓域法是进行结构风振响应实用计算的主要方法之一.本文采用模态叠加频域方法进行了结构的风振响应分析,然后根据分析结果采用频域方法对于单索幕墙结构的风振响应简化计算公式进行了推导,并给出了实用化的计算表格。 收稿日期:2005—07—17}謦改稿收到日期:2005-09-03. 基金项目:国家自然科学基盒(50478028)资助项目. 作者筒舟:武岳。(1972-).男.副教授(E-mail?wuyuc_Z000 @153.corn)I 玛若强(1789-),男,博士生l 沈世钊(1933-),男.教授冲国工程院晓士. 需要指出的是,单层平面索网玻璃幕墙结构由于挠度较大(国内目前常用的设计挠度限值约为结构跨度的1/50左右),结构具有较高的几何非线性.频域方法只能对结构进行线性分析,因此采用频域方法计算此类结构时,可能会产生较大的误差,为此本文在对单索结构进行风振响应频域计算时认为:不是选用竖直平面位置——单索结构初始状态作为计算结构的初始位置,而是选用平均风压作用位置——单索结构平衡状态作为结构的初始位置,此时结构几何非线性的大部分已经完成;其次结构在脉动风作用下在此位置附近作微幅振动,几何非线性较弱,因此可以采用频域方法进行结构的风振计算。 虽然选取平均风压作用位置作为结构风振计算的初始位置,但结构还是具有一定的几何非线性,因此为检验频域计算结果的准确性,本文同时又采用非线性时程分析方法【23即人工生成具有特定频谱密度和空间相关性的风荷载时程,直接求解运动微分方程获得结构的精确响应,同采用频域方法得到的结构响应进行了比较。 2结构风振晌应频域计算方法 2.1频域方法 在脉动风荷载下单索幕墙结构的振动方程: [^幻{藐}+[c]{矗)+[K]{“)一{P(f))(1)式中[M],[K]和[c]分别为结构的质量,刚度矩  万方数据

结构动力特性测试方法及原理

结构动力特性的测试方法及应用(讲稿) 一. 概述 每个结构都有自己的动力特性,惯称自振特性。了解结构的动力特性是进行结构抗震设 计和结构损伤检测的重要步骤。目前,在结构地震反应分析中,广泛采用振型叠加原理的反 应谱分析方法,但需要以确定结构的动力特性为前提。n 个自由度的结构体系的振动方程如 下: [][][]{}{})()()()(...t p t y K t y C t y M =+? ?????+?????? 式中[]M 、[]C 、[]K 分别为结构的总体质量矩阵、阻尼矩阵、刚度矩阵,均为n 维矩阵; {})(t p 为外部作用力的n 维随机过程列阵;{})(t y 为位移响应的n 维随机过程列阵;{} )(t y &为速度响应的n 维随机过程列阵;{})(t y && 为加速度响应的n 维随机过程列阵。 表征结构动力特性的主要参数是结构的自振频率f (其倒数即自振周期T )、振型Y(i)和 阻尼比ξ,这些数值在结构动力计算中经常用到。 任何结构都可看作是由刚度、质量、阻尼矩阵(统称结构参数)构成的动力学系统, 结构一旦出现破损,结构参数也随之变化,从而导致系统频响函数和模态参数的改变,这种 改变可视为结构破损发生的标志。这样,可利用结构破损前后的测试动态数据来诊断结构的破损,进而提出修复方案,现代发展起来的“结构破损诊断”技术就是这样一种方法。其最 大优点是将导致结构振动的外界因素作为激励源,诊断过程不影响结构的正常使用,能方便 地完成结构破损的在线监测与诊断。从传感器测试设备到相应的信号处理软件,振动模态测 量方法已有几十年发展历史,积累了丰富的经验,振动模态测量在桥梁损伤检测领域的发展 也很快。随着动态测试、信号处理、计算机辅助试验技术的提高,结构的振动信息可以在桥 梁运营过程中利用环境激振来监测,并可得到比较精确的结构动态特性(如频响函数、模态 参数等)。目前,许多国家在一些已建和在建桥梁上进行该方面有益的尝试。 测量结构物自振特性的方法很多,目前主要有稳态正弦激振法、传递函数法、脉动测试 法和自由振动法。稳态正弦激振法是给结构以一定的稳态正弦激励力,通过频率扫描的办法 确定各共振频率下结构的振型和对应的阻尼比。 传递函数法是用各种不同的方法对结构进 行激励(如正弦激励、脉冲激励或随机激励等),测出激励力和各点的响应,利用专用的分 析设备求出各响应点与激励点之间的传递函数,进而可以得出结构的各阶模态参数(包括振 型、频率、阻尼比)。脉动测试法是利用结构物(尤其是高柔性结构)在自然环境振源(如 风、行车、水流、地脉动等)的影响下,所产生的随机振动,通过传感器记录、经谱分析, 求得结构物的动力特性参数。自由振动法是:通过外力使被测结构沿某个主轴方向产生一定 的初位移后突然释放,使之产生一个初速度,以激发起被测结构的自由振动。 以上几种方法各有其优点和局限性。利用共振法可以获得结构比较精确的自振频率和阻 尼比,但其缺点是,采用单点激振时只能求得低阶振型时的自振特性,而采用多点激振需较 多的设备和较高的试验技术;传递函数法应用于模型试验,常常可以得到满意的结果,但对 于尺度很大的实际结构要用较大的激励力才能使结构振动起来,从而获得比较满意的传递函 数,这在实际测试工作中往往有一定的困难。 利用环境随机振动作为结构物激振的振源,来测定并分析结构物固有特性的方法,是近 年来随着计算机技术及FFT 理论的普及而发展起来的,现已被广泛应用于建筑物的动力分 析研究中,对于斜拉桥及悬索桥等大型柔性结构的动力分析也得到了广泛的运用。斜拉桥或 悬索桥的环境随机振源来自两方面:一方面指从基础部分传到结构的地面振动及由于大气变 化而影响到上部结构的振动(根据动力量测结果,可发现其频谱是相当丰富的,具有不同的

大跨极窄人行悬索桥动力特性及风振响应研究

第40卷第9期建 筑 结 构2010年9月 大跨极窄人行悬索桥动力特性及风振响应研究 熊耀清, 何云明, 吴小宾 (中国建筑西南设计研究院有限公司,成都610081) [摘要] 以一个跨度199m 、宽跨比仅1P 132,且地处峡谷的钢结构柔性悬索桥为工程背景,采用ANSYS 有限元软件进行了大跨极窄人行悬索桥动力特性及非线性风振响应研究。结果表明,该类桥的基本周期较通常的大型公路悬索桥明显偏短,采用抗风缆的抗风措施能够改变结构振型的排列顺序和改善结构抗风性能;采用基于线性滤波法的自回归(AR)模型应用MATLAB 模拟了考虑桥址风特性的水平及竖向脉动风时程,结果表明满足分析与设计需求;比较了水平及水平和竖向风工况下有无抗风措施时悬索桥的非线性风振响应,结果表明结构抗风性能满足安全要求。 [关键词] 大跨极窄悬索桥;动力特性;桥址风特性;非线性风振;抗风措施 Research on dynamic characteristics and wind vibration response of a pedestrian large -span and slender suspension bridge Xiong Yaoqing,He Yunming,Wu Xiaobin (Chi na South west Architectural Design and Research Institute Co.,Ltd.,Chengdu 610081,China) Abstract :Based on a steel truss flexible suspension bridge in mountainous area,which has the main span of 199m and the wide -span ratio of 1P 132,the dynamic characteristics and nonlinear wind vibration response of the pedestrian large -span and slender suspension bridge were analyzed by ANSYS.The resul ts indicate that the basic period of the bridge is shorter than that of general large high way suspension bridge obviously,and the wind fortification measures can change dynamic characteristic of the suspension brid ge and can increase its wind resistance performance.Considering the wind characteri stics of the bridge si te,the wind load history was simulated with AR model by MATLAB https://www.doczj.com/doc/1714983987.html,pared the nonlinear wind vibration response with and wi thou t forti fication measures under horizontal and horizontal &vertical wind load,i t shows that the wind resistance performance of the brid ge is qualified when i t comes to safety requirement. Keywords :large -span and slender suspension bridge;dynamic characteristic;wind characteristics of the bridge site;nonlinear wind vibration;wind fortification measures 作者简介:熊耀清,博士,高级工程师,Emai l:xyq729730@https://www.doczj.com/doc/1714983987.html, 。 0 引言 大跨度、窄桥面悬索桥造价低廉、施工方便,在我 国西部山区应用较多。因其上部结构刚度较小,对风敏感,且多建于风场复杂的峡谷、山口等特殊地形山区[1],导致结构所承受的风荷载不同于常规结构,从而对抗风设计提出了更高的要求。而现有的大跨悬索桥的风振响应分析都是基于大型公路桥梁[2,3],现行桥梁设计规范对于大跨极窄的人行悬索桥没有相关规定。为给该类悬索桥的抗风设计及施工提供基本数据,以某景区的人行悬索桥为工程背景,研究了其结构自身的动力特性及桥址处山区风特性,进行了详细的风荷载静力及非线性风振响应分析,并比较了采用加抗 风缆、栏杆、中央扣等抗风措施后悬索桥的抗风性能。1 工程概况 某悬索桥地处低山丘陵地带,山体呈V 形走廊,海拔高度650~700m,桥体横跨东、西两岸,桥面相对谷底的垂直高度约为100m 。该桥主要用于连接两岸,桥型 布置如图1所示。采用单跨钢结构柔性悬索桥形式,跨度199m,主缆间距115m,矢跨比1P 1312,宽跨比达1P 132,吊杆间距310m 。主缆为悬索桥主要承重结构,两端固定于锚碇,两岸桥塔为主缆提供中间支承(在塔顶设置主索鞍)。加劲梁及桥面系通过吊杆悬挂于主缆上,并在主塔处设置支座,提供支承,抗风缆通过抗风拉索与桥面横梁相连,并组成一个与铅垂面呈30b 夹角的平面。主缆采用2根7<38的平行钢丝束索,抗拉强度1770MPa;吊杆采用圆钢<40;抗风缆采用2根<44的钢丝束索,抗拉强度1770MPa 。桥面系包括加劲梁、桥面铺装、栏杆等,加劲梁为梁格体系,由纵、横梁及风联钢构(即桥面水平撑)焊接而成,纵、横梁分别采用工 字钢I14,I20,材质为Q345;桥面铺装为宽300mm 、厚80mm 松木板条,间缝10mm,木板采用锚栓与桥面纵梁连接,栏杆采用<50钢管,间距115m;桥塔为钢筋混凝 148

大跨径混合梁斜拉桥的动力特性分析

大跨径混合梁斜拉桥的动力特性分析 发表时间:2018-12-13T09:25:46.667Z 来源:《建筑模拟》2018年第27期作者:范晓杰 [导读] 本文以一个大跨径的混合梁斜拉桥为例,采用大型有限元分析软件madis civil建立模型,用子空间迭代法对模态进行求解,得出了自振频率、振型,并结合混合梁斜拉桥的结构特点分析其动力特性。 范晓杰 浙江省嘉兴市交通工程质量安全监督站 314000 摘要:本文以一个大跨径的混合梁斜拉桥为例,采用大型有限元分析软件madis civil建立模型,用子空间迭代法对模态进行求解,得出了自振频率、振型,并结合混合梁斜拉桥的结构特点分析其动力特性。在此基础上考虑分别在横向和纵向输入地震波,用反应谱法分析产生的影响。结果表明,前十阶振型中竖向振型较多,频谱较为密集,没有出现扭转振型,纵向、横向的振型耦联效应较小等,为目前其他同类型混合梁斜拉桥的动力特性分析研究提供参考。 一、工程概况 永川长江大桥主桥全长1008m,跨径布置为(64+68+68+608+68+68+64)m的7跨半漂浮体系混合梁斜拉桥,边跨设置1个过渡墩,2个辅助墩。索塔采用宝瓶型钢筋混凝土索塔,塔高分别为196.7m、207.4m。边跨为预应力PK断面混凝土箱梁,中跨也为同外形的PK断面钢箱梁,梁高3.5m,宽37.6m。拉索为双索面扇形构造,边跨11对索间距为10m,7对索间距为8m,主跨索间距为15m。 二、斜拉桥的动力特性分析 结构的动力响应取决于结构本身的动力特性和外部荷载的激励,所以在进行抗风稳定、抗震分析时往往得先进行自振特性分析。 采用子空间迭代法计算自振频率及相应的振型如表3.1所列。 表3.1桥梁的自振特性 一阶振型为纵飘,这是由于斜拉桥的设计主要考虑控制结构的横向和竖向变位,而允许纵向移动,很好的提高了桥梁的抗震能力。 二阶振型为主梁对称竖弯,主梁的竖弯也会引起桥塔的纵向弯曲,从表3.1中可以发现在前十阶振型中出现较多的主梁对称和反对称竖弯,因此在抗震设计中要着重考虑主梁的竖向和桥塔的纵向位移。 三阶振型为主梁对称横弯,这说明了主梁的横向刚度较小,抗风稳定性较差,在抗震设计中也应该注意控制。 结构的一阶对称竖弯、横弯振型出现在2、3阶,根据经验这符合大跨度斜拉桥的动力特性的一般特点。 表3.1中没有出现扭转振型,这符合双索面、箱梁布置的斜拉桥动力特性,抗扭刚度较大。 本桥的前十阶振型自振频率在0.0823~0.8684,说明结构的模态比较密集,在动荷载作用下许多振型容易被引起强烈的振动。 在前十阶振型中出现了很多的主梁竖向弯曲,这是由于混合梁斜拉桥中钢箱梁的刚度小于混凝土梁的刚度而引起的。 为了分析本桥的纵、横向的耦联效应,分别在纵向、横向输入地震波。考虑该桥所在区域抗震设防烈度为7度,场地类别为Ⅰ类,选择主梁的内力值进行分析,结果如表3.2所示,塔顶、跨中的位移如表3.3所示。 表3.2 主梁内力值分析结果 表3.3 塔顶、跨中位移值(单位:mm) 横向地震反应引起的主梁反应主要是y方向的剪力和弯矩,且混凝土梁的反应大于钢箱梁;而x方向、z方向的剪力及弯矩都较小。纵向地震反应时主梁x、z方向剪力及弯矩较大,说明在输入纵向地震反应时结构会产生竖向内力,混凝土梁的反应亦大于钢箱梁。

悬索桥计算

*第八节悬索 悬索有许多工程应用,常见的有高压输电线、架空索道、悬索桥等。悬索结构两端固定,它和梁的主要区别在于悬索不能抵抗弯曲,只能承受拉力。在初步的力学计算中,假设悬索具有充分的柔软性,故称为柔索。本节讨论的悬索均为柔索。对于已经处于平衡状态的悬索,根据刚化原理可知,作用在悬索上的力应该满足刚体的平衡条件。同时需要注意的是,绳索不是刚体,平衡方程表示绳索平衡的必要条件但非充分条件。 工程实际中经常碰到的问题是:在给定载荷作用下,求悬索的形状、索内拉力和绳索长度,以及它们与跨度、垂度、载荷之间的关系,以作为设计、校核悬索的根据。 悬索在工作中受到的载荷可以分为两类:(1)集中载荷;(2)分布载荷。其中分布载荷中最常见的是水平均布载荷、沿索均布载荷。当不计钢索自重时,旅游胜地高空缆车的索道受到车厢集中力(即重力)的作用(图8-39a);装有吊篮的架空索道,同样受吊篮的集中力(即重力)的作用。这些都是悬索受集中载荷作用的例子。悬索直拉桥主索上承受的载荷可看成是水平均布载荷(图8-39b)。高空输电线(图8-39c)和舰船的锚链上承受的载荷可看成是沿索均布载荷。 (a) (b) (c) 图8-39 当悬索两支座A和B高度相同时,两个支承点之间的水平距离称为跨度;在载荷作用下,悬索上每一点下垂的距离称为垂度,由悬挂点到最低点的垂直距离称为悬索的垂度。在悬索计算中,跨度和索上最低点的垂度通常是已知的。 一、集中载荷 设绳索(柔索)连接在两个固定点A和B并有n个垂直集中载荷P1、P2、…、P n,如图8—39(a)所示,绳索的重力与绳索承受的载荷相比可以忽略。因此当绳索系统处于平衡状态时,相邻载荷之间的绳索段AC1、C1C2、C2C3和C3B均被拉紧成直线段,即在集中载荷作用下,绳索成折线状。故绳索段AC1、C1C2、C2C3和C3B均可以当作二力杆,绳索中任

大跨悬挑屋盖风振响应参与模态分析

第29卷 第5期 2007年5月武 汉 理 工 大 学 学 报JOURNAL OF WUHAN UNIVERSITY OF TECHNOLOGY Vol.29 No.5 M ay 2007 大跨悬挑屋盖风振响应参与模态分析 吴海洋1,梁枢果1,郭必武 2(1.武汉大学土木建筑工程学院,武汉430072;2.武汉建筑设计院,武汉430014) 摘 要: 根据援巴哈马体育场和援几内亚体育场主看台悬挑屋盖风洞试验数据结果,分析和探讨了采用频域分析法计算大跨度悬挑屋盖风振响应时应考虑的结构模态数和频率范围,得到强风作用下悬挑屋盖结构均方根位移与内力响应随参与计算的模态数和频率范围的变化规律,并从屋盖表面测点风压谱密度的角度解释了这种变化规律。 关键词: 大跨悬挑屋盖; 风洞试验; 风振响应; 参与模态 中图分类号: T U 312文献标志码: A 文章编号:1671 4431(2007)05 0089 05 Participant Mode Analysis of Wind induced Responses of Large Cantilevered Roof W U H ai yang 1,L IAN G Shu guo 1,G UO Bi w u 2 (1.School of Civ il and Building Eng ineering,Wuhan U niversit y,Wuhan 430072,China; 2.W uhan Architectural Design Institute,Wuhan 430014,China) Abstract: T he mode number and t he frequencies range,which were considered during calculating the wind induced respons es o f lar ge cantilevered roof by using the method of frequency do main,w ere analysed and di scussed,according to the results o f wind tunnel tests of Bahamas and Guinea stadium grandstand cantilevered roofs,and the rules that R M S displacement and RM S inter nal force responses under strong w ind for ce chang ing wit h part icipant modes number and frequencies r ange were obtained,and which could be explained fro m t he point of wind pressure pow er spectrum densities of the measured points on sur face of the roof. Key words: large cantilevered roo f; wind tunnel tests; w ind induced responses; participant modes 收稿日期:2006 12 12.作者简介:吴海洋(1981 ),男,博士生.E mail:wuocean1980@https://www.doczj.com/doc/1714983987.html, 大跨度悬挑屋盖是大跨空间结构中最典型的风敏感结构,因其具有跨度大、结构柔、材料轻等特点,致使风荷载成为其结构设计的主要荷载之一。基于线性体系随机振动理论的频域分析方法是大跨度屋盖结构风振响应分析的首选方法。由于大跨度悬挑屋盖结构各阶固有频率分布密集、振动模态复杂,因此,运用频域法进行风振响应分析时,如何合理地选取参与计算的模态数或确定参与模态的频率范围成为必须首先解决的问题。针对这一问题,国内外许多学者都进行过深入的研究。模态加速度法的实质是对截断的模态位移响应叠加了荷载在剩余柔度上的响应[1],后者称为剩余位移[2] 。补偿模态法是基于模态对系统应变能的贡献作为选取振型的依据[3]。文献[4]基于Rize POD 法识别结构风振的主要贡献模态。然而,上述各种识别主要贡献模态的方法都需要进行大量繁琐的计算,而且得到的结果随结构形式的不同而异。如何定量地评价大跨度悬挑屋盖结构风致响应计算需要考虑的参与模态数或者频率范围是十分有价值的研究课题。另外,在采用频域法计算结构风致响应时,针对是否考虑振型交叉项,存在2种方法,即CQC [5]和SRSS [6]法。作者以2个实际工程为背景来分析大跨度悬挑屋盖风致响应与参与计算模态的关系,并且计算了当忽略振

结构动力分析

【结构工程的软件时代】 结构工程已全面进入软件时代,结构工程师要从繁琐的重复劳动中解脱出来,培养结构概念和体系,锻炼结构整体思维。 《结构概念和体系》是国际著名的结构大师林同炎广为流传的著作。相信大多数从事建筑结构的工程人员都或多或少读过这本书。其实,这本书可以说是结构工程师的必修课。从事结构工作,很重要的一点就是在工作中培养结构概念体系和整体性思维的方法。这对于结构工程师来讲,是十分重要的。 如今的软件技术已相当发达,很多繁琐的工作都可以通过软件完成,甚至于智能化到了“一键式完成”的地步。设想,如果在软件再这么智能化而且功能强大下去,到时候,只要输入基本的设计参数和经济指标,按一个回车键,软件就将建筑方案设计、结构方案设计、施工图设计全部一条线完成出来了,那么对结构工程师来说不是一场灾难嘛。软件取代所有主要工作,技术人员不就要下岗了啊。所以,我认为,从一个角度来讲,结构工程软件时代的到来,意味着结构工程师的一场“危机”。如何在这场即将到来的危机面前“明哲保身”,做软件所不能做到的事情是很关键和重要的,什么最关键而重要,我认为就是结构的概念和体系思维,这个才是将来结构工程师的价值所在,而这恰恰是软件所难以做到的。 闲话暂放,言归正传。这篇博客将粗浅地探讨结构动力学问题的概念和体系问题。之所以关注结构动力学问题,一是因为结构静力学研究已比较成熟,林同炎前辈的《结构概念和体系》一书中已阐明很完善精辟了,二是因为现阶段工程结构抗震问题是研究的热点和前沿,这个时代里不懂工程抗震概念的结构工程师很难成为一个好工程师。 构件→结构→结构体系,整体性思维,需要工程实践的锻炼以及不断思考的积累。在实践中,反复向自己提问是培养结构概念的一个好方法。比如,问自己什么叫振型分解法?有哪些假定?什么叫时程分析法?有哪些优缺点?……这样积累下来,很多概念就越辩越明,结构的概念也就逐渐得到建立。 【结构动力分析的分类】 结构动力分析主要包括:特征值分析、反应谱分析、时程分析三大块。特征值分析也称结构自振特性分析,主要求解结构的自振周期和振型向量。反应谱分析基于振型分解反应谱理论,是一种工程上最常用的计算地震作用下结构动力响应方法,但这种方法只限于线弹性结构,弹塑性阶段振型分解法不再适用。时程分析包括线弹性时程分析和弹塑性时程分析两大类,与振型分解法的主要区别在于采用实测的地震波输入结构计算结构的响应,弹塑性时程分析具体还可分为静力弹塑性时程分析(也称Pushover分析)和动力弹塑性时程分析两类。 上述结构动力分析中,特征值分析和反应谱分析比较常用。而时程分析一般仅针对重要建筑以及体型非常复杂的建筑。小震水准下可进行结构线弹性时程分析,大震水准下需要采用结构弹塑性时程分析方法。现阶段,弹塑性时程分析还属于工程上比较前沿的分析内容,还属于一部分实力较强的设计院和科研机构的“专利业务”。当然,我认为随着结构技术人员水平的不断提高,以及软件技术的发达,结构弹塑性时程分析在将来将会越来越普及,甚至成为结构设计人员的“家常便饭”。 【特征值分析】 特征值分析也称结构自振特性分析,因为在数学上这个问题属于齐次线性方程组特征值的求解问题,故亦称特征值分析。其目的是求解结构的自振周期和振型。以前曾经碰到这样一个很有意思的概念问题:结构的阻尼比越大,那么结构的自振周期是减小还是增大呢?概念不清就很容易产生混乱。其实,结构的自振特性均是指无阻尼自由振动的特性值,因此不存在阻尼的影响问题。还有一个问题就是什么是振型?虽然我们经常提振型这个概念,不少人一时半会答不上来。从概念上讲,振型是结构发生无阻尼自由振动时各质点的相对位移,

大跨度斜拉桥动力特性分析(精)

大跨度斜拉桥动力特性分析Ξ 陈淮郭向荣曾庆元 (郑州工业大学土建系,郑州,450002(长沙铁道学院土木系,长沙,410075 摘要本文提出一种计算大跨度钢桁梁斜拉桥动力特性的方法。文中分别采用桁段 有限单元、空间梁元、空间杆元计算斜拉桥中桁架、桥塔、 拉索的刚度矩阵与质量矩阵, 采用子空间迭代法求解特征方程,所得结果可供设计参考。 关键词有限元法;斜拉桥;自振频率;振型 分类号U 44112 1引言 桥梁结构的动力特性包括自振频率及主振型等,它是桥梁计算的重要课题之一。桥梁结构的动力特性反映了桥梁的刚度指标,它对于正确地进行桥梁的抗震设计及维护,有着重要的意义。我国设计的某大跨度钢桁梁斜拉桥,这种桥型的自振频率和主振型的计算困扰着设计人员。钢桁梁斜拉桥是一个空间杆系结构,从理论上讲计算这种结构的空间振动自振频率及主振型并不是十分困难。然而,由于桥梁结构复杂,自由度很大,加上实际桥梁受结点及支座的约束等,完全由理论按空间梁元计算钢桁梁斜拉桥自振频率及主振型并不容易。本文探讨这种桥型动力特性的计算方法,对于桁梁、应用桁段有限元法,将桁梁取为桁段单元,每个桁梁节间断面有10个自由度。桥塔取为空间梁单元,每个结点有6个自由度。斜拉桥拉索取为空间桁元,分析了国内设计中的某特大跨度斜拉桥的自振特性。文中在形成结构总体刚度矩阵

及质量矩阵时,使用形成矩阵的“对号入座”法则〔1〕,能很简便地考虑桥门架、横联等局部构件的作用。数值算例表明,这种方法使用方便,结果可靠,结构自由度数可大大降低等优点,是斜拉桥动力分析的有效方法。 2计算模型及其主要假定 211桥梁简介 国内设计的某特大跨度钢桁梁斜拉桥为双塔双索面斜拉桥。主梁采用五跨连续钢桁梁,其中主跨跨长368米,主梁宽20米,主梁高1415米,总长864米;桥塔是一个钢筋混凝土框架,塔高113米,每塔有10对索与主梁相连,构成扇形索面,桥梁简图如图1所示。 212计算模型及主要假定 21211桁梁单元 钢桁梁斜拉桥是一个相当复杂的结构,为了减少自由度,主桁采用桁段有限元计算,在不失对桥梁结构主要因素研究的前提下,本文采用以下主要假定: 第14卷第1期 计算力学学报V o l .14N o.11997年2月CH I N ESE JOU RNAL O F COM PU TA T I ONAL M ECHAN I CS February 1997 Ξ河南省自然科学基金资助。 本文于1995年9月5日收到,1996年7月8日收到修改稿。

20-悬索桥分析一

MIDAS做悬索桥分析(一) 一悬索桥初始平衡状态分析 悬索桥主缆在加劲梁的自重作用下产生变形后达到平衡状态,在满足设计要求的垂度和跨径条件下,计算主缆的坐标和张力的分析一般称为初始平衡状态分析。这是对运营阶段进行线性、非线性分析的前提条件,所以应尽量使初始平衡状态分析结果与设计条件一致。使用midas Civil中“悬索桥建模助手”功能,可以很方便的完成悬索桥的初始平衡状态分析。 1 建模助手 悬索桥建模助手图1 掌握各参数含义及使用注意事参考帮助说明文档,1是悬索桥建模助手设置对话框,图项。在使用该建模助手时,经常碰到如下疑问:)对于小跨径的人行索桥,没有边跨如何建模?1 )桥面系荷载如何正确定义?2 )横向内力如何计算?3 解决了上述疑问,才能正确的使用悬索桥的建模助手。 2的结构布置:1对于问题,即要实现如图 图2 无边跨悬索桥布置

在建模助手对话框中,通过设置主梁端点A1的坐标和边跨吊杆间距完成无边跨及吊杆的布置。 图3 无边跨悬索桥设置 有边跨无吊杆:A1的x坐标为a,左跨吊杆间距为a的绝对值; 无边跨:A1的x坐标为a,但a输入非常小的数值,例如-0.01,左跨吊杆间距为a的绝对值;对于问题2,定义桥面荷载有2种方法,如下图所示: 图4 单位重量法 图5 详细设置 方法1,定义单位重量荷载值,荷载类型为等效均布荷载,大小等于除主缆和吊杆自重外成桥恒荷载,主缆和吊杆自重程序会自动考虑。 方法2,勾选详细设置,荷载类型有点荷载和均布荷载,可以分别定义桥面左、中、右跨的成桥恒荷载(不含主缆和吊杆自重)。当使用点荷载时,程序将桥面恒荷载集中到吊杆上,每根吊杆承担的荷载值为相邻吊杆间距范围内的桥面恒载加上吊杆两端锚固处的恒荷载;当使用分布荷载时,分别定义桥面左、中、右跨等效均布荷载,对于不同跨径范围内,桥面恒荷载变化比较大能准确定义。 对于问题3,在视图选项中,点击实际形状时,程序输出横向内力(主缆水平分力),如下图:

(完整word版)随机振动分析报告

Alex-dreamer制作PSD:(可以相互传阅学习,但是鄙视那些拿着别人成果随意买卖!)PSD随机振动应用领域很广,比如雷达天线,飞机,桥梁,天平,地面,等等行业。虽然现在对这方面公开资料很少,但是我相信以后会越来越多,发展的越来越成熟。学术的浪潮总体是向前的,不会因为几个大牛保密自己的成果就会阻止我们对PSD研究,因此结合我的经验和爱好,我研究了一下两种PSD加载分析。我标价的原则是含金量大小和花费我的时间以及我的经验值,如果你觉得值,就买;不值就不要下了。因为我始终认为:士为知己者死,女为悦己者容。算是互相尊重。如果你得到这份资料,那就祝你好运! Good luck!-Alex-dreamer(南理工) 一:目的:根据abaqus爱好者提出的PSD随机振动分析,提出功率谱如何定义及如何加载?如果功率谱是加速度的平方,如何加载?如果在输入点施加载荷功率谱如何定义?本文将给出详细的分析过程。 二:随机振动基本概念 1. 随机振动的输入量和输出量都是概率统计值,因此存在不确定性。输入量为PSD (功率谱密度)曲线,分为加速度、速度、位移或者力的PSD曲线;最常见的是加速度PSD,常用语BASE MOTION基础约束加载。 2. 随机振动的响应符合正态分布,PSD实际上是随机变量的能量分布,也就是在不同频率上的方差值,反映不同频率处的振动能量,PSD曲线所围成的面积是随机变量总响应的方差值; 3. RMS为随机变量的标准方差,将PSD曲线包络面积开平方即为RMS。 4. 随机振动输出的位移、应力、应变等值都是对应不同频率的方差值(即PSD值),量纲为x^2,当然也可以输出这些变量的均方根值(即RMS值);abaqus6.10以上版本可以直接在场变量里面输出设置。见下文。 5. 如果是单个激励源,定义为非相关性分析,如是多个激励源,则需要定义相关性参数。因此出现type=uncorrelated。 三:模型简介: 1)该模型很简单,是hypermesh中一个双孔模型。 2)网格划分在hypermesh中完成,保证了雅克比>0.7以及网格其它质量的要求。网格与几何具有较高的吻合度。 3)方案1(对应connect模型):在上方两个孔采用全约束方式,且加载的功率谱PSD密度是加速度功率谱,也就是说基于BASE基础约束,进行随机振动 PSD分析。结果分析底部孔处某节点的结果响应。 4)方案2(对应connect模型):在底部圆孔施加载荷force类型的功率谱PSD,与前者不同的是,这个不是基础施加PSD,而上某输入位置施加PSD。

桥梁动力分析

模拟环境对塔玛悬索桥动力特性的影响 摘要 为了达到结构健康监测的目的,结构在环境因素的影响下,去理解、模拟和补充环境变化对结构动力特性的影响是极其重要的。本文中,已经研究了从英国塔玛悬索桥中测得的加速度值,这些加速度值是用数据激励随机子空间系统识别方法处理的,并且用温度和风载对结构自振频率的影响进行了环境变量的模拟。本文应用了两种方法:1)基于有效识别环境效应所致的线性变化规律的主因子分析法(PCA) ;2)元模型法,这是一种通过多项式函数的组合变化来确定系统输入输出关系的纯数学方法。研究发现在所有环境因素中温度是影响桥梁自振频率最关键的因素。 引言 环境因素对土木结构自振频率的影响是导致结构健康监测技术只能应用于实验室而不能在实际工程结构中得到应用的主要原因。在实验室发展起来的损伤检测技术往往无法在具有实验室相同条件的现场发挥作用;作为衡量破坏敏感性的特征参数也通常对工作环境引起的结构动力反应变化很敏感,而这种情况在实验室是不会出现的。这一方面的研究在过去的几年中得到了很大的关注,处理这个问题的方法在Sohn的关于工作环境对结构健康监测的影响一文中有很好的阐述。 本文研究了环境因素对塔玛悬索桥自振频率的影响,尤其是温度和风速的影响。以前主要集中在温度变化对桥梁模态频率相关性的研究上,事实上,温度被认为是环境因素中对模态特性影响最主要的因素。进一步的研究已经转移到了风载对大跨度桥梁的影响。尤其是发现了日本的白鸟(Hakucho)悬索桥的自振频率随着风速的增加而降低,在此过程中没有考虑温度的影响。在文献[6]中对大跨悬索桥的重型车辆荷载的影响进行了研究,发现车辆荷载对大跨度桥梁的自振频率影响很小或者没有。 在本项研究中诸如交通荷载和湿度等环境因素被忽略,认为本论文所讨论的桥梁不会受到交通荷载的影响,由于桥址的原因,也认为湿度不作为考虑的因素。这篇文章的目的主要是确定促使所观察到的引起桥面日常自由振动的主要因素。 塔玛悬索桥 塔玛大桥(如图1)是一座跨度为643m的大跨度悬索桥,它跨越塔玛河,将康沃尔郡(Wornwall)的索尔塔什(Saltash)市与德文郡(Devon)的普利茅斯(Plymouth)连接在一起。自1961年建成后它成为两个地区的一个至关重要的交通纽带。这座桥具有对称几何形状的常规设计,主跨为335m,两个边跨为114m。钢筋混凝土主塔高达73m,采用沉井基础并直达岩面。主缆直径为350mm,每根主缆由31根钢丝捻成,并设置间距为9.1m的垂直钢索。加劲桁架为5.5米厚,由焊接的空腹箱梁组成。在2001年,按照欧盟指示对这座桥进行了加强和扩宽。尤其是采用了18根直径为100mm的预应力钢索对原来的悬索体系进行了补强,原来复合型的主桥面板被一个三车道的正交各向异性钢板代替,在桁架的每侧加上了单车道悬臂梁。 现在对塔玛悬索桥布置了几种监测系统。2007年菲尔德大学(the University of Sheffield)的振动工程科开始监测桥面板和缆索的动力响应。这个监测系统包括8个缆索

相关主题
文本预览
相关文档 最新文档