当前位置:文档之家› 函数值域(直接法-分离常数法

函数值域(直接法-分离常数法

函数值域(直接法-分离常数法
函数值域(直接法-分离常数法

函数值域的求法(精选例题)

函数值域的求法 1、(观察法)求下列函数的值域 (1)求函数y1=121 1x +的值域 (]1,0 (2)求函数y1=2-x 的值域。 (]2-,∞ 2、(配方法)求下列函数的值域 (1)求函数225,[1,2]y x x x =-+∈-的值域 ][84, (2)求函数y =的值域: ][20, (3),x y 是关于m 的方程2260m am a -++=的根,则()()2211x y -+-的最小值是( ) C A.-1241 B.18 C.8 D.43

3、(换元法)求下列函数的值域 (1)21y x =+[)∞+,3 (2)4y x =++ ][234,1+ (3)求函数y=32 ++x x 的值域 ??????21,0 (4)求函数y = ][2,1 (5)求函数 y=12243++-x x x x 的值域 ??????41,41-

4、(分离常数法)求下列函数的值域 (1)求值域(1)1 (4)2x y x x -=≥-+ ()??? ???∞+∞,,251- (2)求函数122+--=x x x x y 的值域。 ?????? 131 -, 5、(判别式法)求下列函数的值域 (1)求函数的值域2222 1x x y x x -+=++ ][51, (2)求函数3274222++-+=x x x x y 的值域。 ?????? 229 -, (3)已知函数12)(22 +++=x b ax x f x 的值域是[1,3 ],求实数a , b 的值. a=2或-2,b=2

6、(单调性法)求下列函数的值域 (1)求函数32()2440f x x x x =+-,[3,3]x ∈-的最小值。 (2)-48f = (2)设函数f(x)=ln(2x +3)+x 2.求f(x)在区间???? ??-34,14上的最大值和最小值. max 171()=ln +4216()f f x = min 11(-)=ln 2+24()f f x = 7、(数形结合法)求下列函数的值域 (1)求函数y=4 1362+-x x 4-542++x x 的值域 (]265-, (2)求函数y=4 12++x x 4-1 - 2 +x x 的值域 ()1,1-

求值域经典例题

四、经典例题 例1、求下列函数的值域: (1) (2) (3) (4) (5) (6) 分析:对于形如(1)(2)(3)的函数求值域,基本策略是(ⅰ)化归为的值域;(ⅱ)转化为sinx(或cosx)的二次函数;对于(4)(5)(6)之类含有绝对值的函数求值域,基本策略则是(ⅰ)在适当的条件下考察y2;(ⅱ)转化为分段函数来处理;(ⅲ)运用其周期性、奇偶性或函数图象对称性转化. 解: (1) ∵ ∴, 即所求函数的值域为. (2)由

∴ ∴ 注意到这里x∈R,, ∴ ∴所求函数的值域为[-1,1]. (3)这里 令sinx+cosx=t 则有 且由 于是有 ∵ ∴ 因此,所求函数的值域为. (4)注意到这里y>0,且 ∵

∴ 即所求函数的值域为. (5)注意到所给函数为偶函数, 又当 ∴此时 同理,当亦有. ∴所求函数的值域为. (6)令 则易见f(x)为偶函数,且 ∴是f(x)的一个正周期.① 只需求出f(x)在一个周期上的取值范围. 当x∈[0,]时, 又注意到, ∴x=为f(x)图象的一条对称轴②∴只需求出f(x)在[0,]上的最大值. 而在[0,]上,递增.③ 亦递增④∴由③④得f(x)在[0,]上单调递增.

∴ 即⑤ 于是由①、②、⑤得所求函数的值域为. 点评:解(1)(2)运用的是基本化归方法;解(3)运用的是求解关于sinx+cosx与sinxcosx的函数值域的特定方法;解(4)借助平方转化;解(5)(6)则是利用函数性质化繁为简,化暗为明.这一点在解(6)时表现得淋漓尽致. 例2、求下列函数的周期: (1); (2); (3); (4); (5) 分析:与求值域的情形相似,求三角函数的周期,首选是将所给函数化为+k的形式,而后运用已知公式.对于含有绝对值的三角函数,在不能利用已有认知的情况下,设法转化为分段函数来处理. 解: (1) = = ∴所求最小正周期. (2)

求值域的方法,带例题

1.直接观察法:利用常见函数的值域来求值域或者通过对函数定义域、性质或者图像的观察,结合函数的解析式,求得函数的值域。 一次函数y=ax+b(a ≠0)的定义域为R ,值域为R ; 反比例函数)0(≠= k x k y 的定义域为{x|x ≠0},值域为{y|y ≠0}; 二次函数)0()(2≠++=a c bx ax x f 的定义域为R , 当a>0时,值域为{a b ac y y 44|2-≥};当a<0时,值域为{a b a c y y 44|2 -≤}. 练习1.求下列函数的值域 ① y=3x+2 (-1≤x ≤1) ②x x f -+=42)( ③1 += x x y 2.分离常数法:分离常数法在含有两个量(一个常量和一个变量)的关系式(不等式或方程)中,要求变量的取值范围,可以将变量和常量分离(即变量和常量各在式子的一端),从而求出变量的取值范围。 练习2.求函数1 1)(+-= x x e e x f 的值域。 3.有解判别法: 有解判别法一般用于分式函数,其分子或分母只能为二次式,并且分子、分母,没有公因式,解题中要注意二次项系数是否为0的讨论 例1.求函数y=1 1 22+++-x x x x 值域 解:原式可化为1)1(22+-=++x x x x y , 整理得2(1)(1)10y x y x y -+++-=, 若y=1,即2x=0,则x=0; 若y ≠1,由题?≥0,

即0)14(-)1(22≥+y-y , 解得33 1 ≤≤y 且 y ≠1. 综上:值域{y|33 1 ≤≤y }. 例2.求函数6 6 522-++-=x x x x y 的值域(注意此题分子、分母有公因式,怎么求解呢?) 解:把已知函数化为(2)(3)36 1(2)(3)33 x x x y x x x x ---===- -+++ (x ≠2且 x ≠-3) 由此可得 y ≠1 ∵ x=2时 51-=y ∴ 5 1 -≠y ∴函数66522-++-=x x x x y 的值域为 { y| y ≠1且 y ≠5 1 -} 练习3(1)31 (1)2 x y x x +=≤- (2)22 1x x y x x -=-+ 4.二次函数在给定区间上的值域。 例3. 求下列函数的最大值、最小值与值域: ①142+-=x x y ; ②]4,3[,142 ∈+-=x x x y ; ③]1,0[,142∈+-=x x x y ④]5,0[,142∈+-=x x x y ; 注:对于二次函数)0()(2 ≠++=a c bx ax x f , ⑴若定义域为R 时, ①当a>0时,则当a b x 2-=时,其最小值 321-1-2-3 654321-1-2x O y

值域经典题型

值域简单练习题 1.求6)(2+-=x x x f 在[]11, -上的值域 2.求函数132)(++= x x x f 的值域 3. 求函数1 33)(2+++=x x x x f 的值域 4.求函数x x x f -+=1)(的值域 5.1321 3)(x x +?-=x f 6.1)(22 +--=x x x x x f 7.x -1x 3131)(-+=x f 8.x x x f +-+=243)( 9.2x 2x -)(2++=x f 10.y =11.2256y x x =-++ 12.2cos 1 3cos 2x y x +=- 13. 求函数()1y x =≥的值域。

值域的求法加强练习题 解答题(共10小题) 1.已知函数的定义域为集合A,函数的值域为集合B,求A∩B和(C R A)∩(C R B). 2.已知函数f(x)=x2﹣bx+3,且f(0)=f(4). (1)求函数y=f(x)的零点,写出满足条件f(x)<0的x的集合; (2)求函数y=f(x)在区间(0,3]上的值域. 3.求函数的值域:. 4.求下列函数的值域: (1)y=3x2﹣x+2;(2);(3); (4);(5)(6); 5.求下列函数的值域 (1); (2); (3)x∈[0,3]且x≠1;

(4). 6.求函数的值域:y=|x﹣1|+|x+4|. 7.求下列函数的值域. (1)y=﹣x2+x+2;(2)y=3﹣2x,x∈[﹣2,9];(3)y=x2﹣2x﹣3,x∈(﹣1,2];(4)y=.8.已知函数f(x)=22x+2x+1+3,求f(x)的值域. 9.已知f(x)的值域为,求y=的值域. 10.设的值域为[﹣1,4],求a、b的值.

函数值域求法十一种

函数值域求法十一种 尚化春 在函数的三要素中,定义域和值域起决定作用,而值域是由定义域和对应法则共同确定。研究函数的值域,不但要重视对应法则的作用,而且还要特别重视定义域对值域的制约作用。确定函数的值域是研究函数不可缺少的重要一环。对于如何求函数的值域,是学生感到头痛的问题,它所涉及到的知识面广,方法灵活多样,在高考中经常出现,占有一定的地位,若方法运用适当,就能起到简化运算过程,避繁就简,事半功倍的作用。本文就函数值域求法归纳如下,供参考。 1. 直接观察法 对于一些比较简单的函数,其值域可通过观察得到。 例1. 求函数 x 1 y = 的值域。 解:∵0x ≠ ∴0 x 1 ≠ 显然函数的值域是:),0()0,(+∞-∞ 例2. 求函数x 3y - =的值域。 解:∵0x ≥ 3x 3,0x ≤- ≤-∴ 故函数的值域是:]3,[-∞ 2. 配方法 配方法是求二次函数值域最基本的方法之一。 例3. 求函数]2,1[x ,5x 2x y 2 -∈+-=的值域。 解:将函数配方得:4)1x (y 2 +-= ∵]2,1[x -∈ 由二次函数的性质可知:当x=1时,4y m i n =,当1x -=时,8y m a x = 故函数的值域是:[4,8] 3. 判别式法 例4. 求函数2 2 x 1x x 1y +++= 的值域。 解:原函数化为关于x 的一元二次方程 0x )1y (x )1y (2 =-+- (1)当1y ≠时,R x ∈ 0)1y )(1y (4)1(2 ≥----=? 解得:23y 2 1 ≤ ≤ (2)当y=1时,0x =,而? ?? ???∈23,211

函数的定义域与值域单调性与奇偶性三角函数典型例题

函数的定义域与值域、单调性与奇偶性 一、知识归纳: 1. 求函数的解析式 (1)求函数解析式的常用方法: ①换元法( 注意新元的取值范围) ②待定系数法(已知函数类型如:一次、二次函数、反比例函数等) ③整体代换(配凑法) ④构造方程组(如自变量互为倒数、已知f (x )为奇函数且g (x )为偶函数等) (2)求函数的解析式应指明函数的定义域,函数的定义域是使式子有意义的自变量的取值范围,同时也要注意变量的实际意义。 (3)理解轨迹思想在求对称曲线中的应用。 2. 求函数的定义域 求用解析式y =f (x )表示的函数的定义域时,常有以下几种情况: ①若f (x )是整式,则函数的定义域是实数集R ; ②若f (x )是分式,则函数的定义域是使分母不等于0的实数集; ③若f (x )是二次根式,则函数的定义域是使根号内的式子大于或等于0的实数集合; ④若f (x )是由几个部分的数学式子构成的,则函数的定义域是使各部分式子都有意义的实数集合; ⑤若f (x )是由实际问题抽象出来的函数,则函数的定义域应符合实际问题. 3. 求函数值域(最值)的一般方法: (1)利用基本初等函数的值域; (2)配方法(二次函数或可转化为二次函数的函数); (3)不等式法(利用基本不等式,尤其注意形如)0(>+=k x k x y 型的函数) (4)函数的单调性:特别关注)0(>+ =k x k x y 的图象及性质 (5)部分分式法、判别式法(分式函数) (6)换元法(无理函数) (7)导数法(高次函数) (8)反函数法 (9)数形结合法 4. 求函数的单调性 (1)定义法: (2)导数法: (3)利用复合函数的单调性: (4)关于函数单调性还有以下一些常见结论: ①两个增(减)函数的和为_____;一个增(减)函数与一个减(增)函数的差是______; ②奇函数在对称的两个区间上有_____的单调性;偶函数在对称的两个区间上有_____的单调性; ③互为反函数的两个函数在各自定义域上有______的单调性; (5)求函数单调区间的常用方法:定义法、图象法、复合函数法、导数法等 (6)应用:比较大小,证明不等式,解不等式。 5. 函数的奇偶性 奇偶性:定义:注意区间是否关于原点对称,比较f (x ) 与f (-x )的关系。f (x ) -

函数解析式求法和值域求法总结

2[()]()()f f x af x b a ax b b a x ab b =+=++=++函 数 解 析 式 及值域专题 一、 待定系数法:在已知函数解析式的构造时,可用待定系数法. 例1 设)(x f 是一次函数,且34)]([+=x x f f ,求)(x f . 解:设b ax x f +=)()0(≠a ,则 ∴?? ?=+=3 42b ab a , ∴????? ?=-===3212b a b a 或 . 32)(12)(+-=+=∴x x f x x f 或 . 二、 配凑法:已知复合函数[()]f g x 的表达式,求()f x 的解析式常用配凑法.但要注 意所求函数()f x 的定义域不是原复合函数的定义域,而是()g x 的值域. 例2 已知221 )1(x x x x f +=+ )0(>x ,求 ()f x 的解析式. 解:2)1()1(2-+=+x x x x f , 21≥+x x , 2)(2 -=∴x x f )2(≥x . 三、换元法:已知复合函数[()]f g x 的表达式时,还可以用换元法求()f x 的解析式.与配 凑法一样,要注意所换元的定义域的变化. 例3 已知x x x f 2)1(+=+,求)1(+x f . 解:令1+= x t ,则1≥t ,2)1(-=t x . x x x f 2)1(+=+, ∴,1)1(2)1()(22-=-+-=t t t t f 1)(2-=∴x x f )1(≥x , x x x x f 21)1()1(22+=-+=+∴ )0(≥x . 四、代入法:求已知函数关于某点或者某条直线的对称函数时,一般用代入法. 例4已知:函数)(2 x g y x x y =+=与的图象关于点)3,2(-对称,求)(x g 的解析式. 解:设),(y x M 为)(x g y =上任一点,且),(y x M '''为),(y x M 关于点)3,2(-的对称点. 则 ?????=+'-=+'32 22y y x x ,解得:???-='--='y y x x 64 , 点),(y x M '''在)(x g y =上 , x x y '+'='∴2.

函数值域的求法及例题

函数值域的求法 在函数概念的三要素中,定义域和对应法则是最基本的,值域是由定义域和对应法则所确定,因此,研究值域仍应注重函数对应法则的作用和定义域对值域的制约,以下试举例说明常用方法. [例1]:求下列函数的值域 (1)y =1-2x (x ∈R ) (2)y =|x |-1 x ∈{-2,-1,0,1,2} (3)y =x 2+4x +3 (-3≤x ≤1) (4)y =|x +1|-|x -2| (5)y =2x -3+134-x (6)y =2 224)1(5 +++x x x (7)y =5 21+-x x (8)y =1223222++--x x x x (9)y =3-2x -x 2 x ∈[-3,1] (10)y =2 1322+-x x 分析:求函数的值域应确定相应的定义域后再根据函数的具体形式及运算确定其值域. 对于(1)(2)可用“直接法”根据它们的定义域及对应法则得到(1)(2)的值域. 对于(3)(4)可借助数形结合思想利用它们的图象得到值域,即“图象法”. 对于(5)(6)可借用整体思想利用“换元法”求得值域. 对于(7)可将其分离出一个常数,即利用“分离常数法”求得它的值域. 对于(8)可通过对“Δ”的分析,即利用“判别式”法求得其值域. 对于(9)(10)可“通过中间函数的值域去求所求函数的值域”这一方法即“中间媒介法”求得其值域. 解:(1)y ∈R (2)y ∈{1,0,-1} (3)画出y =x 2+4x +3(-3≤x ≤1)的图象,如图所示,当x ∈[-3,1] 时,得y ∈[-1,8] (4)对于y =|x +1|-|x -2|的理解,从几何意义入 手,即利用绝对值的几何意义可知,|x +1|表示在数轴上表示x 的点到点-1的距离,|x -2|表示在数轴上表示x 的点到点2的距离,在数轴上任取三个点x A ≤-1,-1<x B <2,x C ≥c ,如图所示,可以看出|x A +1|-|x A -2|=-3 -3<|x B +1|-|x B -2|<3,|x C +1|-|x C -2|=3,由此可知,对于任意实数x ,都有-3≤|x +1|-|x -2|≤3所以函数y =|x +1|-|x -2|的值域为y ∈[-3,3] (5)对于没有给定自变量的函数,应先考查函数的定义域,再求其值域. ∵4x -13≥0 ∴x ∈[4 13 ,+∞)令t =134-x 则得:x =4132+t

配方法 、分离常数法

函数的值域(配方法,分离常数法) 一、配方法。 例1.求函数242y x x =-++([1,1]x ∈-)的值域。 【解析】2242(2)6y x x x =-++=--+。 ∵11x -≤≤,∴321x -≤-≤-,∴21(2)9x ≤-≤,∴23(2)65x -≤--+≤,∴35y -≤≤。 ∴函数242y x x =-++([1,1]x ∈-)的值域为[3,5]-。 例2.求函数][)4,0(422∈+--=x x x y 的值域。 【解析】本题中含有二次函数可利用配方法求解,为便于计算不妨设: )0)((4)(2≥+-=x f x x x f 配方得:][)4,0(4)2()(2∈+--=x x x f 利用二次函数的相关知识得][4,0)(∈x f ,从而得出:]0,2y ?∈?。 说明:在求解值域(最值)时,遇到分式、根式、对数式等类型时要注意函数本身定义域的限制,本题为:0)(≥x f 。 例3.若,42=+y x 0,0>>y x ,试求y x lg lg +的最大值。 【分析与解】本题可看成第一象限内动点(,)P x y 在直线42=+y x 上滑动时函数xy y x lg lg lg =+的最大值。利用两点(4,0),(0,2)确定一条直线,作出图象易得: 2(0,4),(0,2),lg lg lg lg[(42)]lg[2(1)2]x y x y xy y y y ∈∈+==-=--+而,y=1时,y x lg lg +取最大值2lg 。 练习.求下列函数的最大值、最小值与值域: ①142+-=x x y ; ②]4,3[,142∈+-=x x x y ; ③]1,0[,142∈+-=x x x y ; ④]5,0[,142∈+-=x x x y ;⑤ y =。 【答案】①[3,)-+∞;②[2,1]-;③[2,1]-;④[3,6]-;○6[0,2] 二、分离常数法 适用类型1:分子、分母是一次函数的有理函数,可用分离常数法 例4:求函数125 x y x -=+的值域。 解:∵177(25)112 222525225 x x y x x x -++-===-++++,

函数定义域、值域经典习题及答案88322

复合函数定义域和值域练习题 一、 求函数的定义域 1、求下列函数的定义域: 2) y = 1 + (2 x - 1)0+ 4 - x 2 1+ 1 x -1 2、设函数 f (x )的定义域为[0,1],则函数f (x 2)的定义域为_ _ _;函数 f ( x -2) 的定义域为 _______ 3、若函数 f (x +1)的定义域为[-2,3],则函数 f (2x -1)的定义域是 ;函 数 f (1 + 2)的定义域为 。 x 4、 已知函数f (x )的定义域为[-1, 1],且函数F (x )= f (x +m )-f (x -m )的定义域存在, 求实数m 的取值范围。 二、求函数的值域 5、求下列函数的值域: ⑴ y = x 2 +2x -3 (x R ) ⑵ y = x 2 +2x -3 x [1,2] ⑶y =3x -1 x + 1 ⑷y = 3x -1 (x 5) x +1 三、求函数的解析式 1、 已知函数 f (x -1) = x - 4x ,求函数 f (x ), f (2x +1) 的解析式。 2、 已知 f (x )是二次函数,且 f (x +1)+ f (x -1)=2x -4x ,求 f (x )的解析式。 ⑴y = x 2 -2x -15 x +3-3 y = 2x - 6 x +2

3、已知函数f(x)满足2f(x)+ f(-x)=3x+4,则f(x)= 。 4、设f(x)是R 上的奇函数,且当x[0,+)时,f(x)=x(1+3x),则当x(-,0)时f(x)= ________ _ f(x)在R 上的解析式为 5、设f(x)与g(x)的定义域是{x|x R,且x1},f(x) 是偶函数,g(x)是奇函数,且 f(x)+g(x)=1,求f(x)与g(x) 的解析表达式 x - 1 四、求函数的单调区间 6、求下列函数的单调区间: ⑴ y= x2+2x+3 ⑵ y = -x2+2x +3 ⑶ y = x2- 6x -1 7、函数f(x)在[0,+)上是单调递减函数,则f(1-x2)的单调递增区间是 8、函数y = 2-x的递减区间是;函数y = 2-x的递减 3x + 6 3x + 6 区间是 五、综合题 9、判断下列各组中的两个函数是同一函数的为 ( ) ⑴y1=(x+3)(x-5),y2=x-5;⑵y1= x+1 x-1 ,y2= (x+1)(x-1) ; x+3 ⑶f (x) = x,g(x) = x2 ;⑷f (x) = x,g(x)= 3x3 ;⑸f1(x) = ( 2x-5)2 , f (x) = 2x - 5。 A、⑴、⑵ B 、⑵、 ⑶ C 、⑷D、⑶、⑸ 10、若函数f(x)= x - 4的定义域为R ,则实数 m mx2+ 4mx + 3 的取值范围是 ( ) A、(-∞,+∞) 3 B 、(0,3 ] 3 C 、(3,+∞ ) 3 D 、[0, 3 ) 11、若函数f (x) = mx2+mx+1的定义域为R,则实数m的取值范围是( )

含根式函数值域的求法

含根式函数值域的几何求法 函数值域和最大值、最小值问题是高中数学中重要的问题,其求解的方法很多,常见的解法有:观察法、配方法、均值不等式法、反函数法、换元法、判别式法、单调函数法、图解法等。其中,利用数形结合来求函数的值域,尤其是含根式函数的值域,具有其独特的效果,它能够把满足题意的几何图形画出来,生动形象的直观图,提示和启发我们的解题思路,有时,图形式直接提供了我们寻求的答案,因此,几何法既可以使题意更加明确,又可以使运算得到简化。 例1 求函数312+-+=x x y 的最小值. 解:由03≥+x 得:3-≥x . 令???≥+=-≥+=) 0(3)5(12v x v u x u ,消去x 得:)0,5()5(212≥-≥+=v u u v 则点()v u ,在)5(2 12+=u v 的抛物线段上,又在直线y u v -=上,如图1,易知,当直线与抛物线相切时,-y 取最大值,取y 最小值。 联立方程组?????-=+=y u v u v )5(212, 消去u 整理得: 0522=---y v v ,由△=0, 即:0)5(24)1(2=--??--y 解得:=y 8 41-. ∴ 原函数的最小值为841- . 评注:本题可以利用代数换元法,将含根式函数的值域问题转化为二次型函数在某区间上的值域问题,其解题过程中运算量并不大,而且不难接受理解。因此,本题利用构造直线与抛物线进行求解,并没有真正体现出几何解法的优越性。 图1

例2 求函数131-++-=x x y 的值域. 分析:本题不能用换元法进行求解,因此,我们也来尝试利用几何解法。 解:由???≥+≥-0301x x 解得:13≤≤-x . 令???≤≤+=≤≤-=)20(3)20(1v x v u x u ,消去x 得:)20,20(422≤≤≤≤=+v u v u 则点()v u ,在422=+v u 的园弧上,又在直线1++-=y u v 上, 如图2,显然OB y OA ≤+≤1 又 ∵ 22,2==OB OA ∴ 1221-≤≤y 即为原函数所求的值域。 例3 求函数106422+-++=x x x y 的最小值. 分析:当我们把106422+-++=x x x y 化为: y 2222)10()3()20()0(-+-+-+-=x x 时,容易联想到两点间距离。 解: 106422+-++=x x x y 2222)10()3()20()0(-+-+-+-=x x 设P (x , 0),A (0, 2),B (3, 1),则问题转化 为在x 轴上找一点P ,使得P 到A 、B 两点的 距离之和最小。如图3,易求得点A 关于x 轴 的对称点A / 的坐标为(0, -2),则: B A BP P A BP AP //=+=+即为最小. ∴ 32)12()30(22/min =--+-==B A y . 评注:本题可用判别式法以及构造复数由模的重 要不等式进行求解,但是判别式法计算量很大,不易 图2 图3

函数定义域知识点梳理、经典例题及解析、高考题带答案

函数的定义域 【考纲说明】 1、理解函数的定义域,掌握求函数定义域基本方法。 2、会求较简单的复合函数的定义域。 3、会讨论求解其中参数的取值范围。 【知识梳理】 (1) 定义:定义域是在一个函数关系中所有能使函数有意义的 的集合。 (2) 确定函数定义域的原则 1.当函数y=f(x)用列表法给出时,函数的定义域指的是表格中所有实数x 的集合。 2.当函数y=f(x)用图象法给出时,函数的定义域指的是图象在x 轴上的投影所覆盖的实数的集合。 3.当函数y=f(x)用解析式给出时,函数定义域指的是使解析式有意义的实数的集合。 4.当函数y=f(x)由实际问题给出时,函数定义域要使函数有意义,同时还要符合实际情况。 3、.确定定义域的依据: ①f(x)是整式(无分母),则定义域为 ; ②f(x)是分式,则定义域为 的集合; ③f(x)是偶次根式,则定义域为 的集合; ④对数式中真数 ,当指数式、对数式底中含有变量x 时,底数 ; ⑤零次幂中, ,即x 0中 ; ⑥若f(x)是由几个基本初等函数的四则运算而合成的函数,则定义域是各个函数定义域的 。 ⑦正切函数x y tan = 4、抽象函数的定义域(难点) (1)已知)(x f 的定义域,求复合函数()][x g f 的定义域 由复合函数的定义我们可知,要构成复合函数,则内层函数的值域必须包含于外层函数的定义域之中,因此可 得其方法为:若)(x f 的定义域为()b a x ,∈,求出)]([x g f 中b x g a <<)(的解x 的范围,即为)]([x g f 的定义域。 (2)已知复合函数()][x g f 的定义域,求)(x f 的定义域 方法是:若()][x g f 的定义域为()b a x ,∈,则由b x a <<确定)(x g 的范围即为)(x f 的定义域。

函数值域求法十一种

函数值域求法十一种 1. 直接观察法 对于一些比较简单的函数,其值域可通过观察得到。 例1. 求函数x 1y = 的值域。 解:∵0x ≠ ∴0x 1≠ 显然函数的值域是:),0()0,(+∞-∞ 例2. 求函数x 3y - =的值域。 解:∵0x ≥ 3x 3,0x ≤-≤-∴ 故函数的值域是:]3,[-∞ 2. 配方法 配方法是求二次函数值域最基本的方法之一。 例3. 求函数]2,1[x ,5x 2x y 2 -∈+-=的值域。 解:将函数配方得: 4)1x (y 2 +-= ∵]2,1[x -∈ 由二次函数的性质可知:当x=1时,4y min =,当1x -=时,8y max = 故函数的值域是:[4,8] 3. 判别式法 例4. 求函数 22x 1x x 1y +++= 的值域。 解:原函数化为关于x 的一元二次方程 0x )1y (x )1y (2=-+- (1)当1y ≠时,R x ∈ 0)1y )(1y (4)1(2≥----=? 解得:23y 2 1≤ ≤

(2)当y=1时,0x =,而? ?????∈23,211 故函数的值域为? ?????23,21 例5. 求函数) x 2(x x y -+ =的值域。 解:两边平方整理得: 0y x )1y (2x 22 2=++-(1) ∵R x ∈ ∴ 0y 8)1y (42 ≥-+=? 解得:21y 21+≤≤- 但此时的函数的定义域由0)x 2(x ≥-,得2x 0≤≤ 由0≥?,仅保证关于x 的方程: 0y x )1y (2x 222=++-在实数集R 有实根,而不能确保其实根在区间[0,2]上,即不能确保方程(1)有实根,由 0 ≥?求出的围可能比y 的实际围大,故不能确定此函数的值域为? ?? ???23,21。 可以采取如下方法进一步确定原函数的值域。 ∵2x 0≤≤ )x 2(x x y ≥-+=∴ 21y ,0y min + ==∴代入方程(1) 解得:] 2,0[2 2 222x 41∈-+= 即当 22222x 41-+= 时, 原函数的值域为:]21,0[+ 注:由判别式法来判断函数的值域时,若原函数的定义域不是实数集时,应综合函数的定义域,将扩大的部分剔除。 4. 反函数法 直接求函数的值域困难时,可以通过求其原函数的定义域来确定原函数的值域。 例6. 求函数6x 54 x 3++值域。 解:由原函数式可得: 3 y 5y 64x --=

高一数学《函数的定义域值域》练习题

函数值域、定义域、解析式专题 一、函数值域的求法 1、直接法: 例1:求函数y = 例2:求函数1y 的值域。 2、配方法: 例1:求函数242y x x =-++([1,1]x ∈-)的值域。 例2:求 函 数]2,1[x ,5x 2x y 2 -∈+-= 的 值域。 例3:求函数2256y x x =-++的值域。 3、分离常数法: 例1:求函数125 x y x -=+的值域。 例2:求函数1 22+--=x x x x y 的值域. 例3:求函数1 32 x y x -=-得值域. 4、换元法: 例1:求函数2y x = 例2: 求 函 数1x x y -+=的 值 域。 5、函数的单调性法:确定函数在定义域(或某个定义域的子集)上的单调性,求出函数的值域。 例1:求函数y x = 例2:求函数()x x x f -++=11的值域。

例3:求 函 数1x 1x y --+=的 值 域。 6、数型结合法:函数图像是掌握函数的重要手段,利用数形结合的方法,根据函数图像求得函数值域,是一种求值域的重要方法。当函数解析式具有某种明显的几何意义(如两点间距离,直线的斜率、截距等)或当一个函数的图象易于作出时,借助几何图形的直观性可求出其值域。 例1:求函数|3||5|y x x =++-的值域。 7、非负数法 根据函数解析式的结构特征,结合非负数的性质,可求出相关函数的值域。 例1、(1)求函数216x y -=的值域。 (2)求函数1 3 22+-=x x y 的值域。 二、函数定义域 例1:已知函数()f x 的定义域为[]15-,,求(35)f x -的定义域. 例2:若()f x 的定义域为[]35-,,求()()(25)x f x f x ?=-++的定义域. 例3:求下列函数的定义域: ① 2 1 )(-= x x f ; ② 23)(+=x x f ; ③ x x x f -+ += 21 1)( 例4:求下列函数的定义域: ④ 14)(2--=x x f ⑤ ②2 14 3)(2-+--= x x x x f ⑥ 3 7 3132+++-= x x y ④x x x x f -+= 0)1()( 三、解析式的求法 1、配凑法 例1:已知 :23)1(2 +-=+x x x f ,求f(x);

求值域的方法大全及习题

求值域方法 常用求值域方法 (1)、直接观察法:利用已有的基本函数的值域观察直接得出所求函数的值域 对于一些比较简单的函数,如正比例,反比例,一次函数,指数函数,对数函数,等等, 其值域可通过观察直接得到。 例1、求函数 1 ,[1,2]y x x = ∈的值域。 例2、 求函数x 3y -=的值域。 【同步练习1】函数2 21x y += 的值域. (2)、配方法:二次函数或可转化为形如c x bf x f a x F ++=)()]([)(2 类的函数的值域问题,均可用配方法,而后一情况要注意)(x f 的范围;配方法是求二次函数值域最基本的方法之一。 例1、求函数 225,y x x x R =-+∈的值域。 例2、求函数]2,1[x ,5x 2x y 2 -∈+-=的值域。 例3、求()()22log 26log 62log 22 222 2-+=++=x x x y 。(配方法、换元法) 例4、设02x ≤≤,求函数1 ()4321x x f x +=-+g 的值域. 例5、求函数13432-+ -=x x y 的值域。(配方法、换元法) 例6、求函数x x y 422+--=的值域。(配方法) 【同步练习2】 1、求二次函数2 42y x x =-+-([]1,4x ∈)的值域. 2、求函数342-+-=x x e y 的值域. 3、求函数421,[3,2]x x y x --=-+∈-的最大值与最小值. 4、求函数])8,1[(4 log 2log 22 ∈?=x x x y 的最大值和最小值. 5、已知[]0,2x ∈,求函数1 2 ()4 325x x f x -=-?+的值域. 6、若,42=+y x 0,0>>y x ,试求y x lg lg +的最大值。

求函数最值常用的方法及经典例题讲解

求函数最值常用的方法及经典例题讲解 知识点: 一、函数最大(小)值定义 最大值:一般地,设函数()y f x =的定义域为I ,如果存在实数M 满足: (1)对于任意的x I ∈,都有()f x M ≤; (2)存在0x I ∈,使得0()f x M =. 那么,称M 是函数()y f x =的最大值. 思考:依照函数最大值的定义,结出函数()y f x =的最小值的定义. 注意: ①函数最大(小)首先应该是某一个函数值,即存在0x I ∈,使得0()f x M =; ②函数最大(小)应该是所有函数值中最大(小)的,即对于任意的x I ∈,都有()(())f x M f x m ≤≥. 二、求函数最大(小)值常用的方法. 案例分析: 例1、画出下列函数的图象,指出图象的最高点或最低点,并说明它能体现函数的什么特征? ①()3f x x =-+ ②()3 [1,2]f x x x =-+∈- ③2()21f x x x =++ ④2 ()21[2,2]f x x x x =++∈-

类型一、直接观察法 对于一些比较简单的函数,如正比例,反比例,一次函数,指数函数,对数函数,等等, 其值域可通过观察直接得到。 例 1、求函数 1 ,[1,2] y x x =∈ 的值域 A、单调递减,无最小值 B、单调递减,有最小值 B、单调递增,无最大值 D、单调递增,有最大值小试牛刀: 1、求函数 2 1 y x = - 在区间[2,6] 上的最大值和最小值. 2

()5522++=x x x f 类型二、反函数法(原函数的值域是它的反函数的定义域) 例: 求函数3456x y x +=+值域。 实战训练场: 1) 求函数2 13-+= x x y 的值域; 2) 函数.11的值域是x x y +-= 类型三、倒数法 有时,直接看不出函数的值域时,把它倒过来之后,你会发现另一番境况 例1 、求函数 y = 的值域。 例2、求函数 的值域。

专题_高中函数值域的求法(讲义与练习)+

专题 求函数值域的常用方法及值域的应用 三、值域的概念和常见函数的值域 ........................................................................................ - 1 - 四、求函数值域(最值)的常用方法 ..................................................................................... - 1 - 4.1.直接法 ................................................................................................................. - 1 - 4.2配方法 .................................................................................................................. - 2 - 4.3换元法 .................................................................................................................. - 3 - 4.4基本不等式法 ........................................................................................................ - 4 - 4.5函数的单调性(导数)法 ......................................................................................... - 5 - 4.6数形结合法 ........................................................................................................... - 7 - 4.7函数的有界性法 ..................................................................................................... - 8 - 4.8分离常数法 ........................................................................................................... - 9 - 4.8 三角函数中的值域问题 ......................................................................................... - 10 - 五、高考真题汇编 ............................................................................................................ - 11 - 三、值域的概念和常见函数的值域 1、定义:函数值y 的取值围叫做函数的值域(或函数值的集合)。 函数的值域取决于定义域和对应法则,不论采用什么方法球函数的值域均应考虑其定义域. 2、常见函数的值域: 一次函数()0y kx b k =+≠的值域为R. 二次函数()2 0y ax bx c a =++≠,当0a >时的值域为24,4ac b a ?? -+∞?? ?? ,当0a <时的值域为24,4ac b a ?? --∞ ?? ?., 反比例函数()0k y k x =≠的值域为{}0y R y ∈≠. 指数函数()01x y a a a =>≠且的值域为{}0y y >. 对数函数()log 01a y x a a =>≠且的值域为R. 正,余弦函数的值域为[]1,1-,正,余切函数的值域为R. 四、求函数值域(最值)的常用方法 4.1.直接法 从自变量x 的围出发,推出()y f x =的取值围。或由函数的定义域结合图象,或直观观察,准确判断函数值域的方法。

高考求函数值域及最值得方法及例题_训练题

函数专题之值域与最值问题 一.观察法:通过对函数定义域、性质的观察,结合函数的解析式,求得函数的值域. 例1:求函数) + =的值域. y- 3x 3 2( 点拨:根据算术平方根的性质,先求出) -的值域. 3 2(x 解:由算术平方根的性质,知) 2(x -≥3。∴函数的值域为) 3 -≥0,故3+) 2(x 3 ,3[+∞ . 点评:算术平方根具有双重非负性,即:(1)被开方数的非负性,(2)值的非负性。本题通过直接观察算 术平方根的性质而获解,这种方法对于一类函数的值域的求法,简捷明了,不失为一种巧法。 练习:求函数y=[x](0≤x≤5)的值域。(答案:值域为:{0,1,2,3,4,5}) 二.反函数法:当函数的反函数存在时,则其反函数的定义域就是原函数的值域. 例2:求函数y=(x+1)/(x+2)的值域. 点拨:先求出原函数的反函数,再求出其定义域。 解:显然函数y=(x+1)/(x+2)的反函数为:x=(1-2y)/(y-1),其定义域为y≠1的实数, 故函数y的值域为{y∣y≠1,y∈R}。 点评:利用反函数法求原函数的定义域的前提条件是原函数存在反函数。 这种方法体现逆向思维的思想,是数学解题的重要方法之一。 练习:求函数y=(10x+10-x)/(10x-10-x)的值域。(答案:函数的值域为{y∣y<-1或y>1})三.配方法:当所给函数是二次函数或可化为二次函数的复合函数时,可以利用配方法求函数值域. 例3:求函数y=√(-x2+x+2)的值域. 点拨:将被开方数配方成完全平方数,利用二次函数的最值求。 解:由-x2+x+2≥0,可知函数的定义域为x∈[-1,2]。 此时-x2+x+2=-(x-1/2)2+9/4∈[0,9/4] ∴0≤√-x2+x+2≤3/2,函数的值域是[0,3/2] 点评:求函数的值域不但要重视对应关系的应用,而且要特别注意定义域对值域的制约作用。 配方法是数学的一种重要的思想方法。 练习:求函数y=2x-5+√15-4x的值域.(答案:值域为{y∣y≤3}) 四.判别式法:若可化为关于某变量的二次方程的分式函数或无理函数,可用判别式法求函数的值域。 例4:求函数y=(2x2-2x+3)/(x2-x+1)的值域. 点拨:将原函数转化为自变量的二次方程,应用二次方程根的判别式,从而确定出原函数的值域。

相关主题
文本预览
相关文档 最新文档