当前位置:文档之家› 26-1 多进制振幅键控

26-1 多进制振幅键控

26-1 多进制振幅键控
26-1 多进制振幅键控

波形实例

(b ) MASK 信号

0101

10

10

10

11

11

00

00

0101

10

10

10

11

11

(d ) 抑制载波MASK 信号

正交振幅调制

《通信原理》课程设计 报告 二○一三~二○一四学年第一学期 学号 姓名 班级 电子工程系

目录 第一章绪论 (4) 1.1 QAM简介 (4) 第二章正交振幅调制 (5) 2.1 MQAM信号的星座图 (5) 2. 2 QAM的调制解调原理 (6) 第三章 16QAM调制解调系统实现与仿真 (6) 3.1 16QAM 调制模块的模型建立与仿真 (7) 3.1.1 串并转换模块 (7) 3.1.2 2/4电平转换模块 (9) 3.1.3 其余模块与调制部分的结果 (10) 3.2 16QAM解调模块的模型建立与仿真 (11) 3.2.1 相干解调 (11) 3.2.2 4/2电平判决与毛刺消除仿真电路 (11) 3.2.3 并串转换与最终解调结果对比 (13) 第四章仿真结果分析及总结 (15) 4.1 仿真结果分析 (15) 4.2 总结 (15)

第一章绪论 1.1 QAM简介 随着现代通信技术的发展,特别是移动通信技术高速发展,频带利用率问题越来越被人们关注。在频谱资源非常有限的今天,传统通信系统的容量已经不能满足当前用户的要求。正交幅度调制QAM(Quadrature Amplitude Modulation)以其高频谱利用率、高功率谱密度等优势,成为宽带无线接入和无线视频通信的重要技术方案。正交振幅调制QAM(Quadrature Amplitude Modulation)是一种频谱利用率很高的调制方式,其在中、大容量数字微波通信系统、有线电视网络高速数据传输、卫星通信系统等领域得到了广泛应用。在移动通信中,随着微蜂窝和微微蜂窝的出现,使得信道传输特性发生了很大变化。作为国际上移动通信技术专家十分重视的一种信号调制方式之一,正交振幅调制(QAM)在移动通信中频谱利用率一直是人们关注的焦点之一。 正交振幅键控是将两种调幅信号(2ask和2psk)汇合到一个信道的方法,因此会双倍扩展有效带宽。正交调幅被用于脉冲调幅,特别是在无线网络应用。正交调幅信号有两个相同频率的载波,但是相位相差90度(四分之一周期,来自积分术语)。一个信号叫I 信号,另一个信号叫Q信号。从数学角度将一个信号可以表示成正弦,另一个表示成余弦。两种被调制的载波在发射时已被混和。到达目的地后,载波被分离,数据被分别提取然后和原始调制信息相混和。 QAM是用两路独立的基带信号对两个相互正交的同频载波进行抑制载波双边带调幅,利用这种已调信号的频谱在同一带宽内的正交性,实现两路并行的数字信息的传输。该调制方式通常有二进制QAM(4QAM)、四进制QAM(l6QAM)、八进制QAM(64QAM)、…,对应的空间信号矢量端点分布图称为星座图,分别有4、16、64、…个矢量端点。电平数m 和信号状态M之间的关系是对于4QAM,当两路信号幅度相等时,其产生、解调、性能及相位矢量均与4PSK相同。正交振幅调制QAM(Quadrature Amplitude Modulation)是一种频谱利用率很高的调制方式,其在中、大容量数字微波通信系统、有线电视网络高速数据传输、卫星通信系统等领域得到了广泛应用。 第二章正交振幅调制 2.1 MQAM信号的星座图 正交振幅调制(QAM)是一种矢量调制,它是将输入比特先映射(一般采用格雷码)到一个复平面(星座)上,形成复数调制符号。正交调幅信号有两个相同频率的载波,但是相位相差90度(四分之一周期,来自积分术语)。一个信号叫I信号,另一个信号叫Q 信号。从数学角度将一个信号可以表示成正弦,另一个表示成余弦。两种被调制的载波在发射时已被混和。到达目的地后,载波被分离,数据被分别提取然后和原始调制信息相和。这样与之作幅度调制(AM)相比,其频谱利用率高出一倍。

多进制数字调制系统抗噪性能分析

安康学院 学年论文﹙设计﹚ 题目多进制数字调制系统抗噪性能分析 学生姓名任永森学号 2009222343 所在院(系)安康学院 专业班级电子信息工程 09级(1班) 指导教师张申华 2012年 6月8日

多进制数字调制系统抗噪性能分析 (作者:任永森) (安康学院电子与信息工程系电子信息工程专业09级,陕西安康725000) 指导教师:张申华 【摘要】本文以双模噪声为背景噪声,详细分析了二进制数字调制系统的抗噪声性能。它是对原建立在高斯噪声基础上通信与信号处理理论的完善与补充,有一定的普遍意义。在理论分析的基础上,给出了仿真结果并进行了分析。 【关键词】双模噪声相干检测非相干检测高斯型混合 Anti-noise performance of M-ary digital modulation system Author: Ren Y ongsen (Department of electronics and Information Engineering Ankang University of electronic information engineering09,Ankang 725000,Shaanxi) Directed by Zhang Shenhua Abstract:The bimodal noise background noise, a detailed analysis of the binary digital modulation noise immunity performance of. It is to build in the Gauss noise based on communication and signal processing theory perfect and supplement, has certain common sense. On the basis of theoretical analysis, simulation results and analysis. Key words:Bimodal Noise coherent detection noncoherent detection Gauss hybrid 0 引言 通信与信号处理理论一般是建立在高斯噪声基础之上的,它对建立在高斯噪声基础上的数字调制系统中的背景噪声为高斯噪声时的性能分析理论上已经比较完善。非高斯噪声研究是现代信号处理的核心内容之一,其应用范围以涉及地球物理各个领域。在信号处理方法中,特别是对于各种污染非高斯噪声的接收信号的检测和处理,用高斯噪声进行近似分析不能得到满意效果,所以在处理信号和数据时,首先要分清混有那类噪声,建立其数学模型进行处理。非高斯噪声比高斯噪声更具

多进制数字调制3

2、四相绝对移相键控(QPSK)系统 a)QPSK信号的产生 QPSK信号利用载波的四种不同相位来表示数字信息。由于每一种载波相位代表两比特信息,因此每个四进制码元称为双比特码元。两个二进制码元中的前一比特用a 表示,后一比特用 b 表示,采用体系,则双比特ab 与载波相位的关系如右表。 在2PSK信号相干解调过程中会产生180?相位模糊。同样,对QPSK信号相干解调也会产生相位模糊问题,并且是0?, 90?,180?和270?四个相位模糊。故在实际中更实用的是四相相对移相调制,即QDPSK方式。 3、四相相对移相键控(QDPSK)系统 四相相对移相键控(QDPSK)信号是利用前后码元之间载波四种不同的相对相位变化来表示数字信息。若以前一双比特码元相位作为参考,??n为当前双比特码元与前一双比特码元初相差,则信息编码与载波相位变化关系如右表(π/2体系) 五、正交振幅调制(QAM) 在系统带宽一定的条件下,多进制调制的信息传输速率比二进制高,也就是说,多进制调制系统的频带利用率高。但是,多进制调制系统频带利用率的提高是通过牺牲功率利用率来换取的。因为随着M 值的增加,在信号空间中各信号点的最小距离减小,相应的信号判决区域也随之减小。因此,当信号受到噪声和干扰的损害时,接收信号的错误概率也将随之增大。 振幅相位联合键控(APK)或正交振幅调制(QAM)就是为克服上述问题而提出来的。在M 较大时,可以获得较好的功率利用率,同时,其设备组成也比较简单。因此,它是目前研究和应用较多的一种调制方式。 正交振幅调制(QAM)是用两个独立的基带数字信号对两个相互正交的同

频载波进行抑制载波的双边带调制,利用这种已调信号在同一带宽内频谱正交的性质来实现两路并行的数字信息传输。 输入的二进制序列经过串/并变换器输出速率减半的两路并行序列,再分别经过 2 电平到L 电平的变换,形成L 电平的基带信号。为了抑制已调信号的带外辐射,该L 电平的基带信号还要经过预调制低通滤波器,形成X(t)和Y(t),再分别对同相载波和正交载波相乘。最后将两路信号相加即可得到QAM 信号。 正交振幅调制(QAM)的原理 五、总结 六、布置作业: 课后习题

通信原理课程设计二进制振幅键控

广西科技大学计算机工程学院 通信原理 --课程设计说明书 设计题目: 二进制振幅键控(2ASK) 系统的设计 指导老师: 专业班级:通信061 学生姓名: 学号: 日期: 2008年12月30日

●目录 1.目录 (1) 2.摘要 (1) 3.关键词 (2) 4.正文 (2) 5.SystemView的基本介绍 (2) 6.二进制振幅键控(2ASK) 调制原理 (4) 7.二进制振幅键控(2ASK)系统的设计 (7) 8.调制系统 (7) 9.调制解调系统 (9) 10.系统仿真结果分析 (11) 11.实验总结 (11) 12.参考文献 (11) 13.附件 (12) ●摘要 数字信号的传输方式可以分为基带传输和带通传输。为了使信号在带通信道中传输,必须用数字基带信号对载波进行调制,以使信号与信道特性相匹配。在这个过程中就要用到数字调制。在通信系统中,利用数字信号的离散取值特点通过开关键控载波,来实现数字调制,这种方法通常称为键控法,主要对载波的振幅,频率,和相位进行键控。键控主要分为:振幅键控,频移键控,相移键控三种基本的数字调制方式。本次课程设计的目的是在学习振幅键控调制的基础上,通过Systemview仿真软件,实现对2ASK数字调制系统的仿真,同时这个系统有深入的了解。

●关键字:SystemView 通信系统二进制振幅键控 2ASK 调制解调 ●正文 一、SystemView的基本介绍: Systemview是美国ELANIX公司于1995年开始推出的软件工具,它为用户提供了一个完整的动态系统设计、仿真与分析的可视化软件环境,能进行模拟、数字、数模混合系统、线性和非线性系统的分析设计,可对线性系统进行拉氏变换和Z变换分析。 SystemView基本属于一个系统级工具平台,可进行包括数字信号处理(DSP)系统、模拟与数字通信系统、信号处理系统和控制系统的仿真分析,并配置了大量图符块(Token)库,用户很容易构造出所需要的仿真系统,只要调出有关图符块并设置好参数,完成图符块间的连线后运行仿真操作,最终以时域波形、眼图、功率谱、星座图和各类曲线形式给出系统的仿真分析结果。SystemView的库资源十分丰富,主要包括:含若干图符库的主库(Main Library)、通信库(Communications Library)、信号处理库(DSP Library)、逻辑库(Logic Library)、射频/模拟库(RF Analog Library)和用户代码库(User Code Library)。 Systemview对系统的分析主要分为两大块,调制系统的分析和解调系统的分析。由于调制是解调的基础,没有调制就不可能有解调,为了表现解调系统往往需要很高的采样频率来减少滤波带来的解调失真,所以调制的已调信号通过波形模块观察起来不是很清楚,为了更好的弄清楚调制是怎么样的一个过程,在这里,我们把调制单独列出来,用较低的频率实现它,就能从单个周期上观察调制系统的运作模式,更深刻地表现调制系统的调制过程。 进入SystemView后,屏幕上首先出现该工具的系统视窗,系统视窗最上边一行为主菜单栏,包括:文件(File)、编辑(Edit)、参数优选(Preferences)、视窗观察(View)、便笺(NotePads)、连接(Connetions)、编译器(Compiler)、

常用多进制数字调制技术基础

常用多进制数字调制技术基础 1 常用多进制数字调制技术及应用 1.1 QPSK(四相相移键控)技术及应用 (1)QPSK技术 在相移键控(PSK)技术中,通过改变载波信号的相位来表示二进制数0、1,而相位改变的同时,最大振幅和频率则保持不变。例如,可以用两种不同相位的正弦信号分别表示0和1,用0°相位表示0,用180°相位表示1,这种PSK技术称为二相位PSK或2-PSK,信号之间的相位差为180°。 同样,可以用4种不同相位的正弦信号分别表示00、01、10和11,例如,用0°相位表示00,用90°相位表示01,用180°相位表示10,用270°相位表示11。这样每种相位的正弦信号可以表示两位二进制信息,信号之间的相位差为90°,这种PSK技术称为四相位PSK或QPSK,由于4个相位与四进制的4个符号相对应,也称四进制PSK调制。因每种相位的正弦信号可以表示两位二进制信息,与2-PSK相比,其编码效率提高了1倍。 以此类推,当不同相位的载波数为8、16……时,分别称为8-PSK(八进制PSK)、16-PSK(十六进制PSK)……,理论上,不同相位差的载波越多,可以表征的数字输入信息越多,频带的压缩能力越强,可以减小由于信道特性引起的码间串扰的影响,从而提高数字通信的有效性。但在多相调制时,相位取值数增大,信号之间的相位差也就减小,传输的可靠性将随之降低,因而实际中用得较多的是四相制(4-PSK)和八相制(8-PSK)。 (2)QPSK的应用 QPS K广泛应用于数字微波通信系统、数字卫星通信系统、宽带接入与移动通信及有线电视的上行传输。在卫星数字电视传输中普遍采用的QPSK调谐器可以说是当今卫星数字电视传输中对卫星功率、传输效率、抗干扰性以及天线尺寸等多种因素综合考虑的最佳选择。欧洲与日本的数字电视首先考虑的是卫星信道,采用QPSK调制,我国也出现了采用QPSK调制解调的卫星广播和数字电视机。 要实现卫星电视的数字化,必须在卫视传输中采用高效的调制器和先进的压缩技术,因为我国现行的PAL制彩色电视是采用625行/50场,其视频带宽5 MHz,根据4∶2∶2的标准,625行/50场的亮度信号(Y)的取样频率为13.5 MHz,每个色差信号(R-Y)和(B-Y)的取样频率均为6.75 MHz。当Y,(R-Y),(B-Y)信号的每个取样为8 bit量化时,电视信号经数字化后的亮度信号码率为13.5×8=108 Mbps,色度信号的码率为6.75×8×2=108 Mbps,总码率为色亮码率之和,即216 Mbps,在现有的传输媒介中要传送这样宽带的数字电视信号是不可能的。

振幅键控(ASK)调制与解调实验

《通信原理》实验报告 实验七:振幅键控(ASK)调制与解调实验 系别:信息科学与工程学院 专业班级:通信工程1003班 学生姓名:揭芳 学号:20101182073 同组学生:杨义奥 成绩: 指导教师:惠龙飞 (实验时间:20 12 年12 月21 日——20 12 年12 月21 日) 华中科技大学武昌分校

一、实验目的 1、 掌握用键控法产生ASK 信号的方法。 2、 掌握ASK 非相干解调的原理。 二、实验内容 1、 观察ASK 调制信号波形 2、 观察ASK 解调信号波形。 三、实验器材 1、 信号源模块 一块 2、 ③号模块 一块 3、 ④号模块 一块 4、 ⑦号模块 一块 5、 60M 双踪示波器 一台 6、 连接线 若干 四、基本原理 调制信号为二进制序列时的数字频带调制称为二进制数字调制。由于被调载波有幅度、频率、相位三个独立的可控参量,当用二进制信号分别调制这三种参量时,就形成了二进制振幅键控(2ASK)、二进制移频键控(2FSK )、二进制移相键控(2PSK)三种最基本的数字频带调制信号,而每种调制信号的受控参量只有两种离散变换状态。 1、 2ASK 调制原理。 在振幅键控中载波幅度是随着基带信号的变化而变化的。使载波在二进制基带信号1或0的控制下通或断,即用载波幅度的有或无来代表信号中的“1”或“0”,这样就可以得到2ASK 信号,这种二进制振幅键控方式称为通—断键控(OOK )。2ASK 信号典型的时域波形如图9-1所示,其时域数学表达式为: 2()cos ASK n c S t a A t ω=? (9-1) 式中,A 为未调载波幅度,c ω为载波角频率,n a 为符合下列关系的二进制序列的第n

4ASK载波调制信号的调制解调与性能分析解析

计算机与通信学院 2013年春季学期 通信系统仿真训练课程设计 题目:4ASK载波调制信号的调制解调与性能分析专业班级:通信工程四班 姓名: 学号: 指导教师: 成绩:

本次课程设计四进制振幅键控(4ASK)载波调制信号的调制解调与性能分析。通过对二进制数字信源进行四进制振幅键控(4ASK)数字调制,并画出信号波形及功率谱,分析其性能。课程设计是在MATLAB上完成软件的设计与仿真的,运用MATLAB 语言实现了数字基带信号的4ASK调制的模拟,并得到二进制基带信号和相应得四进制基带信号以及4ASK调制信号的波形显示,给出了整体调制和解调的模块图和仿真波形,通过调试代码,观察2ASK与4ASK 的不同,最后根据二进制振幅键控的原理来设计四进制振幅键控的调制与解调两个过程,从而对其性能进行进一步的分析总结。 关键字:4ASK 相干解调基带信号

一、设计概要 (1) 二、 MATLAB/SIMULINK简介 (2) 三、通信技术的历史和发展 (4) 3.1通信的概念 (4) 3.2 通信的发展史简介 (5) 3.3通信技术的发展现状和趋势 (5) 四、设计原理 (7) 4.1 4ASK信号的原理 (7) 4.2 4ASK调制解调原理 (8) 五、设计步骤 (11) 5.1载波信号的调制 (11) 5.2调制信号的解调 (11) 5.3调试分析 (11) 5.4开发工具和编程语言 (12) 5.5测试结果及图形说明 (13) 总结 (15) 参考文献 (16) 致谢 (17)

一、设计概要 本次课设主要通过研究4ASK信号的调制解调,首先通过对二进制2ASK的分析来研究出四进制4ASK的变化,对2ASK的基带信号和传输的载波信号,以及其波形图进行分析,从而掌握多进制的振幅键控(MASK)调制解调的原理及其实现方法,然后利用MATLAB7.0仿真实现4ASK的调制与解调,并仿真4ASK载波信号在高斯白噪声下的误码率和误比特率的性能,同时给出调制信号、载波信号及已调信号的波形图和频谱图。最后根据仿真的波形图来分析4ASK的性能特点,以及对以后信道的传输有更重要的意义和频带利用率,资源有效充分利用,全方面的来考虑4ASK的用途。

二进制幅度键控电路设计

《电力系统自动化》课程设计任务书

目录 一.背景描述…………………………二.设计内容…………………………三.工作原理…………………………四.电路设计及参数设置……………五.仿真及波形分析…………………六.总结………………………………七.参考文献…………………………

一.背景描述: 电力系统远动技术是为电力系统调度服务的远距离监测、控制技术。由于电能生产的特点,能源中心和负荷中心一般相距甚远,电力系统分布在很广的地域,其中发电厂、变电所、电力调度中心和用户之间的距离近则几十公里,远则几百公里甚至数千公里。要管理和监控分布甚广的众多厂、所、站和设备、元器件的运行工况,已不能用通常的机械联系或电联系来传递控制信息或反馈的数据,必须借助于一种技术手段,这就是远动技术。它将各个厂、所、站的运行工况(包括开关状态、设备的运行参数等)转换成便于传输的信号形式,加上保护措施以防止传输过程中的外界干扰,经过调制后,由专门的信息通道传送到调度所。在调度所的中心站经过反调制,还原为原来对应于厂、所、站工况的一些信号再显示出来,供给调度人员监控之用。调度人员的一些控制命令也可以通过类似过程传送到远方厂、所、站,驱动被控对象。这一过程实际上涉及遥测、遥信、遥调、遥控,所以,远动技术是四遥的结合。 二.设计内容: 1.对电力系统远动信息传输系统的主要环节进行理论分析和研究。 2. 熟悉数字调幅技术的有关原理和实现方法。 3. 设计ASK调制解调电路。 4. 熟悉ORCAD软件的应用,学习元件库使用、原理图的建立以及 应用原理图进行仿真的基本方法。 三. 工作原理: 1. 数字调幅技术的原理和实现方法 (1)数字调制的概念 用二进制(多进制)数字信号作为调制信号,去控制载波某些参量的变化,这种把基带数字信号变换成频带数字信号的过程称为数字调制,反之,称为数字解调。 (2)数字调制的分类 在二进制时分为:振幅键控(ASK)、频移键控(FSK)、相移键控(PSK)。

信号分析与处理课程设计-基于MATLAB的(2ASK)二进制振幅键控调制与解调分析

课程设计任务书 学生姓名:钟晓明专业班级:电信1006 指导教师:黄朝兵工作单位: 题目:工程信号分析处理课程设计 -基于MATLAB的二进制振幅键控调制(2ASK)与解调分 析 初始条件: 1.Matlab6.5以上版本软件; 2.先修课程:通信原理等; 要求完成的主要任务:(包括课程设计工作量及其技术要求,以及说明书撰写等具体 要求) 1、利用MATLAB中的simulink工具箱中的模块进行二进制振幅键控(2ASK) 调制与解调,观察波形变化; 2、画出程序设计框图,编写程序代码,上机运行调试程序,记录实验结果 (含计算结果和图表等),并对实验结果进行分析和总结; 3、课程设计说明书按学校统一规范来撰写,具体包括: ⑴目录;⑵理论分析; ⑶程序设计;⑷程序运行结果及图表分析和总结; ⑸课程设计的心得体会(至少800字,必须手写。); ⑹参考文献(不少于5篇)。 时间安排:周一、周二查阅资料,了解设计内容; 周三、周四程序设计,上机调试程序; 周五、整理实验结果,撰写课程设计说明书。 指导教师签名:年月日 系主任(或责任教师)签名:年月日

摘要................................................................................................. I 1 Simulink简介. (1) 1.1 Matlab简介 (1) 1.2 Simulink介绍 (1) 2 原理介绍 (3) 2.1 二进制振幅键控(2ASK)调制原理 (3) 2.2二进制振幅键控(2ASK)解调原理 (4) 3 Simulink电路设计 (6) 3.1 2ASK调制电路设计 (6) 3.2 2ASK解调电路设计 (6) 4 电路仿真 (9) 4.1 2ASK调制电路仿真 (9) 4.2 2ASK解调电路仿真 (10) 4.3 结果分析 (11) 5 MATLAB代码实现 (12) 6 课程设计心得体会 (16) 参考文献 (18)

SystemView16进制正交振幅调制(16QAM)

例十:16进制正交振幅调制(16QAM ) 一、实验原理 在系统带宽一定的条件下,多进制调制的信息传输速率比二进制高。也就是说,多进制调制系统的频带利用率高。但是,多进制调制系统频带利用率的提高是通过牺牲功率利用率来换取的。因为随着M 值的增加,在信号空间中各信号点间的最小距离减小,相应的信号判决区域也随之减小。因此,当信号受到噪声和干扰的损害时,接收信号错误概率也将随之增大。振幅相位联合键控(APK )方式就是为了克服上述问题而提出来的。在这种调制方式下,当M 值较大时,可以获得较好的功率利用率。 16进制的正交振幅调制(16QAM ),就是一种振幅相位联合键控信号。所谓的正交调制(QAM )就是用两个独立的基带波形对两个相互正交的同频载波进行抑制载波的双边带调制,利用这种已调信号在同一带宽内频谱的正交性来实现两路并行的数字信息的传输。 16QAM 系统方框图为: 1.调制部分 16QAM 的产生有两种方法: (1)正交调幅法:它是用两路正交的四电平振幅键控信号叠加而成。 (2)复合相移法:它是用两路独立的四相移相键控信号叠加而成。 本实验采用正交调幅法。实验中省略了串并变换和并串变换部分,而用两路独立的四电平基带信号代替。 × 载波 提取 × t c ωcos t c ωsin 串/并 转 换 2-4 电平转换 2-4 电平转换 二进制 输 入 × Σ × 低通 低通 并/串 转 换 二进制 输 出 图2.10.1 16QAM 调制解调系统组成 图2.10.2 16QAM 系统仿真电路

参数设置 Token0、1:信号发生器—PN码序列(Amplitude=1,Rate=50Hz,No.Levels=4) Token6、10:信号发生器—正弦载波(Amplitude=1,frequency=1000Hz,phase=0)Token9:高斯噪声发生器 Token13、14:模拟低通滤波器(截止频率=225Hz) 1.运行时间的设置 运行时间=1.5秒采样频率:10000赫兹 2.运行系统 在System View系统窗内运行电路,观察各信号接收器的波形。 在Token2处观察到的一路四元基带信号波形为: 16QAM调制波形 对应Token2的解调波形

正交调制解调

多进制正交振幅调制技术及其在衰落信道下实现 1.背景: 在数字通信中.调制解调方式有三种基本方式:振幅键控、频移键控和相位键控。但单纯的这三种基本方式在实际应用中都存在频谱利用率低、系统容量少等不足。而在现代通信系统中,通信用户数量不仅在不断增加,人们亦不满足传统通信系统的单一语音服务,希望进行图像、数据等多媒体信息的通信。因此,传统通信调制解调方式的容量已经越来越不能满足现代通信的要求。近年来,如何在有限的频率资源中提供高容量、高速率和高质量的多媒体综合业务,是数字通信调制解调领域中一个令人关注的课题。 通过近十多年来的研究,分别针对无线通信信道和有线通信信道的特征,提出了不同的高频谱利用率和高质量的调制解调方案。其中的QAM调制解调方案为:发送数据在比特/符号编码器内被分成速率各为原来1/2的两路信号,分别与一对正交调制分量相乘,求和后输出。接收端完成相反过程,解调出两个正交码流.均衡器补偿由信道引起的失真,判决器识别复数信号并映射回二进制信号。不过.采用QAM调制技术,信道带宽至少要等于码元速率,为了码元同步,还需要另外的带宽,一般要增加15%左右。 2.QAM基本原理: 在QAM(正交幅度调制)中,数据信号由相互正交的两个载波的幅度变化表示。模拟信号的相位调制和数字信号的PSK(相移键控)可以被认为是幅度不变、仅有相位变化的特殊的正交幅度调制。因此,模拟信号相位调制和数字信号的PSK(相移键控)也可以被认为是QAM的特例,因为其本质上就是相位调制。 QAM是一种矢量调制,将输入比特先映射(一般采用格雷码)到一个复平面(星座)上,形成复数调制符号,然后将符号的I、Q分量(对应复平面的实部和虚部,也就是水平和垂直方向)采用幅度调制,分别对应调制在相互正交(时域正交)的两个载波(coswt和sinwt)上。这样与幅度调制(AM)相比,其频谱利用率将提高1倍。QAM是幅度、相位联合调制的技术,它同时利用了载波的幅度和相位来传递信息比特,因此在最小距离相同的条件下可实现更高的频带利用率,QAM最高已达到1024-QAM(1024个样点)。样点数目越多,其传输效率越高,例如具有16个样点的16-QAM信号,每个样点表示一种矢量状态,16-QAM有16态,每4位二进制数规定了16态中的一态,16-QAM中规定了16种载波和相位的组合,16-QAM 的每个符号和周期传送4比特。 QAM调制器的原理是发送数据在比特/符号编码器(也就是串–并转换器)内被分成两

数字调制系统的性能比较

衡量一个数字通信系统性能优劣的最为主要的指标是有效性和可靠性,下 面主要针对二进制频移键控(2FSK)、二进制相移键控(BPSK)、二进制差分相移 键控(DBPSK)以及四进制差分相移键控(DQPSK)数字调制系统,分别从误码 率、频带利用率、对信道的适应能力以及设备的可实现性大小几个方面讨论。 1. 误码率 通信系统的抗噪声性能是指系统克服加性噪声影响的能力。在数字通信系 统中,信道噪声有可能使传输码元产生错误,错误程度通常用误码率来衡量。 在信道高斯白噪声的干扰下,各种二进制数字调制系统的误码率取决于解 调器输入信噪比,而误码率表达式的形式则取决于解调方式:相干解调时为互erfc r k形式(k只取决于调制方式),非相干解调时为指数函数形补误差函数(/) 式。 图1和图2是在下列前提条件下得到: ①二进制数字信号“1”和“0”是独立且等概率出现的; ②信道加性噪声n(t)是零均值高斯白噪声,单边功率谱密度为0n,信道参 恒定; ③通过接受滤波器后的噪声为窄带高斯噪声,其均值为零,方差为2n ; ④由接收滤波器引起的码间串扰很小,忽略不计; ⑤接收端产生的相干载波的相位差为0。 调制方式 相干解调非相干解调 P e 解调方式

图1 各种数字调制系统误码率 2ASK 1 (/4)2erfc r /4 12r e - 2FSK 1 (/2)2erfc r /2 12r e - BPSK 1 ()2erfc r — DBPSK ()erfc r 12r e - DQPSK (2sin ) 2erfc r M π —

图2 二进制数字调制系统的误码率曲线 图3a MDPSK 信号误码率曲线 图3b MPSK 信号的误码率曲线 (1) 通过图1从横向来看并结合图2得到: 对同一调制方式,采用相干解调方式的误码率低于采用非相干解调方式的误码率,相干解调方式的抗噪声性能优于非相干解调方式。但是,随着信噪比r 的增大,相干与非相干误码性能的相对差别越不明显,误码率曲线有所靠拢。 (2) 通过图1从纵向来看: ①若采用相干解调,在误码率相同的情况下,2224ASK FSK BPSK r r r ==,转化 成分贝表示为 22()3()6()ASK FSK BPSK r dB dB r dB dB r dB =+=+,即所需要的信噪比的 要求为:BPSK 比2FSK 小3dB ,2FSK 比2ASK 小3dB ;BPSK 和DBPSK 相比,信噪比r 一定时,若 () e BPSK P 很小,则 ()()/2 e DBPSK e BPSK P P ≈,若 () e BPSK P 很大,则有 ()()/1 e DBPSK e BPSK P P ≈,意味着 () e DBPSK P 总是大于 () e BPSK P ,误码率增加,增加的系 数在1~2之间变化,说明DBPSK 系统抗加性白噪音性能比BPSK 的要差;总

通信原理实验报告,简单基带传输系统分析,二进制键控系统2ASK与2FSK分析

实验一 简单基带传输系统分析 实验目的 通过本次实验,旨在达到以下目的: 1.结合实践,加强对数字基带通信系统原理和分析方法的掌握; 2.掌握系统时域波形分析、功率谱分析和眼图分析的方法; 3.进一步熟悉systemview 软件的使用,掌握主要操作步骤。 实验内容 构造一个简单示意性基带传输系统。以双极性PN 码发生器模拟一个数据信源,码速率为100bit/s ,低通型信道中的噪声为加性高斯噪声(标准差=0.3v )。要求: 1.观测接收输入和低通滤波器输出的时域波形; 2.观测接收滤波器输出的眼图; 3.观测接收输入和滤波输出的功率谱; 4.比较原基带信号波形和判决恢复的基带信号波形。 实验原理 简单的基带传输系统原理框图如图2-1-1所示,该系统并不是无码间干扰设计的,为使基带信号能量更为集中,形成滤波器采用高斯滤波器。 实验结果及分析 1. 数字基带传输系统仿真电路图; 说明:Token0是PN 信号源,Rate=100Hz ;Token1为高斯脉冲形成滤波器, PN 码 发生器 低 通 高 斯 噪声源 加性高斯低通型信道 图2-1-1 简单基带传输系统组成框图 + 形 成 滤波器 接 收 判 决

其作用是压缩输入信号频带,使信号有利于传输;Token3是信道加性高斯噪声源Std Dev=0.3,;Token4是低通滤波器,带宽为200Hz;Token5是抽样器,频率为100Hz,为PN信号带宽的两倍,已满足抽样定理;Token7是判决器。 2.获得信源的PN码输出波形、经高斯脉冲形成滤波器后的码序列波形、滤 波器输入端信号波形、抽样判决器输出端恢复的基带信号波形; PN码输出波形:Amp=1v,Offset=0v,Rate=100Hz,Levels=2,Phase=0deg。 经高斯脉冲形成滤波器后的码序列波形:此滤波器的作用是压缩输入信号频带,从图中可以观察到,下降沿(上升沿)变得相对缓慢,这是由于滤波器滤除了部分高频分量。 滤波器输入端信号波形:由于在信道中存在噪声,从而使得此处输入波形产生波纹。

PSK移相键控调制电路设计与制作

PSK移相键控调制电路设计与制作 一、目的 1.掌握二相BPSK(DPSK)调制的工作原理及电路组成。 2.了解载频信号的产生方法。 3.掌握二相绝对码与相对码的码型变换方法。 二、、原理 绝对移相键控(PSK)是采用直接调相法来实现,也就是用输入的基带信号直接控制已输入载波相位的变化来实现相位键控。 图1是二相PSK(DPSK)调制器电路框图,图2是它的电原理图。 图1 二相PSK(DPSK)调制器电路框图 (一)电路基本工作原理 数字相位调制又称为移相键控。它是利用载波相位的变化来传递数字信息的。通常又可把它分成绝对移相与相对移相两种方式。绝对移相就是利用载波不同相位的绝对值来传递信息。那么,怎样才能让载波不同相位的绝对值来传递数字信息呢?如果让所需传输的数字基带信号控制载波相位改变,而载波的振幅和频率都不变,那么就得到载波的相位发生变化的已调信号,我们把这种调制方式称为数字相位调制。即移相键控PSK调制。 PSK在数字通信系统中是一种极重要的调制方式,它的抗干扰噪声性能及通频带的利用率均优先于ASK移幅键控和FSK移频键控。因此,PSK技术在中、高速数据传输中得到了十分广泛的应用。 当传送消息为一随机序列时,例如话音信号经过编码后的数字信号或其它数据信号,则传送的调相信号也相应的为一随机的振荡序列,其相位与传送消息相对应,如图3所示。下面对图2中的电路作一分析:

图2 PSK 移相键控调制实验电原理图 图3 二相PSK 调制信号波形 1. 内载波发生器 电路如图4所示。 图4 1.024MHz 内载发生器 C491p C160.1u C170.1u C30.033u C60.033u C110.033u R13150 R161K R12100 R171K R14100 R847K R1010K R15150 BG19013 TP5 TP4 TP10 TP9 TP8 TP7 R11100K SW1 R510K C37-25p 11 10 U1E 74LS04 5 6 U1C 74LS04 3 4 U1B 74LS04 1 2 U1A 74LS041 23 U2A 74LS861 2 13 U5A 4066 11 10 12 U5B 4066 D 2 Q 5 Q 6 CLK 34 1 P R E C L R U3A 74LS74 (PN32K) +5V (32K) SW2 1234 K3 PSKOUT 3 2 6 1 5 8 7 4U4LM318 123 K1 +12V -12V +12V R41K R91K (1024K)TP6C12200p C22200p L1330uH C12100p 载波一入 TP1 J1 C8150p C70.033u C100.033u R710K C97-25p 13 12 U1F 74LS04 R61K (512K) L2560uH 载波二入 TP2J2信码输入 TP3J3 123 K2 J5 相对码时钟入 调制波输出 TP11 J4 R15.6K D1LED(R)+12V R21K D2LED(O) +5V R330K D3LED(B) -12V C150.1u C180.1u C130.1u C140.1u +5V

通信原理期末复习题

一、填空题 2.为使基带脉冲传输获得足够小的误码率,必须最大限度地减小 码间干扰 和 随机噪声干扰 的影响。 3.对于点对点之间的通信,按信息传送的方向和时间关系,通信方式可以分为__单工通信__,__半双工通信__和__全双工通信___ 4.在香农公式中,一个连续信道的信道容量受“三要素”限制,这三要素是__带宽__,___信号功率__,___噪声功率谱密度__ 7.最常见多路复用方法有__频分__、___码分__和___时分__。 9.衡量数字通信系统性能指标是 传输速率(有效性) 和__差错率(可靠性)_两项指标。 10.八进制数字信号信息传输速率为600b/s ,其码元速率为__200b/s __。 14.最常见的二进制数字调制方式有 2ASK(二进制振幅键控) 、_2FSK(二进制频移键控)_和_2PSK(二进制相移键控)_。 18. 在数字通信系统中,其重要的质量指标“有效性”和“可靠性”分别对应_传输速率_和_差错率_。 19. 为使基带脉冲传输获得足够小的误码率,必须最大限度地减小 码间干扰 和 随机噪声干扰的影响。 25.最常见多路复用方法有__频分复用(FDMA)_、__码分复用(CDMA)_和__时分复用(TDMA)_。 26. 高斯白噪声是指噪声的概率密度服从____高斯____分布,功率谱密度服从___均匀___分布。 28.已知二进制代码为11000010100000000101,其相应的AMI 码为___+1-10000+10-100000000+10-1___。 29.导致数字系统误码的可能原因有___码间干扰___、___随机噪声干扰__和___传播衰落__。 30.在AM 、ΔM 、FM 、PSK 、MSK 、DPSK 、SSB 等信号中能直接在数字基带系统中传输的有_____ΔM ______,能直接在数字频带系统中传输的有_____ PSK 、MSK 、DPSK ______。 32.信道编码是抗干扰编码,它使得__误码率__下降,信源编码减少多余度编码,它使得__信息传输效率__提高。 35、按传输媒介,通信系统可分为 有线通信 、 无线通信 。 36、无码间串扰条件是=)(s kT h 010{=k k 为其他整数 或=)(ωeg H

多进制数字调制2

导入新课: 随着数字通信的发展,人们对频带利用率的要求不断提高,多进制数字调制作为一种解决方案获得了广泛应用。 讲授新课: 课题二 多进制数字调制 一、多进制数字调制系统 由于二进制数字调制系统频带利用率较低,使其在实际应用中受到一些限制。在信道频带受限时 为了提高频带利用率,通常采用多进制数字调制系统。所谓多进制数字调制系统就是用多进制的基带信号去调制载波的幅度、频率或相位。相应地有多进制振幅调制、多进制频率调制和多进制相位调制。 与二进制数字调制系统相比具有如下特点: 1)在相同的码元速率RB 下,多进制数字调制系统的信息速率比二进制高; )/( log 2s bit M R R B b 2)在相同的信息速率下, 多进制码元速率比二进制系统的低,增大码元宽度,可以增加码元的能量,并能减小码间干扰的影响。 二、多进制数字振幅调制系统 1、多进制数字振幅调制(MASK)的原理 多进制数字振幅调制又称多电平调制,它是二进制数字振幅键控方式的推广。M 进制数字振幅调制信号的载波幅度有M 种取值,在每个符号时间间隔Ts 内发送M 个幅度中的一种幅度的载波信号。 四进制数字振幅调制信号的时间波形 M 进制数字振幅调制可以看成是M 个不同振幅的2ASK 信号的叠加。 b) 多进制数字振幅调制信号的功率谱密度 M 进制数字振幅调制可以看成是M 个不同振幅的2ASK 信号的叠加。 M

进制数字振幅调制信号的功率谱密度是这M 个不同振幅的2ASK 信号功率谱密度之和。尽管叠加后频谱结构很复杂,但其带宽与2ASK 信号的相同。 多进制数字振幅调制信号的带宽:基带22B f B s MASK == c) MASK 信号的产生及解调 MASK 信号的产生方法与2ASK 类似,差别在于基带信号为M 电平。 将二进制信息n 位(n=log2M )分为一组,然后变换为M 电平,再送入幅度调制器。除了可以采用双边带调制外,也可以用多电平残留边带调制或单边带调制等。基带信号的波形最简单的为矩形脉冲,为了限制信号频谱也可用其他波形如升余弦滚降波形,或部分响应波形等。 MASK 信号的解调可以采用非相干解调即包络检波,或相干检测。 三、多进制数字频率调制系统 1、多进制数字频率调制的基本原理 多进制数字频率调制(MFSK)简称多频调制,它是2FSK 方式的推广。 时域表达式:( )()t t s t e i i MFSK ωcos = ()???<<<<=”时发送的符号不为“0,在时间间隔0”时发送的符号为“0在时间间隔 ,i T t i T t A t s s s i ωi 为载波角频率,共有 M 种取值。通常可选载波频率 fi=n/2T ,n 为正整数,此时M 种发送信号相互正交。 2、多进制数字频率调制的基本原理

四进制振幅键控数字调制仿真和分析

课程设计 课程设计名称:四进制振幅键控(4ASK) 数字调制系统仿真和分析 1 需求分析 在二进制数字调制中每个符号只能表示0和1(+1或-1)。在二进制键控系统中,每个码元知传输1bit信息,其频带利用率不高,而频带资源是极其宝贵和紧缺的。为了提高频带利用率,最有效的办法是使没一个码元传输多个比特的信息。在许多实际的数字传输系统中却往往采用多进制的数字调制方式。第一:在相同的信道码源调制中,每个符号可以携带log2M比特信息,因此,当信道频带受限时可以使信息传输率增加,提高了频带利用率。但由此付出的代价是增加信号功率和实现上的复杂性。第二,在相同的信息速率下,由于多进制方式的信道传输速率可以比二进制的低,因而多进制信号码源的持续时间要比二进制的

宽。加宽码元宽度,就会增加信号码元的能量,也能减小由于信道特性引起的码间干扰的影响等。 本次课程设计的任务是四进制振幅键控(4ASK )数字调制系统仿真和分析。主要内容是对二进制数字信源进行四进制振幅键控(4ASK )数字调制,画出信号波形及功率谱。并分析其性能。 2 概要设计 实际通信中的许多信道都不能直接传送基带信号,必须用基带信号对载波波形的某些参量进行控制,使得载波的这些参量随基带信号的变化而变化,即正弦载波调制。在数字通信系统中,有二进制数字调制和多进制调制。多进制数字调制与二进制数字调制相比又具有如下两个特点:在相同的码元传输率下,多进制系统的信息传输率比二进制系统的高;在相同的信息速率下,多进制信号码元的持续时间要比二进制的长,因此会增加码元的能量,减小信号特性引起的码间干扰的影响,利用层次化和模块化的设计方法,通过MATLAB 软件平台,设计并实现了多进制幅移键控(M-ary Amplitude-Shift Keying ,MASK )中的四电平调制(4-ary Amplitude Shift Keying ,4ASK ) 的调制系统和解调系统。本文首先介绍了四电平调制和解调的原理,随后介绍载波产生、振幅调制、振幅判别等功能模块的设计,最后给出了整体调制解调的模块图和仿真波形及在基于VHDL 的EPF10K10LC84硬件平台上的测试结果。 一﹑四进制ASK 信号的表示式 多进制数字幅度调制(4ASK )又称为四电平调制,它是二进制数字幅度调制方式的推广。四进制幅度调制信号的载波振幅有四种取值,在一个码元期间内, t t s t s c MASK ω=cos )()(

相关主题
文本预览
相关文档 最新文档