当前位置:文档之家› 锁相环调频及锁相环调频发射与接收实验实验报告

锁相环调频及锁相环调频发射与接收实验实验报告

锁相环调频及锁相环调频发射与接收实验实验报告
锁相环调频及锁相环调频发射与接收实验实验报告

锁相环调频及锁相环调频

发射与接收实验实验报告

沈凯捷101180101

锁相环调频实验

一. 实验目的

1.加深对锁相环基本工作原理的理解。

2.掌握锁相环同步带、捕捉带的测试方法,增加对锁相环捕捉、跟踪和锁定等概念的理解。

3.掌握集成锁相环芯片NE564的使用方法和典型外部电路设计。

1.理解用锁相环实现调频的基本原理。

2.掌握NE564构成调频电路的原理和调试,测试方法。

二、实验使用仪器

1.NE564锁相和调频实验板

2.100MHz泰克双踪示波器

3. FLUKE万用表

4. 高频信号源

5. 低频信号源

三、实验内容

1. 压控振荡器的测试。

2 . 同步带和捕捉带的测量。

3. 调频信号的产生和测量。

四、实验步骤

1. 压控振荡器的测试

(1)在实验箱主板上插上锁相环调频与测试电路实验模块。接通实验箱上电源开关,电源指标灯点亮。

(2)把跳线S1,S2,S5,S6,S7断开,S3,S4合上。单独测试压控振荡器的自由振荡频率。

将双排开关S8的4端合上,此时8200pF 的固定电容接入12,13脚之间,用示波器观察TP2处的波形(压控振荡器的输出端),并测量此时的振荡频率。调节滑动变阻器W1的值,观察振荡频率是否有变化,并思考原因。然后调节可变电容CW ,观察振荡频率的变化范围,并记录。

将双排开关S8的3端合上,此时820pF 的固定电容接入12,13脚之间,用示波器观察TP2处的波形(压控振荡器的输出端),并测量此时的振荡频率。调节滑动变阻器W1的值,观察振荡频率是否有变化,并思考原因。然后调节可变电容CW ,观察振荡频率的变化范围,并记录。

将双排开关S8的2端合上,此时82pF 的固定电容接入12,13脚之间,用示波器观察TP2处的波形(压控振荡器的输出端),并测量此时的振荡频率。调节滑动变阻器W1的值,观察振荡频率是否有变化,并思考原因。然后调节可变电容CW ,观察振荡频率的变化范围,并记录。

将双排开关S8的1端合上,此时22pF 的固定电容接入12,13脚之间,用示波器观察TP2处的波形(压控振荡器的输出端),并测量此时的振荡频率。调节滑动变阻器W1的值,观察振荡频率是否有变化,并思考原因。然后调节可变电容CW ,观察振荡频率的变化范围,并记录。

2. 同步带和捕捉带的测量

注意:跳线S1接左边是锁相,S1接右边是调频。

把跳线S1接到锁相位置(跳线S1接左边),把跳线S2, S6,S7断开,S3,S4,S5,S8的2端合上。测试NE564构成的锁相环路。

(1)调节可变电容CW 和滑动变阻器W1的值,,用示波器观察TP2处的波形,使其振荡频率达到4MHz (=2VC O f M H z 即作为参考值),用高频信号源产生频率为3.9MHz ,峰峰值为4V 的正弦信号i f ,从TP1处输入。 (2)同步带和捕捉带的测量

可按定义来测量,方法如下:一开始输入基准频率i f ,使i VCO f f ,环路处于失锁状态,然后缓缓增加输入信号频率i f ,用双踪示波器仔细观察TP1和TP2处两信号之间i f 和V C O f 之间的关系。当发现两信号由不同步变为同步,且=i V C O f f ,表

示环路已进入到锁定状态,用频率计记下此时的频率为1f ,这就是捕捉带的下限频率,继续增加i f ,此时压控振荡器频率V C O f 将随i f 而变。但当i f 增加到2F 时,V C O f 不再随i f 而变,这个2F 就是环路同步带的上限频率,然后再逐步降低i f 。当频率降低到2F 时,环路依然不同步,然后继续降低i f ,当i f 降低到2f 时,两信号又开始同步,此频率2f 即捕捉带的上限频率。然后不断降低i f ,两信号开始是一直同步的,直到输入信号频率降低到1F 时,两信号不再同步,此频率1F 即同步带的下限频率。

捕捉带12f f f -=? 同步带21F F F ?=-

记录测量的同步带和捕捉带范围。 (3)观察锁定后的典型波形

实验中,观察TP1、TP2、芯片4,5脚处的典型波形。

(4)把跳线S1接到锁相位置,把跳线S2,S6,S7断开,S3,S4,S5,S8的8端合上。测试NE564构成的锁相环路。并测量其同步带和捕捉带范围。

(5)利用NE564产生调频信号

把跳线S1接到调频位置(跳线S1接右边),把跳线S2,S3,S4,S5 ,S6,S7断开,S8的1端合上。调节滑动变阻器W1的值,调节可变电容CW ,使TP2处测量到的振荡频率为10.7MHz ,以此频率作为调频信号的中心频率,用低频信号源产生频率为1KHz ,幅度为500mV 的调制信号从TP1处输入。

在TP2处用示波器观察输出的调频信号,并接入频谱分析仪观察频偏大小。 逐步增加调制信号的幅度,用示波器和频谱分析仪观察频偏的变化情况。

实验测量数据及分析见另外纸上

五、实验收获及感想

通过这次实验,基本完成了实验目标,加深了对锁相环基本工作原理的理解,掌握了锁相环同步带、捕捉带的测试方法,增加了对锁相环捕捉、跟踪和锁定等概念的理解,掌握了集成锁相环芯片NE564的使用方法和典型外部电路设计,理解了用锁相环实现调频的基本原理。

锁相环调频发射与接收实验

一、实验目的

1. 加深锁相环工作原理和调频波解调原理的理解。

2. 掌握NE564构成的锁相环鉴频电路的原理和调试方法。

3. 锁相环调频发射电路与锁相环鉴频接收电路进行通信实验,加深对通信系统的理解。

二、实验使用仪器

1.NE564锁相和调频实验板

2.100MHz泰克双踪示波器

3. FLUKE万用表

4. 高频信号源

5. 低频信号源

三、实验内容

1. 锁相环路的调整。

2. 锁相环路调频电路的调整。

3. 锁相环路鉴频电路的调整。

4. 锁相环调频发射电路与接收电路的通信实验。

四、实验步骤

1. 锁相环路调频电路的调整

在实验箱主板上插上锁相环调频与测试电路实验模块和锁相环鉴频实验电路模块,接通实验箱上电源开关,电源指标灯点亮。根据实验十调整好锁相环调频电路,产生中心频率为10.7MHz的调频信号输出。

2. 锁相环路鉴频电路的调整

将开关S8的1端合上,微调滑动变阻器W1和可变电容CW,使得在TP4处测得的压控振荡器的振荡频率为10.7M。

锁相环路调频电路的调整完毕后,将锁相环调频与测试电路实验板产生的调频信号(FM)由OUT端接入锁相环路鉴频电路模块TP1端。当锁相环鉴频电路模块的锁相环在FM信号中心频率上锁定时,压控振荡器将跟踪这个信号的时变频率,VCO的输入电压是来自鉴相器输出经低通滤波后的误差电压,它相当于解调输出,TP2端的输出应为解调后的信号。用示波器双踪观察原始的调制信号和解调信号,并判断两者的波形和频率是否一致。

逐步增加原始调制信号的幅度,当调制信号的幅度增加到一定大小时,锁相环鉴频电路将无法正确解调,记录下此时的调制信号幅度。

逐步增加原始调制信号的频率,当调制信号的频率增加到一定大小时,锁相环鉴频电路将无法正确解调,记录下此时的调制信号的频率。

3.锁相环调频发射机与接收机的通信实验

用低频信号源产生调制信号由、在锁相环调频与测试电路实验板TP1处端接入,在FM OUT端得到调频信号(FM)输出。该调频信号(FM)接入锁相环路鉴频电路模块TP1端其OUT端的输出应为解调后信号,将此信号送人实验箱音频放大器即可完成通信实验,调节实验箱音频放大器的音量电位器,可控制音量大小。

由于从锁相环鉴频电路TP2/端输出的正弦波信号比较微弱,我们可以经过低频功率放大器来带动喇叭。本实验采用由集成芯片LM386组成的低频功率放大器。

4.通话实验

将低频信号源产生的1K音频信号接到锁相环调频,构成锁相环调频发射,产生的调频信号送到锁相环鉴频电路进行鉴频,输出的音频信号送到由扬声器(LM386)组成的低频功率放大器放大,经扬声器产生声音。

注:由于缺少实验仪器,本实验只做了第一、二个步骤。

五、实验收获及感想

这次实验由于缺少实验仪器,只做了第一、二个步骤,虽然没有太多内容,但还是费了些时间。希望以后有足够的仪器来完成实验。

基于锁相环的频率合成器..

综合课程设计 频率合成器的设计与仿真

前言 现代通信系统中,为确保通信的稳定与可靠,对通信设备的频率准确率和稳定度提出了极高的要求. 随着电子技术的发展,要求信号的频率越来越准确和越来越稳定,一般的振荡器已不能满足系统设计的要求。晶体振荡器的高准确度和高稳定度早已被人们认识,成为各种电子系统的必选部件。但是晶体振荡器的频率变化范围很小,其频率值不高,很难满足通信、雷达、测控、仪器仪表等电子系统的需求,在这些应用领域,往往需要在一个频率范围内提供一系列高准确度和高稳定度的频率源,这就需要应用频率合成技术来满足这一需求。 本次实验利用SystemView实现通信系统中锁相频率合成器的仿真,并对结果进行了分析。 一、频率合成器简介 频率合成是指以一个或少量的高准确度和高稳定度的标准频率作为参考频率,由此导出多个或大量的输出频率,这些输出频率的准确度与稳定度与参考频率是一致的。用来产生这些频率的部件就成为频率合成器或频率综合器。频率合成器通过一个或多个标准频率产生大量的输出频率,它是通过对标准频率在频域进行加、减、乘、除来实现的,可以用混频、倍频和分频等电路来实现。其主要技术指标包括频率范围、频率间隔、准确度、频率稳定度、频率纯度以及体积、重量、功能和成本。 频率合成器的合成方法有直接模拟合成法、锁相环合成法和直接数字合成法。直接模拟合成法利用倍频、分频、混频及滤波,从单一或几个参数频率中产生多个所需的频率。该方法频率转换时间快(小于100ns),但是体积大、功耗大,成本高,目前已基本不被采用。锁相频率合成器通过锁相环完成频率的加、减、乘、除运算,其结构是一种闭环系统。其主要优势在于结构简化、便于集成,且频率纯度高,目前广泛应用于各种电子系统。直接式频率合成器中所固有的那些缺点,在锁相频率合成器中大大减少。 本次实验设计的是锁相频率合成器。

高频-锁相环调频发射与接收

实验十一锁相环调频发射与接收实验 121180166 赵琛 一、实验目的 1. 加深锁相环工作原理和调频波解调原理的理解。 2. 掌握NE564构成的锁相环鉴频电路的原理和调试方法。 3. 锁相环调频发射电路与锁相环鉴频接收电路进行通信实验,加深对通信系统的理解。 二、实验使用仪器 1.NE564锁相和调频实验板 2.100MHz泰克双踪示波器 3. FLUKE万用表 4. 高频信号源 5. 低频信号源 三、实验基本原理与电路 1. 锁相环鉴频电路 用锁相环路可实现调频信号的解调。如果将环路的频带设计得足够宽,则压控振荡器的振荡频率跟随输入信号的频率而变。若压控振荡器的电压-频率变换特性是线性的,则加到压控振荡器的电压,即环路滤波器输出电压的变化规律必定与调制信号的规律相同。故从环路滤波器的输出端,可得到解调信号。用锁相环进行已调频波解调是利用锁相环的跟踪特性,这种电路称调制解调型PLL。锁相鉴频原理框图如图11-1所示 图11-1锁相鉴频原理框图

采用NE564锁相环集成芯片来实现鉴频,由于其内部的压控振荡器转换增益不高,为了获得有效的解调输出信号,要求输入调频信号的频偏尽可能的大一些。 下图11-2是NE564构成调频信号解调的典型电路图。 图11-2 NE564构成调频信号解调的典型电路图 2.实验电路 锁相环鉴频实验电路见图11-3: 图11-3 调频信号解调实验电路图

电路原理: 电容C12和C13是5V的直流电源的去耦电容,NE564的1脚和10脚外接5V 正电源,8脚接地。12脚和13脚之间有一个可变电容,可以微调压控振荡器的中心频率,跳线开关S8可以切换固定电容,决定了载波中心频率的范围。已调频信号从TP1处输入,电容C1是隔直电容,调频信号从6脚输入鉴相器,电阻R1和电容C2是7脚外接的滤波电路。9脚是压控振荡器的输出端,电阻R3是上拉电阻。3脚是鉴相器的另外一个输入端,9脚和3脚相连构成调频解调电路。调频信号可以从9脚输出,在TP4端可以通过示波器观察调频信号。芯片的4,5脚分别外接低通滤波器的滤波电容。TP3是环路低通滤波器的输出端。滑动变阻器W1可以调节芯片2脚的基准电流,从而调整NE564的频率锁定范围。16脚是FSK解调的输出端。在16脚处可以外接示波器观察FSK解调出的TTL电平的数字基带信号。14脚是普通调频信号的解调输出端,在TP3处可以用示波器观察到解调输出的调制信号,电容C14是解调信号输出端外接的积分电容。15脚是NE564内部斯密特触发器的迟滞电压控制端。 四、实验内容 1. 锁相环路的调整。 2. 锁相环路调频电路的调整。 3. 锁相环路鉴频电路的调整。 4. 锁相环调频发射电路与接收电路的通信实验。 五、实验步骤 1. 锁相环路调频电路的调整 在实验箱主板上插上锁相环调频与测试电路实验模块和锁相环鉴频实验电路模块,接通实验箱上电源开关,电源指标灯点亮。根据实验十调整好锁相环调频电路,产生中心频率为10.7MHz的调频信号输出。 2. 锁相环路鉴频电路的调整 将开关S8的1端合上,微调滑动变阻器W1和可变电容CW,使得在TP4处测得的压控振荡器的振荡频率为10.7M。 锁相环路调频电路的调整完毕后,将锁相环调频与测试电路实验板产生的调频信号(FM)由OUT端接入锁相环路鉴频电路模块TP1端。当锁相环鉴频电路模

调频发射机设计

惠州学院 HUIZHOU UNIVERSITY 高频电子线路课程设计 设计题目调频发射机 系别 专业 班级 姓名 学号

一、设计题目:调频发射机的设计 二、设计的技术指标与要求: 1工作电压:Vcc =+12V ; (天线)负载电阻:R L =51欧; 3发射功率:Po ≥500mW ; 4工作中心频率:f 0=5MHz ; 5最大频偏:kHz f m 10=?; 6总效率:%50≥A η; 7频率稳定度:小时/10/4 00 -≤?f f ; 8调制灵敏度S F ≥30KH Z /V ; 三、设计目的: 设计一个采用直接调频方式实现的工作电压为12V 、输出功率在500mW 以上、工作频率为5MHz 的无线调频发射机,可用于语音信号的无线传输、对讲机中的发射电路等。 四、设计框图与分析: (一)总设计方框图 与调幅电路相比,调幅系统由于高频振荡输出振幅不变, 因而具有较强的抗干扰能力与效率.所以在无线通信、广播电视、遥控测量等方面有广泛的应用。 (二)实用发射电路方框图 ( 实际功率激励输入功率为 1.56mW) 变容二极管直接调频电路 调制信号 调频信号 载波信号 图3-1 变容二极管直接调频电路组成方框图

拟定整机方框图的一般原则是,在满足技术指标要求的前提下,应力求电路简单、性能稳定可靠。单元电路级数尽可能少,以减少级间的相互感应、干扰和自激。 由于本题要求的发射功率P o 不大,工作中心频率f 0也不高,因此晶体管的参量影响及电路的分布参数的影响不会很大,整机电路可以设计得简单些,设组成框图如图3-2所示,各组成部分的作用是: (1)LC 调频振荡器:产生频率f 0=5MHz 的高频振荡信号,变容二极管线性调频,最大频偏kHz f m 10=?,整个发射机的频率稳定度由该级决定。 (2)缓冲隔离级:将振荡级与功放级隔离,以减小功放级对振荡级的影响。因为功放级输出信号较大,当其工作状态发生变化时(如谐振阻抗变化),会影响振荡器的频率稳定度,使波形产生失真或减小振荡器的输出电压。整机设计时,为减小级间相互影响,通常在中间插入缓冲隔离级。缓冲隔离级电路常采用射极跟随器电路。 (3)功率激励级:为末级功放提供激励功率。如果发射功率不大,且振荡级的输出能够满足末级功放的输入要求,功率激励级可以省去。 (4)末级功放 将前级送来的信号进行功率放大,使负载(天线)上获得满足要求的发射功率。若整机效率要求不高如%50≥A η而对波形失真要求较小时,可以采用甲类功率放大器。但是本题要求 %50≥A η,故选用丙类功率放大器较好。 五、设计原理图: 1 考虑到频率稳定度的因素,调频电路采用克拉泼振荡器和变容二极管直接调频电路。电路的工作原理是:利用调制信号控制变容二极

实验2. 调频接收机

实验二. 调频接收机 一. 实验目的和实验器材 1.设计制作一个基于MC3372的调频接收机,掌握无线语音(或者数据)接收技术。实验一与实验二联调,构成一个无线电语音(或者数据)收发系统。 2.实验器材 (1)常用电子装配工具。 (2)万用表。 (3)示波器。 (4)扫频仪。 (5)调频接收机的元器件如表2.1所示。 表2.1 调频接收机电路元器件 250

二. MC3372的主要特性 MC3372是MOTOROLA公司生产的单片窄带调频接收电路,最高的工作频率达100MHz,具有-3dB输入电压灵敏度,信号电平指示器具有60dB的动态范围,工作电压范围为2.0~9.0V,功耗在V CC=4.0V,静噪电路关闭时耗电仅为3.2mA。工作温度范围为–30~+70℃。 MC3372芯片内部包含有振荡电路、混频电路、限幅放大器、积分鉴频器、滤波器、静噪开关、仪表驱动等电路。MC3372类似MC3361和MC3359等接收电路,除了用信号仪表指示器代替MC3361的扫描驱动电路外,其余功能特性相同。MC3372则可使用455kHz陶瓷滤波器或LC谐振电路,主要应用于语音或数据通讯的无线接收机。 MC3372采用DIP-16、TSSOP-16或者SO-16三种封装形式,引脚封装形式如图2.1所示。 图2.1 MC3372引脚封装形式 MC3372引脚功能如下: 引脚端1(Crystal Osc 1),Colpitts振荡器的基极,使用高阻抗和低电容的探头,可观察到一个450mVpp交流波形。 引脚端2(Crystal Osc 2),Colpitts振荡器的发射极,典型的信号电平为200mVpp。注意,信号波形与引脚端1的波形相比较有些失真。 引脚端3(Mixer Output),混频器输出,射频载波成分是叠加在455 kHz信号上,典型值是60mVpp。 引脚端4(VCC),电源电压范围为–2.0~9.0V,VCC和地之间加退耦电容。 引脚端5(Limiter Input),IF放大器输入,混频器输出通过455kHz的陶瓷滤波器后输入到IF 放大器,典型值是50mVpp。 引脚端6和7(Decoupling),IF放大器退耦,外接一个0.1μF的电容到VCC。 引脚端8(Quad Coil),积分调谐线圈,呈现一个455 kHz 的IF信号,典型值500mVpp。 引脚端9(Recovered Audio),恢复的音频信号输出,是FM解调输出信号,包含有载波成分,典型值是800mVpp。经过滤波后,恢复音频信号,典型值是500mVpp。 引脚端10(Filter Input),滤波放大器输入。 引脚端11(Filter Output),滤波放大器输出,典型值400mVpp。 引脚端12(Squelch Input),抑制输入。 引脚端13(RSSI),RSSI输出。 引脚端14(Mute),静音输出。 引脚端15(Gnd),地。 引脚端16(Mixer Input),混频器输入,串联输入阻抗:在10MHz时为309–j33,在45MHz时为200–j13。 251

锁相环(PLL)频率合成调谐器

锁相环(PLL)频率合成调谐器 调谐器俗称高频头,是对接收来的高频电视信号进行放大(选频放大)并通过内部的变频器把所接收到的各频道电视信号,变为一固定频率的图像中频(38MHz)和伴音中频以利于后续电路(声表面滤波器、中放等)对信号进行处理。 调谐器(高频头)原理: 高频放大:把接收来的高频电视信号进行选频放大。 本机振荡器:产生始终高于高频电视信号图像载频38MHz的等幅载波,送往混频器。 混频器:把高频放大器送来的电视信号和本机振荡器送来的本振等幅波,进行混频产生38MHz的差拍信号(即所接收的中频电视信号)输出送往预中放及声表面滤波器。 结论:简单的说:只要改变本机振荡器的频率即可达到选台的目的) 一、电压合成调谐器:早期彩色电视接收机大部分均采用电压合成高频调谐器,其调谐器的选台及波段切换均由CPU输出的控制电压来实现(L、H、U波段切换电压及调谐选台电压),其中调谐选台电压用来控制选频回路和本振回路的谐振频率,调谐选台电压的任何变化都将导致本机振荡器频率偏移,选台不准确、频偏、频漂。为了保证本机振荡器频率频率稳定,必须加上AFT系统。由于AFT系统中中放限幅调谐回路和移相网络一般由LC谐振回路构成,这个谐振回路是不稳定的,这就造成了高频调谐器本机振荡器频率不稳,也极易造成频偏、频漂。

二、频率合成调谐器 1、频率合成的基本含义:是指用若干个单一频率的正弦波合成多个新的频率分量的方法(频率合成调谐器的本振频率是由晶振分频合成的)。 频率合成的方法有很多种。下图为混频式频率合成器方框图 以上图中除了三个基频外还有其“和频”及“差频”输出(还有各个频率的高次谐波输出)。 输出信号的频率稳定性由基准信号频率稳定性决定,而且输出信号频率误差等于各基准信号误差之和,因此要想减少误差除了要提高基准信号稳定度之外还应减少基准信号的个数。 2、锁相环频率合成器: 其方框图类似于彩色电视接收机中的副载波恢复电路,只是在输入回路插入了一个基准信号分频器(代替色同步信号输入)而在反馈支路插入一个可编程分频器(代替900移相)。当环路锁定时存在如下关系: ∵ fk=f0 / K 式中:fvco为压控振荡器输出信号频率。 fn=fvco / N f0 为晶振基准频率。 fk=fn K为分频系数。 ∴ fvco=N?fo / K N为可变分频器的分频系数(分频比) 彩色电视机幅载波恢复电路

高频课程设计---调频(FM)发射机的设计

高频课程设计论文题目:高频(FM)发射机的设计 系别:电子信息与电气工程系 专业:通信工程

摘要:作为通信系统的重要组成部分,无线电技术越来越重要。本文研制一种调频发射机,介绍了调频发射机的制作方法及其工作原理,同时给出了系统的组成框图及系统各部分功能,设计了PCB电路板,并且对所设计的发射机的功能进行了安装与调试。本文中的发射机发射的频率可在66-109MHz频段内进行调制,并可用普通的调频收音机接收。 关键词:小功率调频发射机音频信号调制波载波

目录 1设计课题 2实践目的 3设计要求 4基本原理 4.1 系统方案选择 4.2 整体系统描述 4.3 单元电路设计 4.3.1 音频放大电路 4.3.2 高频振荡电路 4.3.3 高频功率放大电路 5系统调试 5.1 PCB板的设计 5.2 系统调式 6结论 7参考文献 8附录

1设计课题 调频发射机设计 2实践目的 无线电发射与接收设备是高频电子线路的综合应用,是现代化通信系统、广播与电视系统、无线安全防范系统、无线遥控和遥测系统、雷达系统、电子对抗系统、无线电制导系统等必不可少的设备。本次设计要求达到以下目的: 1.进一步认识射频发射与接收系统; 2.掌握调频无线电发射机的设计; 3.学习无线电通信系统的设计与调试。 3设计要求 1.发射机采用FM的调制方式; 2.发射频率覆盖范围为88-108MHz,传输距离大于10m; 3.为了加深对调制系统的认识,发射机采用分立元件设计; 4.已调信号采用通用的AM/FM多波段收音机进行接收测试。 4 基本原理 4.1 系统方案选择 方案一:以晶体振荡器做成高精度高稳定度的调频发射机 以晶体振荡器做成高精度高稳定度的调频电路,这完全可以达到我们的要求,但是这种方案比较复杂,能过搜索我们有另外一种方案,见方案二。 方案二:以调频方式做成三级发射机 这种方案的性能是比较好的,这种发射机主要由三个模块组成,第一级是音频放大电路;第二级是高频振荡电路;第三级是高频功率放大电路。 4.2 整体系统描述 本调频发射机的总体电路如下:声--电转换、音频放大、高频振荡调制和高频功率放大等。声--电转换由驻极体话筒担任,它拾取周围环境声波信号后即输出相就应电信号,经电容C2输入到晶体管Q1,Q1担任音频放大功能,对音频信号进行

调频接收机设计

湖南工程学院课程设计任务书 课程名称通信电子线路课程设计 题目调频接收机设计 专业班级电科0801 班 学生姓名 学号 指导老师浣喜明老师 审批 任务书下达日期:2011年05月30日星期一设计完成日期:2011年06月12日星期天

目录 1、任务书 (1) 2、说明书目录 (2) 3、设计总体思路 (3) 4、单元电路设计 (4) 5、总电路设计 (9) 6、设计调试体会与总结 (10) 7、附录(总电路原理图,PCB图) (11) 8、参考文献 (12)

一、调频接收机德工作原理 一般调频接收机的组成框图如图一所示。其工作原理是:天线接受到的高频信号,经输入调谐回路选频为f1,再经高频放大级放大进入混频级。本机振荡器输出的另一高频 f2亦进入混频级,则混频级的输出为含有f1、f2、(f1+f2)、(f2-f1)等频率分量的信号。混频级的输出接调频回路选出中频信号(f2-f1),再经中频放大器放大,获得足够高增益,然后鉴频器解调出低频调制信号,由低频功放级放大。由于天线接收到的高频信号经过混频成为固定的中频,再加以放大,因此接收机的灵敏度较高,选择性较好,性能也比较稳定。

二、单元模块设计 1.高频功率放大电路 高频小信号调谐放大器的主要特点是晶体管的集电极负载不是纯电阻,而是由LC组成的并联谐振回路。由于LC并联谐振回路的阻抗是随频率而变的,在谐振频率?=1/LC π2其电阻是纯电阻,达到最大最。因此,用并联谐振回路作为集电极负载的调谐放大器在回路的谐振频率上有最大的放大增益。稍微偏离此频率,电压增益迅速减小。用这类放大器可以放大所需的某一频率范围的信号,而抑制不需要的信号或外界干扰信号。 晶体管采用B107,起到电流控制和放大的作用。 从端口1、2输入信号,3、4输出信号 图二高频小信号谐振放大器

锁相环频率合成器

锁相频率合成器的设计 引言: 锁相频率合成器是基于锁相环路的同步原理,有一个高准确度、高稳定度的参考晶体振荡器,合成出许多离散频率。即将某一基准频率经过锁相环的作用产生需要的频率。 一. 设计任务和技术指标 1. 工作频率范围:300kHz —700kHz 2. 电源电压:Vcc=5V 3. 通过原理图确定电路,并画出电路图 4. 计算元件参数选取电路元件(R1,R2,C1及环路滤波器的配置) 5. 组装连接电路,并测试选取元件的正确性 6. 调试并测量电路相关参数(测量相关频率点,输出波形,频率转换时间t c ) 7. 总结并撰写实验报告 二. 设计方案 原理框图如下: 由上图可知,晶体振荡器的频率f i 经过M 固定分频后得步进参考频率f REF ,将f REF 信号作为鉴相器的基准与N 分频器的输出进行比较,鉴相器的输出U d 正比于两路输入信号的相位差,U d 经环路滤波得到一个平均电压U c ,U c 控制VCO 频率f 0的变化,使鉴相器的两路输入信号相位差不断减小,直到鉴相器的输出为零或某一直流电平。锁定后的频率为f i /M=f 0/N=f REF 即f 0=(N/M)f i =Nf REF 。当预置分频数N 变化时,输出信号频率f 0随着发生变化。 三. 电路原理与设计 (一) 晶体振荡器的设计 用2.5M 晶体和非门组成2.5MHz 振荡器。如下图所示: (二) M 分频电路

分频器选用74LS163,M=100 (三)锁相环的设计 CD4046压控振荡电路图如下: 数字锁相环CD4046有两个鉴相器、一个VCO、一个源极跟随器(本实验未用)和一个齐纳二极管组成。鉴相器有两个共用的输入端PCA IN和PCB IN,输入端PCA IN既可以与大信号直接匹配,又可间接与小信号相接。

滤波法及数字锁相环法位同步提取实验 模拟锁相环实验 载波同步帧同步实验

实验十九滤波法及数字锁相环法位同步提取实验 实验项目三数字锁相环法位同步观测 (1)观测“数字锁相环输入”和“输入跳变指示”,观测当“数字锁相环输入”没有跳变和有跳变时“输入跳变指示”的波形。 从图中可以观察出,若前一位数据有跳变,则判断有效,“输入跳变指示”输出表示1;否则,输出0表示判断无效。 (2)观测“数字锁相环输入”和“鉴相输出”。观测相位超前滞后的情况 数字锁相环的超前—滞后鉴相器需要排除位流数据输入连续几位码值保持不变的不利影响。在有效的相位比较结果中仅给出相位超前或相位滞后两种相位误差极性,而相位误差的绝对大小固定不变。经观察比较,“鉴相输出”比“数字锁相环输入”超前两个码元。

(3)观测“插入指示”和“扣除指示”。 (4)以信号源模块“CLK ”为触发,观测13号模块的“BS2”。 思考题:分析波形有何特点,为什么会出现这种情况。 因为可变分频器的输出信号频率与实验所需频率接近,将其和从信号中提取的相位参考信号同时送入相位比较器,比较的结果若是载波频率高了,就通过补抹门抹掉一个输入分频器的脉冲,相当于本地振荡频率降低;相反,若示出本地频率低了时就在分频器输入端的两个输入脉冲间插入 一个脉冲,相当于本地振荡频率上升,从而了达到同步的目的。 思考题:BS2恢复的时钟是否有抖动的情况,为什么?试分析BS2抖动的区间有多大?如何减小这个抖动的区间? 有抖动的存在,是因为可变分频器的存在使得下一个时钟沿的到来时间不确定,从而引入了相位抖动。而这种引入的误差是无法消除的。减小相位抖动的方法就是将分频器的分频数提高。

实验二十 模拟锁相环实验 实验项目一 VCO 自由振荡观测 (1)示波器CH1接TH8,CH2接TH4输出,对比观测输入及输出波形。 实验项目二 同步带测量 (1) 示波器CH1接13号模块TH8模拟锁相环输入,CH2接TH4输出BS1,观察TH4 输出处于锁定状态。将正弦波频率调小直到输出波形失锁,此时的频率大小f1为 400Hz ;将频率调大,直到TH4输出处于失锁状态,记下此时频率f2为 9.25kHz 。 对比波形可以发现TH8与TH4信号输入与输出错位半个周期 如右图所示,方波抖动,说明处于失锁状态。 记下两次波形失锁的频率,可计 算 出 同 步 带 f=9.25KHz-400Hz=8.85KHz 。

用锁相环路设计FM调制解调器

用锁相环路设计FM调制解调器 一、基于锁相环的调频调制原理 FM调制原理图(PLL调制器) 根据环路的线性相位模型,可以导出在调制信号U f(t)作用下,环路的输出相位(以下均用它的拉普拉斯变换表示):﹒ =He(s)﹒(1/s)﹒K0﹒UF(s) VCO输出频率相对于自由振荡频率ω0的频偏即为sθ2(s)。有以上式得 Sθ2(s)= He(s)﹒K0 ﹒UF(s) 由于K0是常数,He(s)具有高通特性,可见只要在He(s)的带通之内,输出频偏与调制信号的幅度成正比,这样就产生了FM信号。由以上说明可知,完成FM依赖于锁相环路的误差传递函数He(s),必须使调制频率Ω在频率特性He(jΩ)的通带之内才行。因为He (jΩ)具有高通特性,所以图方案在调制频率Ω很低,进入He(j Ω)的阻带之后,调制频偏是很小的。 二,simulink仿真框图(FM调制)为:

各元器件参数如下: 环路滤波器的参数为: 电压控制振荡器的参数为:

调制信号的参数为: 输出波形图为:

三,基于锁相环的调频解调原理 调制跟踪的锁相环路本身就是一个FM解调器,从压控振荡器输入端得到解调输出。 发射机部分用PLL集成电路构成,VCO作为FM调制器,PD用一个相乘器,这里用作缓冲发大,只要在另一端加一固定偏置电压即可。接收机是一通用的线性PLL电路。利用PLL良好的调制跟踪特性,使PLL跟踪输入FM信号的瞬时相位的变化,从而从VCO控制端获得解调输出。 四,simulink仿真框图为:

各元器件参数如下: 环路滤波器的参数为: 电压控制振荡器的参数为: 调制信号的参数为:

《调频发射机》高频课程设计报告

高频课程设计 报告 专业: 班级: 姓名: 学号: 指导老师: 设计时间: 福建工程学院电子信息与电气工程系 通信教研室 2010.1

目录 1. 设计题目 (3) 2. 实践目的 (3) 3. 设计要求 (3) 4. 基本原理 (3) 5. 系统调试 (9) 6. 心得体会 (9) 7. 参考文献 (10) 附录 (10)

高频课程设计 一、设计题目 调频发射机 二、实践目的 无线电发射与接收设备是高频电子线路的综合应用,是现代化通信系统、广播与电视 系统、无线安全防范系统、无线遥控和遥测系统、雷达系统、电子对抗系统、无线电制导系统等,必不可少的设备。本次设计要达到以下目的: 1. 进一步认识射频发射与接收系统; 2. 掌握调频(或调幅)无线电发射机的设计; 3. 学习无线电通信系统的设计与调试。 三、设计要求 1. 发射机采用FM 、AM 或者其它的调制方式; 2. 若采用FM 调制方式,要求发射频率覆盖范围在88-108MHz,传输距离>20m; 3. 若采用AM 调制方式,发射频率为中波波段或30MHz 左右,传输距离>20m ; 4. 为了加深对调制系统的认识,发射机建议采用分立元件设计; 四、基本原理 本设计图采用FM 调制。 载波()t w U t u c cm c cos )(=,调制信号()t u Ω;通过FM 调制,使得)(t u c 频率变化量与调制信号()t u Ω的大小成正比。即已调信号的瞬时角频率 ()()t u k w t w f c Ω?+= 已调信号的瞬时相位为 ()()t d t u k t w t d t w t t f c t ''+=''=??Ω )(0 ? 实现调频的方法分为直接调频和间接调频两大类,本设计图采用直接调频: 直接调频的基本原理是利用调制信号直接控制振荡器的振荡频率,使其反映调制信号变化规律。要用调制信号去控制载波振荡器的振荡频率,就是用调制信号去控制决定载波振荡器振荡频率的元件或电路的参数,从而使载波振荡器的瞬时频率按调制信号变化规律

超外差调频接收机的设计

摘要 随着现在社会的快速发展,人们都电子产品的要求越来越高,因而电子产品无论从制作上还是从销售上都要求很高。要制作一个应用性比较好的电子产品就离不开高频电路,大到超级计算机、小到袖珍计算器,很多电子设备都有高频电路。高频电路大部分应用于通信领域,信号的发射、传输、接收都离不开高频电路。通信技术在我们的生活中广泛应用,而我所学的是电子信息工程,有一部分涉及的是通信技术,所以对于这次设计,我选择了超外差式调频接收机。在以前应用最广泛的是调频接收机,随着科学技术的发展,出现了超外差式调频接收机。所谓超外差,是指将所要接收的电台在调谐电路里调好以后,经过电路本身的作用,就变成另外一个预先确定好的频率,然后再进行放大和检波。这个固定的频率,是由差频的作用产生的。如果我们在收音机内制造 - 个振荡电波 ( 通常称为本机振荡 ) ,使它和外来高频调幅信号同时送到一个晶体管内混合,这种工作叫混频。由于晶体管的非线性作用导致混频的结果就会产生一个新的频率,这就是外差作用。采用了这种电路的接收机叫外差式收音机,混频和振荡的工作,合称变频。 在本次设计中,其目的是得到一个调频接收机机。在超外差式调频接收机的设计过程中,应将其分为高频放大、混频、本振、中放、限幅、鉴频、低频放大七个部分。整个电路的设计必须注意几个方面。选择性好的级,应尽可能靠近前面,因在干扰及信号都不大的地方把干扰抑制下去,效果最好。如干扰及信号很大,则由于晶体管的非线性,将产生严重的组合频率及其他非线性失真,这时滤除杂波比较困难。为此,在高级接收机中,输入电路常采用复杂的高选择电路。为了使混频和本振分别调到最佳状态,要采用单独的本振。总的来说,设计一部接收机时必须全面考虑,妥善处理一些相互牵制的矛盾,特别要抓住主要矛盾(稳定性、选择性、失真等),才能使得接收机有较好的指标。 关键词:超外差,调频,本振,混频

实验报告一 模拟锁相环模块

模拟锁相环模块 信息工程学院08级电子班安艳芳0839107 一、实验目的 1、熟悉模拟锁相环的基本工作原理 2、掌握模拟字锁相环的基本参数及设计 二、实验仪器 JH5001通信原理综合实验系统(一台)、20MHz双踪示波器(一台)、函数信号发生器(一台) 三、实验原理和电路说明 锁相的重要性:在电信网中,同步是一个十分重要的概念。其最终目的使本地终端时钟源锁定在另一个参考时钟源上。同步的技术基础是锁相,因而锁相技术是通信中最重要的技术之一在系统工作中模拟锁相环将接收端的256KHz时钟锁在发端的256KHz的时钟上,来获得系统的同步时钟,如HDB3接收的同步时钟及后续电路同步时钟。 该模块主要由模拟锁相环UP01(MC4046)、数字分频器UP02(74LS161)、D触发器UP04(74LS74)、环路滤波器和由运放UP03(TEL2702)及阻容器件构成的输入带通滤波器(中心频率:256KHz)组成。因来自发端信道的HDB3码为归零码,归零码中含有256KHz时钟分量,经UP03B构成中心频率为256KHz 有源带通滤波器后,滤出256KHz时钟信号,该信号再通过UP03A放大,然后经UP04A和UP04B两个除二分频器(共四分频)变为64KHz信号,进入UP01鉴相输入A脚;VCO输出的512KHz输出信号经UP02进行八分频变为64KHz信号,送入UP01的鉴相输入B脚。经UP01内部鉴相器鉴相之后的误差控制信号经环路滤波器滤波送入UP01的压控振荡器输入端;WP01可以改变模拟锁相环的环路参数。正常时,VCO 锁定在外来的256KHz频率上。 模拟锁相环模块各跳线开关功能如下: 1、跳线开关KP01用于选择UP01的鉴相输出。当KP01设置于1_2时(左端),环路锁定时TPP03、 TPP05输出信号将存在一定相差;当KP01设置于2_3时(右端),选择三态门鉴相输出,环路锁定时TPP03、TPP05输出信号将不存在相差。 2、跳线开关KP021是用于选择输入锁相信号:当KP021置于1_2时,输入信号来自HDB3编码模块 的HDB3码信号;当KP021置于2_3时,选择外部的测试信号(J007输入),此信号用于测量该模拟锁相环模块的性能。

完整版锁相环工作原理.doc

基本组成和锁相环电路 1、频率合成器电路 频率合成器组成: 频率合成器电路为本机收发电路的频率源,产生接收第一本机信号源和发射电路的发射 信号源,发射信号源主要由锁相环和VCO 电路直接产生。如图3-4 所示。 在现在的移动通信终端中,用于射频前端上下变频的本振源(LO ),在射频电路中起着非常 重要的作用。本振源通常是由锁相环电路(Phase-Locked Loop )来实现。 2.锁相环: 它广泛应用于广播通信、频率合成、自动控制及时钟同步等技术领域 3.锁相环基本原理: 锁相环包含三个主要的部分:⑴鉴相器(或相位比较器,记为PD 或 PC):是完成相位比较的单元, 用来比较输入信号和基准信号的之间的相位.它的输出电压正比于两个输入信号之相位差.⑵低通滤波器(LPF): 是个线性电路,其作用是滤除鉴相器输出电压中的高频分量,起平滑滤波的 作用 .通常由电阻、电容或电感等组成,有时也包含运算放大器。⑶压控振荡器(VCO ):振

荡频率受控制电压控制的振荡器,而振荡频率与控制电压之间成线性关系。在PLL 中,压控振荡器实际上是把控制电压转换为相位。 1、压控振荡器的输出经过采集并分频; 2、和基准信号同时输入鉴相器; 3、鉴相器通过比较上述两个信号的频率差,然后输出一个直流脉冲电压; 4、控制 VCO ,使它的频率改变; 5、这样经过一个很短的时间,VCO的输出就会稳定于某一期望值。 锁相环电路是一种相位负反馈系统。一个完整的锁相环电路是由晶振、鉴相器、R 分频器、N 分频器、压控振荡器(VCO )、低通滤波器(LFP)构成,并留有数据控制接口。 锁相环电路的工作原理是:在控制接口对R 分频器和N 分频器完成参数配置后。晶振产生 的参考频率( Fref)经 R 分频后输入到鉴相器,同时VCO 的输出频率( Fout)也经 N 分频后输入到鉴相器,鉴相器对这两个信号进行相位比较,将比较的相位差以电压或电流的方式 输出,并通过 LFP 滤波,加到 VCO 的调制端,从而控制 VCO 的输出频率,使鉴相器两输入端的 输入频率相等。 锁相环电路的计算公式见公式: Fout=(N/R)Fref 由公式可见,只要合理设置数值N 和 R,就可以通过锁相环电路产生所需要的高频信号。 4.锁相环芯片 锁相环的基准频率为13MHz ,通过内部固定数字频率分频器生成5KHz 或 6.25KHz 的参考频率。 VCO 振荡频率通过IC1 内部的可编程分频器分频后,与基准频率进行相位比较,产 生误差控制信号,去控制VCO,改变VCO的振荡频率,从而使VCO输出的频率满足要求。如图 3-5 所示。 N=F VCO /F R N:分频次数 F VCO: VCO 振荡频率

高频课程设计报告_调频发射机

调频发射机课程实验报告 姓名: 班别: 学号: 指导老师: 组员:

小功率调频发射机课程设计 一、 主要技术指标: 1. 中心频率:012f MHz = 2. 频率稳定度 40/10f f -?≤ 3. 最大频偏 10m f kHz ?> 4. 输出功率 30o P mW ≥ 5. 天线形式 拉杆天线(75欧姆) 6. 电源电压 9cc V V = 二、 设计和制作任务: 1. 确定电路形式,选择各级电路的静态工作点,并画出电路图。 2. 计算各级电路元件参数并选取元件。 3. 画出电路装配图 4. 组装焊接电路 5. 调试并测量电路性能 6. 写出课程设计报告书 三、 设计提示: 通常小功率发射机采用直接调频方式,并组成框图如下所示: 其中,其中高频振荡级主要是产生频率稳定、中心频率符合指标要求的正弦 波信号,且其频率受到外加音频信号电压调变;缓冲级主要是对调频振荡信号进

行放大,以提供末级所需的激励功率,同时还对前后级起有一定的隔离作用,为避免级功放的工作状态变化而直接影响振荡级的频率稳定度;,功放级的任务是确保高效率输出足够大的高频功率,并馈送到天线进行发射。 上述框所示小功率发射机设计的主要任务是选择各级电路形式和各级元器件参数的计算。 1.频振荡级: 由于是固定的中心频率,可考虑采用频率稳定度较高的克拉泼振荡电路。关于该电路的设计参阅《高频电子线路实验讲义》中实验六内容。 克拉泼(clapp )电路是电容三点式振荡器的改进型电路,下图为它的实际电路和相应的交流通路: 实用电路 交流通路 如图可知,克拉泼电路比电容三点式在回路中多一个与C1 C2相串接的电容C3,通常C3取值较小,满足C3《C1 ,C3《C2,回路总电容取决于C3,而三极管的极间电容直接并接在C1 C2上,不影响C3的值,结果减小了这些不稳定电容对振荡频率的影响,且C3较小,这种影响越小,回路的标准性越高,实际情况下,克拉泼电路比电容三点式的频稳度高一个量级,达4 51010--。 可是,接入C3后,虽然反馈系数不变,但接在AB 两端的电阻RL ’=RL//Reo 折算到振荡管集基间的数值(设为RL ’’)减小,其值变为 ''2' 22 3( )31,2 L L L L C R n R R C C ≈=+ 式中,C1,2是C1 C2 和 各极间电容的总电容。因而,放大器的增益亦即环路增益将相应减小,C3越小,环路增益越小。减小C3来提高回路标准是以牺牲环路增益为代价的,如果C3取值过小,振荡器就会因不满足振幅起振条件而停振。 2.缓冲级: 由于对该级有一定增益要求,考虑到中心频率固定,因此可采用以LC 并联回路作负载的小信号谐振放大器电路。

调频接收机高频课程设计报告

一. 设计目的: 通过本课程设计与调试,提高动手能力,巩固已学的理论知识,能建立无线电调频接收机的整机概念,了解调频接收机整机各单元电路之间的关系及相互影响,从而能正确设计、计算调频接收机的单各元电路:输入回路、高频放大、混频、中频放大、鉴频及低频功放级。初步掌握调频接收机的调整及测试方法。 二.调频接收机的主要技术指标 调频接收机的主要技术指标有: 1.工作频率范围 接收机可以接受到的无线电波的频率范围称为接收机的工作频率范围或波段覆盖。接收机的工作频率必须与发射机的工作频率相对应。如调频广播收音机的频率范围为88~108MH,是因为调频广播收音机的工作范围也为88~108MHz 2.灵敏度 接收机接收微弱信号的能力称为灵敏度,通常用输入信号电压的大小来表示,接收的输入信号越小,灵敏度越高。调频广播收音机的灵敏度一般为5~30uV。 3.选择性 接收机从各种信号和干扰中选出所需信号(或衰减不需要的信号)的能力称为选择性,单位用dB(分贝)表示dB数越高,选择性越好。调频收音机的中频干扰应大于50dB。 4.频率特性 接收机的频率响应范围称为频率特性或通频带。调频机的通频带一般为200KHz。 5.输出功率 接收机的负载输出的最大不失真(或非线性失真系数为给定值时)功率称为输出功率。 三.调频接收机组成 图3-1 频接收机的组成 一般调频接收机的组成框图如图3-1所示。其工作原理是:天线接受到的高频信号,经输入调谐回路选频为f1,再经高频放大级放大进入混频级。本机振荡

二极管环形混频电路 图 4-2 二极管环形混频电路 ( a )原理电路( b )等效电路 A 、原理电路及其等效电路:如图4-2 ( a )、( b )所示。 对于图4-2( a )所示电路,通常将信号输入端口称之为 R 端口,本振电压输入端口称之为 L 端口,中频输出信号端口称之为 I 端口。 需要说明的是:二极管双平衡组件用作双边带调制电路时,由于变压器的低频响应差,调制信号一般必须加到 I 端口,载波信号加到 R 端口,所需双边带信号从 L 端取出。 二极管环形混频器产品已形成完整的系列,它用保证二极管开关工作所需本振功率电平的高低进行分类,其中常用的是 L evel 7 , L evel 17 , L evel 23 三种系列,它们所需的本振功率分别为 7dBm(5mW) , 17dBm(50mW) 和 23dBm(200mW) ,显然,本振功率电平越高,相应的 1dB 压缩电平也就越高,混频器的动态范围也就越大。对应于上述三种系列, 1dB 压缩电平所对应的最大输入信号功率分别为 1dBm(1.25mW) 、 10dBm(10mW) 、 15dBm(32mW) 。 二极管环形混频器具有工作频带宽(从几十千赫到几千兆赫)、噪声系数低(约 6dB )、混频失真小、动态范围大等优点。 二极管环形混频器的主要缺点是没有混频增益,端口之间的隔离度较低,其中 L 端口到 R 端口的隔离度一般小于 40dB ,且随着工作频率的提高而下降。实验表明,工作频率提高一倍,隔离度下降 5dB 。 B 、原理分析

基于数字式锁相环频率合成器的设计与实现

四川师范大学本科毕业设计 基于数字式锁相环频率合成器的设计与实现 学生姓名 院系名称 专业名称 班级级班 学号 指导教师 完成时间年月日

基于数字式锁相环频率合成器的设计与实现 电子信息工程专业 学生姓名指导老师 摘要随着通信信息技术的快速发展,信号产生的方式多种多样,然而数字式锁相环频率合成器在信号产生技术中扮演了越来越重要的作用,数字式锁相环频率合成器在频率频率稳定度和频谱纯度上,频率输出个数上有着巨大的优势,是其他器件所不能代替的!因此在军用和民用雷达领域,各种导航器以及通信领域广泛运用! 基于此,本人设计了一个由晶体振荡器和分频器,锁相环路(鉴相器,低通滤波器,压控振荡器)组成的数字式锁相环频率合成器,晶体振荡器的作用是产生一个固定的频率,然后通过分频器得到一个基准频率,锁相环路对基准频率进行频率合成,到最后,合成后的频率经过放大器,使不同的频率的幅度稳定在一定的范围内,这样的话不会是信号不会随着输出频率的变化而减少! 数字式锁相环频率合成器是开环系统的,频率转换时间很短,分辨率也较高,结构相对简单,成本也不高,输出的频率在稳定度和精准度上也有很大的优势。但是,由于毕业在即时间紧张,本人经验有些不足,希望老师和同学们帮助与指导。 关键词:锁相环频率合成晶体振荡器分频器锁相环路

The Design and Implementation of Digital Pll Frequency S ynthesizer Abstract With the rapid development of communication technology, signal way is varied, but in signal digital phase locked loop frequency synthesizer technology plays an increasingly important role, digital phase locked loop frequency synthesizer on the frequency stability and frequency spectrum purity, frequency output factor has a huge advantage, is cannot replace by other device! So in the field of military and civilian radar, navigator, and widely used communication field. Based on this, I designed a by the crystal oscillator and a frequency divider, phase locked loop (phase discriminator, low-pass filter, a voltage controlled oscillator) consisting of digital phase locked loop frequency synthesizer, the effect of crystal oscillator is a fixed frequency, then a reference frequency is obtained by frequency divider, phase locked loop frequency synthesis was carried out on the fundamental frequency, in the end, after the synthesis of frequency through the amplifier, the size of the different frequency stability in a certain range, so not the signals are not as the change of output frequency and less! Digital phase locked loop frequency synthesizer is the open loop system, frequency conversion time is short, the resolution is higher also, structure is relatively simple, the cost is not high, the output frequency of the in stability and precision also has a great advantage. However, due to the graduation of time is tight, I experience some shortage, hope the teacher and the students help and guidance. Key words: Phase-locked loop Frequency synthesis Crystal oscillator Divider Phase locked loop

相关主题
文本预览
相关文档 最新文档