当前位置:文档之家› 人教中考数学综合题专题复习【平行四边形】专题解析附详细答案

人教中考数学综合题专题复习【平行四边形】专题解析附详细答案

人教中考数学综合题专题复习【平行四边形】专题解析附详细答案
人教中考数学综合题专题复习【平行四边形】专题解析附详细答案

一、平行四边形真题与模拟题分类汇编(难题易错题)

1.在四边形ABCD 中,180B D ∠+∠=?,对角线AC 平分BAD ∠.

(1)如图1,若120DAB ∠=?,且90B ∠=?,试探究边AD 、AB 与对角线AC 的数量关系并说明理由.

(2)如图2,若将(1)中的条件“90B ∠=?”去掉,(1)中的结论是否成立?请说明理由.

(3)如图3,若90DAB ∠=?,探究边AD 、AB 与对角线AC 的数量关系并说明理由.

【答案】(1)AC AD AB =+.证明见解析;(2)成立;(3)2AD AB AC +=.理由

见解析. 【解析】

试题分析:(1)结论:AC=AD+AB ,只要证明AD=

12AC ,AB=1

2

AC 即可解决问题; (2)(1)中的结论成立.以C 为顶点,AC 为一边作∠ACE=60°,∠ACE 的另一边交AB 延长线于点E ,只要证明△DAC ≌△BEC 即可解决问题;

(3)结论:AD +AB =2AC .过点C 作CE ⊥AC 交AB 的延长线于点E ,只要证明△ACE 是等腰直角三角形,△DAC ≌△BEC 即可解决问题; 试题解析:解:(1)AC=AD+AB . 理由如下:如图1中,

在四边形ABCD 中,∠D+∠B=180°,∠B=90°, ∴∠D=90°,

∵∠DAB=120°,AC 平分∠DAB , ∴∠DAC=∠BAC=60°, ∵∠B=90°,

∴AB=1

2

AC,同理AD=

1

2

AC.

∴AC=AD+AB.

(2)(1)中的结论成立,理由如下:以C为顶点,AC为一边作∠ACE=60°,∠ACE的另一边交AB延长线于点E,

∵∠BAC=60°,

∴△AEC为等边三角形,

∴AC=AE=CE,

∵∠D+∠ABC=180°,∠DAB=120°,

∴∠DCB=60°,

∴∠DCA=∠BCE,

∵∠D+∠ABC=180°,∠ABC+∠EBC=180°,

∴∠D=∠CBE,∵CA=CE,

∴△DAC≌△BEC,

∴AD=BE,

∴AC=AD+AB.

(3)结论:AD+AB=2AC.理由如下:

过点C作CE⊥AC交AB的延长线于点E,∵∠D+∠B=180°,∠DAB=90°,

∴DCB=90°,

∵∠ACE=90°,

∴∠DCA=∠BCE,

又∵AC平分∠DAB,

∴∠CAB=45°,

∴∠E=45°.

∴AC=CE.

又∵∠D+∠ABC=180°,∠D=∠CBE,

∴△CDA≌△CBE,

∴AD=BE,

∴AD+AB=AE.

在Rt△ACE中,∠CAB=45°,

∴AE=2

45

AC

AC

cos?

∴2

AD AB AC

+=.

2.如图,四边形ABCD中,AD∥BC,∠A=90°,BD=BC,点E为CD的中点,射线BE交AD 的延长线于点F,连接CF.

(1)求证:四边形BCFD是菱形;

(2)若AD=1,BC=2,求BF的长.

【答案】(1)证明见解析(2)3

【解析】

(1)∵AF∥BC,∴∠DCB=∠CDF,∠FBC=∠BFD,

∵点E为CD的中点,∴DE=EC,

在△BCE与△FDE中,

FBC BFD

DCB CDF

DE EC

∠=∠

?

?

∠=∠

?

?=

?

∴△BCE≌△FDE,∴DF=BC,

又∵DF∥BC,∴四边形BCDF为平行四边形,

∵BD=BC,∴四边形BCFD是菱形;

(2)∵四边形BCFD是菱形,∴BD=DF=BC=2,

在Rt△BAD中,AB223

BD AD

-,

∵AF=AD+DF=1+2=3,在Rt△BAF中,BF22

AB AF

+3.

3.图1、图2是两张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1,每个小正方形的顶点叫做格点.

(1)在图1中画出等腰直角三角形MON,使点N在格点上,且∠MON=90°;

(2)在图2中以格点为顶点画一个正方形ABCD,使正方形ABCD面积等于(1)中等腰直角三角形MON面积的4倍,并将正方形ABCD分割成以格点为顶点的四个全等的直角三角形和一个正方形,且正方形ABCD面积没有剩余(画出一种即可).

【答案】(1)作图参见解析;(2)作图参见解析.

【解析】

试题分析:(1)过点O向线段OM作垂线,此直线与格点的交点为N,连接MN即可;(2)根据勾股定理画出图形即可.

试题解析:(1)过点O向线段OM作垂线,此直线与格点的交点为N,连接MN,如图1所示;

(2)等腰直角三角形MON面积是5,因此正方形面积是20,如图2所示;于是根据勾股定理画出图3:

考点:1.作图﹣应用与设计作图;2.勾股定理.

4.(问题情境)在△ABC中,AB=AC,点P为BC所在直线上的任一点,过点P作

PD⊥AB,PE⊥AC,垂足分别为D、E,过点C作CF⊥AB,垂足为F.当P在BC边上时(如图1),求证:PD+PE=CF.

证明思路是:如图2,连接AP,由△ABP与△ACP面积之和等于△ABC的面积可以证得:PD+PE=CF.(不要证明)

(变式探究)(1)当点P在CB延长线上时,其余条件不变(如图3),试探索PD、PE、CF之间的数量关系并说明理由;

请运用上述解答中所积累的经验和方法完成下列两题:

(结论运用)(2)如图4,将长方形ABCD沿EF折叠,使点D落在点B上,点C落在点C′处,点P为折痕EF上的任一点,过点P作PG⊥BE、PH⊥BC,垂足分别为G、H,若AD =16,CF=6,求PG+PH的值.

(迁移拓展)(3)在直角坐标系中,直线l1:y=-4

3

x+8与直线l2:y=﹣2x+8相交于点

A,直线l1、l2与x轴分别交于点B、点C.点P是直线l2上一个动点,若点P到直线l1的距离为2.求点P的坐标.

【答案】【变式探究】证明见解析【结论运用】8【迁移拓展】(﹣1,6),(1,10)【解析】

【变式探究】

连接AP,同理利用△ABP与△ACP面积之差等于△ABC的面积可以证得;

【结论运用】

过点E作EQ⊥BC,垂足为Q,根据勾股定理和矩形的性质解答即可;

【迁移拓展】

分两种情况,利用结论,求得点P到x轴的距离,再利用待定系数法可求出P的坐标.【详解】

变式探究:连接AP,如图3:

∵PD⊥AB,PE⊥AC,CF⊥AB,且S△ABC=S△ACP﹣S△ABP,

∴1

2AB?CF=

1

2

AC?PE﹣

1

2

AB?PD.

∵AB=AC,

∴CF=PD﹣PE;

结论运用:过点E作EQ⊥BC,垂足为Q,如图④,

∵四边形ABCD是长方形,

∴AD=BC,∠C=∠ADC=90°.

∵AD=16,CF=6,

∴BF=BC﹣CF=AD﹣CF=5,

由折叠可得:DF=BF,∠BEF=∠DEF.

∴DF=5.

∵∠C=90°,

∴DC2222

106

DF CF

-=-8.

∵EQ⊥BC,∠C=∠ADC=90°,

∴∠EQC=90°=∠C=∠ADC.

∴四边形EQCD是长方形.

∴EQ=DC=4.

∵AD∥BC,

∴∠DEF=∠EFB.

∵∠BEF=∠DEF,

∴∠BEF=∠EFB.

∴BE=BF,

由问题情境中的结论可得:PG+PH=EQ.

∴PG+PH=8.

∴PG+PH的值为8;

迁移拓展:如图,

由题意得:A(0,8),B(6,0),C(﹣4,0)

∴AB22

68

+10,BC=10.

∴AB=BC,

(1)由结论得:P1D1+P1E1=OA=8

∵P1D1=1=2,

∴P1E1=6 即点P1的纵坐标为6

又点P1在直线l2上,

∴y=2x+8=6,

∴x=﹣1,

即点P1的坐标为(﹣1,6);

(2)由结论得:P2E2﹣P2D2=OA=8

∵P2D2=2,

∴P2E2=10 即点P1的纵坐标为10

又点P1在直线l2上,

∴y=2x+8=10,

∴x=1,

即点P1的坐标为(1,10)

【点睛】

本题考查了矩形的性质与判定、等腰三角形的性质与判定及勾股定理等知识点,利用面积法列出等式是解决问题的关键.

5.(1)如图1,将矩形ABCD折叠,使BC落在对角线BD上,折痕为BE,点C落在

∠的度数为______.

点C'处,若42

ADB=

∠,则DBE

(2)小明手中有一张矩形纸片ABCD ,4AB =,9AD =.

(画一画)如图2,点E 在这张矩形纸片的边AD 上,将纸片折叠,使AB 落在CE 所在直线上,折痕设为MN (点M ,N 分别在边AD ,BC 上),利用直尺和圆规画出折痕

MN (不写作法,保留作图痕迹,并用黑色水笔把线段描清楚);

(算一算)如图3,点F 在这张矩形纸片的边BC 上,将纸片折叠,使FB 落在射线FD 上,折痕为GF ,点,A B 分别落在点A ',B '处,若7

3

AG =

,求B D '的长.

【答案】(1)21;(2)画一画;见解析;算一算:3B D '= 【解析】 【分析】

(1)利用平行线的性质以及翻折不变性即可解决问题;

(2)【画一画】,如图2中,延长BA 交CE 的延长线由G ,作∠BGC 的角平分线交AD 于M ,交BC 于N ,直线MN 即为所求; 【算一算】首先求出GD=9-

72033

=,由矩形的性质得出AD ∥BC ,BC=AD=9,由平行线的性质得出∠DGF=∠BFG ,由翻折不变性可知,∠BFG=∠DFG ,证出∠DFG=∠DGF ,由等腰三

角形的判定定理证出DF=DG=

20

3

,再由勾股定理求出CF ,可得BF ,再利用翻折不变性,可知FB′=FB ,由此即可解决问题. 【详解】

(1)如图1所示:

∵四边形ABCD 是矩形,

∴AD∥BC,

∴∠ADB=∠DBC=42°,

由翻折的性质可知,∠DBE=∠EBC=1

2

∠DBC=21°,

故答案为21.

(2)【画一画】如图所示:

【算一算】

如3所示:

∵AG=7

3

,AD=9,

∴GD=9-720

33

=,

∵四边形ABCD是矩形,

∴AD∥BC,BC=AD=9,

∴∠DGF=∠BFG,

由翻折不变性可知,∠BFG=∠DFG,∴∠DFG=∠DGF,

∴DF=DG=20

3

∵CD=AB=4,∠C=90°,

∴在Rt△CDF中,由勾股定理得:

2

222

2016

4

33 DF CD

??

-=-=

?

??

∴BF=BC-CF=91611

33

-=,

由翻折不变性可知,FB=FB′=11 3

∴B′D=DF-FB′=20113

33

-=.

【点睛】

四边形综合题,考查了矩形的性质、翻折变换的性质、勾股定理、等腰三角形的判定、平行线的性质等知识,解题的关键是灵活运用所学知识解决问题,学会利用翻折不变性解决问题.

6.如图,已知矩形ABCD中,E是AD上一点,F是AB上的一点,EF⊥EC,且EF=EC.(1)求证:△AEF≌△DCE.

(2)若DE=4cm,矩形ABCD的周长为32cm,求AE的长.

【答案】(1)证明见解析;(2)6cm.

【解析】

分析:(1)根据EF⊥CE,求证∠AEF=∠ECD.再利用AAS即可求证△AEF≌△DCE.(2)利用全等三角形的性质,对应边相等,再根据矩形ABCD的周长为32cm,即可求得AE的长.

详解:(1)证明:∵EF⊥CE,

∴∠FEC=90°,

∴∠AEF+∠DEC=90°,而∠ECD+∠DEC=90°,

∴∠AEF=∠ECD.

在Rt△AEF和Rt△DEC中,

∠FAE=∠EDC=90°,∠AEF=∠ECD,EF=EC.

∴△AEF≌△DCE.

(2)解:∵△AEF≌△DCE.

AE=CD.

AD=AE+4.

∵矩形ABCD的周长为32cm,

∴2(AE+AE+4)=32.

解得,AE=6(cm).

答:AE的长为6cm.

点睛:此题主要考查学生对全等三角形的判定与性质和矩形的性质等知识点的理解和掌握,难易程度适中,是一道很典型的题目.

7.如图,在正方形ABCD中,点E在CD上,AF⊥AE交CB的延长线于F.

求证:AE=AF.

【答案】见解析

【解析】

【分析】

根据同角的余角相等证得∠BAF=∠DAE,再利用正方形的性质可得AB=AD,

∠ABF=∠ADE=90°,根据ASA判定△ABF≌△ADE,根据全等三角形的性质即可证得

AF=AE.

【详解】

∵AF⊥AE,

∴∠BAF+∠BAE=90°,

又∵∠DAE+∠BAE=90°,

∴∠BAF=∠DAE,

∵四边形ABCD是正方形,

∴AB=AD,∠ABF=∠ADE=90°,

在△ABF和△ADE中,

∴△ABF≌△ADE(ASA),

∴AF=AE.

【点睛】

本题主要考查了正方形的性质、全等三角形的判定和性质等知识点,证明△ABF≌△ADE是解决本题的关键.

8.已知点O是△ABC内任意一点,连接OA并延长到E,使得AE=OA,以OB,OC为邻边作?OBFC,连接OF与BC交于点H,再连接EF.

(1)如图1,若△ABC为等边三角形,求证:①EF⊥BC;②EF=BC;

(2)如图2,若△ABC为等腰直角三角形(BC为斜边),猜想(1)中的两个结论是否成

立?若成立,直接写出结论即可;若不成立,请你直接写出你的猜想结果;

(3)如图3,若△ABC是等腰三角形,且AB=AC=kBC,请你直接写出EF与BC之间的数量关系.

【答案】(1)见解析;

(2)EF⊥BC仍然成立;

(3)EF=BC

【解析】

试题分析:(1)由平行四边形的性质得到BH=HC=BC,OH=HF,再由等边三角形的性质得到AB=BC,AH⊥BC,根据勾股定理得到AH=BC,即可;

(2)由平行四边形的性质得到BH=HC=BC,OH=HF,再由等腰直角三角形的性质得到AB=BC,AH⊥BC,根据勾股定理得到AH=BC,即可;

(3)由平行四边形的性质得到BH=HC=BC,OH=HF,再由等腰三角形的性质和

AB=AC=kBC得到AB=BC,AH⊥BC,根据勾股定理得到AH=BC,即可.

试题解析:(1)连接AH,如图1,

∵四边形OBFC是平行四边形,

∴BH=HC=BC,OH=HF,

∵△ABC是等边三角形,

∴AB=BC,AH⊥BC,

在Rt△ABH中,AH2=AB2﹣BH2,

∴AH==BC,

∵OA=AE,OH=HF,

∴AH是△OEF的中位线,

∴AH=EF,AH∥EF,

∴EF⊥BC,BC=EF,

∴EF⊥BC,EF=BC;

(2)EF⊥BC仍然成立,EF=BC,如图2,

∵四边形OBFC是平行四边形,

∴BH=HC=BC,OH=HF,

∵△ABC是等腰三角形,

∴AB=BC,AH⊥BC,

在Rt△ABH中,AH2=AB2﹣BH2=(BH)2﹣BH2=BH2,

∴AH=BH=BC,

∵OA=AE,OH=HF,

∴AH是△OEF的中位线,

∴AH=EF,AH∥EF,

∴EF⊥BC,BC=EF,

∴EF⊥BC,EF=BC;

(3)如图3,

∵四边形OBFC是平行四边形,

∴BH=HC=BC,OH=HF,

∵△ABC 是等腰三角形, ∴AB=kBC ,AH ⊥BC ,

在Rt △ABH 中,AH 2=AB 2﹣BH 2=(kBC )2﹣(BC )

2=(k 2-)BC 2,

∴AH=BH=

BC ,

∵OA=AE ,OH=HF , ∴AH 是△OEF 的中位线, ∴AH=EF ,AH ∥EF , ∴EF ⊥BC ,BC=EF ,

∴EF=

BC .

考点:四边形综合题.

9.已知ABC ,以AC 为边在ABC 外作等腰ACD ,其中AC AD =. (1)如图①,若AB AE =,60DAC EAB ∠=∠=?,求BFC ∠的度数. (2)如图②,ABC α∠=,ACD β∠=,4BC =,6BD =.

①若30α

=?,60β=?,AB 的长为______.

②若改变,αβ的大小,但90αβ+=?,ABC 的面积是否变化?若不变,求出其值;

若变化,说明变化的规律.

【答案】(1)120°;(2)55【解析】

试题分析:(1)根据SAS ,可首先证明△AEC ≌△ABD ,再利用全等三角形的性质,可得对应角相等,根据三角形的外角的定理,可求出∠BFC 的度数;

(2)①如图2,在△ABC 外作等边△BAE ,连接CE ,利用旋转法证明△EAC ≌△BAD ,可证∠EBC=90°,EC=BD=6,因为BC=4,在Rt △BCE 中,由勾股定理求BE 即可;

②过点B 作BE ∥AH ,并在BE 上取BE=2AH ,连接EA ,EC .并取BE 的中点K ,连接AK ,仿照(2)利用旋转法证明△EAC ≌△BAD ,求得EC=DB ,利用勾股定理即可得出结论. 试题解析:

解:(1)∵AE=AB,AD=AC,

∵∠EAB=∠DAC=60°,

∴∠EAC=∠EAB+∠BAC,∠DAB=∠DAC+∠BAC,∴∠EAC=∠DAB,

在△AEC和△ABD中{AE AB

EAC BAD AC AD

=

∠=∠

=

∴△AEC≌△ABD(SAS),

∴∠AEC=∠ABD,

∵∠BFC=∠BEF+∠EBF=∠AEB+∠ABE,

∴∠BFC=∠AEB+∠ABE=120°,

故答案为120°;

(2)①如图2,以AB为边在△ABC外作正三角形ABE,连接CE.

由(1)可知△EAC≌△BAD.

∴EC=BD.

∴EC=BD=6,

∵∠BAE=60°,∠ABC=30°,

∴∠EBC=90°.

在RT△EBC中,EC=6,BC=4,

∴22

EC BC

-22

64

-

∴5

②若改变α,β的大小,但α+β=90°,△ABC的面积不变化,

以下证明:如图2,作AH⊥BC交BC于H,过点B作BE∥AH,并在BE上取BE=2AH,连接EA,EC.并取BE的中点K,连接AK.

∵AH⊥BC于H,

∴∠AHC=90°.

∵BE∥AH,

∴∠EBC=90°.

∵∠EBC=90°,BE=2AH,

∴EC2=EB2+BC2=4AH2+BC2.

∵K为BE的中点,BE=2AH,

∴BK=AH.

∵BK∥AH,

∴四边形AKBH为平行四边形.

又∵∠EBC=90°,

∴四边形AKBH为矩形.∠ABE=∠ACD,∴∠AKB=90°.

∴AK是BE的垂直平分线.

∴AB=AE.

∵AB=AE,AC=AD,∠ABE=∠ACD,

∴∠EAB=∠DAC,

∴∠EAB+∠EAD=∠DAC+∠EAD,

即∠EAC=∠BAD,

在△EAC与△BAD中

{AB AE

EAC BAD AC AD

=

∠=∠

=

∴△EAC≌△BAD.

∴EC=BD=6.

在RT△BCE中,BE=22

EC BC

-=25,

∴AH=1

2

BE=5,

∴S△ABC=1

2

BC?AH=25

考点:全等三角形的判定与性质;等腰三角形的性质

10.(本题14分)小明在学习平行线相关知识时总结了如下结论:端点分别在两条平行线上的所有线段中,垂直于平行线的线段最短.

小明应用这个结论进行了下列探索活动和问题解决.

问题1:如图1,在Rt△ABC中,∠C=90°,AC=4,BC=3,P为AC边上的一动点,以PB,PA为边构造

□APBQ,求对角线PQ的最小值及PQ最小时的值.

(1)在解决这个问题时,小明构造出了如图2的辅助线,则PQ的最小值为,当PQ最小时

= _____ __;

(2)小明对问题1做了简单的变式思考.如图3,P为AB边上的一动点,延长PA到点E,使AE=nPA(n

为大于0的常数).以PE,PC为边作□PCQE,试求对角线PQ长的最小值,并求PQ最小时的值;

问题2:在四边形ABCD中,AD∥BC,AB⊥BC,AD=1,AB=2,BC=3.

(1)如图4,若为上任意一点,以,为边作□.试求对角线长的最小值和PQ最小时的值.

(2)若为上任意一点,延长到,使,再以,为边作□.请直接写出对角线长的最小值和PQ最小时的值.

【答案】问题1:(1)3,;(2)PQ=,=.问题2:(1)=4,

.(2)PQ的最小值为..

【解析】

试题分析:问题1:(1)首先根据条件可证四边形PCBQ是矩形,然后根据条件“四边形

APBQ是平行四边形可得AP=QB=PC,从而可求的值.(2)由题可知:当QP⊥AC 时,PQ最小.过点C作CD⊥AB于点D.此时四边形CDPQ为矩形,PQ=CD,在Rt△ABC

中,∠C=90°,AC=4,BC=3,利用面积可求出CD=,然后可求出AD=,由AE=nPA可得PE=,而PE=CQ=PD=AD-AP=,所以AP=.所以

=.问题2:(1)设对角线与相交于点.Rt≌Rt.所以AD=HC,QH=AP.由题可知:当QP⊥AB时,PQ最小,此时=CH=4,根据条件可证四边

形BPQH为矩形,从而QH=BP=AP.所以.(2)根据题意画出图形,当AB 时,的长最小,PQ的最小值为..

试题解析:问题1:(1)3,;

(2)过点C作CD⊥AB于点D.

由题意可知当PQ⊥AB时,PQ最短.所以此时四边形CDPQ为矩形.PQ=CD,

DP=CQ=PE.因为∠BCA=90°,AC=4,

BC=3,所以AB=5.所以CD=.所以PQ=.

在Rt△ACD中AC=4,CD=,所以AD=.

因为AE=nPA,所以PE==CQ=PD=AD-AP=.

所以AP=.所以=.

问题2:

(1)如图2,设对角线与相交于点.

所以G是DC的中点,

作QH BC,交BC的延长线于H,

因为AD//BC,所以.

所以.

又,所以Rt≌Rt.所以AD=HC,QH=AP.

由图知,当AB时,的长最小,即=CH=4.

易得四边形BPQH为矩形,所以QH=BP=AP.所以.

(若学生有能力从梯形中位线角度考虑,若正确即可评分.但讲评时不作要求)

(2)PQ的最小值为..

考点:1.直角三角形的性质;2.全等三角形的判定与性质;3.平行四边形的性质;4矩形的判定与性质.

中考数学专题训练---圆的综合的综合题分类含答案

一、圆的综合真题与模拟题分类汇编(难题易错题) 1.如图,⊙O的半径为6cm,经过⊙O上一点C作⊙O的切线交半径OA的延长于点B,作∠ACO的平分线交⊙O于点D,交OA于点F,延长DA交BC于点E. (1)求证:AC∥OD; (2)如果DE⊥BC,求AC的长度. 【答案】(1)证明见解析;(2)2π. 【解析】 试题分析:(1)由OC=OD,CD平分∠ACO,易证得∠ACD=∠ODC,即可证得AC∥OD;(2)BC切⊙O于点C,DE⊥BC,易证得平行四边形ADOC是菱形,继而可证得△AOC是等边三角形,则可得:∠AOC=60°,继而求得弧AC的长度. 试题解析:(1)证明:∵OC=OD,∴∠OCD=∠ODC.∵CD平分∠ACO, ∴∠OCD=∠ACD,∴∠ACD=∠ODC,∴AC∥OD; (2)∵BC切⊙O于点C,∴BC⊥OC.∵DE⊥BC,∴OC∥DE.∵AC∥OD,∴四边形ADOC 是平行四边形.∵OC=OD,∴平行四边形ADOC是菱形,∴OC=AC=OA,∴△AOC是等边三 角形,∴∠AOC=60°,∴弧AC的长度=606 180 π? =2π. 点睛:本题考查了切线的性质、等腰三角形的判定与性质、菱形的判定与性质以及弧长公式.此题难度适中,注意掌握数形结合思想的应用. 2.不用圆规、三角板,只用没有刻度的直尺,用连线的方法在图1、2中分别过圆外一点A作出直径BC所在射线的垂线.

【答案】画图见解析. 【解析】 【分析】根据直角所对的圆周角是直角,构造直角三角形,利用直角三角形性质可画出垂线;或结合圆的轴对称性质也可以求出垂线. 【详解】解:画图如下: 【点睛】本题考核知识点:作垂线.解题关键点:结合圆的性质和直角三角形性质求出垂线. 3.已知:如图,在矩形ABCD中,点O在对角线BD上,以OD的长为半径的⊙O与AD,BD分别交于点E、点F,且∠ABE=∠DBC. (1)判断直线BE与⊙O的位置关系,并证明你的结论; (2)若sin∠ABE= 3 3 ,CD=2,求⊙O的半径. 【答案】(1)直线BE与⊙O相切,证明见解析;(2)⊙O的半径为3 . 【解析】 分析:(1)连接OE,根据矩形的性质,可证∠BEO=90°,即可得出直线BE与⊙O相切;(2)连接EF,先根据已知条件得出BD的值,再在△BEO中,利用勾股定理推知BE的长,设出⊙O的半径为r,利用切线的性质,用勾股定理列出等式解之即可得出r的值.详解:(1)直线BE与⊙O相切.理由如下: 连接OE,在矩形ABCD中,AD∥BC,∴∠ADB=∠DBC. ∵OD=OE,∴∠OED=∠ODE. 又∵∠ABE=∠DBC,∴∠ABE=∠OED, ∵矩形ABDC,∠A=90°,∴∠ABE+∠AEB=90°, ∴∠OED+∠AEB=90°,∴∠BEO=90°,∴直线BE与⊙O相切;

人教版中考数学压轴题 易错题自检题学能测试试卷

一、中考数学压轴题 1.已知:在平面直角坐标系中,抛物线2 23y ax ax a =--与x 轴交于点A ,B (点B 在 点A 的右侧),点C 为抛物线的顶点,点C 的纵坐标为-2. (1)如图1,求此抛物线的解析式; (2)如图2,点P 是第一象限抛物线上一点,连接AP ,过点C 作//CD y 轴交AP 于点 D ,设点P 的横坐标为t ,CD 的长为m ,求m 与t 的函数关系式(不要求写出自变量t 的取值范围); (3)如图3,在(2)的条件下,点E 在DP 上,且ED AD =,点F 的横坐标大于3,连接EF ,BF ,PF ,且EP EF BF ==,过点C 作//CG PF 交DP 于点G ,若 72 8 CG AG = ,求点P 的坐标. 2.“阅读素养的培养是构建核心素养的重要基础,重庆十一中学校以‘大阅读’特色课程实施为突破口,着力提升学生的核心素养.”全校师生积极响应和配合,开展各种活动丰富其课余生活.在数学兴趣小组中,同学们从书上认识了很多有趣的数.其中有一个“和平数”引起了同学们的兴趣.描述如下:一个四位数,记千位上和百位上的数字之和为x ,十位上和个位上的数字之和为y ,如果x y =,那么称这个四位数为“和平数”. 例如:1423,14x =+,23y =+,因为x y =,所以1423是“和平数”. (1)直接写出:最小的“和平数”是________,最大的“和平数”是__________; (2)求同时满足下列条件的所有“和平数”: ①个位上的数字是千位上的数字的两倍; ②百位上的数字与十位上的数字之和是12的倍数; (3)将一个“和平数”的个位上与十位上的数字交换位置,同时,将百位上与千位上的数字交换位置,称交换前后这两个“和平数”为“相关和平数”. 例如:1423于4132为“相关和平数” 求证:任意的两个“相关和平数”之和是1111的倍数. 3.定义:如果一个三角形一条边上的高与这条边的比值是3:5,那么称这个三角形为“准黄金”三角形,这条边就叫做这个三角形的“金底”. (概念感知) (1)如图1,在ABC 中,12AC =,10BC =,30ACB ∠=?,试判断ABC 是否是“准黄金”三角形,请说明理由.

中考数学综合专题训练【几何综合题】(几何)精品解析

中考数学综合专题训练【几何综合题】(几何)精品解析 在中考中,几何综合题主要考察了利用图形变换(平移、旋转、轴对称)证明线段、角的数量关系及动态几何问题。学生通常需要在熟悉基本几何图形及其辅助线添加的基础上,将几何综合题目分解为基本问题,转化为基本图形或者可与基本图形、方法类比,从而使问题得到解决。 在解决几何综合题时,重点在思路,在老师讲解及学生解题时,对于较复杂的图形,根据题目叙述重复绘图过程可以帮助学生分解出基本条件和图形,将新题目与已有经验建立联系从而找到思路,之后绘制思路流程图往往能够帮助学生把握题目的脉络;在做完题之后,注重解题反思,总结题目中的基本图形及辅助线添加方法,将题目归类整理;对于典型的题目,可以解析题目条件,通过拓展题目条件或改变条件,给出题目的变式,从而对于题目及相应方法有更深入的理解。同时,在授课过程中,将同一类型的几何综合题成组出现,分析讲解,对学生积累对图形的“感觉”有一定帮助。 一.考试说明要求 图形与证明中要求:会用归纳和类比进行简单的推理。 图形的认识中要求:会运用几何图形的相关知识和方法(两点之间的距离,等腰三角形、等边三角形、直角三角形的知识,全等三角形的知识和方法,平行四边形的知识,矩形、菱形和正方形的知识,直角三角形的性质,圆的性质)解决有关问题;能运用三角函数解决与直角三角形相关的简单实际问题;能综合运用几何知识解决与圆周角有关的问题;能解决与切线有关的问题。 图形与变换中要求:能运用轴对称、平移、旋转的知识解决简单问题。 二.基本图形及辅助线 解决几何综合题,是需要厚积而薄发,所谓的“几何感觉”,是建立在足够的知识积累的基础上的,熟悉基本图形及常用的辅助线,在遇到特定条件时能够及时联想到对应的模型,找到“新”问题与“旧”模型间的关联,明确努力方向,才能进一步综合应用数学知识来解决问题。在中档几何题目教学中注重对基本图形及辅助线的积累是非常必要的。 举例: 1、与相似及圆有关的基本图形

人教版中考数学压轴题 易错题难题专题强化试卷学能测试

一、中考数学压轴题 1.如图,在等边△ABC 中,AB =BC =AC =6cm ,点P 从点B 出发,沿B →C 方向以1.5cm/s 的速度运动到点C 停止,同时点Q 从点A 出发,沿A →B 方向以1cm/s 的速度运动,当点P 停止运动时,点Q 也随之停止运动,连接PQ ,过点P 作BC 的垂线,过点Q 作BC 的平行线,两直线相交于点M .设点P 的运动时间为x (s ),△MPQ 与△ABC 重叠部分的面积为y (cm 2)(规定:线段是面积为0的图形). (1)当x = (s )时,PQ ⊥BC ; (2)当点M 落在AC 边上时,x = (s ); (3)求y 关于x 的函数解析式,并写出自变量x 的取值范围. 2.如图,已知抛物线y =2ax bx c ++与x 轴交于A 3,0-(),B 33,0()两点,与y 轴交于点C 0,3(). (1)求抛物线的解析式及顶点M 坐标; (2)在抛物线的对称轴上找到点P ,使得PAC 的周长最小,并求出点P 的坐标; (3)在(2)的条件下,若点D 是线段OC 上的一个动点(不与点O 、C 重合).过点 D 作D E //PC 交x 轴于点E .设CD 的长为m ,问当m 取何值时, PDE ABMC 1 S S 9 =四边形. 3.如图所示,在平面直角坐标系中,点(),C m m 在一三象限角平分线上,点(),0B n 在x 轴上,且2n -2n -,点A 在y 轴的正半轴上;四边形AOBC 的面积为6 (1)求点A 的坐标; (2)P 为AB 延长线上一点,//PQ OC ,交CB 延长线于Q ,探究OAP ∠、ABQ ∠、 Q ∠的数量关系并说明理由; (3)作AD 平行CB 交CO 延长线于D ,BE 平分CBx ∠,BE 反向延长线交CO 延长线

(完整版)中考数学动点问题专题讲解

动点及动图形的专题复习教案 所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题. 关键:动中求静. 数学思想:分类思想函数思想方程思想数形结合思想转化思想 注重对几何图形运动变化能力的考查 从变换的角度和运动变化来研究三角形、四边形、函数图像等图形,通过“对称、动点的运动”等研究手段和方法,来探索与发现图形性质及图形变化,在解题过程中渗透空间观念和合情推理。选择基本的几何图形,让学生经历探索的过程,以能力立意,考查学生的自主探究能力,促进培养学生解决问题的能力.图形在动点的运动过程中观察图形的变化情况,需要理解图形在不同位置的情况,才能做好计算推理的过程。在变化中找到不变的性质是解决数学“动点”探究题的基本思路,这也是动态几何数学问题中最核心的数学本质。 二期课改后数学卷中的数学压轴性题正逐步转向数形结合、动态几何、动手操作、实验探究等方向发展.这些压轴题题型繁多、题意创新,目的是考察学生的分析问题、解决问题的能力,内容包括空间观念、应用意识、推理能力等.从数学思想的层面上讲:(1)运动观点;(2)方程思想;(3)数形结合思想;(4)分类思想;(5)转化思想等.研究历年来各区的压轴性试题,就能找到今年中考数学试题的热点的形成和命题的动向,它有利于我们教师在教学中研究对策,把握方向.只的这样,才能更好的培养学生解题素养,在素质教育的背景下更明确地体现课程标准的导向.本文拟就压轴题的题型背景和区分度测量点的存在性和区分度小题处理手法提出自己的观点. 函数揭示了运动变化过程中量与量之间的变化规律,是初中数学的重要内容.动点问题反映的是一种函数思想,由于某一个点或某图形的有条件地运动变化,引起未知量与已知量间的一种变化关系,这种变化关系就是动点问题中的函数关系.那么,我们怎样建立这种函数解析式呢?下面结合中考试题举例分析.

中考数学综合专题训练【以圆为基础的几何综合题】精品专题解析

中考数学综合专题训练【以圆为基础的几何综合题】精品专题解析 几何综合题一般以圆为基础,涉及相似三角形等有关知识;这类题虽较难,但有梯度,一般题目中由浅入深有1~3个问题,解答这种题一般用分析综合法. 【典型例题精析】 例1.如图,已知⊙O的两条弦AC、BD相交于点Q,OA⊥BD. (1)求证:AB2=AQ·AC: (2)若过点C作⊙O的切线交DB的延长线于点P,求证:PC=PQ. P 分析:要证A B2=AQ·AC,一般都证明△ABQ∽△ACB.∵有一个公共角∠QAB=∠BAC,?∴只需再证明一个角相等即可. 可选定两个圆周角∠ABQ=∠ACB加以证明,以便转化,题目中有垂直于弦的直径,可知AB=AD,AD和AB所对的圆周角相等. (2)欲证PC=PQ, ∵是具有公共端点的两条线段, ∴可证∠PQC=∠PCQ(等角对等边) 将两角转化,一般原地踏步是不可能证明出来的,没有那么轻松愉快的题目给你做,因为数学是思维的体操. ∠BQC=∠AQD=90°-∠1(充分利用直角三角形中互余关系) ∵∠PCA是弦切角,易发现应延长AO与⊙交于E,再连结EC,?利用弦切角定理得∠PCA=∠E,同时也得到直径上的圆周角∠ACE=90°, ∴∠PCA=∠E=90°-∠1. 做几何证明题大家要有信心,拓展思维,不断转化,寻根问底,不断探索,?充分发挥题目中条件的总体作用,总能得到你想要的结论,同时也要做好一部分典型题,?这样有利于做题时发生迁移,联想. 例2.如图,⊙O1与⊙O2外切于点C,连心线O1O2所在的直线分别交⊙O1,⊙O2于A、E,?过点A作⊙O2的切线AD交⊙O1于B,切点为D,过点E作⊙O2的切线与AD交于F,连结BC、CD、?DE. (1)如果AD:AC=2:1,求AC:CE的值; (2)在(1)的条件下,求sinA和tan∠DCE的值; (3)当AC:CE为何值时,△DEF为正三角形?

人教版中考数学压轴题检测

一、中考数学压轴题 1.AB 是O 直径,,C D 分别是上下半圆上一点,且弧BC =弧BD ,连接,AC BC , 连接CD 交AB 于E , (1)如图(1)求证:90AEC ∠=?; (2)如图(2)F 是弧AD 一点,点,M N 分别是弧AC 和弧FD 的中点,连接FD ,连接 MN 分别交AC ,FD 于,P Q 两点,求证:MPC NQD ∠=∠ (3)如图(3)在(2)问条件下,MN 交AB 于G ,交BF 于L ,过点G 作GH MN ⊥交AF 于H ,连接BH ,若,6,BG HF AG ABH ==?的面积等于8,求线段MN 的长度 2.如图,已知抛物线y =2ax bx c ++与x 轴交于A 3,0-(),B 33,0()两点,与y 轴交于点C 0,3(). (1)求抛物线的解析式及顶点M 坐标; (2)在抛物线的对称轴上找到点P ,使得PAC 的周长最小,并求出点P 的坐标; (3)在(2)的条件下,若点D 是线段OC 上的一个动点(不与点O 、C 重合).过点 D 作D E //PC 交x 轴于点E .设CD 的长为m ,问当m 取何值时, PDE ABMC 1 S S 9 =四边形. 3.我们知道,平面内互相垂直且有公共原点的两条数轴构成平面直角坐标系,如果两条数轴不垂直,而是相交成任意的角ω(0°<ω<180°且ω≠90°),那么这两条数轴构成的是平面斜坐标系,两条数轴称为斜坐标系的坐标轴,公共原点称为斜坐标系的原点,如图1,经过平面内一点P 作坐标轴的平行线PM 和PN ,分别交x 轴和y 轴于点M ,N .点

M、N在x轴和y轴上所对应的数分别叫做P点的x坐标和y坐标,有序实数对(x,y)称为点P的斜坐标,记为P(x,y) (1)如图2,ω=45°,矩形OABC中的一边OA在x轴上,BC与y轴交于点D, OA=2,OC=1. ①点A、B、C在此斜坐标系内的坐标分别为A,B,C. ②设点P(x,y)在经过O、B两点的直线上,则y与x之间满足的关系为. ③设点Q(x,y)在经过A、D两点的直线上,则y与x之间满足的关系为. (2)若ω=120°,O为坐标原点. ①如图3,圆M与y轴相切原点O,被x轴截得的弦长OA=23,求圆M的半径及圆心M的斜坐标. ②如图4,圆M的圆心斜坐标为M(23,23),若圆上恰有两个点到y轴的距离为1,则圆M的半径r的取值范围是. 4.在学习了轴对称知识之后,数学兴趣小组的同学们对课本习题进行了深入研究,请你跟随兴趣小组的同学,一起完成下列问题. (1)(课本习题)如图①,△ABC是等边三角形,BD是中线,延长BC至E,使CE=CD.求证:DB=DE (2)(尝试变式)如图②,△ABC是等边三角形,D是AC边上任意一点,延长BC至E,使CE=AD. 求证:DB=DE. (3)(拓展延伸)如图③,△ABC是等边三角形,D是AC延长线上任意一点,延长BC至E,使CE=AD请问DB与DE是否相等? 并证明你的结论.

中考数学专题训练:类比探究类问题解析版

类比探究类问题解析版 1、如图,在矩形ABCD中,AD=4,M是AD的中点,点E是线段AB上一动 点,连结EM并延长交线段CD的延长线于点F. (1) 如图1,求证:AE=DF; (2) 如图2,若AB=2,过点M作 MG⊥EF交线段BC于点G,判断△GEF的形状,并说明 理由; 2,过点M作 MG⊥EF交线段BC的延长线于点G. (3) 如图3,若AB=3 ① 直接写出线段AE长度的取值范围; ② 判断△GEF的形状,并说明理由. 【答案】解:(1)在矩形ABCD中,∠EAM=∠FDM=900,∠AME=∠FMD。 ∵AM=DM,∴△AEM≌△DFM(ASA)。∴AE=DF。 (2)△GEF是等腰直角三角形。理由如下: 过点G作GH⊥AD于H, ∵∠A=∠B=∠AHG=90°, ∴四边形ABGH是矩形。∴GH=AB=2。 ∵MG⊥EF,∴∠GME=90°。 ∴∠AME+∠GMH=90°。 ∵∠AME+∠AEM=90°,∴∠AEM=∠GMH。 又∵AD=4,M是AD的中点,∴AM=2。∴AN=HG。 ∴△AEM≌△HMG(AAS)。∴ME=MG。∴∠EGM=45°。 由(1)得△AEM≌△DFM,∴ME=MF。 又∵MG⊥EF,∴GE=GF。∴∠EGF=2∠EGM =90°。 ∴△GEF是等腰直角三角形。

(3)①23 3 <AE≤23。 ②△GEF是等边三角形。理由如下: 过点G作GH⊥AD交AD延长线于点H, ∵∠A=∠B=∠AHG=90°,∴四边形ABGH是矩形。 ∴GH=AB=23。 ∵MG⊥EF,∴∠GME=90°。∴∠AME+∠GMH=90°。∵∠AME+∠AEM=90°,∴∠AEM=∠GMH。 又∵∠A=∠GHM=90°,∴△AEM∽△HMG。∴MG GH EM AM =。 在Rt△GME中,∴tan∠MEG=MG GH23 3 EM AM2 ===。∴∠MEG=600。 由(1)得△AEM≌△DFM.∴ME=MF。 又∵MG⊥EF,∴GE=GF。∴△GEF是等边三角形。 2、(1)如图1,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.求证:CE=CF; (2)如图2,在正方形ABCD中,E是AB上一点,G是AD上一点,如果∠GCE=45°,请你利用(1)的结论证明:GE=BE+GD. (3)运用(1)(2)解答中所积累的经验和知识,完成下题: 如图3,在直角梯形ABCD中,AD∥BC(BC>AD),∠B=90°,AB=BC,E是AB上一点,且∠DCE=45°,BE=4,DE=10, 求直角梯形ABCD的面积. 【答案】解:(1)证明:在正方形ABCD中,∵BC=CD,∠B=∠CDF,BE=DF, ∴△CBE≌△CDF(SAS)。∴CE=CF。 (2)证明:如图,延长AD至F,使DF=BE.连接CF。 由(1)知△CBE≌△CDF,

中考数学综合题专题【圆】专题训练含答案

中考数学综合题专题【圆】专题训练含答案 一、选择题 1.(北京市西城区)如图,BC 是⊙O 的直径,P 是CB 延长线上一点,PA 切⊙O 于点A ,如果PA =3,PB =1,那么∠APC 等于 ( ) (A ) 15 (B ) 30 (C ) 45 (D ) 60 2.(北京市西城区)如果圆柱的高为20厘米,底面半径是高的 41,那么这个圆柱的侧面积是 ( ) (A )100π平方厘米 (B )200π平方厘米 (C )500π平方厘米 (D )200平方厘米 3.(北京市西城区)“圆材埋壁”是我国古代著名的数学菱《九章算术》中的一个问题,“今在圆材,埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺,问径几何?”用 现在的数学语言表述是:“如图,CD 为⊙O 的直径,弦AB ⊥CD ,垂足为E ,CE =1寸,AB =寸,求直径CD 的长”.依题意,CD 长为 ( ) (A )2 25寸 (B )13寸 (C )25寸 (D )26寸 4.(北京市朝阳区)已知:如图,⊙O 半径为5,PC 切⊙O 于点C ,PO 交⊙O 于点A ,PA =4,那么PC 的长等于 ( ) (A )6 (B )25 (C )210 (D )214 5.(北京市朝阳区)如果圆锥的侧面积为20π平方厘米,它的母线长为5厘 米,那么此圆锥的底面半径的长等于 ( ) (A )2厘米 (B )22厘米 (C )4厘米 (D )8厘米 6.(天津市)相交两圆的公共弦长为16厘米,若两圆的半径长分别为10厘 米和17厘米,则这两圆的圆心距为 ( ) (A )7厘米 (B )16厘米 (C )21厘米 (D )27厘米 7.(重庆市)如图,⊙O 为△ABC 的内切圆,∠C = 90,AO 的延长线交BC 于点D ,AC =4,DC =1,,则⊙O 的半径等于 ( )

中考数学综合题专题复习【相似】专题解析

一、相似真题与模拟题分类汇编(难题易错题) 1.如图,已知A(﹣2,0),B(4,0),抛物线y=ax2+bx﹣1过A、B两点,并与过A点的直线y=﹣ x﹣1交于点C. (1)求抛物线解析式及对称轴; (2)在抛物线的对称轴上是否存在一点P,使四边形ACPO的周长最小?若存在,求出点P的坐标,若不存在,请说明理由; (3)点M为y轴右侧抛物线上一点,过点M作直线AC的垂线,垂足为N.问:是否存在这样的点N,使以点M、N、C为顶点的三角形与△AOC相似,若存在,求出点N的坐标,若不存在,请说明理由. 【答案】(1)解:把A(-2,0),B(4,0)代入抛物线y=ax2+bx-1,得 解得 ∴抛物线解析式为:y= x2?x?1 ∴抛物线对称轴为直线x=- =1 (2)解:存在 使四边形ACPO的周长最小,只需PC+PO最小 ∴取点C(0,-1)关于直线x=1的对称点C′(2,-1),连C′O与直线x=1的交点即为P 点. 设过点C′、O直线解析式为:y=kx

∴k=- ∴y=- x 则P点坐标为(1,- ) (3)解:当△AOC∽△MNC时, 如图,延长MN交y轴于点D,过点N作NE⊥y轴于点E ∵∠ACO=∠NCD,∠AOC=∠CND=90° ∴∠CDN=∠CAO 由相似,∠CAO=∠CMN ∴∠CDN=∠CMN ∵MN⊥AC ∴M、D关于AN对称,则N为DM中点 设点N坐标为(a,- a-1) 由△EDN∽△OAC ∴ED=2a ∴点D坐标为(0,- a?1) ∵N为DM中点 ∴点M坐标为(2a,a?1) 把M代入y= x2?x?1,解得 a=4 则N点坐标为(4,-3) 当△AOC∽△CNM时,∠CAO=∠NCM ∴CM∥AB则点C关于直线x=1的对称点C′即为点N

中考数学专题训练--函数综合题

中考数学专题训练函数综合题专题 1. 如图,一次函数y kx b y 4 与反比例函数x 的图像交于 A 、B 两点,其中y 点A的横坐标为1,又一次函数y (1)求一次函数的解析式; (2)求点 B 的坐标. kx b 的图像与x 轴交于点C3,0 . A C O x B 2. 已知一次函数y=(1-2x)m+x+3 图像不经过第四象限,且函数值y 随自变量x 的减小而减小。(1)求m 的取值范围; (2)又如果该一次函数的图像与坐标轴围成的三角形面积是 4.5 ,求这个一次函数的解析式。 y 2 1 -1 O -1 1 2 x 图 2 3. 如图,在平面直角坐标系中,点O 为原点,已知点 A 的坐标为(2,2),点B、C 在x 轴上,BC=8,AB=AC ,直线 y 1 / 22 D A

° AC 与 y 轴相交于点 D . ( 1)求点 C 、D 的坐标; ( 2)求图象经过 B 、D 、 A 三点的二次函数解析式及它的顶点坐标. 4. 如图四, 已知二次函数 y ax 2 2ax 3 的图像与 x 轴交于点 A ,点 B ,与 y 轴交于点 C ,其顶点为 D ,直线 DC 的函数关系式为 y kx b ,又 tan OBC 1. y ( 1)求二次函数的解析式和直线 DC 的函数关系式; D ( 2)求 △ ABC 的面积. C ( 图 四 ) A O B x 5. 已知在直角坐标系中,点 A 的坐标是( -3, 1),将线段 OA 绕着点 O 顺时针旋转 90 得到 OB. y 2 / 22 A

x

(1)求点B 的坐标;(2) 求过A、B、O 三点的抛物线的解析式;(3)设点B 关于抛物线的对称轴的对称点为C,求△ABC 的面积。 y 6.如图,双曲线0)、与y 轴交于点5 x 在第一象限的一支上有一点 B. C(1,5),过点C 的直线y kx b( k 0) 与x 轴交于点A(a, (1) 求点A 的横坐标 a 与k 之间的函数关系式; (2) 当该直线与双曲线在第一象限的另一交点 D 的横坐标是9 时,求△COD 的面积. y B C D O A x 第 6 题 3 / 22

中考数学《压轴题》专题训练含答案解析

压轴题 1、已知,在平行四边形O ABC 中,O A=5,AB =4,∠OCA=90°,动点P 从O 点出发沿射线OA 方向以每秒2个单位的速度移动,同时动点Q从A 点出发沿射线AB 方向以每秒1个单位的速度移动.设移动的时间为t秒. (1)求直线AC 的解析式; (2)试求出当t 为何值时,△O AC 与△PAQ 相似; (3)若⊙P 的半径为 58,⊙Q 的半径为2 3 ;当⊙P 与对角线AC 相切时,判断⊙Q 与直线AC 、B C的位置关系,并求出Q 点坐标。 解:(1)42033 y x =- + (2)①当0≤t≤2.5时,P在O A上,若∠OAQ =90°时, 故此时△OA C与△PAQ 不可能相似. 当t>2.5时,①若∠APQ=90°,则△A PQ ∽△OCA , ∵t>2.5,∴ 符合条件. ②若∠A QP=90°,则△APQ ∽△∠OA C, ∵t>2.5,∴ 符合条件.

综上可知,当 时,△O AC 与△APQ 相似. (3)⊙Q 与直线AC、B C均相切,Q 点坐标为( 10 9 ,5 31) 。 2、如图,以矩形OABC 的顶点O 为原点,OA 所在的直线为x轴,OC 所在的直线为y轴,建立平面直角坐标系.已知OA =3,OC =2,点E 是AB 的中点,在OA 上取一点D ,将△BD A沿BD 翻折,使点A 落在BC 边上的点F 处. (1)直接写出点E 、F 的坐标; (2)设顶点为F 的抛物线交y 轴正半轴...于点P ,且以点E 、F 、P 为顶点的三角形是等腰三角形,求该抛物线的解析式; (3)在x 轴、y轴上是否分别存在点M 、N ,使得四边形MNF E的周长最小?如果存在,求出周长的最小值;如果不存在,请说明理由. 解:(1)(31)E ,;(12)F ,.(2)在Rt EBF △中,90B ∠=, 2222125EF EB BF ∴=+=+=. 设点P 的坐标为(0)n ,,其中0n >, 顶点(1 2)F ,, ∴设抛物线解析式为2 (1)2(0)y a x a =-+≠. ①如图①,当EF PF =时,22 EF PF =,2 2 1(2)5n ∴+-=. 解得10n =(舍去);24n =.(04)P ∴,.24(01)2a ∴=-+.解得2a =. ∴抛物线的解析式为22(1)2y x =-+ (第2题)

人教版中考数学压轴题型24道:二次函数专题含答案解析

人教版中考数学压轴题24道:二次函数专题 1.如图,直线y=﹣x+4与x轴交于点B,与y轴交于点C,抛物线y=﹣x2+bx+c经过B,C两点,与x轴另一交点为A.点P以每秒个单位长度的速度在线段BC上由点B向点C运动(点P不与点B和点C重合),设运动时间为t秒,过点P作x轴垂线交x轴于点E,交抛物线于点M. (1)求抛物线的解析式; (2)如图①,过点P作y轴垂线交y轴于点N,连接MN交BC于点Q,当=时,求t的值; (3)如图②,连接AM交BC于点D,当△PDM是等腰三角形时,直接写出t的值. 2.如图,抛物线y=ax2+bx+c经过A(﹣3,0),B(1,0),C(0,3)三点.(1)求抛物线的函数表达式; (2)如图1,P为抛物线上在第二象限内的一点,若△PAC面积为3,求点P的坐标; (3)如图2,D为抛物线的顶点,在线段AD上是否存在点M,使得以M,A,O为顶点的三角形与△ABC相似?若存在,求点M的坐标;若不存在,请说明理由. 3.如图1,在平面直角坐标系中,直线y=﹣5x+5与x轴,y轴分别交于A,C两点,抛物线y=x2+bx+c经过A,C两点,与x轴的另一交点为B. (1)求抛物线解析式及B点坐标; (2)若点M为x轴下方抛物线上一动点,连接MA、MB、BC,当点M运动到某一位置时,四边形AMBC面积最大,求此时点M的坐标及四边形AMBC的面积; (3)如图2,若P点是半径为2的⊙B上一动点,连接PC、PA,当点P运动到某一位

置时,PC+PA 的值最小,请求出这个最小值,并说明理由. 4.已知函数y =(n 为常数) (1)当n =5, ①点P (4,b )在此函数图象上,求b 的值; ②求此函数的最大值.(2)已知线段AB 的两个端点坐标分别为A (2,2)、B (4,2),当此函数的图象与线段 AB 只有一个交点时,直接写出n 的取值范围. (3)当此函数图象上有4个点到x 轴的距离等于 4,求n 的取值范围. 5.在平面直角坐标系 xOy 中(如图),已知抛物线 y =x 2 ﹣2x ,其顶点为A . (1)写出这条抛物线的开口方向、顶点A 的坐标,并说明它的变化情况; (2)我们把一条抛物线上横坐标与纵坐标相等的点叫做这条抛物线的“不动点” . ①试求抛物线y =x 2 ﹣2x 的“不动点”的坐标; ②平移抛物线y =x 2﹣2x ,使所得新抛物线的顶点 B 是该抛物线的“不动点”,其对称轴 与x 轴交于点C ,且四边形OABC 是梯形,求新抛物线的表达式.

中考数学综合题专题复习【圆】专题解析

中考数学综合题专题复习【圆】专题解析 一.教学内容: 1.圆的内容包括:圆的有关概念和基本性质,直线和圆的位置关系,圆和圆的位置关系,正多边形和圆。 2. 主要定理: (1)垂径定理及其推论。 (2)圆心角、弧、弦、弦心距之间的关系定理。 (3)圆周角定理、弦切角定理及其推论。 (4)圆内接四边形的性质定理及其推论。 (5)切线的性质及判定。 (6)切线长定理。 (7)相交弦、切割线、割线定理。 (8)两圆连心线的性质,两圆的公切线性质。 (9)圆周长、弧长;圆、扇形,弓形面积。 (10)圆柱、圆锥侧面展开图及面积计算。 (11)正n边形的有关计算。 二. 中考聚焦: 圆这一章知识在中考试题中所占的分数比例大约如下表: 圆的知识在中考中所占的比例大,题型多,常见的有填空题、选择题、计算题或证明题,近年还出现了一些圆的应用题及开放型问题、设计型问题,中考的压轴题都综合了圆的知识。 三. 知识框图: 圆 圆的有关性质 直线和圆的位置关系圆和圆的位置关系正多边形和圆 ? ? ? ? ? ? ?

圆的有关性质 圆的定义 点和圆的位置关系(这是重点) 不在同一直线上的三点确定一个圆 圆的有关性质 轴对称性—垂径定理(这是重点) 旋转不变性 圆心角、弧、弦、弦心距间的关系 圆心角定理 圆周角定理(这是重点) 圆内接四边形(这是重点) ? ? ? ? ? ? ? ? ? ? ? ? ? ?? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 直线和圆的位置关系 相离 相交 相切 切线的性质(这是重点) 切线的判定(这是重点) 弦切角(这是重点) 和圆有关的比例线段(这是重点难点) ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 圆和圆的位置关系 外离 内含 相交 相切 内切(这是重点) 外切(这是重点)两圆的公切线 ? ? ? ?? ? ? ? ? ? ? ? ? ? ? ? 正多边形和圆 正多边形和圆 正多边形定义 正多边形和圆 正多边形的判定及性质 正多边形的有关计算(这是重点)圆的有关计算 圆周长、弧长(这是重点) 圆、扇形、弓形面积(这是重点) 圆柱、圆锥侧面展开图(这是重点) ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 【典型例题】 【例1】. 爆破时,导火索燃烧的速度是每秒0.9cm,点导火索的人需要跑到离爆破点120m以外的安全区域。这个导火索的长度为18cm,那么点导火索的人每秒钟跑6.5m是否安全? 分析:爆破时的安全区域是以爆破点为圆心,以120m为半径的圆的外部,如图所示:

中考数学易错题综合专题一 附答案详解

易错题数学组卷 一.选择题(共3小题) 1.下列各式计算正确的是() A.2x3﹣x3=﹣2x6B.(2x2)4=8x8C.x2?x3=x6D.(﹣x)6÷(﹣x)2=x4 2.(2008?临沂)若不等式组的解集为x<0,则a的取值范围为()A.a>0 B.a=0 C.a>4 D.a=4 3.(2008?临沂)如图,已知正三角形ABC的边长为1,E,F,G分别是AB,BC,CA上的点,且A E=BF=CG,设△E FG的面积为y,AE的长为x,则y关于x的函数的图象大致是() A.B.C.D. 二.解答题(共4小题) 4.(2012?鸡西)顶点在网格交点的多边形叫做格点多边形,如图,在一个9×9的正方形网格中有一个格点△ABC.设网格中小正方形的边长为1个单位长度. (1)在网格中画出△ABC向上平移4个单位后得到的△A1B1C1; (2)在网格中画出△ABC绕点A逆时针旋转90°后得到的△AB2C2; (3)在(1)中△ABC向上平移过程中,求边AC所扫过区域的面积. 5.如图,在△ABC中∠BAC=90°,AB=AC=2,圆A的半径1,点O在BC边上运动(与点B,C不重合),设BO=x,△AOC的面积是y.

(1)求y关于x的函数关系式及自变量的取值范围; (2)以点O为圆心,BO为半径作圆O,求当⊙O与⊙A相切时,△AOC的面积. 6.(2009?黄石)正方形ABCD在如图所示的平面直角坐标系中,A在x轴正半轴上,D在y轴的负半轴上,AB交y轴正半轴于E,BC交x轴负半轴于F,OE=1,OD=4,抛物线y=ax2+bx ﹣4过A、D、F三点. (1)求抛物线的解析式; (2)Q是抛物线上D、F间的一点,过Q点作平行于x轴的直线交边AD于M,交BC所在直线于N,若S四边形AFQM=S△FQN,则判断四边形AFQM的形状; (3)在射线DB上是否存在动点P,在射线CB上是否存在动点H,使得AP⊥PH且AP=PH?若存在,请给予严格证明;若不存在,请说明理由. 7.(2007?重庆)下图是我市去年夏季连续60天日最高气温统计图的一部分. 根据上图提供的信息,回答下列问题: (1)若日最高气温为40℃及其以上的天数是最高气温为30℃~35℃的天数日的两倍,那么日最高气温为30℃~35℃的天数有_________天,日最高气温为40℃及其以上的天数有_________天;

人教版中考数学总复习专项练习

(一) 数与式的化简与求值 (参考用时:40分钟) 一、实数的混合运算 1.(2019长沙)计算:|-√2|+1 2 -1-√6÷√3-2cos 60°. 2.(2019滨州)计算:-1 2-2-|√3-2|+√3 2 ÷√1 18 . 3.(2019巴中)计算-1 2 2+(3-π)0+|√3-2|+2sin 60°-√8. 4.计算:√(1-√2)2-1-√2 20+sin 45°+1 2 -1.

5.计算:|3.14-π|+3.14÷ √3 2 +10-2cos 45°+(√2-1)-1+(-1)2 019. 二、整式的化简与求值 1.如果x-2y=2 019,求[(3x+2y )(3x-2y )-(x+2y )(5x-2y )]÷2x 的值. 2.先化简,再求值: (m-n )(m+n )+(m+n )2-2m 2,其中m ,n 满足方程组{m +2n =1, 3m -2n =11. 3.已知实数a 是1 2x 2-5 2x-7=0的根,不解方程,求多项式(a-1)(2a-1)-(a+1)2+1的值.

三、分式的化简与求值 1.(2019长沙)先化简,再求值: a+3a -1-1 a -1 ÷ a 2+4a+4 a 2-a ,其中a=3. 2.(2019黄石)先化简,再求值: 3 x+2 +x-2÷ x 2-2x+1 x+2 ,其中|x|=2. 3.先化简,再求值: x -1x -x -2x+1 ÷2x 2-x x 2+2x+1 ,其中x 满足x 2-2x-2=0. 4.(2019常德)先化简,再选一个合适的数代入求值: x -1x 2+x -x -3 x 2-1 ÷ 2x 2+x+1 x 2-x -1.

最新人教版中考数学试题及答案

8题图 C A B D E ]命题人:仁怀市 夏容 遵义市初中毕业生学业(升学)统一考试 数学试题卷 (全卷总分150分,考试时间120分钟) 注意事项: 1.答题前,务必将自己的姓名、准考证号填写在答题卡规定的位置上. 2.答选择题时,必须使用2B 铅笔将答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦擦干净后,再 选涂其它答案标号. 3.答非选择题时,必须使用0.5毫米黑色签字笔将答案书写在答题卡规定的位置上. 4.所有题目必须在答题卡上作答,在试题卷上答题无效. 5.考试结束后,将试题卷和答题卡一并交回. 一、选择题(本题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项 是符号题目要求的,请用2B 铅笔把答题卡上对应题目的答案标号涂黑、涂满.) 1.2-3等于 A .5 B.-5 C.-1 D.1 2.一种花瓣的花粉颗粒直径约为0.0000065米,0.用科学记数法表示为 A.7 1065.0-? B. 6 6.510-? C.76.510-? D.6 6510-? 3.图3-1是由5个大小相同的正方体摆成的立方体图形,它的主视图是图3-2中的 4.下列数字分别为A 、B 、C 、D4位学生手中各拿的三根木条的长度,能组成三角形的是 A .1、2、3 B .4、5、3 C .6、4、1 D .3、7、3 5下列式子计算结果等于6 x 的是 A. 3 3 x x + B. 32x x ? C. 6632x x - D. 23)(x - 6.一枚质地均匀的正方体骰子,其六面上分别刻有1、2、3、4、5、6 六个数字,投掷这个骰子一次,则向上一面的数字小于4的概率是 21.A 61.B 31.C 3 2.D 7.如下图,小明拿一张矩形纸,沿虚线向下对折一次如图甲,再将对角两顶点重合折叠得图乙,按图丙沿折痕中点与重合顶点的连线剪开,得到三个图形,这三个图形是( ) A .都是等腰三角形 B .都是等边三角形 C .两个直角三角形,一个等腰三角形 D .两个直角三角形,一个等腰梯形 8.如图,在△ABC 中,D 、 E 分别为AC 、AB 上的点,且∠DEA=∠C , 甲 乙 丙 7题图

中考数学压轴题专题旋转的经典综合题及答案

一、旋转 真题与模拟题分类汇编(难题易错题) 1.平面上,Rt △ABC 与直径为CE 的半圆O 如图1摆放,∠B =90°,AC =2CE =m ,BC =n ,半圆O 交BC 边于点D ,将半圆O 绕点C 按逆时针方向旋转,点D 随半圆O 旋转且∠ECD 始终等于∠ACB ,旋转角记为α(0°≤α≤180°) (1)当α=0°时,连接DE ,则∠CDE = °,CD = ; (2)试判断:旋转过程中 BD AE 的大小有无变化?请仅就图2的情形给出证明; (3)若m =10,n =8,当α=∠ACB 时,求线段BD 的长; (4)若m =6,n =2,当半圆O 旋转至与△ABC 的边相切时,直接写出线段BD 的长. 【答案】(1)90°,2n ;(2)无变化;(3125;(4)BD=102114. 【解析】 试题分析:(1)①根据直径的性质,由DE ∥AB 得CD CE CB CA =即可解决问题.②求出BD 、AE 即可解决问题. (2)只要证明△ACE ∽△BCD 即可. (3)求出AB 、AE ,利用△ACE ∽△BCD 即可解决问题. (4)分类讨论:①如图5中,当α=90°时,半圆与AC 相切,②如图6中,当α=90°+∠ACB 时,半圆与BC 相切,分别求出BD 即可. 试题解析:(1)解:①如图1中,当α=0时,连接DE ,则∠CDE =90°.∵∠CDE =∠B =90°,∴DE ∥AB ,∴CE CD AC CB ==12.∵BC =n ,∴CD =1 2 n .故答案为90°, 1 2 n . ②如图2中,当α=180°时,BD =BC +CD = 32n ,AE =AC +CE =32m ,∴BD AE =n m .故答案为n m . (2)如图3中,∵∠ACB =∠DCE ,∴∠ACE =∠BCD .∵ CD BC n CE AC m ==,

人教版中考数学专题复习第一章

人教版中考数学专题复习第一章 第一章 数与式 第一节 实数的有关概念 本节知识导图 中考考题试做 实数的概念及分类 1.(2019·中考)规定:(→2)表示向右移动2记作+2,则(←3)表示向左移动3记作(B) A .+3 B .-3 C .-13 D .+1 3 2.(2016·中考)关于12的叙述,错误的是( A ) A.12是有理数 B .面积为12的正方形边长是12 C.12=23 D .在数轴上可以找到表示12的点 数轴 3.(2017·中考)在一条不完整的数轴上从左到右有点A ,B ,C ,其中AB =2,BC =1,如图所示.设点A ,B ,C 所对应数的和是p . (1)若以B 为原点,写出点A ,C 所对应的数,并计算p 的值;若以C 为原点,p 又是多少? (2)若原点O 在图中数轴上点C 的右边,且CO =28,求p . 解:(1)若以B 为原点,则点A ,C 分别对应-2,1, ∴p =-2+0+1=-1; 若以C 为原点,则点A ,B 分别对应-3,-1, ∴p =-3-1+0=-4; (2)若原点O 在图中数轴上点C 的右边,且CO =28,则点A ,B ,C 分别对应-31,-29,-28, ∴p =-31-29-28=-88. 绝对值、相反数、倒数 4.(2015·中考)下列说法正确的是( A ) A .1的相反数是-1 B .1的倒数是-1 C .1的立方根是±1 D .-1是无理数 5.(2018·中考)如图中的手机截屏内容是某同学完成的作业,他做对的题数是(B) A .2个 B .3个 C .4个 D .5个 ,(第5题图)) 姓名__张小亮__ 得分__?__

中考数学专题训练-(圆)(含解析)

专题训练 (圆) (120分钟120分) 一、选择题(本大题共20小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题选对得3分,选错、不选或选出的答案超过一个,均记零分) 1.半径为5的圆的一条弦长不可能是( ) A.3 B.5 C.10 D.12 【解析】选D.因为圆中最长的弦为直径,所以弦长l≤10. 2.有下列四个说法:①半径确定了,圆就确定了;②直径是弦;③弦是直径;④半圆是弧,但弧不一定是半圆. 其中错误说法的个数是( ) A.1 B.2 C.3 D.4 【解析】选B.①圆确定的条件是确定圆心与半径,①是假命题,故此说法错误; ②直径是弦,直径是圆内最长的弦,是真命题,故此说法正确; ③弦是直径,只有过圆心的弦才是直径,是假命题,故此说法错误; ④半圆是弧,但弧不一定是半圆,圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫半圆,所以半圆是弧.但比半圆大的弧是优弧,比半圆小的弧是劣弧,所以不是所有的弧都是半圆,是真命题,故此说法正确.其中错误的说法是①③. 3.(2017·兰州中考)如图,在☉O中,=,点D在☉O上,∠CDB=25°,则∠AOB= ( )

A.45° B.50° C.55° D.60° 【解析】选B.因为在☉O中,=,点D在☉O上,∠CDB=25°,所以∠AOB= 2∠CDB=50°. 4.(2016·无锡中考)如图,AB是☉O的直径,AC切☉O于A,BC交☉O于点D,若 ∠C=70°,则∠AOD的度数为( ) A.70° B.35° C.20° D.40° 【解析】选D.∵AC是圆O的切线,AB是圆O的直径, ∴AB⊥AC.∴∠CAB=90°. 又∵∠C=70°,∴∠CBA=20°.∴∠AOD=40°. 5.(2017·自贡中考)AB是☉O的直径,PA切☉O于点A,PO交☉O于点C;连接BC,若∠P=40°,则∠B等于( ) A.20° B.25° C.30° D.40° 【解析】选B.因为PA切☉O于点A,所以∠PAB=90°,因为∠P=40°,所以 ∠POA=90°-40°=50°,因为OC=OB,所以∠CBO=∠BCO=25°. 6.温州是著名水乡,河流遍布整个城市.某河流上建有一座美丽的石拱桥(如图).

相关主题
文本预览
相关文档 最新文档