当前位置:文档之家› 化学上的“活泼性”和“稳定性”

化学上的“活泼性”和“稳定性”

化学上的“活泼性”和“稳定性”
化学上的“活泼性”和“稳定性”

化学上的“活泼性”和“稳定性”

化学上常涉及“活泼性”和“稳定性”这两个非常重要的概念,例如:“金属(或非金属)的活泼性”;“气态氢化物的稳定性”、“酸的稳定性”等等。在必修课的学习中我们没有进行仔细区分,但是选修3关于共价键参数中给了一系列键能数据,特别是卤素单质的键能数据,不追究还真就糊涂了。

通常而言,很活泼的物质稳定性就差,很稳定的物质活泼性就差。但是“活泼性”和“稳定性”两者所研究的对象往往是有所区别的。“活泼性”通常是指物质的得或失电子的过程,例如:“碱金属是活泼的金属”,“卤素是活泼的非金属”。而稳定性又分为两种情况:一是化学稳定性,;二是热稳定性。化学稳定性通常是指物质因水解、氧化(或还原)而是否变质的化学过程。热稳定性是指物质在常温下或受热时是否分解的化学过程。以下就是一些物质热稳定性的判断规律:

1.一般而言单质的热稳定性与构成单质的化学键牢固程度正相关;而化学键牢固程度又与键能正相关。

具体来说:单质稳定是指分子内原子间的键能大,化学键不易断裂;活泼性是指分子发生化学反应的容易与否。不过单质的稳定性很少单独使用,而单质参与反应的过程实际分两个步骤,一是吸收键断裂所需的能量,将分子分解为原子(体现键能——稳定性),二是将不同原子重新结合形成新物质(体现非金属性)。由于一般反应中供应的能量都很大,很少存在能量不够一个分子反应的情况,当所供应的能量都足够的时候,毫无疑问由非金属性强弱决定反应的容易与否。例如:对于卤素来说,虽然其键能递减(除F2,因为F半径很小,斥力很大则使得键能反常减小),分子越来越不稳定,断裂成原子越来越容易。但是由于卤素原子吸引电子的能力减弱,反应就越难,最终表现为化学性质越不活泼,与非金属性减弱相一致,而与稳定性无关。因此,氟氯溴碘单质反应剧烈程度下降。相反,对于N2,由于三键的存在,键能很大,一般不能满足断键的条件,即使氮电负性较大也不发生反应,所以N2的稳定性决定了不活泼性。

2.气态氢化物的热稳定性:元素的非金属性越强,键能越大,形成的气态氢化物就越稳定(最有规律也最常用)。同主族的非金属元素,从上到下,随核电荷数的增加,非金属性逐渐减弱,气态氢化物的稳定性逐渐减弱;同周期的非金属元素,从左到右,随核电荷数的增加,非金属性逐渐增强,气态氢化物的稳定性逐渐增强。

3.氢氧化物的热稳定性:金属性越强,碱的热稳定性越强(碱性越强,热稳定性越强)。

4.含氧酸的热稳定性:绝大多数含氧酸的热稳定性差,受热脱水生成对应的酸酐。一般地:

①常温下酸酐是稳定的气态氧化物,则对应的含氧酸往往极不稳定,常温下可发生分解。

②常温下酸酐是稳定的固态氧化物,则对应的含氧酸较稳定,加热时才分解。

③某些含氧酸分解是发生氧化还原反应,得不到对应的酸酐。例如硝酸、次氯酸。

5.含氧酸盐的热稳定性:

①酸不稳定,对应的盐也不稳定;酸较稳定,对应的盐也较稳定。例如硫酸盐和磷酸盐比较稳定。

②同一种酸的盐,热稳定性顺序是正盐>酸式盐>酸。

③同一酸根的盐的热稳定性顺序是碱金属盐>过渡金属盐>铵盐。

④同一成酸元素,高价含氧酸比低价含氧酸稳定,相应含氧酸盐的稳定性顺序也是如此。

化学上的“活泼性”和“稳定性”

化学上的“活泼性”和“稳定性” 化学上常涉及“活泼性”和“稳定性”这两个非常重要的概念,例如:“金属(或非金属)的活泼性”;“气态氢化物的稳定性”、“酸的稳定性”等等。在必修课的学习中我们没有进行仔细区分,但是选修3关于共价键参数中给了一系列键能数据,特别是卤素单质的键能数据,不追究还真就糊涂了。 通常而言,很活泼的物质稳定性就差,很稳定的物质活泼性就差。但是“活泼性”和“稳定性”两者所研究的对象往往是有所区别的。“活泼性”通常是指物质的得或失电子的过程,例如:“碱金属是活泼的金属”,“卤素是活泼的非金属”。而稳定性又分为两种情况:一是化学稳定性,;二是热稳定性。化学稳定性通常是指物质因水解、氧化(或还原)而是否变质的化学过程。热稳定性是指物质在常温下或受热时是否分解的化学过程。以下就是一些物质热稳定性的判断规律: 1.一般而言单质的热稳定性与构成单质的化学键牢固程度正相关;而化学键牢固程度又与键能正相关。 具体来说:单质稳定是指分子内原子间的键能大,化学键不易断裂;活泼性是指分子发生化学反应的容易与否。不过单质的稳定性很少单独使用,而单质参与反应的过程实际分两个步骤,一是吸收键断裂所需的能量,将分子分解为原子(体现键能——稳定性),二是将不同原子重新结合形成新物质(体现非金属性)。由于一般反应中供应的能量都很大,很少存在能量不够一个分子反应的情况,当所供应的能量都足够的时候,毫无疑问由非金属性强弱决定反应的容易与否。例如:对于卤素来说,虽然其键能递减(除F2,因为F半径很小,斥力很大则使得键能反常减小),分子越来越不稳定,断裂成原子越来越容易。但是由于卤素原子吸引电子的能力减弱,反应就越难,最终表现为化学性质越不活泼,与非金属性减弱相一致,而与稳定性无关。因此,氟氯溴碘单质反应剧烈程度下降。相反,对于N2,由于三键的存在,键能很大,一般不能满足断键的条件,即使氮电负性较大也不发生反应,所以N2的稳定性决定了不活泼性。 2.气态氢化物的热稳定性:元素的非金属性越强,键能越大,形成的气态氢化物就越稳定(最有规律也最常用)。同主族的非金属元素,从上到下,随核电荷数的增加,非金属性逐渐减弱,气态氢化物的稳定性逐渐减弱;同周期的非金属元素,从左到右,随核电荷数的增加,非金属性逐渐增强,气态氢化物的稳定性逐渐增强。 3.氢氧化物的热稳定性:金属性越强,碱的热稳定性越强(碱性越强,热稳定性越强)。 4.含氧酸的热稳定性:绝大多数含氧酸的热稳定性差,受热脱水生成对应的酸酐。一般地: ①常温下酸酐是稳定的气态氧化物,则对应的含氧酸往往极不稳定,常温下可发生分解。 ②常温下酸酐是稳定的固态氧化物,则对应的含氧酸较稳定,加热时才分解。 ③某些含氧酸分解是发生氧化还原反应,得不到对应的酸酐。例如硝酸、次氯酸。 5.含氧酸盐的热稳定性: ①酸不稳定,对应的盐也不稳定;酸较稳定,对应的盐也较稳定。例如硫酸盐和磷酸盐比较稳定。 ②同一种酸的盐,热稳定性顺序是正盐>酸式盐>酸。 ③同一酸根的盐的热稳定性顺序是碱金属盐>过渡金属盐>铵盐。 ④同一成酸元素,高价含氧酸比低价含氧酸稳定,相应含氧酸盐的稳定性顺序也是如此。

初三化学金属活动性

金属活动性 类型一:金属活动性的判定A 1、某同学探究金属单质的活泼性时发现:X、Y都能与稀硫酸反应放出氢气而Z不能;Y能在X 的盐溶液中置换出X。则它们的金属活动顺序为( ) A.X>Y>(H)>Z B.Y>X>(H)>Z C.X>Z>(H)>Y D.Y>(H)>X> Z 2、将X、Y、Z三块大小相同的金属片分别投入到10%的稀盐酸中,X表面无明显现象,Y表面缓慢地产生气泡,Z表面迅速产生大量气泡。则X、Y、Z 的金属活动性顺序为() A.X>Z>Y B.Z>Y>X C.X>Y>Z D.Z>X>Y 3、某学生为了验证铁、锌、铜三种金属的活动性顺序,设计了四种方案:() ①将Zn、Cu分别加入到FeSO4溶液中②将Zn、Cu分别加入到ZnSO4溶液中 ③将Zn分别加入到FeSO4、CuSO4溶液中④将Fe 分别加入到ZnSO4、CuSO4溶液中 A. ①或④ B. ①或② C. ②或③ D. ③或④ 4、若金属锰(Mn)在金属活动性顺序中位于铝和锌之间,则下列反应不正确的是 ( ) A.Mn + H2SO4 = MnSO4 + H2↑ B.Mg + MnSO4 = MgSO4 + Mn C.Fe + MnSO4 = FeSO4 + Mn D.Mn + CuSO4 = MnSO4 + Cu 5、为验证Mg、Cu、Ag三种金属的活动性强弱,某化学兴趣小组设计了右图所示的四个实验。其 中不必进行的实验是() 6、A、B、C、D是四种金属单质,A能从B的硝酸盐溶液中置换出B,但A不能与稀盐酸反应。相同条件下,C、D能与稀盐酸反应产生H2,且D比C反应剧烈。则四种金属的活动性由强到弱的顺序是() A.A、B、C、D B.B、A、C、D C.D、C、A、B D.D、C、B、A 7、置换反应是化学反应的基本类型之一。 (1)金属与盐溶液之间的置换反应,一般是活动性较强的金属可把活动性较弱的金属从其盐溶液 中置换出来,如铜和硝酸银溶液反应,其化学方程式为。 (2)非金属单质也具有类似金属与盐溶液之间的置换反应规律,即活动性较强的非金属可把活动 性较弱的非金属从其盐溶液中置换出来,如在溶液中可发生下列反应: C12+2NaBr=2NaCl+Br2 ;I2+Na2S=2NaI+S↓+Br2;Br2+2KI=2KBr+I2 由此可判断: ①S、C12、I2、Br2活动性由强到弱顺序是。 ②下列化学方程式书写错误的是。 精选文档

边坡稳定性影响因素

边坡稳定性影响因素 边坡稳定性影响因素: (1)坡底中结构面对边坡稳定性的影响.破底的稳定性直接影响整个山体的稳定性 (2)外力对边坡的影响。例如:爆破,地震,水压力等自然和认为因素,而导致边坡破坏。 (3)边坡外形对边坡稳定性的影响。比如,河流、水库及湖海的冲涮和淘涮,使得岸坡外形发生变化,从而使这些边坡发生破坏,这主要由于侵蚀切露坡体底部的软弱结构面使坡体处于临空状态,或是侵蚀切露坡体下伏到软弱层,从而引起坡体失去平衡,最后导致破坏。(4)岩体力学性质恶化对边坡稳定性的影响。比如风化作用对边坡稳定性的影响,这主要是由于风化作用使坡体强度减小,坡体稳定性降低,加剧斜坡的变形与破坏,而且风化越深,斜坡稳定性越差,稳定坡角就越小。 边坡稳定性相关延伸: 边坡稳定性控制技巧 边坡防护设计的主要原则 1、安全第一.质量保证 边坡的防护直接影响到交通的安全,目前,我国的防护工作主要是由边坡起防护作用,对自然灾害和人为因素造成的塌方、陷落等起到很好的防护作用,对交通设施的安全顺畅运行,对车辆行使的安全,起

着巨大的作用。因此,在设计边坡时,首先要考虑的是边坡的质量问题,要在保证边坡防护设施自身的质量过硬的情况下,考虑防护设施起到的安全作用,要以防护坡的安全系数为设计的首要考虑因素。要从设计上保证边坡防护设施的防护质量,以安全作为防护的第一要素,确保边坡的防护能在实际中起到防护的作用。为安全使用、交通的顺畅起到应有的作用。 2、考虑地理环境,因地制宜 随着我国交通设施的进一步完善,穿越范围越来越广,所处的地形地貌多种多样,各有特点,各不相似。因此,就给边坡防护的设置带来了许多复杂的问题,在不同的地方因为地质情况的差异、气候情况的不同、环境的差别等,公路边坡的建设情况也不一样。一般边坡崩塌所遇到的问题可以归为3类,即落石型、滑坡型、流动型,而这3种坍塌形式是由于不同的地质地理环境造成的。比如落石型一般是发生在较陡的岩石边坡,因为在一定的条件下岩石边坡的岩层会产生裂缝、渗水,经过长时间的风化和外力作用,裂缝会逐渐扩大,在雨水侵蚀下,裂缝中充满水,产生侧向静水压力作用,造成崩坍。在设计时,就必须注意对岩石裂缝产生进行控制,采取积极的防水措施。所以因为所面临的防护问题不一致,因此在设计边坡的防护设施时,必须因地制宜,在充分了解工程所在地区的地理和环境及气候等具体的情况下,对所面临的各种潜在隐患进行预测,进而根据防护的需要,设计出与该地区相匹配的防护手段。绝对不能教科书式的照搬照抄,就把

柔性直流配电系统稳定性及其控制关键问题

柔性直流配电系统稳定性及其控制关键问题 摘要:经济的发展,城市化进程的加快,人们对电能的需求也逐渐增加。相比 于传统的交流配电系统,柔性直流配电系统包含了换流阀、直流变压器等大量可 控的电力电子设备,呈现电力电子化的特征。直流配电系统故障特征、故障发展 过程、故障隔离及供电恢复过程都与换流阀等电力电子器件控制策略密切相关。 在直流配电系统中,保护原理的选择、保护整定值的选取、保护动作出口时间的 设置都需要考虑与换流阀控制策略的协同配合。通过控制与保护的相互协同实现 故障准确识别与供电快速恢复,在保证直流配电系统高可靠性的同时有效降低直 流配电网投资建设成本,是直流配电系统研究与发展的重要思路。本文就柔性直 流配电系统稳定性及其控制关键问题展开探讨。 关键词:柔性直流配电;稳定性;随机性 引言 随着城市用电负荷密度不断增大,城市电网面临着多重难题:一方面要扩大 城市配电网容量以适应城市经济发展的需求,另一方面要接纳太阳能、风能等可 再生清洁能源以减轻环境污染的压力。在该背景下,直流配电系统(DCS)是基 于电压源换流器提供直流电力且具有先进能源管理系统的智能化配电系统,因其 输送容量更大、供电质量更优、易于接纳分布式能源(DER)、可控性更高[2]等 优势而受到关注。 1DCS的主要性能特点 (1)DCS的稳定性。随着大量DER和柔性电力电子设备的接入,DCS的稳定 性问题也逐渐成为学术界和工业界的关注热点。特别是对于可以孤岛运行的直流 微电网来说,其电源和负荷电力电子化带来的动态特性,改变了以同步发电机为 主的传统电力系统的稳定性特征。目前,国内外已有相关学者通过DCS或微电网 的小信号稳定性分析,利用阻抗匹配等系统稳定分析理论,对电力电子化配电系 统中DER的并网动态特性进行了探究,但大部分研究仍然集中于单个并网逆变器 或级联型逆变器。因此,需要深入开展电力电子化DCS的稳定性分析理论和方法 的研究,并提出相应的稳定性提升策略,保障DCS的安全可靠运行。(2)低压DCS的安全性。中国广泛采用220V交流低压供电,超过了人体耐受的安全低压 水平,人身触电造成伤亡事件屡屡发生,在城市暴雨后内涝引发的群众触电事故 更是时有发生。全国每年触电死亡数千人,触目惊心,引起了广泛的关注。如果 低压系统对多数家电采取±48V直流安全电压供电,将在很大程度上降低人身触电事故发生的概率,这也将是直流配电技术在低压系统领域应用的主要优势。不过,由于电压等级较低,且DCS设备占地面积大,其能量密度和功率密度将受到影响,因此可以考虑采用±375V和±48V直流组合供电,其中,户级配电采用±375V以提 高能量密度(在珠海示范工程中验证了该电压等级的价值),非高功率用电设备 级供电采用±48V以减少非安全电压与人们接触的机会。(3)DCS的稳定性。随 着大量DER和柔性电力电子设备的接入,DCS的稳定性问题也逐渐成为学术界和 工业界的关注热点。特别是对于可以孤岛运行的直流微电网来说,其电源和负荷 电力电子化带来的动态特性,改变了以同步发电机为主的传统电力系统的稳定性 特征。 2直流配电系统保护原理 直流配电网保护可分为非单元式保护和单元式保护。非单元式保护不依赖保 护装置之间的通信,当保护装置采集的故障测量值达到动作设定值时即开始动作。

Gaussian软件应用——研究化学反应和反应性讲解

Gaussian软件应用——研究化学反应和反应性 第八章研究化学反应和反应性 本章讨论应用电子结构理论研究化学反应.我们将从电子密度开始,然后回顾第四章中有关反应势垒的讨论,再讨论反应研究中的更复杂的技术,最后,通过对相应反应的计算,来研究未知体系的反应热. 本章将引入两种新的计算方法 * 势能面 * 反应路径分析 8.1 预测电子密度 将电子密度或静电势可视化是研究一个分子体系的反应性的重要的第一步. 例8.1 文件e8_01a, e8_01b 取代苯的电子密度 在有机化学中,亲电芳香取代反应的定位效应是已经被深入研究的课题. 在这里,我们采用电子密度对这一现象进行研究. 已经知道氯苯和硝基苯的硝化是基于同样的反应机理:苯环首先受NO2+的攻击,产生各种异构体的阳离子异构体.当硝化完成后,产物分布如下. 邻位间位对位 氯硝基苯29% 1% 70% 二硝基苯7% 88% 1% 我们在这里检验间位和对位异构体的中间体. 分子采用B3LYP/6-31G(d)进行优化,电子密度在HF/6-31G(d)等级计算.将电子密度按照平行苯环平面的方向切片,得到不同厚度位置的电子密度图. 间位的氯硝基苯和对位的二硝基苯的电子密度分布显示,其保留了有较大共振范围的电子结构,相反,另两个构型的电子密度分布显示其电子分布相对局域化,并且向苯环外的方向集中. 通过电子密度的图形,可以定性的理解电子密度和反应性的关系,在得到结论之前,检查这个体积的电子密度是必要的.关于这方面的进一步资料可以参见 Gaussian出版的白皮书Visualizing Results from Gaussian. 8.2 计算反应焓变 例8.2 文件e8_02 水解反应 现在分析水解反应H+ + H2O --> H3O+ 目的是计算标准反应焓变dH298.其计算方法可以表示为 dH298 = dE298 + d(PV) dE298 = dEe0 + d(dEe)298 + dEv0 + d(dEv)298 + dEr298 + dEt298 其中 dEe0: 0K时产物与反应物的能量差; d(dEe)298: 0K到298K电子能量的变化.对于这个反应,这一项可以忽略; dEv0: 0K时反应物和产物的零点能之差; d(dEv)298: 0K到298K振动能量的变化; dEr298: 产物和反应物的旋转能之差; dEt298: 产物和反应物的平动能之差; d(PV): 由于有一摩尔分子消失,PV=-RT. dEe0由单点能得到,本例采用的计算方法是B3LYP/6-311+G(2df,2p).其他的各项都要考虑内能校正,通过频率分析得到.这样,所要做的工作就是进行优化然后进行频率分析得到所需数值.采用B3LYP/6-31G(d)就能够得到足够精确的结果. 这里注意我们不用计算H+,由于没有电子,它的电子能量显然是0;由于只有一个原子,其振动,转动能显然也是零,这样,其只有平动能,其值为 1.5RT = 0.889kcal.mol.(详见统计热力学).

实验十二阿司匹林水溶液的稳定性预测

药剂学实验 目录 一、基本知识与技能 一)药剂学实验任务 二)药物剂型的分类 三)药剂学实验室常用仪器简介 二、验证性实验 实验一溶液型液体药剂的制备 实验二乳浊型液体药剂的制备及油类所需HLB值的测定实验三混悬型液体制剂的制备及稳定性观察 实验四氯霉素眼药水的制备 实验五双氯酚酸钠缓释片的制备及一般质量评估 实验六双氯酚酸钠缓释片主药含量及释放度的测定 实验七软膏剂的制备及不同类型软膏基质体外释药实验实验八凝胶剂的制备 实验九阿司匹林水溶液的稳定性预测 实验十栓剂的制备 实验十一鱼肝油微型胶囊的制备 实验十二脂质体的制备 三、设计性实验 实验一包合物的制备 实验二不同软膏基质的制备及对药物释放的影响 实验三固体分散体的制备 四、综合性实验 实验一对乙酰氨基酚片剂的制备 实验二对乙酰水杨酸肠溶片的制备 实验三盐酸普鲁卡因注射剂的制备

基本知识与技能 一、药剂学实验任务 药剂学是研究药物处方组成、配制理论、生产技术以及质量控制等内容的综合性应用技术科学。随着医学、药学及相邻学科的发展,药剂学的内容有很大的发展。 药剂学实验是一门应用及实验性很强的学科,因此药剂学实验是学习药剂学重要的一环。本着强调基础理论、基本知识和基本技能的宗旨,通过典型制剂的处方设计、工艺操作/质量评定等实验内容,使进入专业课程学习的药学各专业本科生,能够进一步掌握主要剂型的理论知识、处方设计原理、制备方法;掌握主要剂型的质量控制、影响因素及考核方法;熟悉不同剂型在体外释药及动物经皮吸收实验方法及其速度常数测定;了解常用制剂机械。培养学生独立进行试验,分析问题和解决问题的能力,为学生将来参加制剂新品种、新剂型、新工艺、新技术的研究与开发等打下坚实基础,为将来从事制剂研究与生产提供一个实践基础 二、药物剂型的分类 (一)按物质形态分类 1.液体剂型通常是将药物溶解或分散在一定的溶媒中而制成。如:芳香水剂、溶液剂、注射剂、合剂、 洗剂、搽剂等。 2.固体剂型通常将药物和一定的辅料经过粉碎、过筛、混合、成型而制成,一般需要特殊的设备。如:散剂、丸剂、片剂、膜剂等。 3.半固体剂型将药物和一定的基质经熔化或研匀混合制成。如:软膏剂、糊剂、凝胶剂等。 4.气体剂型将药物溶解或分散在常压下沸点低于大气压的医用抛射剂(propellants)压入特殊的给药装置 制成,称为气雾剂。 (二)按分散系统分类 1.真溶液型药物以分子或离子状态分散在一定的分散介质中,形成均匀分散体系。如:芳香水剂、溶液剂、糖浆剂、甘油剂、醑剂和注射剂等。 2.胶体溶液型以高分子分散在一定的分散介质中形成的均匀分散体系,也称为高分子溶液。如:胶浆剂、火棉胶剂和涂膜剂等。 3.乳剂型油类药物或药物的油溶液以微小液滴状态分散在分散介质中形成的非均匀分散体系。如:口服乳剂、静脉注射脂肪乳剂、部分软膏剂、部分搽剂等。 4.混悬型固体药物以微粒状态分散在分散介质中形成的非均匀分散体系。如:合剂、混悬剂等。 5.气体分散型液体或固体药物以微滴或微粒状态分散在气体分散介质中形成的分散体系。如:气雾剂。 (三)按给药途径分类 按照给药途径分类,剂型通常可分成两大类,即经胃肠道给药剂型和非经胃肠道给药剂型。 1.经胃肠道给药剂型药物制剂经口服给药,经胃肠道吸收发挥作。如:口服溶液剂、乳剂、混悬剂、散剂、颗粒剂、胶囊剂、片剂等。

化学反应及基础知识

化学反应及基础知识 一:化学反应 1、化学变化与物理变化的区别看是否有新物质生成,一般说来:能量的形式转化(如灯发光,发热等),物质三态变化(固液气),位置变化,速度变化,高度变化,形态变化(米磨成面等)以上这些都是物理变化,不是化学变化。 2、化学反应的类型有(无机):化合、分解、置换、复分解,前三个反应属氧化还原反应(化合价发生改变的反应)有机反应的类型很多如皂化、磺化、脂化、吸热、放热等,电厂化学主要以无机为主。 化合:两种或者两种以上的物质生成一种物质 分解:一种物质分解成两种或者两种以上物质 置换:一种单质和一种化合物反应,生成另一种单质和另一种化合物 复分解:一种化合物和另一种化合物反应,互相交换成分 3、化学分析:化学分析主要以滴定分析为主,滴定分析包括沉淀滴定法、氧化还原滴定法、络合滴定、酸碱滴定法。我们平时做实验都涉及到如硬度实验属络合滴定,碱度实验属酸碱滴定,氯根实验属沉淀滴定,活性硅实验属氧化还原滴定。 4、化学反应速度;化学反应有快有慢,如;氢气遇氧气在一定条件下会发生爆炸,酸碱中和瞬间完成。而有的反应需很长时间,如石油的形成数十万年。在化学反应中,随着反应的进行反应物的浓度不断减小,生成物的浓度不断增大,通常用单位时间内生成物和反应物浓度的变化来表示化学反应速度。 V= 浓度的变化 (mol/l) 变化所需时间(s或min) 5、影响化学反应速度的因素;影响化学反应速度的因素主要有;浓度、压力、温度、催化剂。比如、硫在空气中与氧气中燃烧火焰颜色不同,温度升高反应速度加快,分子热运动加快,分子间相互碰撞机会就大,催化剂能改变化学反应的速度,但本身的组成和质量不发生变化,比如实验室用氯酸钾用二氧化锰做催化剂制备氧气等。催化剂有正负之分也有一定的选择性。除了主要的以外还有光、超声波、激光、放射性、电磁波、反应物颗粒大小、扩散速度和溶剂等。 6、化学平衡;化学平衡;就是反应物和生成物的浓度不发生变化,正、逆反应速度相等 化学平衡的特征;1;平衡时 V正=V逆 2;反应物、生成物浓度保持不变。3;具有条件的动态平衡。 化学平衡是在一定的条件下建立的,当条件改变时,平衡就会破坏,建立新的平衡。

影响结构强度和稳定性的因素

影响结构强度和稳定性的因素通过今年发生的雪灾和地震图片资料让学生感受到结构被破坏 的情景,提出我们如何理解“结实”这个词的含义,并对结构的强度的描述进行探究,加深学生对结构强度的理解;接下来结合学生熟悉的、身边的生活事例,借助于多媒体演示、小试验等方法引导学生探究影响结构强度主要因素。 课堂中引入学案,目的是更加突出以学生为主体,教师为主导的教学方式,使学生真正成为课堂的主人。 四、教学过程 第一环节情景导入 首先利用多媒体播放今年1月我国南方地区遭受雪灾袭击及5月汶川地震的图片资料,灾难过后很多结构受到破坏,让学生感受到结构被破坏的情景,引出课题——影响结构强度的因素。 然后给出本节课的学习目标,让学生明确学习目标是:了解材料、形状和连接方式是如何影响结构的强度的。 第二环节知识构建 一、结构强度的含义 1、结构强度含义 通过结构内力的计算和进行应力计算(课本26页)引出容许应力含义并引出结构强度的定义:

结构的强度是指结构具有的抵抗被外力破坏的能力。 小实验:绳子和粉笔的变形能力和结实程度 对课本给出的定义进行质疑,引导和说明结构强度与是否被破坏有关。最终得出结构的定义是:抵抗破坏的能力 第三环节合作探究 实践与体验:每三位同学一张A4纸,如何能让它承受最大的重量(有的组有浆糊和双面胶,一些组没有进行对比) 通过是同学们的动手实践和思考,理解影响结构的强度的因素主要有:材料、形状和连接方式 并提出:除此之外还有那些因素会影响结构的强素呢? 二、知识点拓展 (一)工业用型材的截面形状 首先通过图片资料让学生了解工业上常用各种型材的截面形状教师引导:我们已知道用于结构材料的截面尺寸大小直接影响受力的大小,对于同种材料来说,截面积越大承载能力越强。那么我们现在进一步研究另一种情况:两个截面面积相等,但形状不同的截面中,究竟哪一种截面更有利于结构的强度? 通过实际生产生活中常用的典型结构--------圆形截面、矩形截面和工字形梁的截面形状来进行分析,工字形梁的截面更有利于减轻材

化学药物(原料药和制剂)稳定性研究技术指导原则

化学药物(原料药和制剂)稳定性研究技术指导原则

化学药物(原料药和制剂)稳定性研究 技术指导原则 一、概述 原料药或制剂的稳定性是指其保持物理、化学、生物学和微生物学特性的能力。稳定性研究是基于对原料药或制剂及其生产工艺的系统研究和理解,通过设计试验获得原料药或制剂的质量特性在各种环境因素(如温度、湿度、光线照射等)的影响下随时间变化的规律,并据此为药品的处方、工艺、包装、贮藏条件和复验期/有效期的确定提供支持性信息。 稳定性研究始于药品研发的初期,并贯穿于药品研发的整个过程。本指导原则为原料药和制剂稳定性研究的一般性原则,其主要适用于新原料药、新制剂及仿制原料药、仿制制剂的上市申请(NDA/ANDA,New Drug Application/Abbreviated New Drug Application),其他如创新药(NCE,New Chemical Entity)的临床申请(IND,Investigational New Drug Application)、上市后变更(Variation Application)申请等的稳定性研究,应遵循药物研发的规律,参照创新药不同临床阶段质量控制研究、上市后变更研究技术指导原则的具体要求进行。 本指导原则是基于目前认知的考虑,其他方法如经证明合理也可采用。 二、稳定性研究的基本思路 (一)稳定性研究的内容及试验设计 稳定性研究是原料药或制剂质量控制研究的重要组成部分,其是通过设计一系列的试验来揭示原料药和制剂的稳定性特征。稳定性试验通常包括强制条件试验、加速试验和长期试验等。强制条件试验主要是考察原料药或制剂对光、湿、热、酸、碱、氧化等的稳定性,了解其对光、湿、热、酸、碱、氧化等的敏感性,主要的降解途径及降解产物,并据此进一步验证所用分析方法的可行性、确定加速试验的放置条件及为选择合适的包装材料提供参考。加速试验是考察原料药或制剂在高于长期贮藏温度和湿度条件下的稳定性,为处方工艺设计、偏离实际贮

2015版药典化学药物(原料药和制剂)稳定性试验研究指导原则

2015版药典化学药物(原料药和制剂)稳定性研究技术指导原则(修订) 一、概述 原料药或制剂的稳定性是指其保持物理、化学、生物学和微生物学特性的能力。稳定性研究是基于对原料药或制剂及其生产工艺的系统研究和理解,通过设计试验获得原料药或制剂的质量特性在各种环境因素(如温度、湿度、光线照射等)的影响下随时间变化的规律,并据此为药品的处方、工艺、包装、贮藏条件和有效期/复检期的确定提供支持性信息。 稳定性研究始于药品研发的初期,并贯穿于药品研发的整个过程。本指导原则为原料药和制剂稳定性研究的一般性原则,其主要适用于新原料药、新制剂及仿制原料药、仿制制剂的上市申请(NDA/ANDA,New Drug Application/Abbreviated New Drug Application)。其他如创新药(NCE,New Chemical Entity)的临床申请(IND,Investigational New Drug Application)、上市后变更申请(Variation Application)等的稳定性研究,应遵循药物研发的规律,参照创新药不同临床阶段质量控制研究、上市后变更研究技术指导原则的具体要求进行。 本指导原则是基于目前认知的考虑,其他方法如经证明合理也可采用。 二、稳定性研究的基本思路

(一)稳定性研究的内容及试验设计 稳定性研究是原料药或制剂质量控制研究的重要组成部分,其是通过设计一系列的试验来揭示原料药和制剂的稳定性特征。稳定性试验通常包括影响因素试验、加速试验和长期试验等。影响因素试验主要是考察原料药和制剂对光、湿、热、酸、碱、氧化等的稳定性,了解其对光、湿、热、酸、碱、氧化等的敏感性,主要的降解途径及降解产物,并据此为进一步验证所用分析方法的专属性、确定加速试验的放臵条件及选择合适的包装材料提供参考。加速试验是考察原料药或制剂在高于长期贮藏温度和湿度条件下的稳定性,为处方工艺设计、偏离实际贮藏条件其是否依旧能保持质量稳定提供依据,并根据试验结果确定是否需要进行中间条件下的稳定性试验及确定长期试验的放臵条件。长期试验则是考察原料药或制剂在拟定贮藏条件下的稳定性,为确认包装、贮藏条件及有效期/复检期提供数据支持。 对临用现配的制剂,或是多剂量包装开启后有一定的使用期限的制剂,还应根据其具体的临床使用情况,进行配伍稳定性试验或开启后使用的稳定性试验。 稳定性试验设计应围绕相应的试验目的进行。例如,影响因素试验的光照试验是要考察原料药或制剂对光的敏感性,通常应采用去除包装的样品进行试验;如试验结果显示其过度降解,首先要排除是否因光源照射时引起的周围环境温度升高造成的降解,故可增加避光的平行样品作对照,以消除光线照射之外其他

网络量化反馈控制系统的稳定性及控制策略研究

网络量化反馈控制系统的稳定性及控制策略研究网络控制系统(Networked Control Systems,NCSs)是一种通过网络进行数据传输和交换的闭环实时分布式控制系统。与传统的控制系统相比,NCSs在带来很多优点的同时也带来了许多问题,诸如网络诱导时延、数据包丢失和错序以及对网络带宽限制约束,再加上系统中的建模不确定性和外部干扰等,使得这类组合系统的分析和综合变得极其困难。 另外由于一些信号不易被编码,因此需要引入量化器,这就不可避免的引入量化误差的影响。这些问题都会导致系统控制性能的下降,因此对于网络量化控制系统理论的研究就有着重要意义。 究。充分考虑网络诱导时延、量化、外界干扰以及带宽约束等问题,建立系统模型,采用李雅普诺夫(Lyapunov)稳定性理论和线性矩阵不等式(Linear Matrix Inequality,LMI)等技术来分析研究系统的性能、稳定性以及控制器设计。 具体研究内容如下:一、考虑网络时延及系统不确定性的情况下,对系统进行建模,采用对数量化器分别对控制系统的状态信号和控制信号进行量化,并将量化误差转化为扇区有界形式,随后利用转移概率已知的马可夫链(Markov chain)来描述网络时延的随机变化规律,将控制系统建模成Markov跳变系统。通过构建Lyapunov-Krasovskii泛函,应用LMI方法得到系统随机稳定且具有H_?性能指标?的充分条件,并给出了量化反馈控制器的设计方法。 二、随后进一步针对外界干扰和网络时延对于控制系统的影响,研究了基于观测器的量化输出反馈控制问题。分别考虑外界干扰不存在和外界干扰存在时,构建新的网络系统模型,应用Lyapunov稳定性原理和LMI不等式方法,给出了网

初三化学金属活动性顺序及其应用专题练习

初三化学第八单元 金属 专题练习 专题一、金属活动性顺序及其应用 题型一 依据现象对几种金属活动性顺序的判断 1.X 、Y 都能与稀硫酸反应放出氢气而Z 不能;Y 能从X 的盐溶液中置换出X 。则他们的金属活动性顺序为( ) A .X>Y>(H)>Z B .Y>X>(H)>Z C .X>Z>(H)>Y D .Y>(H)>X>Z 2.将甲、乙两种金属片分别放入硫酸铜溶液中,甲表面析出铜,乙没明显现象,据此判断,三种金属活动性顺序是 A .甲>铜>乙 B .乙>铜>甲 C .铜>甲>乙 D .甲>乙>铜 3.金属Ni 、Mn 分别放入其他三种金属X 、Y 、Z 的 盐溶液中,反应的结果和有无金属析出的情况如下表 所示,他们的金属活动性由强到弱的顺序为( ) A .X Mn Y Ni Z B .Z Ni Y Mn X C .Z Mn Y Ni X D .X Mn Ni Y Z 4.X 、Y 、Z 、W 是四种不同的金属,为比较金属活动性 强弱,某同学利用这四种金属单质、盐酸、Z 的硝酸盐、 W 的硝酸盐进行有关实验。结果如下表(能发生置换反应 的记为“√”不能反应的记为“—”无标记的表示未作 实验)。这四种金属的活动性顺序为( ) A .X>W>Y>Z B .X>Y>W>Z C .W>X>Y>Z D .Y>W>Z>X 题型二 根据金属活动性顺序判断金属与化合物溶液反应后滤渣滤液的成分 5.在氧化铜和铁粉的混合物中加入一定量的稀硫酸,反应完全后滤出不溶物,再向滤液中加入一块薄铁,足够时间后,铁片上无任何变化。据此,你认为下列实验结论不正确的是( ) A .滤液中一定含有硫酸亚铁,不可能含有硫酸铜和硫酸 B .滤出的不溶物中有铜,也可能有铁 C .滤出的不溶物中一定有铜,但不可能有铁 D .如果滤出的不溶物有铁,则一定有铜

化学反应基本类型及举例

化学反应基本类型及举例 一、化学反应基本类型: 1、化合反应:两种或两种以上物质生成一种物质的反应。 2、分解反应:由一种物质生成两种或两种以上其它物质的反应。 3、置换反应:由一种单质和一种化合物反应,生成另一种单质和另一种化合物的 反应。 4、复分解反应:由两种化合物相互交换成分生成另外两种化合物的反应 二、其它反应类型: 1、物理反应(又叫物理变化):(略) 2、化学反应(又叫化学变化):(略)。 3、氧化反应:物质和氧发生的反应。 4、还原反应:含氧化合物中的氧被夺走的反应。 5、氧化-还原反应:一种物质被氧化,另一种物质被还原的反应。 (附:氧化剂:在氧化反应中提供氧的物质。 还原剂:在还原反应中夺取含氧化合物中的氧元素的物质。 氧化性:氧化剂具有氧化性。 还原性:还原剂具有还原性。) 6、电解反应:(略) 7、中和反应:酸和碱反应生成盐和水的反应。 三、在化学反应中,有盐生成的九种反应: 1、金属+酸→盐+氢气如 Zn+H2SO4=ZnSO4+H2↑ 2、金属+盐(溶液)→另一种金属+另一种盐 3、金属+非金属→无氧酸盐如: 2Na + Cl2点燃 2NaCl 4、碱性氧化物+酸→盐+水 5、酸性氧化物+碱→盐+水 6、酸+碱→盐+水 7、酸+盐→另一种酸+另一种盐 8、碱+盐→另一种碱+另一种盐 9、盐+盐→另外两种盐 四、基本反应类型对初中反应进行分类: 化合反应 1、单质之间的化合: C+O2点燃 CO2 2C+O2(不足) 点燃 2CO S + O2点燃 SO2 4P + 5O2点燃 2P2O5 H2 + Cl2 点燃 2HCl 2H2 +O2点燃 2H2O 2Hg + O2高温 2HgO 2Mg + O2点燃 2MgO 3Fe + 2O2点燃 Fe3O4 2Cu +O2△ 2CuO 2Na +Cl2点燃 2NaCl 4Al + 3O2点燃 2Al2O3 2、单质和化合物之间的化合: 2CO + O2点燃 2CO2 CO2 + C 高温 2CO 3、化合物之间的化合:

基于汽车稳定性控制系统的侧翻控制策略

基于汽车稳定性控制系统的侧翻控制策略 摘要:随着汽车产业的迅速发展,人们对汽车各方面性能要求的不断提升,特别是针对汽车安全性的高度关注和需求,从而不断的促使着汽车产业在汽车安全行驶方面寻求技术改进和突破。为了提高汽车在行驶过程中的安全性能系数,基于汽车电子稳定性控制系统(Electronic Stability Program,ESP)的侧翻控制策略,针对汽车的主动转向控制建立了以汽车2自由度为参考模型建立了8自由度的汽车动力学模型的侧翻控制策略,主要采用改变转向轮的转向角度,从而减小汽车的侧向加速度,提高汽车的侧翻控制能力。其次,根据汽车在行驶过程中制动系统以及悬架的变化情况建立了10自由度整车侧翻动力学模型,应用车辆动力学和轮胎力耦合特性,提出车辆侧翻控制策略。通过制动矩的差动调节和半主动悬架阻尼力的适时匹配,实现对车辆侧翻的有效控制。通过对转向系统和制动系统及悬架的控制研究,大大提高汽车在行驶过程中的稳定性。 关键词:汽车稳定性,悬架控制,转向控制,车辆侧翻,制动控制。

Rollover control strategy based on vehicle stability control system Abstract: With the rapid development of automobile industry, car performancerequirements of all aspects, especially in automotive safety attention and demand, and constantly push the car industry for technical improvement and breakthrough in the field of automotive safety driving. In order to improve the car driving in the process of safety coefficient, based on automobile Electronic Stability control system (Electronic Stability Program, ESP) of the lateral control strategy, in automotive active steering control is established by car 2 degrees of freedom for the reference model of 8 degrees of freedom vehicle dynamics model is established of the rollover control strategy, mainly USES the change of steering wheel steering Angle, thus reduce the lateral acceleration of the car, improve vehicle rollover control. Secondly, based on automobile brake system in the process of driving and the change of suspension set up 10 degrees of freedom vehicle lateral dynamics model, application of vehicle dynamics and tire force coupling characteristics of vehicle rollover control strategy is put forward. Through differential braking torque regulation and timely match the semi-active suspension damping force, to achieve the effective control of vehicle rollover. Through to the steering system and brake system and suspension control research, greatly improve the stability in the process of car on the road. Key words: Control stability, suspension, steering control, vehicle, braking control.

管网水质化学稳定性的评价指标分析

时 代 农 机 TIMES?AGRICULTURAL?MACHINERY 第 45 卷第 4 期2018 年 4 月 Apr.2018 Vol.45 No.4 2018年第4期 38 管网水质化学稳定性的评价指标分析 赵程伟 摘 要:文章针对当前管网水质化学稳定性的现状,阐述了水质化学稳定性的定义,管网水质化学稳定性的评价体系。 所谓化学稳定性的改变就是指管网水在输配水过程中,水中各种化合物之间或者化合物与管道内壁之间发生反应,使得管网水水质恶化和管道内壁结垢或腐蚀。管网水的化学稳定性较好,在水工业中被定义为既不溶解也不沉积CaCO3。 给水管网的化学稳定性能在较长时间内表现的较为稳定,但水流状态和离子浓度的改变会引起稳定性的波动,特别是水中的腐蚀性离子。因此,完善供水管网的水质化学稳定性评价体系,对控制管网的腐蚀、保护管网和提高管网水质具有重大意义。关键词:管网水质;指标分析;化学稳定性 (四川大学?建筑与环境学院,四川?成都?610000) 作者简介:赵程伟,研究方向:土木工程。 1 管网水质化学稳定性的评价 给水化学稳定性的判定指数通常被分成两类:基于碳酸钙溶解平衡理论的指数和基于其它水质参数的指数。1.1 基于碳酸钙溶解平衡的指数1.1.1 Langelier饱和指数 饱和指数LSI?由Langelier 提出,其计算方法为:LSI=pH-pHs,其中pHs?称作饱和pH?值,指在CaCO 3?饱和平衡时的pH?值。其判定方法为:当LSI<0?时,CaCO 3?未饱和,有腐蚀趋势;LSI>0?时,CaCO 3?过饱和,有结垢趋势;LSI=0?时,既无结垢也无腐蚀趋势。 该指数认为在某一水温下水体达到碳酸钙饱和状态时,pHs?是一个定值。这样就可以根据pHs?判断水中CaCO 3?的溶解平衡,还能通过LSI?值来调整实际pH?值来控制水质稳定。但该理论没有考虑到水中悬浮杂质和腐蚀产物对结晶的诱导作用,也没有考虑到天然阻垢剂对结晶成长的阻碍和分散作用。 1.1.2 Ryznar稳定指数 稳定指数RSI?由Ryznar 在LSI?的基础上,根据大量实际工程资料与实验数据提出的半经验公式。其定义为:RSI=2pHs-pH,其判定方法为:RSI?值为4.0?~?5.0,水质严重结垢;5.0~6.0?时,轻度结垢;6.0~7.0?时,基本稳定;7.0~7.5时,轻度腐蚀;7.5~9.0?时,严重腐蚀;9.0?以上,极严重腐蚀。该指数的判定结果与实际较吻合,但存在与LSI?同样的局限性。 1.1.3 CCPP碳酸钙沉淀势 CCPP 由Rossum?提出,能定量的算出待测水中应该沉淀或溶解多少CaCO 3?才能使水体达到化学稳定。CCPP?主要考虑的是碳酸钙溶解和沉淀这两个过程,其他对碳酸钙平衡影响较小的离子不予考虑(如Mg +,SO 42-?等)。CCPP?有以碱度和钙离子数量两种计算方式,使用钙离子的计算方式为: CCPP=100([Ca 2+]i-[Ca 2+]eg),其中,CCPP?的单位为mg/L,[Ca 2+]?的单位为mol/L,i?和eq?分别代表待测水原有和碳酸钙平衡后的钙离子浓度。其判定方法为:CCPP?值<-10?时,水体严重腐蚀;-10~-5?时,中度腐蚀;-5~0?时, 轻微腐蚀;0~4时,基本不结垢或者轻微结垢;4~10?时,轻微结垢;10~15?时,较严重结垢;>15?时,严重结垢。1.2 基于其他参数的稳定指数 拉森比率LR。水体的腐蚀性强弱主要取决于水体中腐蚀离子(氯离子和硫酸根)的多少,但不管是原水还是管网水,水体中仍然存在着天然的缓蚀成分。Larson?和Skold 在分析了大量数据后发现,HCO 3-?有着缓解腐蚀的作用,并提出了拉森比率,其表达式为LR=[Cl -]+2[SO 42-]/[HCO 3-]。Larson 认为?LR 应小于?0.2?以降低水的腐蚀性。 2 结语 在建立适合某地区的水质稳定性评价体系时,要根据水质和管材使用选择合适的评价指标;LSI、RSI 可对原水的性质起到定性的预示作用,LR?计算简便,评价结果与实际水体的吻合率较高,通常三者联用。另外,使用以上指数判定出的水质稳定性并不代表着腐蚀或者结垢现象不会 发生,即铁质管材在结垢性较强的水中仍会腐蚀。 参 考 文 献 [1]方伟.城市供水系统化学稳定性及其控制方法研究[D].湖南: 湖南大学,2007,2-11. [2]LangelierW.F..The Analytical Control of Anti-Corrosion Water Treatment.American Water Works Association,1936,28(10): 1500-1505. [3]RyznarJ.W..A new Index for Determining Amount of Calcium Carbonate Scale Formed by a Water. American Water Works Association,1944,36(4):472-477. [4]Merrill D.T.,SanksR.L..Corrosion Control by Deposition of CaCO3 Films :A partical Approach for Plant Operators.American Water Works Association,1977,69(11):592-597. [5]许仕荣,赵伟,王长平,等.碳酸钙沉淀势理论计算模型及其 应用[J].给水排水,2012,38(5)157-160.

相关主题
文本预览
相关文档 最新文档