当前位置:文档之家› 经典实验讲义-菲涅尔双面反射镜干涉 (测量实验)

经典实验讲义-菲涅尔双面反射镜干涉 (测量实验)

经典实验讲义-菲涅尔双面反射镜干涉 (测量实验)
经典实验讲义-菲涅尔双面反射镜干涉 (测量实验)

菲涅尔双面反射镜干涉 (测量实验)

一、实验目的

观察双平面干涉现象及测量光波波长 二、实验原理

如附图7所示的是双面镜装置是由两块平面反射镜M 1和M 2组成,两者间夹一很小的

附图7 菲涅尔双面镜

角?。S 是与M 1和M 2的交线(图中以M 表示)平行的狭缝,用单色光照明后作为缝光源。从同一光源S 发出的光一部在M 1上反射,另一部分在M 2上发射,所得到的两反射光 是从同一入射波前分出来的,所以是相干的,在它们的重叠区将产生干涉。对于观察者来说,两束相干光似乎来自S 1和S 2,S 1和S 2是光源S 在两反射镜中的虚像,由简单的几何光学原理可证明,由S 光源发出的,后被两反射镜反射的两束相干光在屏幕上的光程差与将S 1、S 2视为两相干光源发出两列相干光波到达幕上的光程差相同。与双棱镜实验相似,根据双棱镜的实验中推导出的公式/xd D λ=?,亦可算出它的波长λ。 三、实验仪器

1、钠光灯(可加圆孔光栏)

2、凸透镜L : f=50mm

3、二维调整架: SZ-07

4、单面可调狭缝: SZ-22

5、双面镜

6、测微目镜Le (去掉其物镜头的读数显微镜)

7、读数显微镜架 : SZ-38

8、三维底座: SZ-01

9、二维底座: SZ-02 10、一维底座: SZ-03 11、一维底座: SZ-03 12、凸透镜: f=150mm 13、He —Ne 激光器(632.8nm) 14、白屏H : SZ-13 15、二维调整架: SZ-07 16、通用底座: SZ-01 17、通用底座: SZ-01

四、仪器实物图及原理图

图十一(1)

图十一(2)

五、实验步骤

1、把全部仪器按照图十一的顺序在平台上摆放好(图上数值均为参考数值),

靠拢后目测调至共轴。而后放入双面镜。

2、调节双面镜的夹角,使其与入光的夹角大约为半度,如图十一(2)。(亦

可用激光器替换钠灯,白屏H代替微测目镜,使细激光束同时打在棱边

尽量靠近的双面镜的两个反射镜上,在远离双面镜交棱的白屏上看到干

涉条纹。)

3、然后如图放入测微目镜,找到被双面镜反射的光线。调节单缝的宽度并

旋转单缝使它与双面镜的双棱平行,用测微目镜观察双平面反射镜干涉

图样是等间距的明暗相间的干涉条纹。

4、用微测目镜测出干涉条纹的间距?x 和D ,D 为双面镜交棱到狭缝、到测

微目镜的距离之和,再用二次成像法测出两个虚光源的间距d 由?x=x k+1-x k =

D

d

λ便可求出光波的波长λ,并与钠灯的波长实际值比较,分析误差原因。

六、数据处理

利用同双棱镜相同的二次成像法测出虚光源的实像间距d 1及d 2,算出d

值。d =代入公式/xd D λ=?即可求出波长λ。

经典实验讲义-菲涅尔双面反射镜干涉 (测量实验)

菲涅尔双面反射镜干涉 (测量实验) 一、实验目的 观察双平面干涉现象及测量光波波长 二、实验原理 如附图7所示的是双面镜装置是由两块平面反射镜M 1和M 2组成,两者间夹一很小的 附图7 菲涅尔双面镜 角?。S 是与M 1和M 2的交线(图中以M 表示)平行的狭缝,用单色光照明后作为缝光源。从同一光源S 发出的光一部在M 1上反射,另一部分在M 2上发射,所得到的两反射光 是从同一入射波前分出来的,所以是相干的,在它们的重叠区将产生干涉。对于观察者来说,两束相干光似乎来自S 1和S 2,S 1和S 2是光源S 在两反射镜中的虚像,由简单的几何光学原理可证明,由S 光源发出的,后被两反射镜反射的两束相干光在屏幕上的光程差与将S 1、S 2视为两相干光源发出两列相干光波到达幕上的光程差相同。与双棱镜实验相似,根据双棱镜的实验中推导出的公式/xd D λ=?,亦可算出它的波长λ。 三、实验仪器 1、钠光灯(可加圆孔光栏) 2、凸透镜L : f=50mm 3、二维调整架: SZ-07 4、单面可调狭缝: SZ-22 5、双面镜 6、测微目镜Le (去掉其物镜头的读数显微镜) 7、读数显微镜架 : SZ-38 8、三维底座: SZ-01 9、二维底座: SZ-02 10、一维底座: SZ-03 11、一维底座: SZ-03 12、凸透镜: f=150mm 13、He —Ne 激光器(632.8nm) 14、白屏H : SZ-13 15、二维调整架: SZ-07 16、通用底座: SZ-01 17、通用底座: SZ-01

四、仪器实物图及原理图 图十一(1) 图十一(2) 五、实验步骤 1、把全部仪器按照图十一的顺序在平台上摆放好(图上数值均为参考数值), 靠拢后目测调至共轴。而后放入双面镜。 2、调节双面镜的夹角,使其与入光的夹角大约为半度,如图十一(2)。(亦 可用激光器替换钠灯,白屏H代替微测目镜,使细激光束同时打在棱边 尽量靠近的双面镜的两个反射镜上,在远离双面镜交棱的白屏上看到干 涉条纹。) 3、然后如图放入测微目镜,找到被双面镜反射的光线。调节单缝的宽度并 旋转单缝使它与双面镜的双棱平行,用测微目镜观察双平面反射镜干涉

光通信实验报告

竭诚为您提供优质文档/双击可除 光通信实验报告 篇一:光通信实验报告 信息与通信工程学院 光纤通信实验报告 班姓学 级:名:号: 班内序号:17 日 期:20XX年5月 一、oTDR的使用与测量 1、实验原理 oTDR使用瑞利散射和菲涅尔反射来表征光纤的特性。瑞利散射是由于光信号沿着光纤产生无规律的散射而形成。oTDR就测量回到oTDR端口的一部分散射光。这些背向散射信号就表明了由光纤而导致的衰减(损耗/距离)程度。形成的轨迹是一条向下的曲线,它说明了背向散射的功率不断减小,这是由于经过一段距离的传输后发射和背向散射的信

号都有所损耗。 给定了光纤参数后,瑞利散射的功率就可以标明出来,如果波长已知,它就与信号的脉冲宽度成比例:脉冲宽度越长,背向散射功率就越强。瑞利散射的功率还与发射信号的波长有关,波长较短则功率较强。也就是说用1310nm信号产生的轨迹会比1550nm信号所产生的轨迹的瑞利背向散射要高。 在高波长区(超过1500nm),瑞利散射会持续减小,但另外一个叫红外线衰减(或吸收)的现象会出现,增加并导致了全部衰减值的增大。因此,1550nm是最低的衰减波长;这也说明了为什么它是作为长距离通信的波长。很自然,这些现象也会影响到oTDR。作为1550nm波长的oTDR,它也具有低的衰减性能,因此可以进行长距离的测试。而作为高衰减的1310nm或1625nm波长,oTDR的测试距离就必然受到限制,因为测试设备需要在oTDR轨迹中测出一个尖锋,而且这个尖锋的尾端会快速地落入到噪音中。 菲涅尔反射是离散的反射,它是由整条光纤中的个别点而引起的,这些点是由造成反向系数改变的因素组成,例如玻璃与空气的间隙。在这些点上,会有很强的背向散射光被反射回来。因此,oTDR就是利用菲涅尔反射的信息来定位连接点,光纤终端或断点。 oTDR的工作原理就类似于一个雷达。它先对光纤发出一

大物实验——双棱镜干涉实验(七)

双棱镜干涉实验 学生姓名:陈延新学号:111050104 班级:应用物理1101 实验项目名称:双棱镜干涉实验 一、实验目的: 1、掌握菲涅尔双棱镜获得双光干涉的方法; 2、验证光的波动性,了解分波阵面法获得相干光的原理; 3、观察双棱镜产生光干涉现象和特点,用双棱镜测定光波的波长 4、通过用菲涅耳双棱镜对钠灯波长的测量,掌握光学测量的一些基本技巧,培养动手能力。 二、实验仪器: 单导体激光器,钠光源,扩束镜,双棱镜,二维调节架,透镜,测微目镜,测量显微镜,白炽光,光具座 三、实验原理: (1)、菲涅耳双棱镜实际上是一个顶角极大的等腰三棱镜,如图1所示。它可看成由两个楔角很小的直角三棱镜所组成,故名双棱镜。当一个单色缝光源垂直入射时,通过上半个棱镜的光束向下偏折,通过下半个棱镜的光束向上偏折,相当于形成S′1和S′2两个虚光源。与杨氏实验中的两个小孔形成的干涉一样,把观察屏放在两光束的交叠区,就可看到干涉条纹。

其中,d是两虚光源的间距,D是光源到观察屏的距离,λ是光的波长。用测微目镜的分划板作为观察屏,就可直接从该测微目镜中读出条纹间距△x值,D为几十厘米,可直接量出,因而只要设法测出d,即可从上式算出光的波长λ,即 △x=Dλ/d , λ=△xd/D (1) 测量d的方法很多,其中之一是“二次成像法”,如图2所示,即在双棱镜与测微目镜之间加入一个焦距为f的凸透镜L,当D>4f 时,可移动透镜L而在测微目镜中看到两虚光源的缩小像或放大像。分别读出两虚光源像的间距d1和d2,则由几何光学可知: d=2 d(2) 1d (2)、实验装置 光具座,双棱镜,测微目镜,钠光源,可调狭缝 测微目镜是用来测量微小实像线度的仪器,其结构如图3所示,在目镜焦平面附近,的一块量程为8mm的刻线玻璃标尺,其分度值为1mm (如图3(b)中的8条短线所示)在该尺后0.1mm处,平行地放置了

双棱镜干涉实验

双棱镜干涉实验 【实验目的】 1.掌握用双棱镜获得双光束干涉的方法,加深对干涉条件的理解. 2.学会用双棱镜测定钠光的波长. 【实验仪器】光具座、白屏、单色光源钠灯、测微目镜、短焦距扩束镜、白炽灯、氦氖激光器、毛玻璃屏、滑块(若干个)、手电筒可调狭缝、双棱镜、辅助透镜、白屏、凸透镜(不同焦距的数个)。. 【实验原理】 如果两列频率相同的光波沿着几乎相同的方向传播,并且它们的位相差不随时间而变 化,那么在两列 光波相交的区 域,光强分布是 不均匀的,而是 在某些地方表现 为加强,在另一些地方表现为减弱(甚至可能为零), 这种现象称为光的干涉. 菲涅耳利用图1所示的装置,获得了双光束的干涉现象.图中AB 是双棱镜,它的外形结构如图2所示,将一块平玻璃板的一个表面加工成两楔形板,端面与棱脊垂直,楔角A 较小(一般小于10).从单色光源发出的光经透镜L 会聚于狭缝S ,使S 成为具有较大亮度的线状光源.从狭缝S 发出的光,经双棱镜折射后,其波前被分割成两部分,形成两束光,就好像它们是由虚光源S1和S2发出的一样,满足相干光源条件,因此在两束光的交叠.区域 图1 图2 P1P2内产生干涉.当观察屏P 离双棱镜足够远时,在屏上可观察到平行于狭缝S 的、明暗相间的、等间距干涉条纹. 设两虚光源S1和S2之间的距离为d ',虚光源所在的平面(近似地在光源狭缝S 的平面内)到观察屏P 的距离为d ,且d d <<',干涉条纹间距为x ?,则实验所用光源的波长λ为 x d d ?'= λ 因此,只要测出d '、d 和x ?,就可用公式计算出光波波长. 【实验内容】 1.调节共轴 (1)将单色光源M ,会聚透镜L ,狭缝S ,双棱镜AB 与测微目镜P 放置在光具座上.用目视法粗略地调节它们中心等高、共轴,棱脊和狭缝S 的取向大体平行. (2)点亮光源M ,通过透镜L 照亮狭缝S ,用手执白纸屏在双棱镜后面检查:经双棱镜折

用双棱镜干涉测光波波长的实验报告

用双棱镜干涉测光波波长的实验报告 【实验目的】 1.掌握用双棱镜获得双光束干涉的方法,加深对干涉条件的理解. 2.学会用双棱镜测定钠光的波长. 【实验仪器】 光具座,单色光源(钠灯),可调狭缝,双棱镜,辅助透镜(两片),测微目镜,白屏. 【实验原理】 如果两列频率相同的光波沿着几乎相同的方向传播,并且它们的位相差不随时间而变化,那么在两列光波相交的区域,光强分布是不均匀的,而是在某些地方表现为加强,在另一些地方表现为减弱(甚至可能为零),这种现象称为光的干涉. 菲涅耳利用图1所示的装置,获得了双光束的干涉现象.图中AB 是双棱镜,它的外形结构如图2所示,将一块平玻璃板的一个表面加工成两楔形板,端面与棱脊垂直,楔角A 较小(一般小于10).从单色光源发出的光经透镜L 会聚于狭缝S ,使S 成为具有较大亮度的线状光源.从狭缝S 发出的光,经双棱镜折射后,其波前被分割成两部分,形成两束光,就好像它们是由虚光源S1和S2发出的一样,满足相干光源条件,因此在两束光的交叠.区域P1P2内产生干涉.当观察屏P 离双棱镜足够远时,在屏上可观察到平行于狭缝S 的、明暗 相间的、等间距干涉条纹. 图1 图2 设两虚光源S1和S2之间的距离为d ',虚光源所在的平面(近似地在光源狭缝S 的平面内)到观察屏P 的距离为d ,且d d <<',干涉条纹间距为x ?,则实验所用光源的波长λ为 x d d ?'= λ 因此,只要测出d '、d 和x ?,就可用公式计算出光波波长. 【实验内容】 1.调节共轴 (1)按图1所示次序,将单色光源M ,会聚透镜L ,狭缝S ,双棱镜AB 与测微目镜P 放置在光具座上.用目视法粗略地调节它们中心等高、共轴,棱脊和狭缝S 的取向大体平行. (2)点亮光源M ,通过透镜L 照亮狭缝S ,用手执白纸屏在双棱镜后面检查:经双棱镜折射后的光束,有否叠加区P1P2 (应更亮些)?叠加区能否进入测微目镜? 当移动白屏时,叠加

六年级科学上实验报告单

大象版小学六年级上册科学实验报告单实验名称探寻植物角花草倾斜生长原因 实验器材水、植株、土质、遮光纸盒、水壶、剪刀 猜测花草倾斜生长与光源的方向有关 实验步骤1、准备好4个相同的矿泉水瓶,剪掉上部后,留下10厘米做花盆,在花盆内盛入土质量,并用水壶盛如水,均匀地浇上水; 2、在每个花盆中央栽入1株准备好的植株,用手指压紧覆盖根部的土; 3、分别用遮光纸罩住每一盆植株,并编上序号,在1号的左侧、2号的右侧、3号的前边、4号的顶部剪一个透光孔; 4、每天定时给4盆植株均匀地浇同样多的水。 观察到的现象或实验结果现象:两个星期后: 1号盆的植株把头偏向了左测的透光孔; 2号盆的植株把头偏向了右测的透光孔; 3号盆的植株把头偏向了前测的透光孔; 4号盆的植株直立向上生长。 实验结果:植物角里的花草,把头探向窗外与光源的方向有关。 实验结论植物倾斜生长与光源的方向有关,植物的生长具有向光性。 大象版小学六年级上册科学实验报告单 实验名称探寻植物角花草倾斜生长原因 实验器材水、植株、土质、水壶 猜测花草倾斜生长与水分供应的方向和距离有关 实验步骤 1、准备好做花盆,在花盆内盛入土质量,并用水壶盛如水,均匀地浇上水; 2、在每个花盆中央栽入1株准备好的植株,用手指压紧覆盖根部的土; 3、给每盆植株编上序号,命名为1号、2号、3号和4号,把四盆植株摆放到自 然光下; 4、每天定时在1号盆的左侧、2号盆的右侧、3号盆距离10厘米左右、4号盆距 离20厘米左右浇水。 观察到的现象 或实验结果 现象:两个星期后:四个盆内的植株无偏头情况 清除土质后发现: 1号盆的植株的根系大部分向左侧发展; 2号盆的植株的根系大部分向右侧发展; 3号盆的植株的根系较1号和2号盆的偏少和偏短; 4号盆的植株的根系较1至3号盆的最少,且最短; 实验结果:花草倾斜生长与水分供应的方向和距离无关。 实验结论 植物倾斜生长与水分供应的方向和距离无关,但根系生长的方向与水分供应的方向、长短和多少与水分供应的距离有关,植物的根部生长具有向水性。 大象版小学六年级上册科学实验报告单 实验名称探寻植物是否通过根来“喝水” 实验器材烧瓶、植物油、水、菊花 猜测植物通过根来“喝水”

菲涅尔双棱镜干涉测波长

实验17 菲涅耳双棱镜干涉测波长 利用菲涅耳双棱镜可以获得两束相干光以实现光的干涉。双棱镜实验和双平面反射镜实验及洛埃镜实验一起,在确立光的波动学说的历史过程中起了重要作用。同时它也是一种用简单仪器测量光波波长的主要元件。 双棱镜是利用分波阵面法获得相干光的光学元件,本实验用双棱镜实验装置测单色光的波长。 实验目的和学习要求 1. 学习用双棱镜干涉测量单色光波长的原理和方法; 2. 进一步掌握光学系统的共轴调整; 3. 学会测微目镜的使用; 4. 练习逐差法处理数据和计算不确定度。 实验原理 如果两列光波其频率相同,振动方向相同,相位相同或位相差恒定,且振幅差别不太悬殊的情况下,它们在空间相遇时叠加的结果,将使空间各点的光振幅有大有小,随地而异,形成光的能量在空间的重新分布。这种在空间一定处光强度的稳定加强或减弱的现象称为光的干涉。获得相干光源,依其原理不同可分为分振幅法和分波阵面法,牛顿环和劈尖干涉是分振幅的干涉,双棱镜是利用分波阵面法而获得相干光源的。 菲涅耳双棱镜可以看作是由两块底面相接、棱角很小(约为1°)的直角棱镜合成的。若置波长为λ的单色狭条光源S0于双棱镜的正前方,则从S0射来的光束通过双棱镜的折射后,变为两束相重叠的光,这两束光仿佛是从光源S0的两个虚像S1和S2射出的一样。由于S1和S2是两个相干光源,所以若在两束光相重叠的区域内再放一屏,即可观察到明暗相间的干涉条纹。(如图17-1)因为干涉场范围比较窄,干涉条纹的间距也很小,所以一般要用测量显微镜或测微目镜来观察。 图17-1 双棱镜干涉光路 现在讨论屏上干涉条纹的分布情况,分别从相干光源S1和S2发出来的光相遇时,若它们之间的光程差δ恰等于半波长(λ/2)的奇数倍,则两光波叠加后为光强极小值;若δ恰等于波长λ的整数倍,两光波叠加后得光强极大值。即 暗纹条件δ = (2-1)λ / 2 = ± 1, ±2 ,……(17-1)明纹条件δ = λ= 0 , ± 1, ±2 , ……(17-2)如图(17-2)所示,设S1和S2是双棱镜所产生的两相干虚光源,其间距为,屏幕到S1S2平面的距离为D,若屏上的P0点到S1和S2的距离相等,则S1和S2发出的光波到P0的光程也相等,因而在P0点相互加强而形成中央明条纹。

OTDR实验报告

实验名称:自构建光纤链路的otdr测试实验实验日期:指导老师:林远芳学生姓 名:同组学生姓名:成绩: 一、实验目的和要求二、实验内容和原理三、主要仪器设备四、实验结果记录 与分析 五、数据记录和处理六、结果与分析七、讨论、心得 一、实验目的和要求 1. 了解瑞利散射及菲涅尔反射的概念及特点; 2. 熟练掌握裸纤端面切割、清洁、连接对准方法及熔接技术; 3. 熟悉光时域反射仪(optical time domain reflectometer,以下简称 otdr)的工 作原理、操作方法和使用要点,能利用 otdr 测试、判断和分析光纤链路中的事件点位置及 其产生原因,提高工程应用能力。 二、实验内容和原理 1.otdr 测试基本理论 散射:光遇到微小粒子或不均匀结构时发生的一种光学现象,此时光传输不再具有良好 的方向性。 瑞利散射:当光在光纤中传播时,由于光纤的基本结构不完美(光纤本身的缺陷、制作 工艺和材料组分存在着分子级大小的结构上的不均匀性),一部分光纤会改变其原有传播方向 而向四周散射(图 1-3-1),引起光能量损失,其强度与波长的 4 次方成反比,随着波长的 增加,损耗迅速下降。 后向或背向散射:瑞利散射的方向是分布于整个立体角的,其中一部分散射光纤和原来 的传播方向相反,返回到光纤的注入端,形成连续的后向散射回波。光纤中某一点的后向回 波可以反映出光纤中光功率的分布情况,椐此可以测试出光纤的损耗。 菲涅尔反射:当光纤由一种媒质进入另一种媒质时会产生的一种反射,其强度与两种媒 质的相对折射率的平方成正比。如图1-3-2 所示,一束能量为p0 的光,由媒质 1(折射率 为nl)进入媒质 2(折射率为 n2)产生的反射信号为p1,则 ?n1?n2p1???n?n2?1? ???2 衰减:指信号沿链路传输过程中损失的量度,以 db 表示。衰减是光纤中光功率减少量 的一种度量,光纤内径中的瑞利散射是引起光纤衰减的主要原因。通常,对于均匀光纤来 说,可用单位长度的衰减,即衰减系数来反映光纤的衰减性能的好坏。 当光脉冲通过光纤传输时,沿光纤长度上的每一点均会引起瑞利散射。这种散射向着四 面八方,其中总有一部分会沿着纤轴反向传输到输入端。由于主要的散射是瑞利散射,并且 瑞利散射光的波长与入射光的波长相同,其光功率与该散射点的入射光功率成正比,光纤中 散射光的强弱反映了光纤长度上各点衰减大小,光纤长度上的某一点散射信号的变化,可以 通过后向散射方法独立地探测出来,而不受其它点散射信号改变的影响,所以测量沿纤轴返 回的后向瑞利散射光功率就可以获得光沿着光纤传输时的衰减及其它信息。 基于后向散射法设计的测量仪器称为 otdr,其突出优点在于它是一种非破坏性的单端测 量方法,测量只需在光纤的一端进行。它利用激光二极管产生光脉冲,经定向耦合器注入被 测光纤,然后在同一端测量沿光纤轴向向后返回的散射光功率返回信号与时间的关系,将时 间值乘以光在光纤中的传播速度以计算出距离,在屏幕上显示返回信号的相对功率与距离之 间的关系曲线和测试结果。国内厂家主要是中国电子科技集团公司第四十一研究所,国外的 品牌主要有安捷伦(agilent)、安立(anritsu)、exfo、wavetek 等。 2.光纤的连接 光纤连接时的耦合损耗因素基本上可分为两大类:一类是固有的,是被连接光纤本身特 性参数的差异,比如纤芯直径、模场直径、数值孔径差异、纤芯或模场的同心度偏差、纤芯

双棱镜干涉的深入研究实验报告

双棱镜干涉的深入研究实验 一、问题提出 实验课上我们已经掌握了用双棱镜获得双光束干涉的方法,加深对干涉条件的理解,并且学会了如何用双棱镜测定钠光的波长。本次设计性实验中我们将进一步掌握双棱镜的干涉原理及调节方法,测定两个虚光源之间的距离与狭缝-双棱镜间距之间的关系。主要从以下问题探讨: (一)实验测量双棱镜的楔角,并比较角度不同干涉现象的差异; (二)用多种方法来测两个虚光源之间的距离,并比较优缺点; (三)测定两虚光源之间的距离与狭缝-双棱镜间距之间的关系曲线; (四)利用双棱镜干涉观察He-Ne激光的干涉条纹,并测量氦氖光的波长;(五)将钠光灯换成大灯泡,观察白光的干涉条纹。 二、实验原理 (一)双棱镜楔角的测量 利用分光计测量:将分光机调平处于使用状态,使望远镜光轴与双棱镜的一个面垂直,这时在望远镜的视野中能够清晰看见绿色小十字叉丝的像。 C 双棱镜的外形图:A B 一束沿AB面法线方向的平行光投射于望远镜中, 测量α时, 当望远镜对准AB面时, 由望远镜物镜的焦面上发出的光束射到AB面上,一部分反射,形成要测量的像,一部分透射进入棱镜后,分别在AC和BC面上反射回到望远镜中, 所以在测量中, 实际看到的是三个绿色小十字叉丝像。AB面反射的像较亮,AC和BC 面反射的像较暗,望远镜叉丝对准较亮的十字叉丝像测量。当望远镜转到AC和BC 面一侧时,在望远镜中实际看到4个十字像,中间2个像较暗,边上2个较亮,望远镜叉丝应对准A一侧的亮像测量[2]。 将待测双棱镜置于分光计的载物台上,固定望远镜子,点亮小灯照亮目镜中

的叉丝,旋转分光计的载物台,使双棱镜的一个折射面对准望远镜,用自准直法调节望远镜的光轴与此折射面严格垂直,即使十字叉丝的反射像和调整叉丝完全 重合。记录刻度盘上两游标读数V 1、V 2 ;再转动游标盘联带载物平台,依同样 方法使望远镜光轴垂直于棱镜第二个折射面,记录相应的游标读数V 1',V 2 ',由 此得双棱镜的楔角α为: α=(|V 1'-V 1 |+|V 2 '-V 2 |)/4 (二)多种方法测两光源之间的间距 1.二次成像法 在“用双棱镜干涉测量光波的波长”时关键是测量两虚相干光源的间距d,目前使用的教科书中一般采用二次成像法测量两虚相干光源的间距,其实验装置和光路图如图1所示: 图1中狭缝光源S发出的光波经双棱镜上下两部分折射后形成两虚相干光源 S 1和S 2 ,d通过透镜L在两个不同位置的二次成像求得,即d= 2 1 d d,d 1 为 两虚相干光源通过透镜所成的放大实像间的距离d 2 为两虚相干光源通过透镜所成的缩小实像间的距离[3]。

测定三棱镜折射率实验报告_0

测定三棱镜折射率实验报告 各位读友大家好!你有你的木棉,我有我的文章,为了你的木棉,应读我的文章!若为比翼双飞鸟,定是人间有情人!若读此篇优秀文,必成天上比翼鸟! 【实验目的】利用分光计测定玻璃三棱镜的折射率;【实验仪器】分光计,玻璃三棱镜,钠光灯。【实验原理】最小偏向角法是测定三棱镜折射率的基本方法之一,如图10所示,三角形%26#8197;ABC%26#8197;表示玻璃三棱镜的横截面,AB和AC是透光的光学表面,又称折射面,其夹角a称为三棱镜的顶角;BC%26#8197;为毛玻璃面,称为三棱镜的底面。假设某一波长的光线%26#8197;LD%26#8197;入射到棱镜的%26#8197;AB%26#8197;面上,经过两次折射后沿%26#8197;ER%26#8197;方向射出,则入射线%26#8197;LD%26#8197;与出射线%26#8197;ER%26#8197;的夹

角%26#8197;%26#8197;称为偏向角。图10三棱镜的折射由图10中的几何关系,可得偏向角(3)因为顶角a满足,则(4)对于给定的三棱镜来说,角a是固定的,随和而变化。其中与、、依次相关,因此实际上是的函数,偏向角也就仅随而变化。在实验中可观察到,当变化时,偏向角有一极小值,称为最小偏向角。理论上可以证明,当时,具有最小值。显然这时入射光和出射光的方向相对于三棱镜是对称的,如图11所示。您正浏览的文章由第一'范文网整理,版权归原作者、原出处所有。图11最小偏向角若用表示最小偏向角,将代入(4)式得(5)或(6)因为%26#8197;,所以%26#8197;,又因为%26#8197;,则(7)根据折射定律得,(8)将式(6)、(7)代入式(8)得:(9)由式(9)可知,只要测出入射光线的最小偏向角及三棱镜的顶角,即可求出该三棱镜对该波长入射光的折射率n.【实验内容与步骤】1.调节分光计按实验24一1中的要求与步骤调整好分

菲涅耳双棱镜干涉实验指导书

实验五 菲涅耳双棱镜干涉 [实验目的] 1. 观察和研究菲涅耳双棱镜产生的干涉现象; 2. 测量干涉滤光片的透射波长(λ0)。 [仪器和装置] 白炽灯,干涉滤光片,可调狭缝,柱面镜,菲涅耳双棱镜,双胶合成像物镜,测微目镜。 [实验原理] 如图1a 所示,菲涅耳双棱镜装置由两个相同的棱镜组成。两个棱镜的折射角α很小,一般约为5 ~ 30'。从点(或缝)光源S 发出的一束光,经双棱镜折射后分为两束。从图中可以看出,这两折射光波如同从棱镜形成的两个虚像S 1和S 2发出的一样。S 1和S 2构成两相干光源,在两光波的迭加区产生干涉。 a 、 从图1b 看出,若棱镜的折射率为n ,则两虚像S 1、S 2之间的距离 a n l d )1(2-= (5-1) 干涉条纹的间距 λa n l l l e )1(2' -+= (5-2) 式中,λ为光波的波长。 对于玻璃材料的双棱镜有n =1.50,则 λa l l l e ' += (5-3) 可得到 e l l la ' += λ (5-4) 在迭加区内放置观察屏E ,就可接收到平行于脊棱的等距直线条纹。若用白光照明,可接收到彩色条纹。 对于扩展光源,由图2可导出干涉孔径角: ' 'l l a l += β (5-5) 和光源临界宽度: ?? ? ??+== '1l l a b λβλ (5-6) 从式(5-5)和(5-6)看出,当l'=0时,β=0,则光源的临界宽度b 变为无穷大。此时,干涉条纹定域在双棱镜的脊棱附近。b 为有限值时,条纹定域在以下区域内: λ αλ-≤ b l l ' (5-7) a) 图 1 双棱镜干涉原理图

微波光学实验报告

微波光学实验报告 一、实验目的与实验仪器 1.实验目的 (1)学习一种测量微波波长的方法。 (2)观察微波的衍射现象并进行定量测量。 (3)测量微波的布拉格衍射强度分布。 2.实验仪器 微波分光仪、分束玻璃板、固定和移动反射板、单缝板、双缝板、模拟晶体等。 二、实验原理 (要求与提示:限400字以内,实验原理图须用手绘后贴图的方式) 微波是一种波长处于1mm~1m之间的电磁波,范围为3×102~3×105MHz之间。微波也具有衍射、干涉等性质。 1.用微波分光仪(迈克尔逊干涉 仪)测微波波长 用迈克尔逊干涉仪测波长 光路图如上。设微波波长为λ, 若经M1和M2反射的两束波波 程差为Δ,则当满足 Δ = kλ(k = ±1,±2,…) 时,两束波干涉加强,得到各级 极大值;当满足 Δ = (k +)λ(k = 0,±1,±2,…) 时,两束波干涉减弱,得到各级极小值。

将反射板M2沿着微波传播的方向移动d,则波程差改变了2d. 若从某一极小值开始移动可动反射板M2,使接收喇叭收经过N个极小值信号,即电流示数出现N个极小值,读出M2移动的总距离L,则有: 2L = N·λ 从而λ = 由此可见,只要测定金属板位置的该变量L和出现接收到信号幅度最小值的次数N,可以求出微波波长。 2.微波的单缝衍射实验 当微波入射到宽度和其波长差不多的一个狭缝时,会发生衍射现象。在狭缝后面的衍射屏上出现衍射波强度不均匀,中央最强且最宽,从中央向两边微波衍射强度迅速减小。 当θ = 0时,衍射波强度最大,为中央零级极大; 其他次级强所在位置为: asinθ = ±(k + )λ(k = 1,2,…) 暗条纹位置为: asinθ = kλ(k = ±1,±2,…) 式中a为单缝的宽度。因此可以画出单缝衍射的强度分布曲线如上图。 3.微波的双缝干射实验 当微波入射到一块开有两个缝的铝板时,会发生 衍射现象,两缝面内波是同相位的。由惠更斯原理, 来自两缝波面向同一方向传播的子波叠加决定该方向 的强度。 强度极小所在位置(干涉相消): dsinθ = (k + )λ(k = 0,±1,±2,…) 强度极大所在位置(干涉相长): asinθ = kλ(k =0,±1,±2,…) 4.微波的布拉格衍射 晶体中的原子按一定规律形成高度规则的空间排列,称为晶格。最简单的晶格为立方晶格,具有三维的空间点阵结构,它如同一个三维光栅。晶体点阵中原子排列成许多具有不同取向的晶面,每个取向都由许多互相平行的晶面构成晶面族。由于晶体面间距与X射线

光的折射(20201109224218)

义务教育课程标准实验教科书物理八年级上册 第二章第四节《光的折射》 课标要求: 探究并了解光的折射的规律 教学设计思想: 创设情景,通过“探索--- 自得式”教学,激发学生自主学习的兴趣重视交流与合作,使学生在愉快中“探究-- 自得”,促进自我发展 本章在对折射现象的研究中,定位在认识折射现象上。理解由于折射而产生的现象基础是折射定律,而折射定律的学习历来是初中学生物理学习的难点。因而本节的重点是探究光从空气斜射入水或其他介质中的光线偏折的规律。引导学生运用所学知识解释实际问题,例如鱼在那里,池水变浅等。 教学目标: 1、目的和要求: (1).知识与技能 ?了解光的折射现象:光从空气射入水中或其他介质中时的偏折规律。 ?了解光在发生折射时,光路的可逆性。 (2).过程与方法。 ?通过观察,认识折射现象。 ?体验由折射引起的错觉。 (3).情感、态度与价值观。 ?初步领略折射现象的美妙,获得对自然现象的热爱、亲近的情感。 2、重点:通过实验,探究光从空气射入水中或其他介质中时的偏折规律。 3、难点:光的折射在实际问题上的研究,如折射使池水“变浅”等 4、教学资源 (1)、教学场所: 多媒体物理实验室 (2)、器材准备: 教师:实物投影仪,激光笔、玻璃砖、白胶板、水槽、空烧杯、纸杯 学生:盛水的水槽、激光笔、蚊香、空烧杯、纸杯、彩色粉笔、硬币 (3)、媒体课件:Powerpoint 幻灯片 教学流程图:

、引入;设疑,引起兴趣 四、拓展体验 五、学以致用

《光的折射》教学反思 《新课程标准》强调学生的自主学习、合作学习和探究学习的学习方式的转变。以F就《光的折射》的教学进行教学反思,从而反思新课程标准的实施与落实。 一、教学设计及过程的分析 1、从内容来看:从教案中明确了知识目标,符合大纲的基本要求,并就重、难点的知识目标也分别明确指出,就知识目标来说是适合学生实际的。 2、在教学策略的选择上,基本体现了发现式教学策略。从学生的腿在水面处看上去变短的现象提出问题;接着引导学生通过改进的水槽,用激光让学生自主探究光的折射现象;接着进一步提出

菲涅耳双棱镜干涉实验

研究性实验报告 光的干涉实验(分波面法)激光的双棱镜干涉

菲涅耳双棱镜干涉 摘要:两束光波产生干涉的必要条件是:1)频率相同;2)振动方向相同;3)相位差恒定。产生相干光的方式有两种:分波阵面法和分振幅法。本次菲涅耳双棱镜干涉就属于分波阵面法。菲涅耳双棱镜干涉实验是一个经典而重要的实验,该实验和杨氏双缝干涉实验共同奠定了光的波动学的实验基础。 一、实验重点 1)熟练掌握采用不同光源进行光路等高共轴调节的方法和技术; 2)用实验研究菲涅耳双棱镜干涉并测定单色光波长; 3)学习用激光和其他光源进行实验时不同的调节方法。 二、实验原理 菲涅耳双棱镜可以看成是有两块底面相接、棱角很小的直角棱镜合成。若置单色光源S0于双棱镜的正前方,则从S0射来的光束通过双棱镜的折射后,变为两束相重叠的光,这两束光仿佛是从光源S0的两个虚像S1和S2射出的一样。由于S1和S2是两个相干光源,所以若在两束光相重叠的区域内放置一个屏,即可观察到明暗相间的干涉条纹。

如图所示,设虚光源S 1和S 2的距离是a ,D 是虚光源到屏的距离。令P 为屏上任意一点,r 1和r 2分别为从S 1和S 2到P 点的距离,则从S 1和S 2发出的光线到达P 点得光程差是: △L= r 2-r 1 令N 1和N 2分别为S 1和S 2在屏上的投影,O 为N 1N 2的中点,并设OP=x ,则从△S 1N 1P 及△S 2N 2P 得: r 12=D 2+(x-2 a )2 r 22=D 2+(x+2a )2 两式相减,得: r 22- r 12=2ax 另外又有r 22- r 12=(r 2-r 1)(r 2+r 1)=△L(r 2+r 1)。通常D 较a 大的很多,所以r 2+r 1近似等于2D ,因此光程差为: △L=D ax 如果λ为光源发出的光波的波长,干涉极大和干涉极小处的光程差是: = k λ (k=0,±1, ±2,…) 明纹 =212 k λ (k=0,±1, ±2,…) 暗纹 由上式可知,两干涉条纹之间的距离是:

光的干涉衍射综合实验报告

竭诚为您提供优质文档/双击可除光的干涉衍射综合实验报告 篇一:实验报告之仿真(光的干涉与衍射) 大学物理创新性试验 实验项目:单缝﹑双缝﹑多缝衍射现象 仿真实验 专业班级:材料成型及控制工程0903班姓名:曹惠敏学号:09020XX97 目录 1光的衍射2衍射分类3实验现象4仿真模拟5实验总结 光的衍射 光在传播路径中,遇到不透明或透明的障碍物,绕过障碍物,产生偏离直线传播的现象称为光的衍射。 光的衍射现象是光的波动性的重要表现之一.波动在传播过程中,只要其波面受到某种限制,如振幅或相位的突变等,就必然伴随着衍射的发生.然而,只有当这种限制的空间几何线度与波长大小可以比拟时,其衍射现象才能显著地表

现出来.所有光学系统,特别是成像光学系统,一般都将光波限制在一个特定的空间域内,这使得光波的传播过程实际上就是一种衍射过程.因此,研究各种形状的衍射屏在不同实验条件下的衍射特性,对于深刻理解衍射的实质,研究光波在不同光学系统中的传播规律分析复杂图像的空间频谱分布以及改进光学滤波器设计等具有非常重要的意义. 随着计算机技术的飞速发展,计算机仿真已深入各种领域。光的干涉与衍射既是光学的主要内容,也是人们研究与仿真的热点。由于光波波长较短,与此相应的复杂形状衍射屏的制作较困难,并且实验过程中对光学系统及环境条件的要求较高.因而在实际的实验操作和观察上存在诸多不便.计算机仿真以其良好的可控性、无破坏、易观察及低成本等优点,为数字化模拟现代光学实验提供了一种极好的手段.本次实验利用mATLAb软件实现对任意形状衍射屏的夫琅禾费衍射实验的计算机仿真。 衍射分类 ⒈菲涅尔衍射 菲涅尔衍射:入射光与衍射光不都是平行光的衍射 。 惠更斯提出,媒质上波阵面上的各点,都可以看成是发射子波的波源,其后任意时刻这些子波的包迹,就是该时刻新的波阵面。菲涅尔充实了惠更斯原理,他提出波前上每个

双棱镜光干涉实验仪说明书

用菲涅耳双棱镜测量光的波长 自从1801年英国科学家杨氏(T.Young)用双缝做了光的干涉实验后,光的波动说开始为许多学者接受,但仍有不少反对意见。有人认为杨氏条纹不是干涉所致,而是双缝的边缘效应,二十多年后,法国科学家菲涅耳(Augustin J.Fresnel,1788-1827)做了几个新实验,令人信服地证明了光的干涉现象的存在,这些新实验之一就是他在1826年进行的双棱镜实验。它不借助光的衍射而形成分波面干涉,用毫米级的测量得到纳米级的精度,其物理思想、实验方法与测量技巧至今仍然值得我们学习。本实验通过用菲涅耳双棱镜对钠灯波长的测量,要求掌握光的干涉的有关原理和光学测量的一些基本技巧,特别要学习在光学实验中如何计算测量结果的不确定度。 实验原理 菲涅耳双棱镜(简称双棱镜)实际上是一个顶角A极大的等腰三棱镜,如图1所示。它可看成由两个楔角很小的直角三棱镜ABD和ACD所组成,故名双棱镜。当一个单色点光源S从它的BC面入射时,通过上半个棱镜ABD的光束向下偏折,通过下 半个棱镜ACD的光束向上偏折,相当于形成S′ 1和S′ 2 两个虚光源。与杨氏实验中 的两个小孔形成的干涉一样,把观察屏放在两光束的交叠区,就可看到干涉条纹。 图1 点光源通过双棱镜的折射交叠区观 察 屏

λχd D = 其中,d是两虚光源的间距,D 是光源到观察屏的距离,λ是光的波长。用测微目镜的分划板作为观察屏,就可直接从该测微目镜中读出条纹间距χ值,D 为几十厘米,可直接量出,因而只要设法测出d,即可从上式算出光的波长λ。 图2 二次成像光路 测量d的方法很多,其中之一是“二次成像法”,如图2所示,即在双棱镜与测微目镜之间加入一个焦距为?的凸 L ,当D >4?时,可移动L 而在测微目镜中看到 两虚光源的缩小像或放大像。分别读出两虚光源像的间距d1和d2,则由几何光学可知: d=21d d 正如杨氏实验可把双孔改为双缝一样,为了增加干涉条纹的亮度,可把上述实验中的点光源改为线光源,只要线光源的方向与双棱镜的棱边方向平行即可。当然,若线光源与棱边不平行或线光源的宽度太大变成了面光源,则干涉条纹会相互重叠而模糊直至消失,这是光源的空间相干性问题。 实验装臵 本实验装臵由双棱镜、测微目镜、光具座、线光源和透镜等组成。

菲涅尔圆孔衍射实验分析

菲涅尔圆孔衍射光强测定的实验分析 xx (xx学院物理系 10级物理2班云南玉溪 653100) 指导教师:xx 摘要:本文主要分析了菲涅尔圆孔衍射图样的特点,设计实验对光强分布规律进行验证,通过对比证明理论值与实际值之间存在一定偏差。 关键词:菲涅尔圆孔衍射;光强 1.引言 “衍射”是生活中一种普遍的光学现象,但不常被人们发现和熟知。光的衍射现象是光的波动性的重要体现。姚启钧先生在第四版《光学教程》中指出,衍射是指光在传播过程中遇到障碍物,会绕过障碍物偏离直线传播而进入几何阴影,并在屏幕上出现光强分布不均匀的现象,这种现象我们就将其称为光的衍射[1]。衍射又可根据障碍物到光源和考察点到障碍物的距离的不同分为两种,障碍物到光源和考察点的距离都是有限的,或其中之一为有限,这就称为菲涅尔衍射,又称近场衍射,另一种是障碍物到光源和考察点的距离可以认为是无限远的,则称为夫琅禾费衍射,又称远场衍射[1]。 衍射实验大多集中在夫琅禾费衍射的研究,直到近些年对菲涅尔衍射光强测定的探究才日益多了起来。顾永建曾对菲涅尔圆孔衍射中心场点光强的表示方法和分布特点做出过研究,其分别从矢量图解法和积分法推导出菲涅尔圆孔衍射中心场点的光强的表示方法和分布特点[2]。侯秀梅,郭茂田,郭洪三人曾对菲涅尔圆孔衍射的轴上光强分布做出过研究,其从惠更斯——菲涅尔原理出发,在球面波入射的情况下,导出菲涅尔圆孔衍射时轴上光强分布的解析表达式,并对轴上光强分布进行定量分析讨论[3]。陈修斌也曾对平行光的菲涅尔圆孔衍射实验进行过探究,他通过实验观察到衍射图样的中心可亮可暗,并用“菲涅尔半周期带”原理加以分析,解释,通过分析总结出圆孔衍射图像的中心光强的变化规律[4]。范体贵,吕立君利用计算机对菲涅尔衍射问题进行了数值模拟,给出了接收屏上完整的衍射图样,计算结果

双棱镜干涉

4.2 基于双棱镜干涉的光波波长测定 光的干涉是普遍的光学现象之一,是光的波动性的重要实验依据.两列频率相同、振动 方向相同和位相差恒定的光在空间相交区域光强将会发生相互加强或减弱现象,即光的干涉 现象。可见光的波长虽然很短,但干涉条纹的间距和条纹数却很容易用光学仪器测得.根据 干涉条纹数目和间距的变化与光程差、波长等的关系式,可以推出微小长度变化(光波波长 数量级)和微小角度变化等,因此干涉现象在测量技术、平面角检测技术、材料应变研究和 照相技术等领域有着广泛地应用。 实验目的 (1)掌握利用双棱镜获得双光束干涉的方法。 (2)观察双棱镜干涉图样的特点,加深对干涉知识的理解。 (3)学习用双棱镜测光源的波长。 (4)熟悉干涉装置的光路调节技术,掌握多元件等高共轴的调节方法。 实验仪器 双棱镜、辅助(凸)透镜、光学平台(光具座)、白屏、半导体激光器、光电探测器、光功率计。 实验原理 自1801年起,托马斯·杨在英国皇家学会连续宣读了数篇基于光的波动说分析干涉现象的论文,他所进行的著名的分波前双孔(缝)干涉实验以后被称为杨氏双缝实验。杨氏双缝实验将波动的空间周期性转化成干涉条纹的间距,通过对干涉条纹特性的分析得出了许多具有重要理论及实际意义的结论,从而大大丰富和深化了人们对干涉原理及光场相干性的认识,在物理学史上具有重要的地位。 菲涅尔双棱镜干涉实验是在杨氏实验的基础上改进而来的,增加了相干波面的有效照明面积,从而增强了入射光强,使干涉现象明显,易于测量。该实验曾在历史上为确立光的波动学说起到了重要作用,提供了一种直观、简捷、准确的测量光波长的方法。 1.双棱镜的结构 双棱镜是一个分割波前的分束器,形状如图4‐5‐1所示,其端面与棱脊垂直,楔角很小, 一般为37'或40',从外表看,就像一块平行的玻璃板。

光通信实验报告

光通信实验报告 实验一:测量光纤耦合效率 【实验简介】: 光线主要用于通信、光纤传感、图像传送以及光能传递等方面。由于光纤制造技术的不断进步,光线内部的损耗越来越小,因此在实际应用中提高光源与光纤之间的耦合效率是提高系统传输效率的重要技术之一。 【实验目的】: 1.了解光纤特性,种类 2.掌握光纤耦合的基本技巧及提高耦合效率的手段 3.熟悉常用的耦合方法 【实验装置示意图】: 【实验数据】: 光纤输出光功率:0.78mW 光纤输入光功率:1.9mW 耦合效率为:0.78/1.9*100%=41.1% 【实验思考总结】 耦合时,因为起始的光强较弱,用探测器检测效果不明显。可以先用目测法,观察输出光斑的亮度。等到达到一定的亮度之后,在接入探测器,观察示数。调节时,首先调节高度,然后调节俯仰角,最后在调节左右对准度与旋转方向。 实验二:测量光纤损耗 【实验目的】: 通过测量单模光纤的衰减值,了解测量光纤损耗的常用方法:插入法(实际测量中很多器件的插损、损耗都使用这种方法)。 【实验原理】: 光源发出的光通过光的注入系统输入到短光纤中,并通过光纤活动连接器与光功率计接通。首先测量短光纤的输出功率P1,然后通过光纤连接器接入被测光纤,测量长光纤的输出功率P2,则光纤的总损耗为

A=10lg P1 P2 (dB) 被测光纤的长度为L,则光纤的损耗系数为 α=A L (dB/km)【实验装置示意图】: 【实验数据】: 光纤长度L:6km 波长为1310nm的数据

实验三:测量光纤的数值孔径 【实验简介】: 光纤的数值孔径大小与纤芯折射率、纤芯-包层相对折射率差有关。光纤的数值孔径表示光纤接收入射光的能力。 【实验目的】: 了解测量数值孔径的方法,对远场法有初步了解。 【实验原理】: 远场强度有效数值孔径是通过光纤远场强度分布确定的,它定义为光纤远场辐射图上光强下降到最大值的5%处的半张角的正弦值。 【实验装置示意图】 【实验数据】 光功率最大值为162.5nW,下降到5%时对应的角度为8.5°和-8.3° 【数据处理】 光纤的数值孔径: =0.146 NA=sin8.5°??8.3° 2 实验四:测量光纤的模场直径和折射率分布曲线 【实验目的】: 1.通过近场法测量光纤的折射率分布曲线,对近场法有一定了解 2.通过近场法测量多单模光纤的模场直径,了解了解并掌握近场法测量多模光 纤模场直径的方法 【实验原理】 1.近场法是利用光纤输出端面上的光强度来测量光纤的部分几何参数的典型方

高光实验报告

高等光学(实验报告)

实验一 数字干涉测量方法及实验 一、实验目的: 1.了解激光干涉的近代方法??数字干涉技术的原理和方法 2.掌握干涉的实时检测技术 3.了解数字干涉方法的特点及应用场合 二、实验原理 随着电子技术与计算机技术的发展,并与传统的干涉检测方法结合,产生了一种新的位相检测技术——数字干涉技术,这是一种位相的实时检测技术。这种方法不仅能实现干涉条纹的实时提取,而且可以利用波面数据的存储功能消除干涉仪系统误差,消除或降低大气扰动及随机噪声,使干涉技术实现λ/100的精度,这是目前干涉仪精度最高的近代方法。其原理如下图所示: 图中的实验系统仍采用T-G 干涉仪,但参考镜2由压电陶瓷PZT 驱动,产生位移。此位移的频率与移动量由计算机控制。设参考镜的瞬时位移为li ,被测表面的形貌(面形)为w(x,y),则参考光路和测试光路可分别用下式表示: )](2exp[li s k i a U R +?=(1) )]},([2exp{y x w s k i b U t +?=(2) 式中a,b 为光振幅常数。参考光与测试光相干产生干涉条纹,其瞬时光强由式1

与式2,可得: ]),([2cos 1),,(li y x w k r li y x I -+=(3) 式中)/(222b a ab r +=是干涉条纹的对比度。 式3说明,干涉场中任意一点的光强都是的余弦函数。由于随时间变化,因此,式3的光强是一个时间周期函数,可用傅里叶级数展开。设r=1,则 kli b kli a a li y x I 2sin 2cos ),,(110++= 式中:220b a a +=,),,(2cos 21y x kw ab a =),(2sin 21y x lw ab b = 由三角函数的正交性,可求出Fourier 级数的各个系数,从而求得被测波面,由下式给出: ∑∑==--= = n i n i kli li y x I n kli li y x I n tg k a b tg k y x w 1 1 1 1 11 2cos ),,(22sin ),,(2 2121),( 式中...3,2,1,0,2=?= i i n li λ 为进一步降低噪声,提高测量精度,可用P 个周期进行驱动扫描,测量数据作累加平均,即 ∑∑==-= p n i p n i kli li y x I n kli li y x I n tg k y x w ,1 ,1 1 2cos ),,(22sin ),,(2 21),( 式中说明孔径内任意一点的位相可由该点上的n ×p 个光强的采样值计算出来,因此,可获得整个孔径上的位相。除实现自动检测外,还可以测定被测件的三维形貌。 三、实验光路

相关主题
文本预览
相关文档 最新文档