当前位置:文档之家› 射频信号源

射频信号源

射频信号源
射频信号源

论文题目:1GHz射频信号源研制姓名:程欢班级:自动化一班学号:2009 15231 07

1GHz射频信号源研制

摘要:本系统实现1GHz频段射频信号的频率和功率可调。信号发生电路采用电荷泵锁相频率合成技术,以TRF3750实现前置分频、电荷泵和鉴频鉴相等功能,以OPA365实现有源环路滤波,以MSP430F149作为微控制器;放大电路采用2SC3358射频晶体管,配以微带电路设计理念;功率调节电路采用M/A-COM 公司的AT65-0263实现可控衰减;杂散抑制电路采用微带滤波器,其设计基于ADS仿真。本系统以高性价比实现了射频信号源的功能。

1、作品简介(设计目标,详细指标要求)

信号源是指测量用信号发生器。它是为电子测量提供符合一定技术要求的电信号设备, 是电子测量中最基本,最广泛的电子测量仪器之一.。信号源总的趋势是向着宽频率覆盖,高精度,多功能,自动化和智能化方向发展.然而,射频信号源的市场价格比较高,尤其到VHF以上频段,价格非常昂贵。即使条件好的高校,在射频微波电路的教学过程中,也不可能大量配置。开发一种频段较高、指标要求适合教学使用的信号源,供高校在相关课程的教学使用,具有非常重要的现实意义。

本项目基于上述目的,开发一种性价比高的射频信号源,供高校射频微波教学实验使用。目前,移动通信频段在800MH z以上,如最常用的GSM移动通信,其上行频率范围在890~915MH z,上行频率范围在 935~960MH z, 因此,从贴近实际应用考虑,本项目的频率范围覆盖这个频段。

本系统达到如下功能:

(1)射频信号输出:由用户设置输出信号功率和频率,通过射频接口供用户使用;

(2)用户操作界面:通过键盘实现用户控制,通过数码管实现当前功率和频率的显示;

本系统的技术指标如表1所示。

表1 1GHz射频信号源技术指标

2、方案设计

2.1系统分析与理论计算

参考频率使用Fr=100MHz,经过14位的R计数器,其值设置值为2000,使得分频后频率为Fr’=Fr/R=50KHz,另一方面,输入Rf信号经过N计数器,其值为B·P+A,使得Rf’=Rf/(B·P+A),然后Fr’和Rf’进入鉴频鉴相器PFD,使得Fr’=Rf’,即Rf=Fr·(B·P+A)/2000。

根据设计任务的功能要求,本系统由信号发生电路、信号放大电路、功率调节电路、滤波电路和控制

2.2 设计方案论证

2.2.1信号发生电路

近年来,随着无线电通信技术的迅速发展,锁相环和频率合成技术在各个领域得到了广泛的应用。

由于锁相环具有跟踪特性、窄带滤波特性和锁定状态无剩余频差存在,因此在频率合成技术中采用锁相环路可以产生频率准确度很高的振荡信号源。

锁相环已从最初仅为线性模拟锁相环发展到目前以数字锁相环为主。电荷泵锁相环(CPPLL)以其锁定相差小和捕获范围大的优点成为当前数字锁相环的主流。电荷泵锁相环具有低功耗、高速、低抖动和低成本等特点,在无线电通信、频率综合器、时钟恢复电路中被广泛采用。因此,本系统的信号发生电路采用CPPLL频率合成技术。

信号发生电路-CPPLL频率合成器的组成框图如图2所示。

1)TRF3750构成鉴频鉴相器、电荷泵和内置分频器

TRF3750是TI公司的一款高性能CPPLL频率合成芯片,具有超低的相位噪声,内含双模前置分频器、14位R计数器、6位A计数器和13位B计数器实现内部分频。内含鉴频鉴相器和充电泵。三线串行接口具有完备的可编程能力。另外,具有锁定显示功能和省电(POWER DOWN)功能。

2)OPA365构成环路低通滤波器

环路低通滤波器的作用是滤除鉴频鉴相器输出电流中的无用组合频率分量及其他干扰分量,以保证环路所要求的性能,并提高环路的稳定性。环路低通滤波器有两种形式,即无源滤波器和有源滤波器。

有源滤波器因为采用放大器而引入噪声,所以采用有源滤波器的PLL产生的相位噪声性能会比采用无源滤波器的PLL差。因此在设计中我们尽量选用无源滤波器。其中三阶无源滤波器是最常用的一种结构。电荷泵电流通过环路滤波器积分后的最大控制电压低于Vp。如果VCO/VCXO的控制电压在此范围之内,无源滤波器能够胜任。

然而,为了获得较大的频率范围,当VCO的控制电压往往会接近Vp,这时需要用有源滤波器,其作用是,在对环路误差信号进行滤波的同时,也在一定程度上降低了衰减,从而调整VCO/VCXO控制电压到较大的范围;另外本电路中的有源滤波器使用了负反馈,使得滤波器的低通特性比常用的无源三阶滤波器更加陡峭,这在一定程度上提高了锁相环锁定的稳定性,但同时也会降低了其捕捉能力,因为此次作品最终目标是信号源而不是通信产品中本地振荡器,所以相比锁定速度而言锁定稳定度更为重要。

经参阅供应商提供的VCO技术资料,并对样品测试后,要求VCO达到848~1118MHz的可控频率范围,用有源滤波器是合适的。

如何选择有源滤波器中运算的放大器?需要关心一下的如下指标:

低失调电压(Low Offset V oltage)(通常小于500uV);

低偏流(Low Bias Current)(通常小于50pA);

低噪声;

具备轨道到轨道输入特性。

TI公司的OPA365是一款性能优良的运算放大器,其主要技术指标如下:

低失调电压:最大200uV;

低偏流:最大10 pA;

低噪声密度:通常(typically)4.5nV/√H z

轨道到轨道输入,无交越;

此外,它还有高摆率、高共模抑制比和低静态电流等特性

基于上述考虑,本系统选用TI公司的OPA365,构建锁相环的有源低通滤波器。

3)压控振荡器

压控振荡器要求幅度较高,噪声较低,杂散较低,因为市场供应的满足本设计要求的VCO价格不高,另外从为了缩短开发周期的角度考虑,本系统选用Sirenza公司的VCO190-1000T(Y)型VCO模块。

2.2.2信号放大电路

信号放大电路将VCO输出的射频信号放大到一定电平,再送到功率调节电路。信号放大电路原理

框图如图3所示。信号放大电路选用廉价通用的射频晶体管2SC3358,输入输出采用微带线匹配电路,在这个频段较为合适。

2.2.3功率调节电路

功率调节电路受控于控制电路,用于调节输出功率,使输出功率根据用户的设置,达到一定的电平。功率调节电路可以用PIN管实现,但匹配是一个难题。因为市场供应的满足本设计要求的功率调节电路价格不高,从缩短开发周期的角度考虑,功率调节电路选用MA/COM公司的AT65-0263数字衰减器芯片。

2.2.4滤波电路设计方案

由于以下原因:一,系统含有微处理器晶振和锁相环参考频率晶振,二,放大电路有时处在大信号放大状态,等,输出会产生各种谐波。因此,有必要配置一个滤波电路用于抑制杂散。在1GHz频段选用微带滤波器是合适的。

2.2.5控制电路

控制电路用于提供用户界面,以设置频率合成器的分频比的方式控制输出信号频率,以设置数字衰减器衰减值的方式控制输出信号功率。TI公司的MSP430F149是一款以超低功耗为显著特点的单片机,在业界广泛使用。此外,它具有如下特点:低电压供电:1.8~3.3V;16位精简指令结构;125ns 指令周期;12位内置A/D;串行通信口(USART),同/异步方式;在线编程;等。本系统采用MSP430F149实现控制。

3、系统实现

3.1硬件设计

3.1.1信号发生电路设计

如图4所示,CE101~CE104、CE107、CE109、C101~C108、C109、C110、C122、C123均为电源滤波电容;Fref 为100MHz 的参考频率,C111为耦合电容,R107为电荷泵最大电流设置电阻(R107=2.7K Ohm 时,Icp,max=8.7mA ;R107=4.7K Ohm 时,Icp,max=5mA ;R107=10K Ohm 时,Icp,max=2.35mA );R101、R102、C112、C113、C114、OPA365、L101组成锁相环的环路低通滤波器;VCO 为压控振荡器,C115为其耦合电容;R103~R105为功率分配及匹配电路(此处使用微带功分器更好,考虑其尺寸较大,这里选用电阻);R106、C117为环路滤波电路,以滤除环路中的低频成分,使锁相环工作稳定。

如图5所示,R101、R102、C112构成主要的滤波电路,C113形成负反馈,使得低通特性更加陡峭,C114、L101为环路滤波器输出滤波,使滤波效果更好、锁相环更加稳定。图6为环路低通滤波器的SPICE 交流特性仿真结果,可以看出环路低通特性比较陡峭,锁相环稳定性得到提高。

3.1.2输出滤波电路设计 1)原理图仿真

微波带通滤波器的种类很多,如端耦合传输线带通滤波器、梳状线带通滤波器、发夹式带通滤波器、

交指型带通滤波器和半波长谐振器平行耦合带通滤波器等。本文所设计的滤波器是发夹型带通滤波器。发夹型带通滤波器的一般结构形式如图7所示,它是由发夹型谐振器并排排列耦合而成,其信号的输入输出方式可采用抽头式和平行耦合方式。当滤波器的带宽大于10%时,宜采用抽头式发夹型滤波器,否则有可能造成第一级耦合微带线间距太小,使制造工艺难于实现。发夹型滤波器具有结构紧凑、耦合线终端开路无需通过过孔接地的优点。该滤波器是平行线滤波器的一种变形结构,是把耦合谐振器折合成“u ”字形构成的,降低了滤波器的尺寸,因而本系统采用该种结构。

图7 输出滤波器电路原理图

1.0

1.5

2.0

2.5

3.0

0.5

3.5

-50

-100

f r e q , G H z

d B (S (2,1))

d B (S (1,1))

图8 输出滤波器原理仿真结果

如图8所示的是射频设计EDA 软件ADS 的原理图仿真结果,在848~1118MHz 范围内,S(2,1)均小于-3dBm,S(1,1)均小于-16dBm ,并且在848~1118MHz 的二次和三次谐波范围内对谐波的抑制达到效果。 2) 版图设计

输出滤波器微带电路版图如图9所示。此微带滤波器的总体尺寸小,各部分比例合适,避免了计算正确却工艺不能实现功能的现象。

输出滤波器微带电路版图矩量仿真结果-S 参数由图10所示。比较图8和10可知,原理仿真和矩量仿真的结果存在一定的差异,这是由矩量仿真模型并非理想的造成的,但与原理仿真结果大致相同,进一步证明了设计的正确性。

3.2 软件设计

3.2.1软件流程

控制系统软件设计方案如图11和图12所示。

图11 主程序流程图 图12 数据通信流程图

3.2.1电磁兼容和功耗相关的软件设计要点

1)为了减少功耗,并降低数字系统对模拟信号的干扰,控制数据设置完成后,应将微控制器设为低功耗模式。

2)键盘输入采用中断模式,而不是查询模式,这样键盘输入完成后,数据端口处于静态,这样可以大大降低数字系统对模拟信号的干扰。

4、 作品性能测试与分析

4.1 系统测试方法

1) 将电源调至7~8V ,接通电源,此时电流约为20mA ; 2) 将信号源右侧的SMA 接头接到频谱仪上;

3) 此时数码管上显示初始频率值,为990MHz ,按F/P 切换至输出功率,初始值为-5dBm ; 4) 显示频率时,改变闪烁位可以改变输出频率的值,按F/P 切换至显示功率,改变闪烁位可以改

变输出功率,按左移(L)、右移(R)可以改变闪烁位;

5) 当输出信号频率和功率显示都正确时,观察频谱仪上相应的频率和功率并判断是否正确。

4.2 作品测试性能数据

测试结果如表2所示。

4.3 测试结果分析

频率范围通过单片机设置可以达到848~1118MHz ;TRF3750的参考频率为100MHz ,R 分频器的分频比通过软件可以设置为2000从而使得F pfd=50KHz ,所以频率精度可以达到50KHz 的要求;功率通过频谱仪的测量也可以达到目标; MA/COM 公司的AT65-0263数字衰减器芯片的功率精度

为1dB

,通过使用AT65-0263芯片,可以使功率精度为1dB ;测量相位噪声时由于测试条件有限,频谱仪精度不够,所以测得在±100 KHz 时相位噪声为-60 dBc/Hz ,考虑仪器的缺陷,倘若使用精度较高的频谱仪测量,估计相位噪声可以达到-80 dBc/Hz 以上;杂散主要由2sc3358构成的末级放大器造成,因为在放大器的输入功率已经比较大,应该使用功率合成的方法增大功率,此时通过2sc3358放大已经不是很容易,大的输入信号使得放大器工作在非线性状态,故合成的频率与参考频率混频,产生许多频率分量;输出阻抗可以通过测量末级带通滤波器的反射系数来计算,根据公式T L =(Z L -Z 0)/(Z L + Z 0),进使用标量网络分析仪的测量,T L 在通带范围内的反射系数为-10dBm 且Z 0为50 Ohm,因为使用的使标量网络分析仪,所以Z L 为 41~61 Ohm 。

5、总结与展望

本系统使用TI 公司提供的芯片TRF3750和OPA365,再与VCO 形成锁相环频率合成器,使用TI

公司提供的MSP4390F149单片机控制锁相环的输出频率,控制输出衰减器来控制输出功率,整个

电路没有为达到某一目而刻意增加的冗余设计,使得以上芯片得到充分利用,其功能发挥充分. 此外,本设计具有如下特点:

(1)在设计过程中,部分电路先采用软件仿真,部分电路还进行了电磁仿真,使得设计更加可靠;

(2)末级的微带带通滤波器涉及微波的知识,超出了高校专科生一般电子专业学科的知识范围,在此频段上电路设计水平在省内高校本专科学生中处于较领先的地位;

(3)经过核算,作品的成本不超过400元人民币。因此,虽然本系统指标与射频信号源高端产品差距较大,但性价比毫不逊色。射频信号源的市场价格比较高,尤其到VHF 以上频段价格非常昂贵,即使条件好的高校,在射频微波电路的教学过程中,也不可能大量配置。在此情况下在开发这种频段较高的信号源,供高校在相关课程的教学使用,具有非常重要的现实意义。

附录(1) 整机外观图

(a) 左侧视图

总电源开关

外部电源

键盘和显示复位键

信号输出接口

射频信号源

论文题目:1GHz射频信号源研制姓名:程欢班级:自动化一班学号:2009 15231 07

1GHz射频信号源研制 摘要:本系统实现1GHz频段射频信号的频率和功率可调。信号发生电路采用电荷泵锁相频率合成技术,以TRF3750实现前置分频、电荷泵和鉴频鉴相等功能,以OPA365实现有源环路滤波,以MSP430F149作为微控制器;放大电路采用2SC3358射频晶体管,配以微带电路设计理念;功率调节电路采用M/A-COM 公司的AT65-0263实现可控衰减;杂散抑制电路采用微带滤波器,其设计基于ADS仿真。本系统以高性价比实现了射频信号源的功能。 1、作品简介(设计目标,详细指标要求) 信号源是指测量用信号发生器。它是为电子测量提供符合一定技术要求的电信号设备, 是电子测量中最基本,最广泛的电子测量仪器之一.。信号源总的趋势是向着宽频率覆盖,高精度,多功能,自动化和智能化方向发展.然而,射频信号源的市场价格比较高,尤其到VHF以上频段,价格非常昂贵。即使条件好的高校,在射频微波电路的教学过程中,也不可能大量配置。开发一种频段较高、指标要求适合教学使用的信号源,供高校在相关课程的教学使用,具有非常重要的现实意义。 本项目基于上述目的,开发一种性价比高的射频信号源,供高校射频微波教学实验使用。目前,移动通信频段在800MH z以上,如最常用的GSM移动通信,其上行频率范围在890~915MH z,上行频率范围在 935~960MH z, 因此,从贴近实际应用考虑,本项目的频率范围覆盖这个频段。 本系统达到如下功能: (1)射频信号输出:由用户设置输出信号功率和频率,通过射频接口供用户使用; (2)用户操作界面:通过键盘实现用户控制,通过数码管实现当前功率和频率的显示; 本系统的技术指标如表1所示。 表1 1GHz射频信号源技术指标

射频信号源的使用

射频信号源的使用 一、AT808射频信号源介绍 因为基站发出的手机接收信号是不稳定的,并且一般都在-70dBm--90dBm,有些地方更弱,甚至无信号。为了使广大手机维修人员更方便使用频谱分析仪,测量分析射频电路,特别是中频信号等,为此,一些公司研究了一种能模拟一个蜂窝移动手机接收频段的射频信号源,它主要用于移动接收机故障的维修,是频谱分析仪的最佳“拍档”。下面以安泰信公司研制出AT808手机射频信号源为例进行说明。 AT808射频信号源可输出935-960MHz之间可调的射频信号,通过按钮操作,并可设置3个固定的频率输出。它们分别是50信道的945MHz;75信道的950MHz;100信道的955MHz。用固定点频输出,可以保证输出精确固定的射频接收信号,从而能更稳定,更容易判断测量接收中频及后级电路是否正常。 二、射频信号源的使用 1.指导 射频信号源输出的信号幅度范围在-85--20dBm之间。通过衰减按键的操作,可设置不同幅度的信号输出,在检修无接收故障时,通常设置信号发生器的输出为-20dBm左右(不要按下任何衰减按键,此时信号源输出幅度为—20dBm),在检修

接收差故障时,通常设置信号输出幅度在-70dBm-左右(同时按下衰减按键20dB、20dB、10dB此时信号源输出幅度即为-70dBm)。 对于摩托罗拉和诺基亚手机,可将故障机设置在测试状态下,设置接收机工作的信道为75信道(即950MHz)。选择射频信号源上的75信道的点频即可。也就是要使被测故障机的工作信道与AT808信号源上的信道对上,这样信号源上的信号才能进入手机。对于其它手机,可将射频信号设置在任何一个信道上,但需配合频谱分析仪使用。在进行射频信号源与手机连接时,只需通过射频电缆连接到故障机的天线触点处即可。 2.操作 (1)摩托罗拉手机 将射频信号源调节到950MHz,-20dBm。用测试指令450075#或450754#,设置故障机工作在GSM的75信道。用频谱分析仪检查手机接收机射频信号、中频信号等。 (2)诺基亚手机 将射频信号源调节到950MHz、-20dBm。启动诺基亚维修软件WINTESLA,将CHANNEL中的60改为75,按回车键,选择CONTINUOUS,用频谱分析仪检查接收机射频信号、中频信号等。 (3)其他手机

信号发生器的基本参数和使用方法

信号发生器 本人介绍一下信号发生器的使用和操作步骤. 1、信号发生器参数性能 频率范围:0.2Hz ~2MHz 粗调、微调旋钮 正弦波, 三角波, 方波, TTL 脉波 0.5" 大型 LED 显示器 可调 DC offset 电位 输出过载保护 信号发生器/信号源的技术指标: 波形正弦波, 三角波, 方波, Ramp 与脉波输出 振幅>20Vp-p (open circuit); >10Vp-p (加 50Ω负载) 阻抗50Ω+10% 衰减器-20dB+1.0dB (at 1kHz) DC 飘移<-10V ~ >+10V, (<-5V ~ >+5V 加 50Ω负载) 周期控制 1 : 1 to 10 : 1 continuously rating 显示幕4位LED显示幕 频率范围0.2Hz to2MHz(共 7 档) 频率控制Separate coarse and fine tuning 失真< 1% 0.2Hz ~ 20kHz , < 2% 20kHz ~ 200kHz 频率响应< 0.2dB 0.2Hz ~100kHz; < 1dB100kHz~2MHz 线性98% 0.2Hz ~100kHz; 95%100kHz~2MHz

对称性<2% 0.2Hz ~100kHz 上升/下降时间<120nS 位准4Vp-p±1Vp-p ~ 14.5Vp-p±0.5Vp-p 可调 上升/下降时间<120nS 位准>3Vpp 上升/下降时间<30nS 输入电压约 0V~10V ±1V input for 10 : 1 frequency ratio 输入阻抗10kΩ (±10%) 交流 100V/120V/220V/230V ±10%, 50/60Hz 电源线× 1, 操作手册× 1, 测试线 GTL-101 × 1 230(宽) × 95(高) × 280(长) mm,约 2.1 公斤 信号发生器是为进行电子测量提供满足一定技术要求电信号的仪器设备。这种仪器是多用途测量仪器,它除了能够输出正弦波、矩形波尖脉冲、TTL电平、单次脉冲等五种波形,还可以作频率计使用,测量外输入信号的频率 1.信号发生器面板: (1)电源开关; (2)信号输出端子; (3)输出信号波形选择;

信号发生器概述

信号发生器概述 凡是产生测试信号的仪器,统称为信号源,也称为信号发生器,它用于产生被测电路所需特定参数的电测试信号。 信号源是根据用户对其波形的命令来产生信号的电子仪器。信号源主要给被测电路提供所需要的已知信号(各种波形),然后用其它仪表测量感兴趣的参数。可见信号源在电子实验和测试处理中,并不测量任何参数,而是根据使用者的要求,仿真各种测试信号,提供给被测电路,以达到测试的需要。 信号源的分类和作用 信号源有很多种分类方法,其中一种方法可分为混和信号源和逻辑信号源两种。其中混和信号源主要输出模拟波形;逻辑信号源输出数字码形。混和信号源又可分为函数信号发生器和任意波形/函数发生器,其中函数信号发生器输出标准波形,如正弦波、方波等,任意波/函数发生器输出用户自定义的任意波形;逻辑信号发生器又可分为脉冲信号发生器和码型发生器,其中脉冲信号发生器驱动较小个数的的方波或脉冲波输出,码型发生器生成许多通道的数字码型。如泰克生产的AFG3000系列就包括函数信号发生器、任意波形/函数信号发生器、脉冲信号发生器的功能。 另外,信号源还可以按照输出信号的类型分类,如射频信号发生器、扫描信号发生器、频率合成器、噪声信号发生器、脉冲信号发生器等等。信号源也可以按照使用频段分类,不同频段的信号源对应不同应用领域。 下面我们将对函数信号发生器和任意波形/函数发生器做简要介绍: 1、函数信号发生器 函数发生器是使用最广的通用信号源,提供正弦波、锯齿波、方波、脉冲波等波形,有的还同时具有调制和扫描功能。 函数波形发生器在设计上分为模拟式和数字合成式。众所周知,数字合成式函数信号源(DDS)无论就频率、幅度乃至信号的信噪比(S/N)均优于模拟式,其锁相环(PLL)的设计让输出信号不仅是频率精准,而且相位抖动(phaseJitter)及频率漂移均能达到相当稳定的状态,但数字式信号源中,数字电路与模拟电路之间的干扰始终难以有效克服,也造成在小信号的输出上不如模拟式的函数信号发生器,如今市场上的大部分函数信号发生器均为DDS信号源。 2、任意波形发生器 任意波形发生器,是一种特殊的信号源,不仅具有一般信号源波形生成能力,而且可以仿真实际电路测试中需要的任意波形。在我们实际的电路的运行中,由于各种干扰和响应的存在,实际电路往往存在各种缺陷信号和瞬变信号,如果在设计之初没有考虑这些情况,有的将会产生灾难性后果。任意波发生器可以帮您完成实验,仿真实际电路,对您的设计进行全面的测试。 由于任意波形发生往往依赖计算机通讯输出波形数据。在计算机传输中,通过专用的波

信号发生器的基本原理

信号发生器的基本原理- 信号发生器使用攻略 信号发生器的基本原理 现代信号发生器的结构非常复杂,与早期的简易信号发生器天差地别,但总体基本结构功能单元还是类似的。信号发生器的主要部件有频率产生单元、调制单元、缓冲放大单元、衰减输出单元、显示单元、控制单元。早期的信号发生器都采用模拟电路,现代信号发生器越来越多地使用数字电路或单片机控制,内部电路结构上有了很大的变化。 频率产生单元是信号发生器的基础和核心。早期的高频信号发生器采用模拟电路LC振荡器,低频信号发生器则较多采用文氏电桥振荡器和RC移相振荡器。由于早期没有频率合成技术,所以上述LC、RC振荡器优点是结构简单,可以产生连续变化的频率,缺点是频率 稳定度不够高。早期产品为了提高信号发生器频率稳定度,在可变电容的精密调节方面下了很多功夫,不少产品都设计了精密的传动机构和指示机构,所以很多早期的高级信号发生器体积大、重量重。后来,人们发现采用石英晶体构成振荡电路,产生的频率稳定,但是石英晶体的频率是固定的,在没有频率合成的技术条件下,只能做成固定频率信号发生器。之后 也出现过压控振荡器,虽然频率稳定度比LC振荡器好些,但依然不够理想,不过压控振荡 器摆脱了LC振荡器的机械结构,可以大大缩减仪器的体积,同时电路不太复杂,成本也不高。现在一些低端的函数信号发生器依然采用这种方式。 随着PLL锁相环频率合成器电路的兴起,高档信号发生器纷纷采用频率合成技术,其 优点是频率输出稳定(频率合成器的参考基准频率由石英晶体产生),频率可以步进调节,频率显示机构可以用数字化显示或者直接设置。早期的高精度信号发生器为了得到较小的频率步进,将锁相环做得非常复杂,成本很高,体积和重量都很大。目前的中高端信号发生器 采用了更先进的DDS频率直接合成技术,具有频率输出稳定度高、频率合成范围宽、信号频谱纯净度高等优点。由于DDS芯片高度集成化,所以信号发生器的体积很小。 信号发生器的工作频率范围、频率稳定度、频率设置精度、相位噪声、信号频谱纯度都与频率产生单元有关,也是信号发生器性能的重要指标。 信号发生器的一大特性就是可以操控仪器输出信号的幅度,信号通过特定组合衰减量的衰减器达到预定的输出幅度。早期的衰减器是机械式的,通过刻度来读取衰减量或输出幅度。现代中高档信号发生器的衰减器单元由单片机控制继电器来切换,向电子芯片化过渡,衰减单元的衰减步进量不断缩小,精度相应提高。大频率范围的高精度衰减器和高精度信号输出属于高科技技术,这也是国内很少有企业能制造高端信号发生器的原因之一。信号发生器的信号输出范围和输出电平的精度和准确度也是标志信号发生器性能的重要指标。

DDS信号源的设计与实现

实验报告 实验题目:实验三 DDS信号源的设计与实现姓名: 学号: 指导老师: 地点与时间:2012.5.25 科研楼A座304 2012.5.18 科研楼A座304

【摘要】: 本次实验先利用MATLAB 软件制作coe 文件,然后利用ISE 软件以两种思路 编写VHDL 程序实现DDS 信号源的的设计,在生成bit 文件后下载到FPGA 板,用Chipsgope 软件进行硬件仿真验证,最终生成了正确的波形。 一、任务要求 1.1实验目的 利用FPGA 完成DDS 信号源的设计与实现。 1.2实验任务 利用FPGA 平台调用IP core 产生DDS 正弦波,并用chipscope 抓生成的正弦波信号 1.3实验要求 (1)采用IP 设计方法实现DDS 信号源的设计; (2)用chipscope 显示正弦波形,频率在给定范围内可调,用7段数码管显示生成正弦波的频率值,频率控制字通过拨码开关输入 (3)记录数据,撰写实验报告 二、实验方案及原理 2.1设计原理 DDS 全称Direct Digital Frequency Synthesizer (直接数字频率合成),是根据奈奎斯特采样定律,从连续信号的相位出发将一个正弦信号取样、量化、编码,形成一个正弦函数表,存于ROM 中。 合成时,通过改变相位累加器的频率控制字来改变相位增量。相位增量(步长)不同,一个正弦周期内的采样点数不同。在时钟频率即采样频率不变的情况下,通过相位增量的改变来实现输出频率的改变。 对于DDS 信号源,它的正弦信号发生器的输出可以用下式来描述: 其中out S 是指该信号发生器的输出信号波形,out f 指输出信号对应的频率。上式的表述对于时间t 是连续的,为了用数字逻辑实现该表达式,必须进行离散化处理。用采样时钟clk 进行抽样,令正弦信号的相位: 在一个clk 周期clk T 内,相位的增量为: 其中clk f 指clk 的频率,为了相位增量对其进行数字量化,把2π切割成2N 份,由此每个clk 周期的相位增量可用量化值来表述: 且k 为整数,称k 为频率控制字,与前式联合: ). π2sin(sin out out t f A t A S ==ωout out clk clk 2πΔ2πf f T f θ== 2 2πN k θ?≈?out clk 2N f k f =

射频信号发生器

https://www.doczj.com/doc/117372094.html,/242/2425183.html 2.1 正弦波的产生 2.1.1压控振荡器的原理 压控振荡器主要射频三极管BRF96、变容二极管BB135以及LC谐振回路构成。需要射频三极管BRF96构成放大电路,由电感和两个变容二极管BB13组成的谐振回路充当放大电路的正反馈,从而使电路满足震荡条件。为达到最佳工作性能,在工作频率时要求谐振回路的Q L≥100。电源采用+12V的电压,一对变容二极管与该谐振回路相连,通过调整加在变容二极管上的电压大小改变变容二极管的电容值,从而改变谐振回路的谢振频率。图 2.1.1为压控振荡器电路图。 图2.1.1 压控振荡器原理图 2.1.2 射频三极管BRF96的介绍 BRF96是用于射频或微波频段小信号放大的低压三极管,主要是为高增益、低噪音、小信号功率放大器而设计的。也可用于需要快速切换的时候。它具有高电流增益带宽积、低噪声系数和高功率增益等优点,例如当IC = 30 mA 时,带宽fT = 5 GHz ;当 f = 0.5 GHz时,噪声系数NF = 1.9 dB (typ);f=1GHz时,噪声系数NF =2.5 dB (typ);当f = 0.5 GHz时,最大功率增益Gmax = 16 dB;当f=1GHz时,最大功率增益Gmax =10.9dB (typ)。详细参量如以下各表。 表2.1.2(a)室温下管子的最大静态参数值表

表 2.1.2(b)绝对最大额定值表 表2.1.2(b)三极管S参数表 2.1.3 变容二极管BB135的介绍 BB135是一种线性度好、低串联电阻值、采用SMD封装的变容二极管,采用平面技术制造、SOD323非常小的塑料贴片封装包装。常用于UHF电视调谐器、无线电上变频器和压控振荡器VCO中。最大连续反向耐压值为30V,最大正向连续耐流值为20mA,工作温度范围为-150℃-125℃。其电学参数如表2.1.3所示,反向电压与电容的关系如图2.1.3所示。由图2.1.3可知BB135的线性度比较好,反向电压的范围也比较大。 表2.1.3电学参数表

什么是函数信号发生器,函数信号发生器的作用,函数信号发生器的工作原理

什么是函数信号发生器,函数信号发生器的作用,函数信号发生器的工作原 理 什么是函数信号发生器?函数信号发生器是一种能提供各种频率、波形和输出电平电信号的设备。在测量各种电信系统或电信设备的振幅特性、频率特性、传输特性及其它电参数时,以及测量元器件的特性与参数时,用作测试的信号源或激励源。 函数信号发生器又称信号源或振荡器,在生产实践和科技领域中有着广泛的应用。各种波形曲线均可以用三角函数方程式来表示。能够产生多种波形,如三角波、锯齿波、矩形波(含方波)、正弦波的电路被称为函数信号发生器。 函数信号发生器的工作原理:函数信号发生器是一种能提供各种频率、波形和输出电平电信号的设备。在测量各种电信系统或电信设备的振幅特性、频率特性、传输特性及其它电参数时,以及测量元器件的特性与参数时,用作测试的信号源或激励源。它能够产生多种波形,如三角波、锯齿波、矩形波、正弦波,所以在生产实践和科技领域中有着广泛的应用。 函数信号发生器系统主要由主振级、主振输出调节电位器、电压放大器、输出衰减器、功率放大器、阻抗变换器和指示电压表构成。当输入端输入小信号正弦波时,该信号分两路传输,一路完成整流倍压功能,提供工作电源;另一路进入一个反相器的输入端,完成信号放大功能。该放大信号经后级的门电路处理,变换成方波后经输出,输出端为可调电阻。 函数信号发生器产生的各种波形曲线均可以用三角函数方程式来表示,函数信号发生器在电路实验和设备检测中具有十分广泛的用途。例如在通信、广播、电视系统中,都需要射频发射,这里的射频波就是载波,把音频、视频信号或脉冲信号运载出去,就需要能够产生高频的振荡器。在工业、农业、生物医学等领域内,如高频感应加热、熔炼、淬火、超声诊断、核磁共振成像等,都需要功率或大或小、频率或高或低的振荡器。

基于max038的信号发生器设计说明

一、课题名称:函数信号发生器 二、主要技术指标(或基本要求): 1)能精密地产生三角波、锯齿波、矩形波(含方波)、正弦波信号。 2)频率范围从0.1Hz~20MHz,最高可达40MHz,各种波形的输出幅度均为2V(P-P)。 3)占空比调节范围宽,占空比和频率均可单独调节,二者互不影响,占空比最大调节范围是 15%~85%。 4)波形失真小,正弦波失真度小于0.75%,占空比调节时非线性度低于2%。 5)采用±5V双电源供电,允许有5%变化范围,电源电流为80mA,典型功耗400mW,工作温 度范围为0~70℃。 6)内设2.5V电压基准,可利用该电压设定FADJ、DADJ的电压值,实现频率微调和占空比调 节。 7)低阻抗定压输出,输出电阻典型值0.1欧姆,具有输出过载/短路保护。 三、主要工作内容:方案设想,MAX038,OP07,电路原理等资料查询准备。电路原理图设 计绘制,面包板验证设计可行性。之后进行PCB板设计调整,电路板定制,元件采购;裸板 测试,焊接,整机测试。实验设计进行报告反馈 四、主要参考文献: [1]赵涛,辛灿华,姚西霞,陈晓娟,基于MAX038的多功能信号发生器的设计。《机电产品 与创新》 2008.07 [2]蒋金弟,朱永辉,毛培法。MAX038高频精密函数信号发生器原理及应用。《山西电子技 术》 2001 [3]黄庆彩,祖静,裴东兴.基于MAX038的函数信号发生器的设计[J].仪器仪表学报,2004,S1. [4]陈一新.单片高频函数发生器MAX038及其应用[J].中国仪器仪表,2002,04. [5]赵立民.电子技术实验教程[M].北京:机械工业出版社,2004

9640A 射频标准信号源

9640A 射频标准信号源 主要特点 ?优异的功率准确度和宽频率范围 ?精密有源信号将失配误差最小化 ?操作简便,适合校准 ?无线电校准实验室的基本设备 频率范围10 Hz ~ 4 GHz 频率分辨力< 100 MHz:0.001 Hz;> 100 MHz:11 位数字频率准确度0.04 ppm 扫频10 Hz ~ 4 GHz,线性或对数,分辨力:0.1Hz 外部参考输 入 1 MHz ~ 20 MHz;1 MHz步进,± 30 ppm 频率参考输 出 1 MHz 或 10 MHz,用户可选 幅度范围至50Ω阻抗:-130 dBm ~ +24 dBm (0.2 μV ~ 10 V pk-pk) > 125 MHz:+20 dBm > 1.4 GHz:+14 dBm 至75Ω阻抗:-136 dBm ~ +18 dBm (0.13 μV ~ 6.3Vpk-pk) > 125 MHz:+14 dBm > 1.4 GHz:+8 dBm 幅值分辨力0.001dB 绝对电平准确度100 kHz ~ 125MHz:4GHz: +24 ~ -48 dBm,± 0.05 dB +20 ~ +14 dBm,± 0.25 dB (至1.4GHz) -48 ~ -74 dBm,± 0.2 dB +14 ~ -74 dBm,± 0.5 dB -74 ~ -94 dBm,± 0.5 dB -74 ~ -84 dBm,± 1.0 dB -94 ~ -130 dBm,± 1.5 dB -84 ~ -94 dBm,± 1.0 dB (至3GHz) -94 ~ -130 dBm,±1.5 dB (至3GHz) SSB相位噪 声 使用内部频率参考,(dBc/Hz) 频率 频率偏移 10Hz常规 值(典型值) 100Hz常规 值(典型值) 1kHz常规 值(典型值) 10kHz常规 值(典型值) 100kHz常 规值(典型 值) 1MHz常规 值(典型值) 10MHz常规 值(典型值) 9640A 1GHz ——-97(-102) -118(-112) -118(-112) -124(-130) -142(-144) 9640A-LPN 10MHz -104(-108) -129(-139) -148(-155) -151(-155) -153(-157) -155(-157) -155(-160) 125MHz -92(-95) -117(-124) -140(-145) -144(-149) -147(-152) -153(-154) -153(-156) 250MHz -86(-90) -112(-118) -135(-140) -141(-146) -142(-149) -152(-155) -153(-155) 500MHz -80(-85) -107(-112) -130(-136) -138(-143) -139(-144) -151(-154) -153(-154) 1GHz -74(-78) -101(-106) -125(-130) -134(-138) -134(-138) -148(-152) -151(-153)

函数信号发生器设计报告

函数信号发生器设计报告 目录 一、设计要求 .......................................................................................... - 2 - 二、设计的作用、目的 .......................................................................... - 2 - 三、性能指标 .......................................................................................... - 2 - 四、设计方案的选择及论证 .................................................................. - 3 - 五、函数发生器的具体方案 .................................................................. - 4 - 1. 总的原理框图及总方案 ................................................................. - 4 - 2.各组成部分的工作原理 ................................................................... - 5 - 2.1 方波发生电路 .......................................................................... - 5 - 2.2三角波发生电路 .................................................................... - 6 - 2.3正弦波发生电路 .................................................................. - 7 - 2.4方波---三角波转换电路的工作原理 ................................ - 10 - 2.5三角波—正弦波转换电路工作原理 .................................. - 13 - 3. 总电路图 ....................................................................................... - 15 - 六、实验结果分析 ................................................................................ - 16 - 七、实验总结 ........................................................................................ - 17 - 八、参考资料 ........................................................................................ - 18 - 九、附录:元器件列表 ........................................................................ - 19 -

简易信号发生器的设计实现

EDA课程设计简易信号发生器的设计实现 小组成员:XXXXXX XXXXX 专业:XXXXX 学院:机电与信息工程学院指导老师:XXXXXX 完成日期:XX年XX月XX日

目录 引言 (3) 一、课程设计内容及要求 (3) 1、设计内容 (3) 2、设计要求 (3) 二、设计方案及原理 (3) 1、设计原理 (3) 2、设计方案 (4) (1)设计思想 (4) (2)设计方案 (4) 3、系统设计 (5) (1)正弦波产生模块 (5) (2)三角波产生模块 (6) (3)锯齿波产生模块 (6) (4)方波产生模块 (6) (5)波形选择模块 (6) (6)频率控制模块 (6) (7)幅度控制模块 (6) (8)顶层设计模块 (7) 三、仿真结果分析 (7) 波形仿真结果 (7) 1、正弦波仿真结果 (7) 2、三角波仿真结果 (8) 3、锯齿波仿真结果 (8) 4、方波仿真结果 (8) 5、波形选择仿真结果 (9) 6、频率控制仿真结果 (9) 四、总结与体会 (10) 五、参考文献 (10) 六、附录 (11)

简易信号发生器 引言 信号发生器又称信号源或振荡器,在生产实践和科技领域中有着广范的应用。它能够产生多种波形,如正弦波、三角波、方波、锯齿波等,在电路实验和设备检验中有着十分广范的应用。 本次课程设计采用FPGA来设计多功能信号发生器。 一、课程设计内容及要求 1、设计内容 设计一个多功能简易信号发生器 2、设计要求 (1)完成电路板上DAC的匹配电阻选择、焊接与调试,确保其能够正常工作。 (2)根据直接数字频率合成(DDFS)原理设计正弦信号发生器,频率步进1Hz,最高输出频率不限,在波形不产生失真(从输出1KHz正弦转换为输出最高频率正弦时,幅度衰减不得大于10%)的情况下越高越好。频率字可以由串口设定,也可以由按键控制,数码管上显示频率傎。 (3)可以控制改变输出波形类型,在正弦波、三角波、锯齿波、方波之间切换。 (4)输出波形幅度可调,最小幅度步进为100mV。 二、设计方案及原理 1、设计原理 (1)简易信号发生器原理图如下

信号源的设计和制作-毕业设计

信号源的设计和制作 学生:XX 指导教师:XX 内容摘要:本文介绍了信号发生器的基本原理以及工作流程,在电子信息技术领域,经常要用到一些信号作为测量基准信号或输入信号,也就是所谓的信号源。信号源的好坏在很大程度上决定了系统的性能,因而常称之为电子系统的“心脏”。随着电子技术的发展,对信号源的要求越来越高,要求其输出频率高达微波频段甚至更高,及频率分辨率达到m级Hz甚至更小,相应频点数更多,频率转换时间达到ns级,频谱纯度高,同时对频率的功耗、体积、重量等也有更高的要求。要实现高性能的信号源,必须在技术手段上有新的突破。针对以上对信号源高性能的要求,研究和制作一款频率和分辨率更高、转换时间更少、频谱纯度更高的信号发生器成为了人们广泛关注的焦点。而基于DDS技术的产品,可以很好的达到上述各项性能的要求,为当今科技更好更快发展提供了有效的设备基础,正是在这样的背景下,高精度的信号发生器应运而生。 关键词:信号发生器频率歩进占空比

Signal source design and production Abstract:This article describes the basic principles and workflow of the signal generator, in the field of electronic information technology, often use some of the signal as a measurement of the reference signal or input signal, but also the so-called source. The quality of the signal source to a large extent determine the performance of the system, often called the "heart" of the electronic system. With the development of electronic technology, the signal source to the output frequency up to even higher microwave frequency bands and frequency resolution of mHz or even smaller, the corresponding frequency points more frequency switching time of the ns-level high spectral purity, frequency power, volume, weight, have higher requirements. To achieve high-performance signal source must be a new breakthrough in technology means. The above performance requirements of the source, research and production of a frequency and a higher resolution, less conversion time, higher spectral purity of the signal generator has become the focus of widespread concern. DDS technology-based products can be good to achieve the above performance requirements of today's technology better and faster development of equipment, it is in this context, high-precision signal generator came into being. Keywords:Signal generator Frequency of stepper Duty cycle .

实验1 示波器函数信号发生器的原理及使用(实验报告之实验数据表)

实验1 示波器、函数信号发生器的原理及使用 【实验目的】 1. 了解示波器、函数信号发生器的工作原理。 2. 学习调节函数信号发生器产生波形及正确设置参数的方法。 3. 学习用示波器观察测量信号波形的电压参数和时间参数。 4. 通过李萨如图形学习用示波器观察两个信号之间的关系。 【实验仪器】 1. 示波器DS5042型,1台。 2. 函数信号发生器DG1022型,1台。 3. 电缆线(BNC 型插头),2条。 【实验内容与步骤】 1. 利用示波器观测信号的电压和频率 (1)参照“实验1 示波器函数信号发生器的原理及使用(实验指导书)”相关内容,产生如图1-1所示的正余弦波形,显示在示波屏上。 图1-1 函数信号发生器生成的正、余弦信号的波形 学生姓名/学号 指导教师 上课时间 第 周 节

(2)用示波器对图1-1中所示的正余弦波形进行测量并填写下表 表1-1 正余弦信号的电压和时间参数的测量 电压参数(V)时间参数 峰峰值最大值最小值频率(Hz)周期(ms)正弦信号 3sin(200πt) 余弦信号 3cos(200πt) 2. 用示波器观测函数信号发生器产生的正余弦信号的李萨如图形 (1)参照“实验1 示波器函数信号发生器的原理及使用(实验指导书)”相关内容,产生如图1-2所示的正余弦波形的李萨如图形,调节并正确显示在示波屏上。 图1-2 正弦信号3sin(200πt)和余弦信号3cos(200πt)的李萨如图形 3. 观测相同幅值、相同频率、不同相位差条件下的两正弦信号的李萨如图形 (1)在函数信号发生器CH1通道产生的正弦信号3sin(200πt)保持不变的情况下,调节函数信号发生器CH2通道产生正弦信号3sin(200πt+45o),观测并记录两正弦信号的李萨如图形于图1-3中。 (2)在函数信号发生器CH1通道产生的正弦信号3sin(200πt)保持不变的情况下,调节函数信号发生器CH2通道产生正弦信号3sin(200πt+135o),观测并记录两正弦信号的李萨如图形于图1-3中。

音频测试-低频信号发生器-使用方法

低频信号发生器的操作方法 第一步骤:低频信号发生器的连接 连接电源线 用220V AC 线把低频信号发生器连上市电。如电源插座旁有控制开关,还须把开关打开。(如上图2) 连接信号线 将输出线插入到低频信号发生器的信号输出(OUTPUT )接口,并顺时针扭动半圈(如下图3)。图 1 图 2 将开关打开

第二步骤:信号电压幅度调节 上述步骤完成后,接下来需要开机预热和调节输出信号的幅度。 1) 开机(POWER ) 按下电源键开机,开机后电源指示灯会亮。电源按钮一般为红色。 图 3 图 4 连接输出线 电源按钮 电源指示灯

波形选择(WAVE FORM ) 控制低频信号发生器的输出波形。此按钮未按下去时为正弦波,按下去后为矩形波。中文意思为波形。在音频测试中应选择正弦波。(如上图6) 振幅调节(AMPLITUDE ) 此旋钮用来对信号幅度进行微调。顺时针为调大(MAX ),逆顺针为调小(MIN )。如下图图 6 图 5 波形选择 按钮 衰减度选择 -20dB 档 振幅微 调旋钮 图 7 交流电压 20V 档 信号频率 为50Hz

第四步骤:信号频率调节 当调好低频信号发生器的信号电压时,我们还要调节信号发生器的信号频率。 1) 频率调节(FREQUENCY ) 频率调节旋钮上有刻度盘,刻度盘上的数值从10~100,我们调节时把刻度盘上的数值对准正上方的黑色标志,这个数值就是输出信号的基数值。Frequency 中文为频率的意思。(如上图9个琴键按钮,分别为×1、×10、×100、×1K 、×10K ,它们与频率旋钮配合使用。当按下其中的某一个时,表示频率旋钮上指示的基数值×此按钮的倍数。 图 9 图 8 频率旋钮 倍数选择

函数信号发生器使用说明(超级详细)

函数信号发生器使用说明 1-1 SG1651A函数信号发生器使用说明 一、概述 本仪器是一台具有高度稳定性、多功能等特点的函数信号发生器。能直接产生正弦波、三角波、方波、斜波、脉冲波,波形对称可调并具有反向输出,直流电平可连续调节。TTL可与主信号做同步输出。还具有VCF输入控制功能。频率计可做内部频率显示,也可外测1Hz~的信号频率,电压用LED显示。 二、使用说明 面板标志说明及功能见表1和图1 图1 表1 序 面板标志名称作用号 1电源电源开关按下开关,电源接通,电源指示灯亮 2 1、输出波形选择 波形波形选择 2、与1 3、19配合使用可得到正负相锯齿波和脉

DC1641数字函数信号发生器使用说明 一、概述 DC1641使用LCD显示、微处理器(CPU)控制的函数信号发生器,是一种小型的、由集成电路、单片机与半导体管构成的便携式通用函数信号发生器,其函数信号有正弦波、三角波、方波、锯齿波、脉冲五种不同的波形。信号频率可调范围从~2MHz,分七个档级,频率段、频率值、波形选择均由LCD显示。信号的最大幅度可达20Vp-p。脉冲的占空比系数由10%~90%连续可调,五种信号均可加±10V的直流偏置电压。并具有TTL电平的同步信号输出,脉冲信号反向及输出幅度衰减等多种功能。除此以外,能外接计数输入,作频率计数器使用,其频率范围从10Hz~10MHz(50、100MHz[根据用户需要])。计数频率等功能信息均由LCD显示,发光二极管指示计数闸门、占空比、直流偏置、电源。读数直观、方便、准确。 二、技术要求 函数发生器 产生正弦波、三角波、方波、锯齿波和脉冲波。 2.1.1函数信号频率范围和精度 a、频率范围 由~2MHz分七个频率档级LCD显示,各档级之间有很宽的覆盖度, 如下所示: 频率档级频率范围(Hz) 1 ~2 10 1~20 100 10~200

信号发生器的原理及应用

实验一信号发生器的原理及应用 一、实验目的 (1)熟悉直接数字合成双路函数信号发生器的工作原理以及面板装置及功能; (2)会运用UTG2025A型数字信号合成信号发生器产生标准信号和调制信号。 二、实验设备 (1)UTG2025A型函数/任意波形信号发生器1台; (2)UTD2102C数字存储示波器各1台。 三、实验原理 函数信号发生器是能产生多种特定时间函数波形(如正弦波、方波、三角波 等)供测试用的信号发生器。典型函数信号发生器由输入单元、内/外转换电路、 波形产生电路、频段转换器、扫频电路、占空比和频率调节电路、微处理器、A/D 转换器、直流功率放大器和计数显示器等组成,其电路原理方框图如下所示: 图1典型函数信号发生器电路原理框图 其中波形产生电路、频率调整电路、占空比调整电路、内外扫频控制电路、测频 单元电路等具体电路原理与分析见教材《电子测量技术》P67-P71页内容。 四、实验内容及步骤 4.1 产生标准信号 4.1.1 产生正弦波信号

实验内容:产生一个20MHz、峰峰值100mV、直流偏置-150mV的正弦波信号。 1 实验步骤: (1)确保仪器正确连接后,打开开关,等仪器自检回到主菜 单;(2)按【menu】→【波形】→【正弦波】,如下图所示: (3)按【menu】→【波形】→【参数】 选择【频率】、【幅度】、【直流偏移】、【相位】不同功能按钮进行设 置:可以用三种方法来输入频率值:(其他数字量输入类似) ①通过按方向键来移动选择光标,再通过多功能按钮来增加、减少频率值; ②通过多功能按钮选中再逆时针、顺时针旋转来增加、减少频率值; ③通过数字键盘输入:进入频率设置状态后,当您按下数字键盘任意一个按键后,屏幕弹出输入窗口,如下图所示: 键入数字后再分别选择不同单位。

信号源的种类

对于移动通信网络,室内分布系统是非常重要的组成部分。运营商大量使用室内分布系统来解决高端客户聚集的密集城区覆盖问题,其性能的好坏将直接关系到运营商的客户体验及其收益。所以,未来TD-SCDMA要单独组网,必须提供能够满足运营商要求的室内覆盖解决方案,同时,TD-SCDMA的室内覆盖方案要考虑如何充分利用楼宇内现有的2G和其他3G制式的室内分布系统,帮助采用TD-SCDMA制式的运营商快速、经济地完成楼宇内的覆盖,及时抢占高端客户资源,提升运营商的品牌形象。 为了使TD-SCDMA系统室内分布在与其他系统CDMA、GSM、PHS室内分布竞争中不再处于不利地位,TD-SCDMA在室内覆盖时,一贯采取脱离智能天线而单独使用各路SWIPA(Switchand Power Amplifer)单元及常规的室内天线,仅仅通过楼层来实现用户间的定位和隔离,依赖联合检测算法及性能来满足干扰抑制及覆盖、容量问题。这样,TD- SCDMA室内分布便可与现有室内分布系统共用,信号源也具备不同的设备类型,如宏基站、微蜂窝、直放站和射频拉远等。但由于原CDMA、GSM工作在 825MHz~960MHz,而TD-SCDMA工作在2GHz,线缆等损耗明显不同,每栋楼宇会有不同的整改方案。 为了系统性地说明TD-SCDMA室内分布系统的设计及相关准则,下文拟从TD-SCDMA室内话务量的估算、信号源的选取、室内外信号泄漏分析,以及 TD-SCDMA与其他系统共用室内分布系统等几方面来阐述。 TD-SCDMA室内话务量的估算 如同室外网络一样,室内环境下也需要考虑用户的数量和支持的业务,由于运营商熟悉当地详细情况,用户数量和支持的业务一般由运营商提供。但如果运营商不能提供用户的数量和支持的业务时,可以根据以下经验、方法来估算 TD-SCDMA室内用户的规模。

1GHZ射频信号源竞赛论文最终版(短篇版)

2008年江苏省TI杯模拟电路设计竞赛论文 参赛学校:南京信息职业技术学院 电子信息工程系 论文题目:1GHz射频信号源研制 作者:王璨玮(大四)穆少松(大四)李白(大三) 指导教师:顾斌周望玮 2008年9月

1GHz射频信号源研制 王璨玮穆少松李白 南京信息职业技术学院 摘要:本系统实现1GHz频段射频信号的频率和功率可调。信号发生电路采用电荷泵锁相频率合成技术,以TRF3750实现前置分频、电荷泵和鉴频鉴相等功能,以OPA365实现有源环路滤波,以MSP430F149作为微控制器;放大电路采用2SC3358射频晶体管,配以微带电路设计理念;功率调节电路采用M/A-COM 公司的A T65-0263实现可控衰减;杂散抑制电路采用微带滤波器,其设计基于ADS仿真。本系统以高性价比实现了射频信号源的功能。 Abstract:This system realizes adjustment of frequency and power in 1GHz RF band. The signal generationg circuit employs CPPLL to realize frequency synthesization, employs TRF3750 to realize prescaler, charge pump and PFD, employs OPA365 to realize active loop filter and employs MSP430F149 as MCU. The amplifier employs 2SC3358 RF transistor and uses the design theory of microchip. The power adjustment circuit employs M/A-COM’s A T65-0263 to realize controllable attenuation .The spurious wave rejection circuit uses microchip filter, the design of which is based on ADS simulation. This system realizes the function of RF signal source with a low performance cost ratio. 1、作品简介(设计目标,详细指标要求) 信号源是指测量用信号发生器。它是为电子测量提供符合一定技术要求的电信号设备, 是电子测量中最基本,最广泛的电子测量仪器之一.。信号源总的趋势是向着宽频率覆盖,高精度,多功能,自动化和智能化方向发展.然而,射频信号源的市场价格比较高,尤其到VHF以上频段,价格非常昂贵。即使条件好的高校,在射频微波电路的教学过程中,也不可能大量配置。开发一种频段较高、指标要求适合教学使用的信号源,供高校在相关课程的教学使用,具有非常重要的现实意义。 本项目基于上述目的,开发一种性价比高的射频信号源,供高校射频微波教学实验使用。目前,移动通信频段在800MH z以上,如最常用的GSM移动通信,其上行频率范围在890~915MH z,上行频率范围在 935~960MH z, 因此,从贴近实际应用考虑,本项目的频率范围覆盖这个频段。 本系统达到如下功能: (1)射频信号输出:由用户设置输出信号功率和频率,通过射频接口供用户使用; (2)用户操作界面:通过键盘实现用户控制,通过数码管实现当前功率和频率的显示; 本系统的技术指标如表1所示。 表1 1GHz射频信号源技术指标

相关主题
文本预览
相关文档 最新文档