当前位置:文档之家› 射频信号源

射频信号源

射频信号源
射频信号源

论文题目:1GHz射频信号源研制姓名:程欢班级:自动化一班学号:2009 15231 07

1GHz射频信号源研制

摘要:本系统实现1GHz频段射频信号的频率和功率可调。信号发生电路采用电荷泵锁相频率合成技术,以TRF3750实现前置分频、电荷泵和鉴频鉴相等功能,以OPA365实现有源环路滤波,以MSP430F149作为微控制器;放大电路采用2SC3358射频晶体管,配以微带电路设计理念;功率调节电路采用M/A-COM公司的AT65-0263实现可控衰减;杂散抑制电路采用微带滤波器,其设计基于ADS仿真。本系统以高性价比实现了射频信号源的功能。

1、作品简介(设计目标,详细指标要求)

信号源是指测量用信号发生器。它是为电子测量提供符合一定技术要求的电信号设备, 是电子测量中最基本,最广泛的电子测量仪器之一.。信号源总的趋势是向着宽频率覆盖,高精度,多功能,自动化和智能化方向发展.然而,射频信号源的市场价格比较高,尤其到VHF以上频段,价格非常昂贵。即使条件好的高校,在射频微波电路的教学过程中,也不可能大量配置。开发一种频段较高、指标要求适合教学使用的信号源,供高校在相关课程的教学使用,具有非常重要的现实意义。

本项目基于上述目的,开发一种性价比高的射频信号源,供高校射频微波教学实验使用。目前,移动通信频段在800MHz以上,如最常用的GSM移动通信,其上行频率范围在890~915MHz, 上行频率范围在 935~960MHz, 因此,从贴近实际应用考虑,本项目的频率范围覆盖这个频段。

本系统达到如下功能:

(1)射频信号输出:由用户设置输出信号功率和频率,通过射频接口供用户使用;

(2)用户操作界面:通过键盘实现用户控制,通过数码管实现当前功率和频率的显示;

本系统的技术指标如表1所示。

表1 1GHz射频信号源技术指标

2、方案设计

2.1系统分析与理论计算

参考频率使用Fr=100MHz,经过14位的R计数器,其值设置值为2000,使得分频后频率为Fr’=Fr/R=50KHz,另一方面,输入Rf信号经过N计数器,其值为B·P+A,使得Rf’=Rf/(B·P+A),然后Fr’和Rf’进入鉴频鉴相器PFD,使得Fr’=Rf’,即Rf=Fr·(B·P+A)/2000。

根据设计任务的功能要求,本系统由信号发生电路、信号放大电路、功率调节电路、滤波电路和控制

2.2 设计方案论证

2.2.1信号发生电路

近年来,随着无线电通信技术的迅速发展,锁相环和频率合成技术在各个领域得到了广泛的应用。

由于锁相环具有跟踪特性、窄带滤波特性和锁定状态无剩余频差存在,因此在频率合成技术中采用锁相环路可以产生频率准确度很高的振荡信号源。

锁相环已从最初仅为线性模拟锁相环发展到目前以数字锁相环为主。电荷泵锁相环(CPPLL)以其锁定相差小和捕获范围大的优点成为当前数字锁相环的主流。电荷泵锁相环具有低功耗、高速、低抖动和低成本等特点,在无线电通信、频率综合器、时钟恢复电路中被广泛采用。因此,本系统的信号发生电路采用CPPLL频率合成技术。

信号发生电路-CPPLL频率合成器的组成框图如图2所示。

1)TRF3750构成鉴频鉴相器、电荷泵和内置分频器

TRF3750是TI公司的一款高性能CPPLL频率合成芯片,具有超低的相位噪声,内含双模前置分频器、14位R计数器、6位A计数器和13位B计数器实现内部分频。内含鉴频鉴相器和充电泵。三线串行接口具有完备的可编程能力。另外,具有锁定显示功能和省电(POWER DOWN)功能。

2)OPA365构成环路低通滤波器

环路低通滤波器的作用是滤除鉴频鉴相器输出电流中的无用组合频率分量及其他干扰分量,以保证环路所要求的性能,并提高环路的稳定性。环路低通滤波器有两种形式,即无源滤波器和有源滤波器。

有源滤波器因为采用放大器而引入噪声,所以采用有源滤波器的PLL产生的相位噪声性能会比采用无源滤波器的PLL差。因此在设计中我们尽量选用无源滤波器。其中三阶无源滤波器是最常用的一种结构。电荷泵电流通过环路滤波器积分后的最大控制电压低于Vp。如果VCO/VCXO的控制电压在此范围之内,无源滤波器能够胜任。

然而,为了获得较大的频率范围,当VCO的控制电压往往会接近Vp,这时需要用有源滤波器,其作用是,在对环路误差信号进行滤波的同时,也在一定程度上降低了衰减,从而调整VCO/VCXO控制电压到较大的范围;另外本电路中的有源滤波器使用了负反馈,使得滤波器的低通特性比常用的无源三阶滤波器更加陡峭,这在一定程度上提高了锁相环锁定的稳定性,但同时也会降低了其捕捉能力,因为此次作品最终目标是信号源而不是通信产品中本地振荡器,所以相比锁定速度而言锁定稳定度更为重要。

经参阅供应商提供的VCO技术资料,并对样品测试后,要求VCO达到848~1118MHz的可控频率范围,用有源滤波器是合适的。

如何选择有源滤波器中运算的放大器?需要关心一下的如下指标:

低失调电压(Low Offset Voltage)(通常小于500uV);

低偏流(Low Bias Current)(通常小于50pA);

低噪声;

具备轨道到轨道输入特性。

TI公司的OPA365是一款性能优良的运算放大器,其主要技术指标如下:

低失调电压:最大200uV;

低偏流:最大10 pA;

低噪声密度:通常(typically)4.5nV/√Hz

轨道到轨道输入,无交越;

此外,它还有高摆率、高共模抑制比和低静态电流等特性

基于上述考虑,本系统选用TI公司的OPA365,构建锁相环的有源低通滤波器。

3)压控振荡器

压控振荡器要求幅度较高,噪声较低,杂散较低,因为市场供应的满足本设计要求的VCO价格不高,另外从为了缩短开发周期的角度考虑,本系统选用Sirenza公司的VCO190-1000T(Y)型VCO模块。

2.2.2信号放大电路

信号放大电路将VCO输出的射频信号放大到一定电平,再送到功率调节电路。信号放大电路原理框图如图3所示。信号放大电路选用廉价通用的射频晶体管2SC3358,输入输出采用微带线匹配电路,在这个频段较为合适。

2.2.3功率调节电路

功率调节电路受控于控制电路,用于调节输出功率,使输出功率根据用户的设置,达到一定的电平。功率调节电路可以用PIN 管实现,但匹配是一个难题。因为市场供应的满足本设计要求的功率调节电路价格不高,从缩短开发周期的角度考虑,功率调节电路选用MA/COM 公司的AT65-0263数字衰减器芯片。

2.2.4滤波电路设计方案

由于以下原因:一,系统含有微处理器晶振和锁相环参考频率晶振,二,放大电路有时处在大信号放大状态,等,输出会产生各种谐波。因此,有必要配置一个滤波电路用于抑制杂散。在1GHz 频段选用微带滤波器是合适的。 2.2.5控制电路

控制电路用于提供用户界面,以设置频率合成器的分频比的方式控制输出信号频率,以设置数字衰减器衰减值的方式控制输出信号功率。TI 公司的MSP430F149是一款以超低功耗为显著特点的单片机,在业界广泛使用。此外,它具有如下特点:低电压供电:1.8~3.3V;16位精简指令结构;125ns 指令周期;12位内置A/D ;串行通信口(USART ),同/异步方式;在线编程;等。本系统采用MSP430F149实现控制。

3、 系统实现

3.1 硬件设计

3.1.1信号发生电路设计

如图4所示,CE101~CE104、CE107、CE109、C101~C108、C109、C110、C122、C123均为电源滤波电容;Fref 为100MHz 的参考频率,C111为耦合电容,R107为电荷泵最大电流设置电阻(R107=2.7K Ohm 时,Icp,max=8.7mA ;R107=4.7K Ohm 时,Icp,max=5mA ;R107=10K Ohm 时,Icp,max=2.35mA );

R101、R102、C112、C113、C114、OPA365、L101组成锁相环的环路低通滤波器;VCO为压控振荡器,C115为其耦合电容;R103~R105为功率分配及匹配电路(此处使用微带功分器更好,考虑其尺寸较大,这里选用电阻);R106、C117为环路滤波电路,以滤除环路中的低频成分,使锁相环工作稳定。

R101

3.3k

R102

4.7k

C112

470pF

C113

C114

0.1uF

OP

OPA365

+5V

L101

22uH

如图5所示,R101、R102、C112构成主要的滤波电路,C113形成负反馈,使得低通特性更加陡峭,C114、L101为环路滤波器输出滤波,使滤波效果更好、锁相环更加稳定。图6为环路低通滤波器的SPICE 交流特性仿真结果,可以看出环路低通特性比较陡峭,锁相环稳定性得到提高。

3.1.2输出滤波电路设计

1)原理图仿真

微波带通滤波器的种类很多,如端耦合传输线带通滤波器、梳状线带通滤波器、发夹式带通滤波器、交指型带通滤波器和半波长谐振器平行耦合带通滤波器等。本文所设计的滤波器是发夹型带通滤波器。发夹型带通滤波器的一般结构形式如图7所示,它是由发夹型谐振器并排排列耦合而成,其信号的输入输出方式可采用抽头式和平行耦合方式。当滤波器的带宽大于10%时,宜采用抽头式发夹型滤波器,否则有可能造成第一级耦合微带线间距太小,使制造工艺难于实现。发夹型滤波器具有结构紧凑、耦合线终端开路

图5 环路低通滤波器电路原理图

图6 低通滤波器的SPICE交流特性仿真结果

无需通过过孔接地的优点。该滤波器是平行线滤波器的一种变形结构,是把耦合谐振器折合成

“u ”字形构成的,降低了滤波器的尺寸,因而本系统采用该种结构。

图7 输出滤波器电路原理图

1.0

1.5

2.0

2.5

3.0

0.5

3.5

-50

-100

freq, GHz

d B (S (2,1))

d B (S (1,1))

图8 输出滤波器原理仿真结果

如图8所示的是射频设计EDA 软件ADS 的原理图仿真结果,在848~1118MHz 范围内,S(2,1)均小于-3dBm,S(1,1)均小于-16dBm ,并且在848~1118MHz 的二次和三次谐波范围内对谐波的抑制达到效果。 2) 版图设计

输出滤波器微带电路版图如图9所示。此微带滤波器的总体尺寸小,各部分比例合适,避免了计算正确却工艺不能实现功能的现象。

图9 输出滤波器微带电路版图

图10 输出滤波器微带电路版图矩量仿真结果-S参数

输出滤波器微带电路版图矩量仿真结果-S参数由图10所示。比较图8和10可知,原理仿真和矩量仿真的结果存在一定的差异,这是由矩量仿真模型并非理想的造成的,但与原理仿真结果大致相同,进一步

证明了设计的正确性

3.2 软件设计

3.2.1软件流程

控制系统软件设计方案如图11和图12所示。

图11 主程序流程图图12 数据通信流程图

3.2.1电磁兼容和功耗相关的软件设计要点

1)为了减少功耗,并降低数字系统对模拟信号的干扰,控制数据设置完成后,应将微控制器设为低功耗模式。

2)键盘输入采用中断模式,而不是查询模式,这样键盘输入完成后,数据端口处于静态,这样可以大大降低数字系统对模拟信号的干扰。

4、作品性能测试与分析

4.1系统测试方法

1)将电源调至7~8V,接通电源,此时电流约为20mA;

2)将信号源右侧的SMA接头接到频谱仪上;

3) 此时数码管上显示初始频率值,为990MHz ,按F/P 切换至输出功率,初始值为-5dBm ;

4) 显示频率时,改变闪烁位可以改变输出频率的值,按F/P 切换至显示功率,改变闪烁位可以

改变输出功率,按左移(L)、右移(R)可以改变闪烁位;

5) 当输出信号频率和功率显示都正确时,观察频谱仪上相应的频率和功率并判断是否正确。

4.2 作品测试性能数据

测试结果如表2所示。

表2 系统性能测试结果

4.3 测试结果分析

频率范围通过单片机设置可以达到848~1118MHz ;TRF3750的参考频率为100MHz ,R 分频器的分频比通过软件可以设置为2000从而使得F pfd=50KHz ,所以频率精度可以达到50KHz 的要求;功率通过频谱仪的测量也可以达到目标; MA/COM 公司的AT65-0263数字衰减器芯片的功率精度为1dB ,通过使用AT65-0263芯片,可以使功率精度为1dB

;测量相位噪声时由于测试条件有限,频谱仪精度不够,所以测得在±100 KHz

时相位噪声为-60 dBc/Hz ,考虑仪器的缺陷,倘若使用精度较高的频谱仪测量,估计相位噪声可以达到-80 dBc/Hz 以上;杂散主要由2sc3358构成的末级放大器造成,因为在放大器的输入功率已经比较大,应该使用功率合成的方法增大功率,此时通过2sc3358放大已经不是很容易,大的输入信号使得放大器工作在非线性状态,故合成的频率与参考频率混频,产生许多频率分量;输出阻抗可以通过测量末级带通滤波器的反射系数来计算,根据公式T L =(Z L -Z 0)/(Z L + Z 0),进使用标量网络分析仪的测量,T L 在通带范围内的反射系数为-10dBm 且Z 0为50 Ohm,因为使用的使标量网络分析仪,所以Z L 为 41~61 Ohm 。

5、总结与展望

本系统使用TI 公司提供的芯片TRF3750和OPA365,再与VCO 形成锁相环频率合成器,使用TI

公司提供的MSP4390F149单片机控制锁相环的输出频率,控制输出衰减器来控制输出功率,整个电路没有为达到某一目而刻意增加的冗余设计,使得以上芯片得到充分利用,其功能发挥充分. 此外,本设计具有如下特点:

(1)在设计过程中,部分电路先采用软件仿真,部分电路还进行了电磁仿真,使得设计更加可靠

(2)末级的微带带通滤波器涉及微波的知识,超出了高校专科生一般电子专业学科的知识范围,在此频段上电路设计水平在省内高校本专科学生中处于较领先的地位;

(3)经过核算,作品的成本不超过400元人民币。因此,虽然本系统指标与射频信号源高端产品差距较大,但性价比毫不逊色。射频信号源的市场价格比较高,尤其到VHF以上频段价格非常昂贵,即使条件好的高校,在射频微波电路的教学过程中,也不可能大量配置。在此情况下在开发这种频段较高的信号源,供高校在相关课程的教学使用,具有非常重要的现实意义。

附录(1) 整机外观图

总电源开关

外部电源

(a) 左侧视图

键盘和显示

复位键

信号输出接口(注:可编辑下载,若有不当之处,请指正,谢谢!)

几种简单的函数信号发生器电路图分析

几种简单的函数信号发生器电路图分析 时间:2012-01-10 15:30 作者:赛微编辑来源:赛微电子网 引言 随着模拟电路技术和电力电子技术发展,电路设计中对信号的精度、稳定性、抗干扰能力等要求进一步提高,电子行业中将一些功能进行集成到IC芯片供其他的厂家来使用。在电路设计中,我们除了正常的电源输入之外,还需要提供三角波、方波、正弦波、脉冲波、单次脉冲等特殊的波形来给某个电路提供输入。 这种可以提供三角波、方波、正弦波、脉冲波、单次脉冲等特殊的波形的电路或者仪器(函数信号发生器的种类),我们可以称之为函数信号发生器,它对电子工程师设计的整个系统来说,发挥着重要的作用,它具有各种内置信号、自定义的任意波形和脉冲能力,能帮助您验证设计,检验新的构想,从而让整个设计更具有可靠性。 本文结合几种简单的函数信号发生器电路图,并对其工作原理(函数信号发生器原理)、可以实现的功能和性能、电路特点等方面做了详细的分析,供电子发烧友参考。 程控函数信号发生器电路图 它主要由主控制器LPC2114、MAX038、D/A转换器以及八选一模拟开关CD4051LED显示、键盘、波段切换,波形处理和峰值检波等部分组成,研究了LPC2114通过D/A转换器实现对MAX038频就绪和占空比的调控方法,并给出

了在0.1Hz~20MHz内产生精确的正弦波、方波和三角波的方法。此外,它还具有可调范围大、精度高、信号稳定等特点,可以应用于各种电子测量和控制场合。 LPC2114主要通过D/A转换器TLC5618、DAC0832和八选一模拟开关CD4051对MAX038输出的波形、频率以及占空比进行控制。通过对A1和A0端的不同设置来选择不同的波形。当A1为高电平、A0为任意时,输出波形为正弦波;当A1、A0同时为低电平时,输出波形为方波;当A1为低电平、A0为高电平时,输出波形为三角波。 MAX038输出波形的幅值为2 V(P-P),最大输出电流为+20 mA,输出阻抗的典型值为0.1 Ω。可直接驱动100 Ω的负载。为了得到更大的输出幅度和驱动能力,就需要对波形信号作进一步处理,下图为一个波形输出与驱动电路。

基于dds的实用信号源的设计与制作 完美版

摘要 信号发生器是一种能产生标准信号的电子仪器,是工业生产和电工、电子实验室中经常使用的电子仪器之一。本文采用分立元器件设计了可输出正弦波和脉冲波的信号发生器,介绍了信号发生器的工作原理、电路参数计算方法、电路仿真结果,并进行了电路制作。 所设计的信号发生器由振荡电路、稳幅电路、正弦波调幅电路、电压比较电路、脉冲波调幅电路组成。采用RC振荡方式产生振荡信号,通过二极管IN4148和运放TL082实现振荡信号稳幅,调幅之后输出正弦波信号,再经电压比较器和调幅电路实现脉冲波的占空比和幅度的变化。采用了多级电阻和多级双联电位器实现频率的分段和步进。 本文设计的信号发生器具有结构简单、成本低、体积小等特点,经仿真和实际电路制作验证,其产生的正弦波和脉冲波频率、占空比、信号幅度可调,频率步进5Hz,矩形波可步进调整占空比, 不影响频率, 步长小于1%, 波形有较好的边沿特性。 关键词:信号发生器;频率歩进;占空比

一、实用信号源的设计和制作任务 在给定±15V电源电压条件下,设计并制作一个正弦波和脉冲波信号源。 二、要求 1.基本要求 (1)正弦波信号源 ①信号频率:20Hz~20kHz步进调整,步长为5Hz ②频率稳定度:优于10-4 ③非线性失真系数≤3% (2)脉冲波信号源 ①信号频率:20Hz~20kHz步进调整,步长为5Hz ②上升时间和下降时间:≤1μs ③平顶斜降:≤5% ④脉冲占空比:2%~98%步进可调,步长为2% (3)上述两个信号源公共要求 ①频率可预置。 ②在负载为600Ω时,输出幅度为3V。 ③完成5位频率的数字显示。

2.发挥部分 (1)正弦波和脉冲波频率步长改为1Hz。 (2)正弦波和脉冲波幅度可步进调整,调整范围为100mV~3V,步长为100mV。 (3)正弦波和脉冲波频率可自动步进,步长为1Hz。 (4)降低正弦波非线性失真系数。 三、评分标准 项目 得 分 基本要求设计与总结报告:方案设计与论证,理论计 算与分析,电路图,测试方法与数据,结果 分析 50 实际制作完成情况50 发挥部分完成第一项10 完成第二项10 完成第三项 5 完成第四项 5 特色与创新20

射频信号源

论文题目:1GHz射频信号源研制姓名:程欢班级:自动化一班学号:2009 15231 07

1GHz射频信号源研制 摘要:本系统实现1GHz频段射频信号的频率和功率可调。信号发生电路采用电荷泵锁相频率合成技术,以TRF3750实现前置分频、电荷泵和鉴频鉴相等功能,以OPA365实现有源环路滤波,以MSP430F149作为微控制器;放大电路采用2SC3358射频晶体管,配以微带电路设计理念;功率调节电路采用M/A-COM 公司的AT65-0263实现可控衰减;杂散抑制电路采用微带滤波器,其设计基于ADS仿真。本系统以高性价比实现了射频信号源的功能。 1、作品简介(设计目标,详细指标要求) 信号源是指测量用信号发生器。它是为电子测量提供符合一定技术要求的电信号设备, 是电子测量中最基本,最广泛的电子测量仪器之一.。信号源总的趋势是向着宽频率覆盖,高精度,多功能,自动化和智能化方向发展.然而,射频信号源的市场价格比较高,尤其到VHF以上频段,价格非常昂贵。即使条件好的高校,在射频微波电路的教学过程中,也不可能大量配置。开发一种频段较高、指标要求适合教学使用的信号源,供高校在相关课程的教学使用,具有非常重要的现实意义。 本项目基于上述目的,开发一种性价比高的射频信号源,供高校射频微波教学实验使用。目前,移动通信频段在800MH z以上,如最常用的GSM移动通信,其上行频率范围在890~915MH z,上行频率范围在 935~960MH z, 因此,从贴近实际应用考虑,本项目的频率范围覆盖这个频段。 本系统达到如下功能: (1)射频信号输出:由用户设置输出信号功率和频率,通过射频接口供用户使用; (2)用户操作界面:通过键盘实现用户控制,通过数码管实现当前功率和频率的显示; 本系统的技术指标如表1所示。 表1 1GHz射频信号源技术指标

信号发生器概述

信号发生器概述 凡是产生测试信号的仪器,统称为信号源,也称为信号发生器,它用于产生被测电路所需特定参数的电测试信号。 信号源是根据用户对其波形的命令来产生信号的电子仪器。信号源主要给被测电路提供所需要的已知信号(各种波形),然后用其它仪表测量感兴趣的参数。可见信号源在电子实验和测试处理中,并不测量任何参数,而是根据使用者的要求,仿真各种测试信号,提供给被测电路,以达到测试的需要。 信号源的分类和作用 信号源有很多种分类方法,其中一种方法可分为混和信号源和逻辑信号源两种。其中混和信号源主要输出模拟波形;逻辑信号源输出数字码形。混和信号源又可分为函数信号发生器和任意波形/函数发生器,其中函数信号发生器输出标准波形,如正弦波、方波等,任意波/函数发生器输出用户自定义的任意波形;逻辑信号发生器又可分为脉冲信号发生器和码型发生器,其中脉冲信号发生器驱动较小个数的的方波或脉冲波输出,码型发生器生成许多通道的数字码型。如泰克生产的AFG3000系列就包括函数信号发生器、任意波形/函数信号发生器、脉冲信号发生器的功能。 另外,信号源还可以按照输出信号的类型分类,如射频信号发生器、扫描信号发生器、频率合成器、噪声信号发生器、脉冲信号发生器等等。信号源也可以按照使用频段分类,不同频段的信号源对应不同应用领域。 下面我们将对函数信号发生器和任意波形/函数发生器做简要介绍: 1、函数信号发生器 函数发生器是使用最广的通用信号源,提供正弦波、锯齿波、方波、脉冲波等波形,有的还同时具有调制和扫描功能。 函数波形发生器在设计上分为模拟式和数字合成式。众所周知,数字合成式函数信号源(DDS)无论就频率、幅度乃至信号的信噪比(S/N)均优于模拟式,其锁相环(PLL)的设计让输出信号不仅是频率精准,而且相位抖动(phaseJitter)及频率漂移均能达到相当稳定的状态,但数字式信号源中,数字电路与模拟电路之间的干扰始终难以有效克服,也造成在小信号的输出上不如模拟式的函数信号发生器,如今市场上的大部分函数信号发生器均为DDS信号源。 2、任意波形发生器 任意波形发生器,是一种特殊的信号源,不仅具有一般信号源波形生成能力,而且可以仿真实际电路测试中需要的任意波形。在我们实际的电路的运行中,由于各种干扰和响应的存在,实际电路往往存在各种缺陷信号和瞬变信号,如果在设计之初没有考虑这些情况,有的将会产生灾难性后果。任意波发生器可以帮您完成实验,仿真实际电路,对您的设计进行全面的测试。 由于任意波形发生往往依赖计算机通讯输出波形数据。在计算机传输中,通过专用的波

信号发生器电路的焊接与调试-电路图

一、信号发生器电路安装与调试考核评分表 准考证号姓名规定时间分钟 开始时间结束时间实用时间得分 考核内容及要求配分评分标准扣分 1 元器件清点检查:在10分钟内对所有元 器件进行检测,并将不合格元器件筛选出来进 行更换,缺少的要求补发。 10 超时更换或要求补发按损坏 元件扣分,扣3分/个。 2 安装电路:按装配图进行装接,要求不装 错,不损坏元器件,无虚焊,漏焊和搭锡,元 器件排列整齐并符合工艺要求。 30 漏装,错装或虚焊、漏焊、 搭锡,扣2分/个,安装不整 齐和不符合工艺要求的扣1 分/处,损坏元件扣3分/个。 3 电源电路:接通交流电源,测量交流电压 和各直流电压+12V、-12V、V CC 、-5V。 信号发生器电路:接通+12V、-12V、V CC 、 -5V电源。测量函数信号波形:方波、正弦波、 三角波形。 20 电压测试方法不正确扣10 分,测量值有误差扣5分。 4 选择C=10uf,调节RW13、RW14、RW15, 记录方波的占空比: 1、 2、 3、 10 不会用示波观察输出信号波 形扣10分, 调节不正确扣5分, 波形记录不正确扣5分。 5 改变电容:100nf——100uf,并调节RW11, 记录正弦波输出频率f: 1、 2、 3、 10 最大不失真电压测试方法不 正确扣5分,测量值不准确 扣5分,不会计算最大不失 真功率扣5分。 6 调节RW21、RW22, 记录正弦波输出Vpp: 1、 2、 3、 10 不会测试功放电路的灵敏度 扣5分,不会计算电压放大 倍数扣5分。 7 调节电位器RW16、RW17, 记录正弦波形的失真: 1、 2、 3、 10 测量方法不正确扣5分, 测量数据每处2分,不会绘 制频响曲线扣5分 开始时间:结束时间:实用时间:

简易信号发生器设计制作

简易信号发生器设计制作 一、训练目的 (1)掌握正弦波、三角波、矩形波和方波发生电路的工作原理; (2)学会正弦波、三角波、矩形波和方波发生电路的设计方法; (3)进一步熟悉电子线路的安装、调试、测试方法。 二、工作原理 正弦波、三角板、矩形波是电子电路中常用的测试信号,如测试放大器的增益、通频带等均要用到正弦信号作为测试信号。下面分别介绍产生这三种信号电路结构和工作原理。 1.正弦信号发生器 正弦信号的产生电路形式比较多,频率较低时常用文氏电桥振荡器,图7-1为实用文氏电桥振荡电路。图中R 1、R 2、R 3、RW 2构成负反馈支路,二极管D 1、D 2构成稳幅电路,C 2、R 11(或R 12或R 13)、C 1、R 21(或R 22或R 23)串并联电路构成正反馈支路,并兼作选频网络。调节电位器RW 2可以改变负反馈的深度,以满足振荡的振幅条件和改善波形。二极管D 1、D 2要求温度稳定性好,特性匹配以确保输出信号正负半周对称,R 4接入用以消除二极管的非线性影响,改善波形失真。如K1接电阻R 11、K2接R 21,并且R 11= R 21=R ,C 1= C 2=C ,则电路的振荡频率为: 1 2f RC π= (7-1) 起振的幅值条件: 1 1f v R A R =+ (7-2) 图7-1 正弦信号发生器 通过调整RW 2可以改变电路放大倍数,能使电路起振并且失真最小。该电路可通过开关K1、K2选择不同的电阻以得到不同频率的信号输出。 2.方波和矩形波发生器

方波发生电路如图7-2,其基本原理是在滞回比较器的基础上增加了由R 4和C 1构成的积分电路,输出电压通过该积分电路送人到比较器的反相输入端。其中R 3 、D Z1和D Z2构成双向限幅电路,这样就构成了方波发生器电路,其工作原理如下: 假设在接通电源瞬间,输出电压o v 为Z V +(稳压二极管D Z1、D Z2额定工作时的稳压值),这时比较器同相端的输入电压为 2 12 Z R v V R R +≈ + (7-3) 同时输出电压o v 会通过电阻R 4给C 1充电,反相端的输入电压v -就会逐步升高,当反向输入端的电压v -略大于同相端输入电压v +时,比较器输出电压立即从Z V +翻转为Z V -,这时输出端电压o v 为Z V -,比较器同相端输入电压v +'为 2 12 Z R v V R R +'≈- + (7-4) 这时输出的电压o v 会通过R 4对C 1进行反向充电,当反相输入端的电压略低于v +'时,输出状态再翻转回来,如此反复形成方波信号。所产生方波信号的频率为 41 1 2f R C = 方波 (7-5) R 4 o 图7-2 方波发生电路

信号发生器的基本原理

信号发生器的基本原理- 信号发生器使用攻略 信号发生器的基本原理 现代信号发生器的结构非常复杂,与早期的简易信号发生器天差地别,但总体基本结构功能单元还是类似的。信号发生器的主要部件有频率产生单元、调制单元、缓冲放大单元、衰减输出单元、显示单元、控制单元。早期的信号发生器都采用模拟电路,现代信号发生器越来越多地使用数字电路或单片机控制,内部电路结构上有了很大的变化。 频率产生单元是信号发生器的基础和核心。早期的高频信号发生器采用模拟电路LC振荡器,低频信号发生器则较多采用文氏电桥振荡器和RC移相振荡器。由于早期没有频率合成技术,所以上述LC、RC振荡器优点是结构简单,可以产生连续变化的频率,缺点是频率 稳定度不够高。早期产品为了提高信号发生器频率稳定度,在可变电容的精密调节方面下了很多功夫,不少产品都设计了精密的传动机构和指示机构,所以很多早期的高级信号发生器体积大、重量重。后来,人们发现采用石英晶体构成振荡电路,产生的频率稳定,但是石英晶体的频率是固定的,在没有频率合成的技术条件下,只能做成固定频率信号发生器。之后 也出现过压控振荡器,虽然频率稳定度比LC振荡器好些,但依然不够理想,不过压控振荡 器摆脱了LC振荡器的机械结构,可以大大缩减仪器的体积,同时电路不太复杂,成本也不高。现在一些低端的函数信号发生器依然采用这种方式。 随着PLL锁相环频率合成器电路的兴起,高档信号发生器纷纷采用频率合成技术,其 优点是频率输出稳定(频率合成器的参考基准频率由石英晶体产生),频率可以步进调节,频率显示机构可以用数字化显示或者直接设置。早期的高精度信号发生器为了得到较小的频率步进,将锁相环做得非常复杂,成本很高,体积和重量都很大。目前的中高端信号发生器 采用了更先进的DDS频率直接合成技术,具有频率输出稳定度高、频率合成范围宽、信号频谱纯净度高等优点。由于DDS芯片高度集成化,所以信号发生器的体积很小。 信号发生器的工作频率范围、频率稳定度、频率设置精度、相位噪声、信号频谱纯度都与频率产生单元有关,也是信号发生器性能的重要指标。 信号发生器的一大特性就是可以操控仪器输出信号的幅度,信号通过特定组合衰减量的衰减器达到预定的输出幅度。早期的衰减器是机械式的,通过刻度来读取衰减量或输出幅度。现代中高档信号发生器的衰减器单元由单片机控制继电器来切换,向电子芯片化过渡,衰减单元的衰减步进量不断缩小,精度相应提高。大频率范围的高精度衰减器和高精度信号输出属于高科技技术,这也是国内很少有企业能制造高端信号发生器的原因之一。信号发生器的信号输出范围和输出电平的精度和准确度也是标志信号发生器性能的重要指标。

DDS信号发生器电路设计

1. 信号产生部分 1.1 频率控制字输入模块 library ieee; use ieee.std_logic_1164.all; use ieee.std_logic_unsigned.all; use ieee.std_logic_arith.all; entity ddsinput is port(a,b,c,clk,clr:in std_logic; q1,q2,q3,q4,q5:buffer unsigned(3 downto 0)); end ddsinput; architecture a of ddsinput is signal q:std_logic_vector(2 downto 0); begin q<=c&b&a; process(cp,q,clr) begin if clr='1'then q1<="0000";q2<="0000";q3<="0000";q4<="0000";q5<="0000"; elsif clk 'event and clk='1'then

DDS信号信号发生器电路设计 case q is when"001"=>q1<=q1+1; when"010"=>q2<=q2+1; when"011"=>q3<=q3+1; when"100"=>q4<=q4+1; when"101"=>q5<=q5+1; when others=>NULL; end case; end if; end process; end a; 1.2 相位累加器模块 library ieee; use ieee.std_logic_1164.all; use ieee.std_logic_unsigned.all; use ieee.std_logic_arith.all; entity xiangwei is port(m:in std_logic_vector(19 downto 0); clk,clr:in std_logic; data:out std_logic_vector(23 downto 0)); end xiangwei; architecture a of xiangwei is signal q:std_logic_vector(23 downto 0); begin process(clr,clk,m,q) begin if clr='1'then q<="000000000000000000000000"; elsif (clk'event and clk='1')then q<=q+m; end if; data<=q; end process; end a;

函数信号发生器的设计与制作

函数信号发生器的设计、和装配实习 一.设计制作要求: 掌握方波一三角波一正弦波函数发生器的设计方法和测试技术。学会由分立器件和集成电路组成的多级电子电路小系统的布线方法。掌握安装、焊接和调试电路的技能。掌握在装配过程中可能发生的故障进行维修的基本方法。 二.方波一三角波一正弦波函数发生器设计要求 函数发生器能自动产生正弦波、三角波、方波及锯齿波、阶梯波等电压波形。其电路中使用的器件可以是分立器件,也可以是集成电路(如单片集成电路函数发生器ICL8038)。本次电子工艺实习,主要介绍由集成运算放大器和晶体管差分放大器组成的方波一三角波一正弦波函数信号发生器的设计和制作方法。 产生正弦波、方波、三角波的方案有多 种: 1:如先产生正弦波,然后通过整 形电路将正弦波变换成方波,再由积分 电路将方波变成三角波。 2:先产生三角波一方波,再将三 角波变成正弦波或将方波变成正弦波。 3 3:本次电路设计,则采用的图1函数发生器组成框图 是先产生方波一三角波,再将三角波变换成正弦波的电路设计方法。此钟方法的电路组成框图。如图1所示:可见,它主要由:电压比较器、积分器和差分放大器等三部分构成。 为了使大家能较快地进入设计和制做状态,节省时间,在此,重新复习电压比较器、积分器和差分放大器的基本构成和工作原理: ,并判所谓比较器,是一种用来比较输入信号v1和参考电压V REF 断出其中哪个大,在输出端显示出比较结果的电路。 在《电子技术基础》一书的9.4—非正弦波信号产生电路的9.4.1中,专门讲述了: A:单门限电压比较器、B:过零比较器 C:迟滞比较器的电路结构和工作原理。 一、单门限电压比较器 所谓单门限电压比较器,是指比较器的输入端只有一个门限电压。

DDS信号源的设计与实现

实验报告 实验题目:实验三 DDS信号源的设计与实现姓名: 学号: 指导老师: 地点与时间:2012.5.25 科研楼A座304 2012.5.18 科研楼A座304

【摘要】: 本次实验先利用MATLAB 软件制作coe 文件,然后利用ISE 软件以两种思路 编写VHDL 程序实现DDS 信号源的的设计,在生成bit 文件后下载到FPGA 板,用Chipsgope 软件进行硬件仿真验证,最终生成了正确的波形。 一、任务要求 1.1实验目的 利用FPGA 完成DDS 信号源的设计与实现。 1.2实验任务 利用FPGA 平台调用IP core 产生DDS 正弦波,并用chipscope 抓生成的正弦波信号 1.3实验要求 (1)采用IP 设计方法实现DDS 信号源的设计; (2)用chipscope 显示正弦波形,频率在给定范围内可调,用7段数码管显示生成正弦波的频率值,频率控制字通过拨码开关输入 (3)记录数据,撰写实验报告 二、实验方案及原理 2.1设计原理 DDS 全称Direct Digital Frequency Synthesizer (直接数字频率合成),是根据奈奎斯特采样定律,从连续信号的相位出发将一个正弦信号取样、量化、编码,形成一个正弦函数表,存于ROM 中。 合成时,通过改变相位累加器的频率控制字来改变相位增量。相位增量(步长)不同,一个正弦周期内的采样点数不同。在时钟频率即采样频率不变的情况下,通过相位增量的改变来实现输出频率的改变。 对于DDS 信号源,它的正弦信号发生器的输出可以用下式来描述: 其中out S 是指该信号发生器的输出信号波形,out f 指输出信号对应的频率。上式的表述对于时间t 是连续的,为了用数字逻辑实现该表达式,必须进行离散化处理。用采样时钟clk 进行抽样,令正弦信号的相位: 在一个clk 周期clk T 内,相位的增量为: 其中clk f 指clk 的频率,为了相位增量对其进行数字量化,把2π切割成2N 份,由此每个clk 周期的相位增量可用量化值来表述: 且k 为整数,称k 为频率控制字,与前式联合: ). π2sin(sin out out t f A t A S ==ωout out clk clk 2πΔ2πf f T f θ== 2 2πN k θ?≈?out clk 2N f k f =

什么是函数信号发生器,函数信号发生器的作用,函数信号发生器的工作原理

什么是函数信号发生器,函数信号发生器的作用,函数信号发生器的工作原 理 什么是函数信号发生器?函数信号发生器是一种能提供各种频率、波形和输出电平电信号的设备。在测量各种电信系统或电信设备的振幅特性、频率特性、传输特性及其它电参数时,以及测量元器件的特性与参数时,用作测试的信号源或激励源。 函数信号发生器又称信号源或振荡器,在生产实践和科技领域中有着广泛的应用。各种波形曲线均可以用三角函数方程式来表示。能够产生多种波形,如三角波、锯齿波、矩形波(含方波)、正弦波的电路被称为函数信号发生器。 函数信号发生器的工作原理:函数信号发生器是一种能提供各种频率、波形和输出电平电信号的设备。在测量各种电信系统或电信设备的振幅特性、频率特性、传输特性及其它电参数时,以及测量元器件的特性与参数时,用作测试的信号源或激励源。它能够产生多种波形,如三角波、锯齿波、矩形波、正弦波,所以在生产实践和科技领域中有着广泛的应用。 函数信号发生器系统主要由主振级、主振输出调节电位器、电压放大器、输出衰减器、功率放大器、阻抗变换器和指示电压表构成。当输入端输入小信号正弦波时,该信号分两路传输,一路完成整流倍压功能,提供工作电源;另一路进入一个反相器的输入端,完成信号放大功能。该放大信号经后级的门电路处理,变换成方波后经输出,输出端为可调电阻。 函数信号发生器产生的各种波形曲线均可以用三角函数方程式来表示,函数信号发生器在电路实验和设备检测中具有十分广泛的用途。例如在通信、广播、电视系统中,都需要射频发射,这里的射频波就是载波,把音频、视频信号或脉冲信号运载出去,就需要能够产生高频的振荡器。在工业、农业、生物医学等领域内,如高频感应加热、熔炼、淬火、超声诊断、核磁共振成像等,都需要功率或大或小、频率或高或低的振荡器。

函数信号发生器的设计与制作

Xuchang Electric V ocational College 毕业论文(设计) 题目:函数信号发生器的设计与制作 系部:电气工程系_ 班级:12电气自动化技术 姓名:张广超 指导老师:郝琳 完成日期:2014/5/20

毕业论文内容摘要

目录 1引言 (3) 1.1研究背景与意义 (3) 1.2研究思路与主要内容 (3) 2 方案选择 (4) 2.1方案一 (4) 2.2方案二 (4) 3基本原理 (5) 4稳压电源 (6) 4.1直流稳压电源设计思路 (6) 4.2直流稳压电源原理 (6) 4.3集成三端稳压器 (7) 5系统工作原理与分析 (8) 5.1ICL8038芯片性能特点简介 (8) 5.2ICL8038的应用 (8) 5.3ICL8038原理简介 (8) 5.4电路分析 (9) 5.5ICL8038内部原理 (10) 5.6工作原理 (11) 5.7正弦函数信号的失真度调节 (11) 5.8ICL8038的典型应用 (12) 5.9输出驱动部分 (12) 结论 (14) 致谢 (15) 参考文献 (16) 附录 (17)

1引言 信号发生器是一种能提供各种频率、波形和输出电平电信号的设备。在测量各种电信系统或电信设备的振幅特性、频率特性、传输特性及其它电参数时,以及测量元器件的特性与参数时,用作测试的信号源或激励源。信号发生器又称信号源或振荡器,在生产实践和科技领域中有着广泛的应用。各种波形曲线均可以用三角函数方程式来表示。能够产生多种波形,如三角波、锯齿波(含方波)、正弦波的电路被称为函数信号发生器。 1.1研究背景与意义 函数信号发生器是工业生产、产品开发、科学研究等领域必备的工具,它产生的锯齿波和正弦波、矩形波、三角波是常用的基本测试信号。在示波器、电视机等仪器中,为了使电子按照一定规律运动,以利用荧光屏显示图像,常用到锯齿波信号产生器作为时基电路。例如,要在示波器荧光屏上不失真地观察到被测信号波形,要求在水平偏转线圈上加随时间线性变化的电压——锯齿波电压,使电子束沿水平方向匀速搜索荧光屏。对于三角波,方波同样有重要的作用,而函数信号发生器是指一般能自动产生方波正弦波三角波以及锯齿波阶梯波等电压波形的电路或仪器。因此,建议开发一种能产生方波、正弦波、三角波的函数信号发生器。函数信号发生器根据用途不同,有产生三种或多种波形的函数发生器,其电路中使用的器件可以是分离器件,也可以是集成器件,产生方波、正弦波、三角波的方案有多种,如先产生正弦波,根据周期性的非正弦波与正弦波所呈的某种确定的函数关系,再通过整形电路将正弦波转化为方波,经过积分电路后将其变为三角波。也可以先产生三角波-方波,再将三角波或方波转化为正弦波。随着电子技术的快速发展,新材料新器件层出不穷,开发新款式函数信号发生器,器件的可选择性大幅增加,例如 ICL8038就是一种技术上很成熟的可以产生正弦波、方波、三角波的主芯片。所以,可选择的方案多种多样,技术上是可行的[1]。 1.2研究思路与主要内容 本文主要以ICL8038集成块为核心器件,制作一种函数信号发生器,制作成本较低。适合学生学习电子技术实验使用。ICL8038是一种具有多种波形输出的精密振荡集成电路,只需要个别的外部元件就能产生从几赫到几百千赫的低失真正弦波、三角波、矩形波等脉冲信号。基于ICL8038函数信号发生器主要电源供电、波形发生、输出驱动三大部分组成。电源供电部分:主要由集成三端稳压管LM7812和LM7912构成的±12V直流电压作为整个系统的供电。波形发生部分:主要由单片集成函数信号发生器ICL8038构成。通过改变接入电路的电阻或电容的大小,能够得到几赫到几百千赫不同频率的信号。输出驱动部分:主要由运放LF353构成。由于ICL8038的输出信号幅度较小,需要放大输出信号。ICL8038的输出信号经过运放LF353放大后能够得到输出幅度较大的信号[2]。

9640A 射频标准信号源

9640A 射频标准信号源 主要特点 ?优异的功率准确度和宽频率范围 ?精密有源信号将失配误差最小化 ?操作简便,适合校准 ?无线电校准实验室的基本设备 频率范围10 Hz ~ 4 GHz 频率分辨力< 100 MHz:0.001 Hz;> 100 MHz:11 位数字频率准确度0.04 ppm 扫频10 Hz ~ 4 GHz,线性或对数,分辨力:0.1Hz 外部参考输 入 1 MHz ~ 20 MHz;1 MHz步进,± 30 ppm 频率参考输 出 1 MHz 或 10 MHz,用户可选 幅度范围至50Ω阻抗:-130 dBm ~ +24 dBm (0.2 μV ~ 10 V pk-pk) > 125 MHz:+20 dBm > 1.4 GHz:+14 dBm 至75Ω阻抗:-136 dBm ~ +18 dBm (0.13 μV ~ 6.3Vpk-pk) > 125 MHz:+14 dBm > 1.4 GHz:+8 dBm 幅值分辨力0.001dB 绝对电平准确度100 kHz ~ 125MHz:4GHz: +24 ~ -48 dBm,± 0.05 dB +20 ~ +14 dBm,± 0.25 dB (至1.4GHz) -48 ~ -74 dBm,± 0.2 dB +14 ~ -74 dBm,± 0.5 dB -74 ~ -94 dBm,± 0.5 dB -74 ~ -84 dBm,± 1.0 dB -94 ~ -130 dBm,± 1.5 dB -84 ~ -94 dBm,± 1.0 dB (至3GHz) -94 ~ -130 dBm,±1.5 dB (至3GHz) SSB相位噪 声 使用内部频率参考,(dBc/Hz) 频率 频率偏移 10Hz常规 值(典型值) 100Hz常规 值(典型值) 1kHz常规 值(典型值) 10kHz常规 值(典型值) 100kHz常 规值(典型 值) 1MHz常规 值(典型值) 10MHz常规 值(典型值) 9640A 1GHz ——-97(-102) -118(-112) -118(-112) -124(-130) -142(-144) 9640A-LPN 10MHz -104(-108) -129(-139) -148(-155) -151(-155) -153(-157) -155(-157) -155(-160) 125MHz -92(-95) -117(-124) -140(-145) -144(-149) -147(-152) -153(-154) -153(-156) 250MHz -86(-90) -112(-118) -135(-140) -141(-146) -142(-149) -152(-155) -153(-155) 500MHz -80(-85) -107(-112) -130(-136) -138(-143) -139(-144) -151(-154) -153(-154) 1GHz -74(-78) -101(-106) -125(-130) -134(-138) -134(-138) -148(-152) -151(-153)

函数信号发生器设计报告

函数信号发生器设计报告 目录 一、设计要求 .......................................................................................... - 2 - 二、设计的作用、目的 .......................................................................... - 2 - 三、性能指标 .......................................................................................... - 2 - 四、设计方案的选择及论证 .................................................................. - 3 - 五、函数发生器的具体方案 .................................................................. - 4 - 1. 总的原理框图及总方案 ................................................................. - 4 - 2.各组成部分的工作原理 ................................................................... - 5 - 2.1 方波发生电路 .......................................................................... - 5 - 2.2三角波发生电路 .................................................................... - 6 - 2.3正弦波发生电路 .................................................................. - 7 - 2.4方波---三角波转换电路的工作原理 ................................ - 10 - 2.5三角波—正弦波转换电路工作原理 .................................. - 13 - 3. 总电路图 ....................................................................................... - 15 - 六、实验结果分析 ................................................................................ - 16 - 七、实验总结 ........................................................................................ - 17 - 八、参考资料 ........................................................................................ - 18 - 九、附录:元器件列表 ........................................................................ - 19 -

(Proteus数电仿真)序列信号发生器电路设计

实验8 序列信号发生器电路设计 一、实验目的: 1.熟悉序列信号发生器的工作原理。 2.学会序列信号发生器的设计方法。 3.熟悉掌握EDA软件工具Proteus 的设计仿真测试应用。 二、实验仪器设备: 仿真计算机及软件Proteus 。 74LS161、74LS194、74LS151 三、实验原理: 1、反馈移位型序列信号发生器 反馈移位型序列信号发生器的结构框图如右图 所示,它由移位寄存器和组合反馈网络组成, 从寄存器的某一输出端可以得到周期性的序列 码。设计按一下步骤进行: (1)确定位移寄存器位数n ,并确定移位 寄存器的M 个独立状态。 CP 将给定的序列码按照移位规律每 n 位一组,划分为M 个状态。 若M 个状态中出现重复现象,则应增加移位寄存器的位数。用n+1位再重复上述过程,直到划分为M 个独立状态为止。 (2)根据M 各不同状态列出寄存器的态序表和反馈函数表,求出反馈函数F 的表达式。 (3)检查自启动性能。 (4)画逻辑图。 2、计数型序列信号发生器 计数型序列信号发生器和组合的结构框图 如图 所示。它由计数器和组合输出网络两部分 组成,序列码从组合输出网络输出。设计 过程分为以下两步: (1)根据序列码的长度M 设计模M (2)按计数器的状态转移关系和序列码的要求组合输出网络。由于计数器的状态设置和输出序列没有直接关系,因此这种结构对于输出序列的更改比较方便,而且还能产生多组序列码。 四、计算机仿真实验内容及步骤、结果: 1、设计一个产生100111序列的反馈移位型序列信号发生器。 1、根据电路图在protuse 中搭建电路图

实用信号源的设计和制作(DOC)

实用信号源的设计和制作 目录 第1章设计任务书 (1) 1.1任务 (1) 1.2要求 (1) 第2章总体方案设计 (2) 2.1本设计总体方案 (2) 2.2正弦波信号生成方案 (2) 2.2.1振荡信号的生成方法 (3) 2.2.2RC振荡原理与振荡条件 (3) 2.2.3振荡电路的稳幅方法 (5) 2.3频率步进方案 (6) 第3章电路设计和仿真分析 (8) 3.1RC振荡与稳幅电路设计 (8) 3.1.1电路参数计算 (8) 3.1.2电路仿真与分析 (10) 3.2正弦波调幅电路设计 (11) 3.2.1电路参数计算 (11) 3.2.2电路仿真与分析 (12) 3.3脉冲波生成电路设计 (13) 3.3.1电路参数计算 (13) 3.3.2电路仿真与分析 (14) 3.4频率计的设计 (18) 第4章设计总结 (20) 参考文献 (21) 附录Ⅰ仿真电路图 (22) 附录Ⅱ 10MHZ频率计 (23)

第1章设计任务书 1.1任务 在给定±15V电源电压条件下,设计并制作一个正弦波和脉冲波信号源。 1.2要求 1.基本要求 (1)正弦波信号源 ① 信号频率:20Hz~20kHz步进调整,步长为5Hz ② 频率稳定度:优于10-4 ③ 非线性失真系数≤3% (2)脉冲波信号源 ① 信号频率:20Hz~20kHz步进调整,步长为5Hz ② 上升时间和下降时间:≤1μs ③ 平顶斜降:≤5% ④ 脉冲占空比:2%~98%步进可调,步长为2% (3)上述两个信号源公共要求 ① 频率可预置。 ② 在负载为600Ω时,输出幅度为3V。 ③ 完成5位频率的数字显示。 2.发挥部分 (1)正弦波和脉冲波频率步长改为1Hz。 (2)正弦波和脉冲波幅度可步进调整,调整范围为100mV~3V,步长为100mV。(3)正弦波和脉冲波频率可自动步进,步长为1Hz。 (4)降低正弦波非线性失真系数。

简易信号发生器的设计实现

EDA课程设计简易信号发生器的设计实现 小组成员:XXXXXX XXXXX 专业:XXXXX 学院:机电与信息工程学院指导老师:XXXXXX 完成日期:XX年XX月XX日

目录 引言 (3) 一、课程设计内容及要求 (3) 1、设计内容 (3) 2、设计要求 (3) 二、设计方案及原理 (3) 1、设计原理 (3) 2、设计方案 (4) (1)设计思想 (4) (2)设计方案 (4) 3、系统设计 (5) (1)正弦波产生模块 (5) (2)三角波产生模块 (6) (3)锯齿波产生模块 (6) (4)方波产生模块 (6) (5)波形选择模块 (6) (6)频率控制模块 (6) (7)幅度控制模块 (6) (8)顶层设计模块 (7) 三、仿真结果分析 (7) 波形仿真结果 (7) 1、正弦波仿真结果 (7) 2、三角波仿真结果 (8) 3、锯齿波仿真结果 (8) 4、方波仿真结果 (8) 5、波形选择仿真结果 (9) 6、频率控制仿真结果 (9) 四、总结与体会 (10) 五、参考文献 (10) 六、附录 (11)

简易信号发生器 引言 信号发生器又称信号源或振荡器,在生产实践和科技领域中有着广范的应用。它能够产生多种波形,如正弦波、三角波、方波、锯齿波等,在电路实验和设备检验中有着十分广范的应用。 本次课程设计采用FPGA来设计多功能信号发生器。 一、课程设计内容及要求 1、设计内容 设计一个多功能简易信号发生器 2、设计要求 (1)完成电路板上DAC的匹配电阻选择、焊接与调试,确保其能够正常工作。 (2)根据直接数字频率合成(DDFS)原理设计正弦信号发生器,频率步进1Hz,最高输出频率不限,在波形不产生失真(从输出1KHz正弦转换为输出最高频率正弦时,幅度衰减不得大于10%)的情况下越高越好。频率字可以由串口设定,也可以由按键控制,数码管上显示频率傎。 (3)可以控制改变输出波形类型,在正弦波、三角波、锯齿波、方波之间切换。 (4)输出波形幅度可调,最小幅度步进为100mV。 二、设计方案及原理 1、设计原理 (1)简易信号发生器原理图如下

射频信号发生器

https://www.doczj.com/doc/8310001916.html,/242/2425183.html 2.1 正弦波的产生 2.1.1压控振荡器的原理 压控振荡器主要射频三极管BRF96、变容二极管BB135以及LC谐振回路构成。需要射频三极管BRF96构成放大电路,由电感和两个变容二极管BB13组成的谐振回路充当放大电路的正反馈,从而使电路满足震荡条件。为达到最佳工作性能,在工作频率时要求谐振回路的Q L≥100。电源采用+12V的电压,一对变容二极管与该谐振回路相连,通过调整加在变容二极管上的电压大小改变变容二极管的电容值,从而改变谐振回路的谢振频率。图 2.1.1为压控振荡器电路图。 图2.1.1 压控振荡器原理图 2.1.2 射频三极管BRF96的介绍 BRF96是用于射频或微波频段小信号放大的低压三极管,主要是为高增益、低噪音、小信号功率放大器而设计的。也可用于需要快速切换的时候。它具有高电流增益带宽积、低噪声系数和高功率增益等优点,例如当IC = 30 mA 时,带宽fT = 5 GHz ;当 f = 0.5 GHz时,噪声系数NF = 1.9 dB (typ);f=1GHz时,噪声系数NF =2.5 dB (typ);当f = 0.5 GHz时,最大功率增益Gmax = 16 dB;当f=1GHz时,最大功率增益Gmax =10.9dB (typ)。详细参量如以下各表。 表2.1.2(a)室温下管子的最大静态参数值表

表 2.1.2(b)绝对最大额定值表 表2.1.2(b)三极管S参数表 2.1.3 变容二极管BB135的介绍 BB135是一种线性度好、低串联电阻值、采用SMD封装的变容二极管,采用平面技术制造、SOD323非常小的塑料贴片封装包装。常用于UHF电视调谐器、无线电上变频器和压控振荡器VCO中。最大连续反向耐压值为30V,最大正向连续耐流值为20mA,工作温度范围为-150℃-125℃。其电学参数如表2.1.3所示,反向电压与电容的关系如图2.1.3所示。由图2.1.3可知BB135的线性度比较好,反向电压的范围也比较大。 表2.1.3电学参数表

相关主题
文本预览
相关文档 最新文档