当前位置:文档之家› 年产3000吨高硼硅玻璃电熔窑炉的设计

年产3000吨高硼硅玻璃电熔窑炉的设计

年产3000吨高硼硅玻璃电熔窑炉的设计
年产3000吨高硼硅玻璃电熔窑炉的设计

窑炉课程设计说明书题目:年产3000吨高硼硅玻璃电熔窑炉的设计

前言 .......................................................................................................................... 错误!未定义书签。

一、设计任务及原始资料 (3)

1.1 设计题目: (3)

1.2 设计技术指标、参数: (3)

二、窑型选择 (4)

三、窑体主要尺寸选择 (5)

3.1 熔化池面积 (5)

3.2熔化池的长度和宽的 (6)

3.3 熔化池的深度 (7)

四、电极材料的选择及插入方式 (8)

4.1 电极材料的选择 (8)

4.2 电极尺寸的选择 (9)

4.3 电极插入方式选择 (10)

4.2 电极连接方式选择 (11)

五、耐火材料的选择与计算 (12)

5.1耐火材料的选择 (12)

5.2耐火材料的计算 (13)

六、窑炉电工热工计算 (14)

6.1玻璃熔化热计算 (14)

6.2 玻璃耗电量计算 (15)

6.3玻璃热效率计算 (15)

七、小结 (16)

参考文献 (16)

玻璃电熔技术是目前国际上最先进的熔制工艺,是玻璃生产企业提高产品质量,降低能耗,从根本上消除环境污染的十分有效的途径。对于15t/d以下的小型玻璃熔窑来说,在电力充足和电价适中的地区,用电熔工艺来生产各类玻璃制品的综合经济效益是很理想的;在电价较高的地区,对于彩色玻璃、乳浊玻璃、硼硅酸盐玻璃、铅玻璃、高挥发组分玻璃或特种玻璃生产也是合算的。

过去我国小型电熔窑的应用一直进展不太大,主要原因有两条:首先是人们普遍认为电熔的价格昂贵,熔制成本高,忽视了电熔可带来的整体效益;其次,以往引进的国外电熔窑由于包含大量的技术费用,选材过于讲究,因而投资很大,一座熔化面积不到2m2,日产量4吨的小型电熔窑,少则二三百万元,多则近千万,对于生产一般玻璃制品来说,是难以接受的。即使引进了也往往因为折旧费用过高而被迫停用。我们设计的电熔窑,以我国的国情为基础,根据产品特点确定适当的窑龄,着重考虑综合经济效益,大量采用国产优质材料,在满足产品质量要求的前提下,大大降低了电熔窑的造价。以上述规模的电熔窑为例,包括电极和全套电熔自动控温装置在内的设备投资只需约100万元,每次冷修费用也不过十余万元,为玻璃全电熔技术的广泛应用创造了条件。

玻璃熔窑有如下优点:没有废气,防止空气污染;降低挥发性配合料组分

的挥发;玻璃均匀;降低因结石造成的产品损失;在节假日停产后恢复生产的困难较少;熔窑大修较快;在整个窑期内可始终保持满负荷的出料量;占地面积小;二氧化碳的回收;热量散失减少;玻璃质量好、效率高、成本低;建设投资少;全电熔窑易于调节控制,操作范围广,热工制度比池炉稳定。

总之,在环保要求严格、电价低兼、玻璃熔化困难、玻璃质量要求高、生产规模小时可考虑全电熔窑。

2

一、设计任务及原始资料

1.1设计题目:年产3000吨高硼硅玻璃电熔窑炉的设计1.2设计技术指标、参数:

1、坯料的化学组成(%):

2.熔窑生产能力: G=3000/300=10t/d;

3.熔化率:k=1500kg/(m2?d);

4.k系数:K=0.3;

5.玻璃熔化温度:t=1450 ℃;

6.玻璃液密度:ρ=2.4 t/m3;

7.窑炉长宽比:L/B=1~1.5;

二、窑型选择

我国熔制硼硅酸盐玻璃的电熔窑大多为小型窑,冷顶电熔窑与火焰窑相比具有节能、提高质量、降低成本等显著的优越性。

(1)小型电熔窑有较好的经济性,以日产2.0吨的高硼硅玻璃球窑为例,从燃料和硼挥发两顶进行比较如表1

表1

(2)玻璃质量好,在火焰池窑中由于窑温、窑压、气氛和产量等工艺条件发生变化,都要引起硼的挥发率的变化,使玻璃不均匀。同时火焰窑和热顶电熔窑,硼的挥发严重腐蚀了上部结构,不但缩短了窑炉的寿命,而且碹滴落入玻璃窑内,影响了玻璃质量。冷顶电熔窑完全可以避免上述弊病,获得高质量的玻璃。

本窑炉产量为10t/d。选用小型电窑。

4

三、窑体主要尺寸的确定

3.1 熔化池面积

在确定电熔窑主要尺寸之前,首先要知道所熔制的玻璃成分和窑的日熔化量,电熔窑的熔化率取决于玻璃的种类、电熔窑的大小。玻璃电熔窑的热量是通过所熔化的玻璃的整个体积引入的,应以每天、每立米的体积熔化量来确定电熔窑的结构。表2是现有的一些全电熔窑的面积熔化率。

表2 5

由于配合料的熔化过程仍在窑池表面进行。因此,熔窑的融化池面积让可以用下式计算:

F熔 =G/K

式中:G ——熔窑的生产能力,kg/d;

K ——熔化率,kg/(m2?d)。

则:F熔=10/1.5=6.67(m2)。

3.2熔化池的长度与宽度

L/B越大,投入窑炉的玻璃原料从熔化到完成澄清,其间的玻璃“行程”越长,也越有利于熔化和澄清。早期设计的单元窑熔他是很长的,日产量在8—50t/d,(L/B)5—4。随着单元窑配合料微粉化及熔制工艺和鼓泡技术的发展与成熟,以及窑体耐火材料的质量提高和采用保温技术等措施,使熔池长宽比在3左右,也同样可以获得满意的玻璃质量。

为了提高熔窑的热效率,熔窑的散热比表面积应比较小,熔化池的长度L和宽度B之比,应符合下面条件:

L/B=1~1.5

取L/B=1

则:L=2.58 m,B= 2.58 m。

6

3.3熔化池的深度

电熔窑的深度H取决于在其中连续进行熔化、澄清和冷却三个层次的厚度。很明显,玻璃的熔化率将影响各个层次的厚度,而不同组分的玻璃的熔化率是由配合料的熔透速度和玻璃液完全排除气泡在高温区逗留时间决定的。因此,电熔窑窑深(或高度)H,可由下列经验公式计算:

H=0.1+h1+h2+h3

式中:0.1——通常控制的配合料层高度,m;

H1——配合料与熔体接触面到上排电极上边缘的距离,m;

H2——高温区的高度,m;

H3——下排电极下边缘至窑底得距离,m。

配合料与熔体接触面到上排电极上边缘的距离,可以按下式计算

H1=kb=0.3*成对电极之间的距离=0.3*1.38=0.414 m

H2=0.84*k/ρ=0.525 m

H3=1.1 m

则:H=0.1+h1+h2+h3=0.1+0.414+0.525+1.1=2.1 m

7

四、电极选择及插入方式

4.1电极材料选择

金属电极中以钼电极最为普遍,除含铅玻璃外,是对多种玻璃熔制都适用的材料。钼的熔点高,导电性好,机械强度大,热膨胀系数底,加工容易,不污染玻璃液,是比较理想的电极材料。

1986年某厂从Sorg公司引进一座铅晶质玻璃全电熔窑,该电熔窑的熔化池呈六角形,电极分布在三面池墙上,按△接法或Y接法与三相变压器连接。其优点是允许三相有均衡的负荷。电熔窑横截面电流分布比较均匀。有利于配合料均匀熔化。熔化池与澄清池面积基本相同。熔化池装有三层直径48mm的钼电极。设计熔化能力5.4~6.6T/d。

该电熔窑容量大,玻璃液在熔化池逗留时间较长。熔化率为2.6T/m2·d,单耗为1.12kW·h/kg玻璃。该电熔窑的熔化量具有较大的潜力。其“翻转限”仅比最大熔化量低20%。

在熔制铅玻璃时,由于钼和氧化铅等发生氧化—还原反应,使钼电极受到腐蚀。所以应适当降低电流密度,以减少钼电极损耗,相应减少铅损失,提高玻

璃质量,延长窑炉寿命。

8

4.2电极尺寸选择

(1) 玻璃液电阻率与温度有关

a=3.8306+0.003761*0.8+0.0326*0.12+0.08514*0.003+0.1776*0.051=5.4 706;

b=1.7738+6.254*100000*0.8+0.0087*0.12+0.058*0.003-

0.0539*0.051=1.6257。.

则:=12.88 Ω?cm;

两根水平放置的棒状电极间玻璃液电阻为:

R=n1*n2*(ρ)/(3.14*l)*Ln(b/r)=1.1*1.3*12.88/3.14/100*Ln(138/2.5)=0.24Ω;

(2)电熔窑总功率P

P=G*q=10000/24*2.4=1000 kw

(3) 电熔窑电压 V和电熔窑电流 I

电熔窑通常采用隔离变压器供电。一次电压采用可控硅恒温、恒压(或恒流)控

制仪控制,变压器二次侧通过电极向熔体供电。

计算出的电压和电流,既能供操作时参考,又能用来复核事先选定电极大小和布置位置是否合适。电熔窑的电流、电压按下式计算:

9

=?103式中P为电极功率,R为电阻。

=?103,I P

V PR

R

电压的选择原则:小于耐火材料的最低击穿电压。在保证安全的情况下,尽可能选用高电压,以便降低二次电流。这有利于降低变压器的负载和电极的成本。电压、电流在可控范围内调节的幅度应有较大余量。

则:

上层电极电压电流,V PR

=?103=268.3 v

I P

=?103=1118 A

R

下层电极电压电流,V PR

=?103=219.1 v

=?103=912.9 A

I P

R

(4)电极电流密度 j

J上=I/A=1118/(3.14*2.5*2.5+3.14*5*60)/2=0.6 (A/cm2)

J下=I/A=912.9/(3.14*2.5*2.5+3.14*5*60)/2=0.5 (A/cm2)

4.3电极插入方式选择

电极插入深度与电极性质、数量、电流密度、电熔窑结构等因素有关。如

圆柱形氧化锡电极采取垂直安装方式,插入深度约为250mm,在电熔窑运行期间电极不能推进。如棒状钼电极水平安装,插入深度为300~600mm。随着钼电极逐渐消耗,电极间玻璃电阻不断增加,变压器电压不断升高(使电流

10

保持恒定)。当变压器电压调到极限,应推进钼电极,电流、功率诸参数才能恢复正常。

水平棒状电极是最普遍的布置方式之一。电极或电极对相对布置,电流密度呈层状分布。电极间的距离必须大一些,可避免电流前驱电流密度过大。电极

端部之间的自由距离应大于电极插入部分长度的两倍。电极长度与其直径之比应小于20.电极于池深1/3~1/2侧墙处插入窑内50~90cm。

采用两层四对电极供应,第一层电极与第二层电极的负荷分配之比为60:40。

4.4电极连接方式

当采用单相电源,电流从窑炉的一侧墙流向另一侧墙。不论采用板状或棒状电极,电流从池壁的一侧流向另一侧,都能达到均匀分布的温度场。单相系统多用于正方形或长方形、低容量的电熔窑上,即日产量不超过30T,功率可达1500Kw,一般不会出现相负荷的平衡问题,即使出现也可以使用相平衡设备。板状或棒状电极间的距离,可根据需要来调节,以达到均匀且较小的电流

密度。为整个窑池内创造均匀熔化和澄清的良好条件。

11

五、耐火材料选择与计算

5.1耐火材料的选择

合理选用全电熔窑各部位耐火材料,以满足熔制工艺上的要求,直接关系到电熔窑的产量、玻璃的质量、电熔窑的寿命、投资的成本。因此必须充分重视。

全电熔窑对耐火材料的要求:(1)对玻璃无污染或污染程度很小,(2)在

正常使用温度下,必须具有很高的化学稳定性,能抗配合料和玻璃液的侵蚀,相邻耐火材料之间无接触反应。(3)必须具有很高的高温机械强度。(4)必须具有很高的耐火度。(5)必须具有很高的抗热冲击性能。(6)在正常使用温度下,体积的固定性要好,重烧收缩率和膨胀率应尽可能小。(7)在正常使用温度下,必须具有很高的电阻率。(8)尺寸要准确。

此外,选择耐火材料时要全盘考虑,不要由于局部薄弱环节而对整座电熔窑的寿命造成不良影响。

根据玻璃液熔化温度,以及各个区域对耐火材料的不同要求,选择耐火材料如下表所示:

12

5.2耐火材料的计算

(1)窑底内侧

电熔AZS砖块数=(2.58*2.58*1000000)/(600*113)=99

( 2 ) 窑顶内侧

电熔AZS-33砖块数=(2.58*2.58*1000000)/(230*114)=254

(3)窑墙内侧

硅砖块数=4*(2.58*2.432*1000000)/(500*100)=4*125=500

(4)窑底中间层

粘土砖块数=(2.88*2.88*1000000)/(600*113)=123

13

(5)窑顶中间层

粘土砖块数=(2.88*2.88*1000000)/(230*113)=320

(6)窑墙中间层

粘土砖块数=4*(2.762*2.88*1000000)/(600*113)=4*120=480 (7)窑底外侧

普通砖块数=(3.18*3.18*1000000)/(240*120)=351

(8)窑顶外侧

普通砖块数=(3.18*3.18*1000000)/(240*120)=351

(9)窑墙外侧

普通砖块数=4*(3.092*3.106*1000000)/(240*50)=4*801=3204

总计:硅砖510块;电熔AZS砖102块;电熔AZS-33砖260块;普通砖3920块;粘土砖(230*113*30)325块;粘土砖(600*113*300)610块。

六、窑炉电工和热工计算

6.1玻璃熔化热计算

玻璃熔化热计算:

Qg =q*G

q=404.4 kcal/kg, G=10*1000/24=416.7 kg/h;

14

则: Qg =404.4*416.7=168500 kcal/h;

6.2玻璃耗电量计算

耗电量计算:Q=F*G

F=1.6kw/kg ; G=10*1000/24=416.7 kg/h;

则: Q=1.6*416.7=666.72 kw/h=574206 kcal/h;

6.3玻璃热效率计算

热效率:?=Qg/Q=168500/574206=0.29

15

七、小结

根据生产条件,本窑炉采用小型电窑。窑炉采用长方体结构,结构、工艺简答。供电系统采用单项系统,分上下两层供电,使玻璃液在熔融的基础上保持一段时间的高温。根据玻璃液的熔化温度和各个部位对耐火材料的不同需求,窑顶采用电熔AZS-33砖,窑底采用电熔AZS砖,窑侧面采用硅砖。同时,中间层采用粘土砖保温,最外层用普通砖加固,并根据窑炉尺寸计算出了各砖的具体用量。本窑炉的热效率为29%。

参考文献:

1.玻璃工业热工设备》,孙承绪,武汉工业大学出版社。

2.《玻璃窑炉热工计算与设计》,孙承绪,武汉工业大学出版社。

3.《硅酸盐工业热工基础》,孙晋涛,武汉工业大学出版社。

4.《玻璃工艺学》,西北轻工业学院,中国轻工业出版社。

16

年产3000吨高硼硅玻璃电熔窑炉的设计

窑炉课程设计说明书题目:年产3000吨高硼硅玻璃电熔窑炉的设计

前言 .......................................................................................................................... 错误!未定义书签。 一、设计任务及原始资料 (3) 1.1 设计题目: (3) 1.2 设计技术指标、参数: (3) 二、窑型选择 (4) 三、窑体主要尺寸选择 (5) 3.1 熔化池面积 (5) 3.2熔化池的长度和宽的 (6) 3.3 熔化池的深度 (7) 四、电极材料的选择及插入方式 (8) 4.1 电极材料的选择 (8) 4.2 电极尺寸的选择 (9) 4.3 电极插入方式选择 (10) 4.2 电极连接方式选择 (11) 五、耐火材料的选择与计算 (12) 5.1耐火材料的选择 (12) 5.2耐火材料的计算 (13) 六、窑炉电工热工计算 (14) 6.1玻璃熔化热计算 (14) 6.2 玻璃耗电量计算 (15) 6.3玻璃热效率计算 (15) 七、小结 (16) 参考文献 (16)

玻璃电熔技术是目前国际上最先进的熔制工艺,是玻璃生产企业提高产品质量,降低能耗,从根本上消除环境污染的十分有效的途径。对于15t/d以下的小型玻璃熔窑来说,在电力充足和电价适中的地区,用电熔工艺来生产各类玻璃制品的综合经济效益是很理想的;在电价较高的地区,对于彩色玻璃、乳浊玻璃、硼硅酸盐玻璃、铅玻璃、高挥发组分玻璃或特种玻璃生产也是合算的。 过去我国小型电熔窑的应用一直进展不太大,主要原因有两条:首先是人们普遍认为电熔的价格昂贵,熔制成本高,忽视了电熔可带来的整体效益;其次,以往引进的国外电熔窑由于包含大量的技术费用,选材过于讲究,因而投资很大,一座熔化面积不到2m2,日产量4吨的小型电熔窑,少则二三百万元,多则近千万,对于生产一般玻璃制品来说,是难以接受的。即使引进了也往往因为折旧费用过高而被迫停用。我们设计的电熔窑,以我国的国情为基础,根据产品特点确定适当的窑龄,着重考虑综合经济效益,大量采用国产优质材料,在满足产品质量要求的前提下,大大降低了电熔窑的造价。以上述规模的电熔窑为例,包括电极和全套电熔自动控温装置在内的设备投资只需约100万元,每次冷修费用也不过十余万元,为玻璃全电熔技术的广泛应用创造了条件。 玻璃熔窑有如下优点:没有废气,防止空气污染;降低挥发性配合料组分

高硼硅玻璃介绍

高硼硅玻璃介绍(硼硅酸盐玻璃导言) 作者:发布时间:2010-07-05 15:19:53 浏览次数:106 硼硅玻璃是一种主要的玻璃玻璃形成成分二氧化硅和氧化硼的类型。硼硅酸盐玻璃是最良好具有非常低的热膨胀系数,使他们的抗热冲击已知的,更何况比其他任何普通玻璃。硼硅酸盐玻璃最早是由德国玻璃制造奥托肖特于19世纪的品牌下出售“杜兰杜兰“于1893年。康宁玻璃工程推出后,在1915年耐热,它成为一个在英语世界(但1998年以来,耐热厨房品牌,硼硅玻璃的代名词,是不再硼但钠钙玻璃制造)。 大多数硼硅玻璃是明确的。彩色高硼硅,对艺术玻璃行业,是一次广泛引进保罗特拉特曼1986年成立诺斯斯塔玻璃厂在市场上。现在有一个在美国小企业数量和国外的制造和彩色的硼硅玻璃艺术玻璃市场销售。 除了石英,碳酸钠,碳酸钙和传统的玻璃制作使用,硼是用于硼硅酸盐玻璃制造。通常情况下,所产生的玻璃成分是二氧化硅约70 %,10%氧化硼,氧化钠8%,8%氧化钾,1%氧化钙(石灰)。虽然有点难度,使比传统玻璃(康宁公司的业务进行了重大改革,使之),它是经济生产,因为其卓越的耐用性,化学性和耐热性表现在化学实验室设备,厨具,灯饰,优良的使用在某些情况下,Windows 。 制造过程 硼硅酸盐玻璃制造,加入硼传统玻璃制造的“釉料的水玻璃砂,苏打水“ ,和地面石灰。由于硼硅玻璃在比普通硅酸盐玻璃较高的温度融化,还需要一些新的技术,使工业生产。从焊接贸易借款,结合新的天然气燃烧氧气的需要。 组成和物理特性 硼硅酸盐玻璃具有非常低的热膨胀系数,约有三分之一的普通玻璃。这将减少因温度应力梯度材料造成的,从而使更多的抗断裂。这使它成为像望远镜反射镜,它是必不可少的对象受欢迎的材料有非常小的形状偏差。它还可用于高放射性核废料,其中废物玻璃固定在一个名为通过诸如玻璃化进程(与人造岩石对比处理)。 硼硅酸盐玻璃开始软化约821 ℃(1510 ℉),在此温度下, 7740型粘度高硼硅为107.6砝码。 硼硅酸盐玻璃低于普通玻璃致密。 虽然越来越多的抗性比其他类型的玻璃热冲击,硼硅玻璃仍然可以打击或粉碎时受温度变化迅速或不均匀。当破碎,硼硅玻璃裂纹往往把大块,而不是粉碎(它将单元,而不是分裂)。

玻璃窑炉

国外玻璃窑炉设计现状 1引言 玻璃窑炉设计实际上是综合考虑客户对玻璃窑炉投资,窑炉寿命和运行与维护成本的需求;对玻璃窑炉技术选择,节能和排放问题的设想;以及环境保护,卫生安全等相关法律规定。然后,按照一定的步骤程序提交完整的设计方案,确保窑炉所有重要的性能指标的过程。 由于全球经济相互融合,外国耐火材料企业集团不断以合资、独资、控股等方式进入中国市场,中国耐火材料企业也要走出去。即使在国内,企业最终面临的竞争对手也必然是外国企业。我国虽于2006年9月取消了包括耐火材料等产品的出口退税政策,但是参与国际竞争对激励耐火材料企业提高工艺技术和生产效率,提高耐火原料资源的利用率,强化社会节约意识,控制资源消耗等均起到积极推动作用。如果企业在未知国际化市场资源的情况下,贸然参与竞争是危险的。为此,从合同管理、工程设计和计算机仿真设计三个方面,介绍国外玻璃窑炉设计现状,有助于国内企业开拓窑炉耐火材料出口渠道,稳步进入国际市场。 2玻璃窑炉设计合同管理 国外玻璃窑炉设计代表性的合同管理程序流程如图1所示,它表示出窑炉设计者必须处理的典型问题。 该管理流程有利于客户在招投标过程及合同签署前。获得所有供决策的信息,特别是涉及投标预算编制中有关设备、建筑材料和工程成本的详尽计算数值,尽管这类信息的收集要牵涉到合同签署后的一些程序。

合同管理要求工程文件清晰规范,所有文件诸如图纸、会议记录和概算必须归档便于查询。设计公司利用数据管理系统,集中存储一个工程的所有信息,通过内部电子通讯系统(局域网)等数据共享的管理方式,让专业人员随时查找工程设计数据、工程进度、专业衔接与改进方案,保证工程进展顺畅,避免差错的产生。 3玻璃窑炉的工程设计 玻璃窑炉工程技术因素如窑炉熔化率、能耗及其窑龄,财务因素如投资成本、风险和清偿期限,以及燃料污染程度与燃烧技术的选择等生态环保因素,它们相互关联、互为因果。窑炉工程设计因而需经历一个反复比较、筛选的过程。在国外,该工程设计的许多部分仍建立在经验的基础上。但是,数学模型和测试手段的发展对玻璃窑炉工程设计中工艺参数的检验作用正在增强。表1所列是国外玻璃窑炉设计中应用的有关方法。 客户生产需求理论设计与实验方法 玻璃质量经验,数模仿真,颗粒示踪,气泡示踪排放经验,数模仿真,实验 节能热平衡计算 窑龄经验,试验室试验,无损探伤成本比较经济核算每个玻璃窑炉的熔化系统设计和技术选择取决于客户对玻璃生产数量和质量的需要。通常,在该设计阶段开始利用数学模型进行检验。有关窑炉实际运行性能的详尽知识的积累是数模合理设定的关键,数学模型的精度通过对颗粒示踪方法在模型和实际窑池中结果的比较加以验证。 滞留时间是颗粒示踪方法结果之一,该参数具常规可靠性,能用于预先评估所能获得的玻璃质量。数学模型近年来己发展至预测玻璃中气泡的变化过程。需要指出的是数学模型不能用于设计改变很小的窑炉,玻璃窑炉运行中几个不确定变量的影响足以左右数模的计算精度。数模计算即趋势分析,利用数学模型可以研究确定玻璃窑炉设计显著改善所产生的重大变化。图2所示为数学模型仿真中典型的颗粒示踪路径,其滞留时间较短。 预测玻璃窑炉排放级别的数学模型仍在开发之中,这类数学模型将来对窑炉设计的支持作用会不断增

一窑四线平拉玻璃熔窑设计

摘要介绍了260~300td一窑四线平拉玻璃熔窑的设计情况,包括:熔化部设计,分支通路的布置原则,分支通路长度尺寸的设计,全窑池底结构形式和不同池深的窑底结构处理。 关键词平拉玻璃熔窑设计 天津玻璃厂是我国采用平拉工艺(格法)生产平板玻璃的重点骨干企业。该厂于1986年全套引进了比利时格拉威伯尔公司(Glaverbe1)的平拉玻璃生产技术及主要设备。建设初期为一窑二线,并留有可热接第三线的接口。后来在不停产的情况下,成功地热接了第三线,建成了国内第一条一窑三线的平拉玻璃生产线。长期稳定地生产2 mm厚优质薄玻璃,工厂取得了良好的经济效益,同时为国内多家平拉玻璃企业提供了技术支持。 随着天津市城市建设的发展和环境保护的要求,该生产线所在的地理位置已被规划为商住区,玻璃厂需要搬迁到新址。由于原一窑三线已经完成了两个窑期近17年的运行,拆后可利用的设施已不多,以及要扩大生产能力的考虑,工厂决定新建一条一窑四线平拉玻璃生产线。设计熔化能力260~300t/d,燃料为重油,窑龄8年,玻璃原板宽 度4000 mm,耐火材料立足于全部国产,现将有关设计情况介绍如下: 1 熔化部设计 在80年代引进的一窑三线平拉玻璃熔窑,从窑型尺寸到各部位细部结构看,该熔窑的熔化部在现在看来仍是一座200 t/d级的技术比较先进的熔窑。本次工厂搬迁需要新建同样技术先进的一窑四线,熔化能力为260~300 t/d的熔窑,并要积极采用近年来的各项熔窑新技术。 本设计确定一窑四线平拉玻璃熔窑的熔化部,采用近年来在国内浮法玻璃熔窑上广泛采用的熔化部结构形式,并以某建成投产多年的300 t/d浮法线熔窑做为参照,进行熔化部设计。 1.1 熔化部主要尺寸的确定 按照熔化部的池宽尺寸计算公式: B=9000+ (P-300) ×7 求得该熔窑(按P=300 t/d)的熔化部池宽为:B=9 000 mm。 对于浮法玻璃熔窑来说,熔化部和熔化区的长宽比分别为:K1=3~3.3;K2=1.8~2.0。对于平拉玻璃熔窑来说,为了保证长通路末端玻璃液的成形温度,这两个比值要取得小一些,初步设定熔化部的长宽比为:K1=2.9;熔化区的长宽比为:K2=1.85。计算出熔化部和熔化区池长的初步尺寸: 熔化部池长:L=9 000×2.9=26100 mm, 熔化区池长:Ll=9 000×1.85=16650 mm。

玻璃电熔基础

一玻璃电熔基础 1 玻璃的导电行为 (2) 1.1熔融玻璃的电导率 (3) 1.1.1玻璃的导电性 1.1.2熔融玻璃电导率和温度的关系 1.1.3熔融玻璃电阻率与化学成分的关系 1.1.4混碱效应的应用实例 1.1.5常用的熔融玻璃的电阻率—温度曲线 1.1.6失调角和稳定性准数对玻璃电熔控制的影响 1.1.7熔融玻璃电阻率的计算 1.1.8玻璃的粘度 1.2 电极间玻璃液电阻的计算 (14) 1.2.1欧姆定律的应用 1.2.2板状电极间玻璃液电阻的计算 1.2.3两支平行棒电极间的电阻 1.2.4两列平行放置的棒电极的电阻 1.2.5两支相对放置的棒电极的电阻 1.2.6三相电极的电阻计算 2 电极 (19) 2.1 电极的选择原则 (19) 2.2 钼电极 (19) 2.2.1 钼电极的物理性能 (20) 2.2.2 钼电极的的组织结构变化 (21) 2.2.3 钼电极的化学组成 (22) 2.2.4 钼电极的结构和布置 (28) 2.2.5 电极水套 (40) 2.2.6 钼电极临界电流密度和尺寸的选择 (47) 2.2.7 钼电极的蚀损与保护 (49) 2.2.8 钼电极的电缆联结 (52) 2.2.9 钼电极的使用及注意事项 (53)

2.3 氧化锡电极 (56) 2.3.1氧化锡电极的概述………………………………. 2.3.2氧化锡电极的物理性能 (57) 2.3.3氧化锡电极的化学性能 (62) 2.3.4 氧化锡电极的制造工艺 (62) 2.3.5几种常用的氧化锡电极 (63) 2.3.6 氧化锡电极的安装和使用 (64) 2.3.7 氧化锡电极的的蚀损 (66) 2.4 硅碳棒电热元件 (66) 2.4.1硅碳棒的物理性能 (66) 2.4.2 硅碳棒的化学性能 (67) 2.4.3硅碳棒的老化和涂层保护 (68) 2.4.4硅碳棒的规格与型号 (68) 2.4.5硅碳棒的电气联接 (70) 2.4.6硅碳棒的使用注意事项 (70) 2.5二硅化钼发热体 (72) 2.5.1硅钼棒的理化性能 (72) 2.5.2安装方法 (75) 2.5.3使用要点 (76) 2.6石墨电极 (80) 2.7铂电极 (81) 2.8 冷却水系统 (81) 3 供电与控制 (84) 3.1 供电及控制系统 (85) 3.1.1可控硅+隔离变压器 3.1.2可控硅+磁性调压器 3.1.3感应调压器+隔离变压器 3.1.4抽头变压器 3.1.5T型变压器 3.2 可控硅控制系统 (92)

高硼硅玻璃电熔炉操作维护说明书

高硼硅玻璃电熔炉操作维护说明书 ________________________________________ 第一部分玻璃电熔的原理及优点 玻璃是熔融、冷却、固化的非结晶无机物,具有一系列非常可贵的特性: 透明(或色彩绚丽)、坚硬、良好的耐蚀、耐热和电学、光学性质,可以制成平板、器皿、瓶罐、太阳能管、建筑玻璃、工艺美术品等,已成为人民生活用品的一部分。并广泛应用于建筑、容器包装、电子、照明、光学、化学仪器、国防等多个行业和领域,而且随着玻璃制作技术的不断提高,应用的范围也更加广泛。 玻璃有以下电学特性:低温时玻璃是非常好的绝缘体,近年来,发达国家和发展中国家输变电网中的很多器件均采用玻璃制品绝缘,但是在高温状态下,玻璃就变成了一种电导体。熔融玻璃含有碱金属钠、钾离子,它具有导电性能,当电流通过时,会产生焦耳热效应,热量够大时,则可以用来熔化玻璃,这就是所谓的玻璃电熔技术。 电熔方法与传统火焰式加热熔炉比较有许多明显的优点: 1、利用玻璃液直接作为焦耳热效应的导电体,热效率可以高达80—85%,节约能源。 2、炉型结构简单,占地面积小。 3、降低噪音、消除公害、污染小、改善劳动条件。 4、减少昂贵原材料氧化物挥发,熔制出的玻璃液成分均匀,产品质量高。 5、熔制生产过程便于实现自动化操作,控制平稳。 6、电熔炉大修过程费用少,并且时间短。 第二部分全电熔炉炉体概述 全电熔炉主要包括熔炉主体、电气系统、钢结构、循环水、电炉加热和测温元件五部分。电炉主体 在结构上分为熔化池、流液洞、上升道、料道、料盆五部分,在性能上分为熔化区和非熔化区。 熔化区设计采用冷顶式垂直熔化原理,将熔化过程集中。熔化区平面为圆形,上下结构为T型,熔化区顶部采用粘土质耐火材料砌筑。熔化区形状的设计有利于玻璃熔化及均化,并在不留熔化死区,最大限度的保证玻璃在熔化区的熔化和澄清,因而能确保熔化出高质量的玻璃液。 熔化区和非熔化区与玻璃液接触的材料全部采用电熔AZS,其它外层材料由各种不同型号的粘土砖、轻质粘土保温砖和硅酸铝制品构成。 熔炉中主要耐火材料如下: 熔化池池壁33#、41#氧化一WS--AZS 流液洞和上升道池壁33#、41#氧化一WS--AZS 池底砖33#氧化一WS—AZS 料道33#、41#氧化一WS—AZS 熔化池炉顶砖粘土砖

[精品文档]玻璃窑炉设计技术之单元窑

[精品文档]玻璃窑炉设计技术之单元窑玻璃窑炉设计技术之单元窑 第一章单元窑 用来制造E玻璃和生产玻璃纤维的窑炉~通常采用一种称为单元窑的窑型。它是一种窑池狭长~用横穿炉膛的火焰燃烧和使用金属换热器预热助燃空气的窑炉。通过设在两侧胸墙的多对燃烧器~使燃烧火焰与玻璃生产流正交~而燃烧产物改变方向后与玻璃流逆向运动。因此在单元窑内的玻璃熔化、澄清行程长~比其它窑型在窑内停留时间长~适合熔制难熔和质量要求高的玻璃。单元窑采用复合式燃烧器~该燃烧器将雾化燃料与预热空气同时从燃烧器喷出~经烧嘴砖进入窑炉内燃烧。雾化燃料处在燃烧器中心~助燃空气从四周包围雾化燃料~能达到较好的混合。所以与采用蓄热室小炉的窑型相比~燃料在燃烧过程中更容易获得助燃空气。当空气过剩系数为1.05时能完全燃烧~通过调节燃料与助燃空气接触位臵即可方便地控制火焰长度。由于使用多对燃烧器~分别调节各自的助燃风和燃料量~则可以使全窑内纵向温度分布和炉内气氛满足玻璃熔化与澄清的要求~这也是马蹄焰窑所无法达到的。单元窑运行中没有换火操作~窑内温度、气氛及窑压的分布始终能保持稳定~这对熔制高质量玻璃有利。现代单元窑都配臵有池底鼓泡~窑温、窑压、液面及燃烧气氛实行自动控制等系统~保证了难熔的E玻璃在较高熔化率下能获取用于直接拉制玻璃纤维的优质玻璃液。所以迄今在国际上单元窑始终是E玻璃池窑拉丝的首选窑型。 单元窑与其它窑型相比的不足之处是能耗相对较高。这是因为单元窑的长宽比较大~窑炉外围散热面积也大~散热损失相对较高。采用金属换热器预热助燃空气的优点是不用换火~缺点是空气预热温度~受金属材料抗氧化、抗高温蠕变性能的

制约~一般设计金属换热器的出口空气温度为650,850?。大多数单元窑热效率在15%以内~但如能对换热器后的废气余热再予利用~其热效率还可进一步提高。 配合料在单元窑的一端投入~投料口设在侧墙的一边或两边~也有设在端墙上的。熔化好的玻璃从另一端穿过沉式流液洞流至称为通路的拉丝作业部。 第一节单元窑的结构设计 一、单元窑熔化面积的确定 单元窑熔化面积可用公式 F= G/g 2表示。式中 F—熔化面积~M, 2 g—熔化率~,t/M〃d,。 熔化率反映单元窑的设计和生产管理水平~包括原料成分、水分、质量的控制和窑炉运行的控制水平等~同时还与纤维直径有关。一般拉制纺织纱的单元22窑~g取 0.8,1.0 t/M〃d~拉制粗直径纱时可取略大一些1.5 t/M〃d。早期的技术资料表明当年的单元窑平均日产玻璃的熔化面积~可见现在已有较大进步。 二、熔池长、宽、深的确定 ,1,池长L和池宽B是根据熔化面积和熔池长宽比,L/B,来决定的。即: F B=————平方米 L/B L/B越大~投入窑炉的玻璃原料从熔化到完成澄清~其间的玻璃“行程”越长~也越有利于熔化和澄清。早期设计的单元窑熔他是很长的~日产量在8—50t/d ~,L/B,5,4。随着单元窑配合料微粉化及熔制工艺和鼓泡技术的发展与成熟~以及窑体耐火材料的质量提高和采用保温技术等措施~使熔池长宽比在3左右~也同

各种玻璃的物理和化学性能

Ⅰ.GG17耐高温玻璃 GG17耐高温玻璃性能完全符合ISO3583国际标准,是一种高硼硅玻璃,具有优良的物理化学性能,它的含硅量在80%以上,玻璃的内部结构稳定性极为良好,因而具有较好的机械性能和化学性能;由于它的低热膨胀系数,能更好的耐受较高的温差,并具有良好的灯焰加工性能,是制造实验室用各种加热器皿、结构复杂的玻璃仪器、化工设备和压力水表玻璃等的良好玻璃材料。 具体的物理化学性能如下: 含硅量80%以上 应变温度520℃ 退火温度560℃ 软化温度820℃ 折射率 1.47 透光率(2mm) 92% 弹性模量67KNmm-2 抗张强度40-120Nmm-2 玻璃应力光学常数 3.8×10-6mm2 /N 加工温度(104dpas) 1220℃ 线膨胀系数(20-300℃) 3.3×10-6K-1 密度(20℃) 2.23gcm-1 比热0.9Jg-1K-1 导热率 1.2Wm-1K-1 耐水性能(ISO 719) 1级 耐酸性能(ISO 195) 1级 耐碱性能(ISO 695) 2级 耐热急变玻棒法玻棒Φ6×30mm 300℃ 关于GG17玻璃的几点说明 a.GG17玻璃制造的仪器如需长期加热和加压,它的最高安全操作温度不应超过应变温度(520℃)。它在加热到退火温度时,不易变形,如放在适当支架上,且内部不受压力情况下,可以在短时间内加热到600℃,在此情况下,应使仪器缓慢冷却,藉以减少产生永久应力的程度。 b.GG17玻璃管(在25℃时)的安全工作压力可根据下式计算: P=140T/D P为安全工作压力单位为kg/cm2 T为玻璃管壁厚D为玻璃管内径单位为mm 上式公式不适用于具有平底的玻璃管 c.GG17玻璃化学组成:(%) SiO2 B2O3 Al2O3 Na2O K2O 80.5 12.8 2 4 0.4 Ⅱ.“九五”耐高温玻璃 九五料玻璃是一种低碱高硼硅玻璃,不含钙镁锌及铂元素,具有较好的物理和化学性能,用于制造各种玻璃仪器。 具体的物理化学性能如下: 含硅量79%

玻璃窑炉烟气量计算

焦炉气,又称焦炉煤气。是指用几种烟煤配制成炼焦用煤,在炼焦炉中经过高温干馏后,在产出焦炭和焦油产品的同时所产生的一种可燃性气体,是炼焦工业的副产品。焦炉气是混合物,其产率和组成因炼焦用煤质量和焦化过程条件不同而有所差别,一般每吨干煤可生产焦炉气300~350m3(标准状态)。其主要成分为氢气(55%~60%)和甲烷(23%~27%),另外还含有少量的一氧化碳(5%~8%)、C2以上不饱和烃(2%~4%)、二氧化碳(%~3%)、氧气%~%))、氮气(3%~7%)。其中氢气、甲烷、一氧化碳、C2以上不饱和烃为可燃组分,二氧化碳、氮气、氧气为不可燃组分。 两炉用一个烟囱排烟,烟囱内径3600mm,一炉一昼夜燃烧煤气20000Nm3,煤气含硫(硫化氢)小于1000mg/Nm3,一昼夜烧玻璃原料75t,原材料由石英砂、长石、碳酸钠、硼砂等原料组成,原材料含水率6%,窑炉压力+,一条窑配备一个助燃风机,助燃风机功率为,风量1500~1800m3/h,全压为5000Pa,转速2900,烟道为砖圈,从地下接入烟囱,烟气入烟囱温度为400℃,压力为500Pa,烟囱高度40m。 以下为烟气量计算过程: -反应计算 煤气燃烧发生的主要化学发应: 2H2 + O2 = 2H2O CH4 + 2O2 = CO2 + 2H2O 2CO + O2 = 2CO2 2H2S + 3O2 = 2SO2+2H2O H2O(液)+热量= H2O(气)(原料中的水气化) 入口空气和煤气温度按20℃计算, 为便于计算,根据煤气成分含量对各组分进行计算: 氢气含量按57%计算(体积分数); 甲烷含量按27%计算(体积分数); 一氧化碳含量按8%计算(体积分数); 二氧化碳为3%计算(体积分数) 氮气含量按5%计算(体积分数);

玻璃窑炉结构和各部位使用耐火材料汇编

玻璃窑炉结构和各部位使用耐火材料

玻璃窑炉结构和各部位使用耐火材料 发布时间:2014-7-28 14:52:09 点击率:159 玻璃窑窑型结构及内衬耐材 2008-05-12 20:22:42| 分类:默认分类 |举报 |字号订阅 耐火材料是玻璃熔窑的主要构筑材料,它对玻璃质量、能源消耗乃至产品成本都有决定性的影响。玻璃熔制技术的发展在很大程度上依赖于耐火材料制造技术的进步和质量的提高。 玻璃熔窑的炉型结构 对于大型浮法线来说,玻璃窑的构成通常由L型吊墙(通常使用硅砖)、熔化部(与玻璃液直接接触的地方使用电熔砖,靠上部使用硅砖或电熔)、卡脖(通常使用硅砖)、冷却部包括耳池(与玻璃液直接接触的地方通常使用刚玉质材料,不与玻璃液接触的地方使用硅砖或刚玉)、退火窑()、蓄热室(由黏土、高铝、直接结合镁铬砖)等部分构成。 玻璃熔窑主要部位的使用条件及耐火材料的选择 1、碹顶 玻璃熔窑熔化部和冷却部的碹顶(包括拱角),该部位经常处于1600℃的作业温度下,使用在该部位的耐火材料既要受到高温、荷重而又要受到碱蒸汽及配合料的冲刷作用,因此,用作顶部的材质必须具备高的耐火度、高的荷重软化温度及良好的耐蠕变性,而且导热系数小,高温下的侵蚀物不污染玻璃液,容重较小,高温强度好等特点。而优质高纯硅砖恰恰具备以上特点:1、荷重温度高接近耐火度;2、高温下稳定性好,强度高;3、由于主要成分SiO2,含量>96%,与玻璃组成的主要成分相同,所以高温下的侵蚀物基本不污染玻璃液;4、价格便宜。所以,目前在大型玻璃碹顶,高纯优质高纯硅砖成为各玻璃生产厂家的首选。

配合飞料和碱蒸汽与耐火材料的高温化学反应所产生的化学侵蚀,以及由于温度和物相迁移所产生的晶型转化和组织结构致密性变化是造成碹顶砖损毁的主要原因。研究结果表明:碹顶用优质玻璃窑硅砖,在高温作用下的蚀变过程基本上是相变和杂质迁移,化学侵蚀和熔解作用极其轻微。相变和自净化的结果,使工作带逐渐改变性能,其高温性能得到提高。(下图为优质硅砖使用后图片) 2、池壁 (不与玻璃液接触的部位)(与玻璃液接触的部位) A)、与玻璃液接触的部位 熔化部与冷却部池壁与玻璃液直接接触的部分,受到高温玻璃液引起的化学侵蚀和玻璃液流动引起的机械物理冲刷,这个部位对耐火材料最主要的要求是具有良好的抗玻璃液侵蚀性能,同时不污染玻璃液。国内外普遍采用电熔锆刚玉砖和α-β刚玉砖、β刚玉砖砌筑。电熔锆刚玉砖的高温性能和抗玻璃液的性能优异,这是它获得了烧结耐火材料不可能获得的抗侵蚀性极好的斜锆英石与α-Al2O3的共晶体,所以它作为熔化部池壁砖特别合适。α-β刚玉砖、β刚玉砖的主要晶相是刚玉,玻璃相含量仅为1-2%,具有良好的抗侵蚀性能,与电熔锆刚玉砖相比,由于不含有ZrO2晶体,其反应层黏度小,高温下不稳定,所以砖的表面与玻璃液之间的扩散速度较大,窑衬损毁较快。但在使用温度低于1350℃时,α-β刚玉砖、β刚玉砖的抗侵蚀性能优于电熔锆刚玉砖。因此α-β刚玉砖、β刚玉砖是冷却部(工作部)等部位比较理想的耐火材料。 B)、不与玻璃液接触的部位 熔化部与冷却部池壁不与玻璃液直接接触的部分(也叫胸墙),这个部位主要受碱蒸汽及配合料的冲刷作用,根据设计的不同,有的使用刚玉质材质,有的使用硅砖,这2种材料都能满足要求。对于硅砖来说挂钩砖、直型砖都使用在该部位。 3、蓄热室

第一篇高硼硅玻璃简介

第一篇高硼硅玻璃简介 Document number【SA80SAB-SAA9SYT-SAATC-SA6UT-SA18】

第一篇高硼硅玻璃简介 一、玻璃的概念及(yi _bo li de gai nian ji)性质 二、高硼硅玻璃简介 三、高硼硅玻璃生产工艺流程 一、配合料制备工艺流程 原料的领取—原料的称辆原料的混合 本工序的主要任务是:根据料方称量出各种复合工艺要求的化工矿石原料,然后在混料机中均匀混合,制备出合乎工艺要求的配合料,再把配合料送至窑头料仓。 本工序为特殊工序(ben3 gong1 xu4 wei4 te4 shu1 gong1 xu4),配合料的质量,是根据其均匀度与化学组成的正确性来评定的。 二、高硼硅玻璃采用的原料、质量标准及作用 石英砂(SiO2)、硼砂(Na2B4O7·10H2O,Na2B4O7·5H2O)、硼酸(H3BO3)、 氢氧化铝(Al(OH)3)、食盐(NaCl)、碎玻璃。 1、石英砂:主要引入二氧化硅(SiO2)。二氧化硅是重要的玻璃形成氧化物,熔点为1800℃,在玻璃中以硅氧四面体[SiO4]的结构单元形成不规则的连

续结(de0 jie2 gou4 dan1 yuan2 xing2 cheng2 bu4 gui1 ze2 de0 lian2 xu4 jie2)构,构成玻璃的骨架。二氧化硅能降低玻璃的热膨胀系数,进步玻璃的热稳定性、化学稳定性、软化温度、耐热性、硬度、机械强度、透明度和粘度。 质量标准: A)成份: 安徽凤阳SiO2≥% Fe2O3≤% B)粒度: 全部通过60# 60-140#≥80% 200#以上≤5% C)外观:一般为白色 D)水分≤% 2、硼砂:熔制时引入Na2O和B2O3,B2O3易挥发。B2O3能降低玻璃的热膨胀系数,进步玻璃的热稳定性、化学稳定性,改善玻璃的光泽,进步玻璃的机械强度。B2O3在高温时能降低玻璃的粘度,在低温时则进步玻璃的粘度。B2O3还起助熔作用。 质量标准:十水硼砂(Na2B4O7·10H2O)a) 成份:B2O3≥%;Na2O≥15% b) 外观:一般(wai guan _yi ban)为白色结晶体

玻璃熔窑设计

目录 前言 (1) 第一章浮法玻璃工艺方案的选择与论证 (3) 1.1平板玻璃工艺方案 (3) 1.1.1有曹垂直引上法 (3) 1.1.2垂直引上法 (3) 1.1.3压延玻璃 (3) 1.1.4 水平拉制法 (3) 1.2浮法玻璃工艺及其产品的优点 (4) 1.3浮法玻璃生产工艺流成图见图1.1 (5) 图1.1 (5) 第二章设计说明 (6) 2.1设计依据 (6) 2.2工厂设计原则 (7) 第三章玻璃的化学成分及原料 (8) 3.1浮法玻璃化学成分设计的一般原则 (8) 3.2配料流程 (9) 3.3其它辅助原料 (10) 第四章配料计算 (12) 4.1于配料计算相关的参数 (12) 4.2浮法平板玻璃配料计算 (12) 4.2.1设计依据 (12) 4.2.2配料的工艺参数; (13) 4.2.3计算步骤; (13) 4.3平板玻璃形成过程的耗热量的计算 (15) 第五章熔窑工段主要设备 (20) 5.1浮法玻璃熔窑各部 (20) 5.2熔窑主要结构见表5.1 (21) 5.3熔窑主要尺寸 (21) 5.4熔窑部位的耐火材料的选择 (24) 5.4.1熔化部材料的选择见表5.3 (24) 5.4.2卡脖见表5.4 (25) 5.4.3冷却部表5.5 (25) 5.4.4蓄热室见表5.6 (25) 5.4.5小炉见表5.7 (26) 5.5玻璃熔窑用隔热材料及其效果见表5.8 (26) 第六章熔窑的设备选型 (28) 6.1倾斜式皮带输送机 (28) 6.2毯式投料机 (28)

6.3熔窑助燃风机 (28) 6.4池壁用冷却风机 (29) 6.5碹碴离心风机4-72NO.16C (29) 6.6L吊墙离心风机9-26NO11.2D (29) 6.7搅拌机 (29) 6.8燃油喷枪 (29) 6.9压缩空气罐C-3型 (29) 第七章玻璃的形成及锡槽 (30) 第八章玻璃的退火及成品的装箱 (32) 第九章除尘脱硫工艺 (33) 9.1除尘工艺 (33) 9.2烟气脱硫除尘 (33) 第十章技术经济评价 (34) 10.1厂区劳动定员见表10.1 (34) 10.2产品设计成本编制 (35) 参考文献 (38) 致谢 (39) 摘要 设计介绍了一套规模为900t/d浮法玻璃生产线的工艺流程,在设计过程中,原料方面,对工艺流程中的配料进行了计算;熔化工段方面,参照国内外的资料和经验,对窑的各部位的尺寸、热量平衡和设备选型进行了计算;分析了环境保护重要性及环保措施参考实习工厂资料,在运用相关工艺布局的基础下,绘制了料仓、熔窑、锡槽、成品库为主的厂区平面图,具体对熔窑的结构进行了全面的了解,绘制了熔窑的平面图和剖面图,还有卡脖结构图,整个设计参照目前浮法玻璃生产的主要设计思路,采用国内外先进技术,进行全自动化生产,反映了目前浮法生的较高水平。 关键词:浮法玻璃、熔窑工段、设备选型、工艺计算。

高硼硅玻璃

高硼硅玻璃 高硼硅玻璃,是一种低膨胀率、耐高温、高强度、高硬度、高透光率和高化学稳定性的特殊玻璃材料,与普遍玻璃相比,无毒副作用,其机械性能,热稳定性能,抗水、抗碱、抗酸等性质大大提高,可广泛用于化工、航天、军事、家庭、医院等各个领域,可制成灯具、餐具、标盘、望远镜片,洗衣机观察孔,微波炉盘,太阳能热水器等多种产品,具有良好的推广价值和社会效益,该种玻璃在我国出现是基础材料工业的又一次新革命。 因其优异的性能,被广泛应用于太阳能、化工、医药包装、电光源、工艺饰品等行业。它的良好性能已得到世界各界的广泛认可,特别是太阳能领域应用更为广泛,德、美等发达国家已进行了较为广泛的推广。 高硼硅玻璃的线膨胀系数是3.3士0.1×10-6/K,是以氧化钠(Na2O)、氧化硼(B2O2)、二氧化硅(SIO2)为基本成份的一种玻璃。该玻璃成分中硼硅含量较高,分别为硼:12.5~13.5%,硅:78~80%,故称此类玻璃为高硼硅玻璃 氧化硼能与许多和二氧化硅不能形成玻璃的氧化物、氟化物等形成玻璃。故可以宽广的范围内根据需要调整性能,如特高折射率、低色散、特殊色散的光学玻璃,特高热膨胀系数的电真空封接玻璃,辐射计、测量仪器玻璃,防辐射玻璃等可由硼酸盐玻璃制造。 高硼硅玻璃,耐酸耐碱耐水,抗腐蚀性能优越,拥有良好的热稳定性、化学稳定性和电学性能,故具有抗化学侵蚀性、抗热冲击性、机械性能好、承受温度高等特性。 高硼硅玻璃,是利用玻璃在高温状态下导电的特性,通过在玻璃内部加热来实现玻璃熔化,经先进生产工艺加工而成。 高硼硅玻璃具有非常低的热膨胀系数耐高温,耐200度的温差剧变。高硼硅玻璃用于卤素灯的反光耐热灯杯和必须采用耐热玻璃的电器设备,如微波炉专用玻璃转盘、微波炉灯罩、舞台灯光反射杯、滚筒洗衣机观察窗、等耐热茶壶茶杯。

课程设计:日产8吨高硼硅玻璃窑炉设计

日产8吨的高硅硼玻璃的全电熔窑炉设计

1.前言 所谓全电容窑炉,通常是指配合料熔成导电介质后,玻璃液体本身成为电阻组件,实现玻璃的连续融化。但配合料(含有部分熟料)未熔成导电介质之前,即在烤窑阶段,仍需要气体或液体来加热。 玻璃电熔技术是目前国际上最先进的熔制工艺,是玻璃生产企业提高产品质量,降低能耗,从根本上消除环境污染的十分有效的途径。对于15t/d以下的小型玻璃熔窑来说,在电力充足和电价适中的地区,用电熔工艺生产各种玻璃制品的综合经济效益是很理想的;在电价高的地区,对于生产彩色玻璃、乳浊玻璃、硅酸盐玻璃、铅玻璃、高挥发组分玻璃或特种玻璃也是很合算的。 电熔窑炉产生的废气量少,防止空气污染;能降低挥发性配合料组分的挥发;降低因结石造成的产品损失;而且玻璃成分均匀,在整个窑炉期间可始终保持满负荷的出料量。另外它的建设投资少,占地面积小。玻璃质量好,效率高,但成本低。玻璃电熔窑炉也有耐火寿命短的缺陷,而且窑炉的用电成本和初期安装成本高。 玻璃电熔窑炉工作原理:玻璃在低温下几乎是绝缘的,但在高温下熔融的玻璃是一种良导体。玻璃电熔窑炉就是将电流引入玻璃液中,玻璃液直接通电加热,通电后两极间的玻璃液在交流电的作用下产生焦耳热,从而达到熔化和调温的目的。玻璃液之所以具有导电性,主要是因为电荷通过离子发生迁移。 导电性的难易是以电阻率ρ(Ω·cm)或其倒数σ((Ω·cm)-1)来表示,ρ值越小,则电导本领越强。玻璃在室温下为绝缘体,它的电导率约为10-13~10-15(Ω·cm)-1。如果提高温度,玻璃的电导率会急剧增加,在熔融状态可达到0.1~1(Ω·cm)-1。电熔化能用来融化几乎所有品种的玻璃以及某些呈现高阻值的硅酸盐材料。各种玻璃的电导率随其成分不同可有很大差别,对同一种玻璃,电导率则是温度的函数。在网状结构中,含有其他改良剂离子时,能降低Na+离子的迁移和玻璃的电导率。例如,加入Ca2+,Ba2+,Pb2+离子会大大增加玻璃的电导率。 玻璃的电阻率强烈依赖于温度,这是因为网状结构空穴中的改良离子,在

高硼硅玻璃的熔制

高硼硅玻璃的熔制 第一篇高硼硅玻璃简介 一、玻璃的概念及性质 二、高硼硅玻璃简介 三、高硼硅玻璃生产工艺流程 一、玻璃的概念及性质 玻璃是一种熔融、冷却、固化的非结晶态的无机物。具有透明,坚硬,良好的耐腐蚀、耐热和电学、光学性质;能够用多种成型和加工方法制成各种形状和大小的制品;可以通过调整化学组成改变其性质,以适应不同的使用要求。高硼砂玻璃主要组成成份: SiO2,Al2O3,B2O3,Na2O+K2O 。 二、高硼硅玻璃简介 1、高硼硅玻璃的性质 (1)有很低的热膨胀系数,因而热稳定性好。 (2)硬度大,抗磨耗性好,相同条件下只有一般玻璃磨耗性的四分之一,制品表面损伤小,使用寿命长。 (3)导热性高,由于高硼硅玻璃不会被腐蚀生成氧化膜,因此它的导热性能高。 (4)电阻率大,由于高硼硅玻璃组成中一价金属离子少,因而介电常数小,电阻率高,是一种优质的电真空玻璃。 (5)化学稳定性好,这种玻璃对水和酸的侵蚀有着很强的抵抗能力,但抗碱性差。 2、高硼硅玻璃的工艺特点: (1)、熔化温度高(1680℃)。一般选用适当的澄清剂(高温澄清剂NaCL)、使用高质量的耐火材料、采用电辅助加热和全电熔技术。

(2)、硼挥发。选用合适的原料,采取密封料道等技术。 (3)、玻璃液的分层。提高下层玻璃液的温度,以改善其流动性减少分层,并采用炉底排料装置。(全电熔技术的应用) (4)、玻璃液易分相。选择合适的玻璃成份,合理的加工工艺。 3、高硼硅玻璃的理化性能 高硼硅玻璃的膨胀系数:33*10-7℃-1 高硼硅玻璃的密度:2.23±0.02g/cm3 高硼硅玻璃耐酸耐水一级、耐碱二级。 高硼硅玻璃的退火温度560±10℃,软化点温度810±10℃ 工作点温度1260±10℃,转变点温度525±15℃,应变点515±10℃ 三、高硼硅玻璃生产的工艺流程 配料工序—熔化工序—成型工序—退火工序—包装工序 配料工序:配合料的制备 熔化工序:配合料的熔化,玻璃液的形成(玻璃熔制过程分为五个阶段:硅酸盐的形成、玻璃液形成、澄清、均化和冷却) 成型工序:玻璃液的成型 退火工序:玻璃半成品应力的消除 包装工序:成品包装 四、碎玻璃的使用 五、配料工序对熔化的影响 六、配料工序产生的缺陷 七、配料工序操作规程及工艺规程

全电熔玻璃窑

第二篇全电熔玻璃窑 6 全电熔玻璃窑概述 (1) 6.1全电熔窑的优缺点 (1) 6.1.1全电熔窑的优点 (1) 6.1.2全电熔窑的缺点 (1) 6.2全电熔窑的分类 (3) 6.2.1热顶电熔窑 (3) 6.2.2半冷顶电熔窑 (4) 6.2.3冷顶电熔窑 (5) 6.2.4含有高挥发性组份的玻璃电熔窑 (5) 6.2.5熔化深色玻璃的电熔窑 (6) 6.2.6小型电熔窑 (7) 6.2.7中型和大型熔窑 (7) 6.3 全电熔窑一览 (7) 6.3.1Gornelius电熔窑 (7) 6.3.2 Souchon-Neuvesel窑 (11) 6.3.3 Borel窑 (12) 6.3.4 W. Konig窑 (15) 6.3.5 Grebenshtchirkov窑 (16) 6.3.6 Penberthy窑 (17) 6.3.7双室电熔窑 (19) 6.3.8铅晶质玻璃电熔窑(T型窑) (25)

6.3.9六角形竖井式电熔窑(德国SORG公司设计的VSM电熔窑) (27) 6.3.10“波歇”(Pochet)窑 (28) 6.4全电熔窑的熔制特性及其对配合料的要求 (28) 6.4.1电熔窑中的液流情况 6.4.2配合料的制配 6.4.3配合料的化学反应 6.5 玻璃电熔窑是玻璃厂防止环境污染的有力举措 (30) 6.5.1全电熔窑的熔化反应降低了有毒气体(如SO2、NO X)的排放量 (31) 6.5.2降低有害的挥发性玻璃组份 (32) 6.5.3降低挥发到空气中的尘粒 (32) 6.5.4降低了窑炉周围的操作温度 (32) 6.5.5降低了燥音 (32) 6.6玻璃全电熔窑的技术经济分析 (33) 6.6.1粉尘或废气净化设备 (33) 6.6.2能源消耗和热效率 (34) 6.6.3基建投资 (35) 6.6.4节约的挥发性原料 (36) 6.6.5全电熔窑的技术经济分析实例 (36) 7 全电熔窑的结构设计 (38) 7.1全电熔窑的形状 (38) 7.2全电熔玻璃窑炉的加料 (41) 7.2.1垄式加料机 (42)

高硼硅玻璃

高硼硅玻璃 内部编号:(YUUT-TBBY-MMUT-URRUY-UOOY-DBUYI-0128)

高硼硅玻璃 高硼硅玻璃,是一种低膨胀率、耐高温、高强度、高硬度、高透光率和高化学稳定性的特殊玻璃材料,与普遍玻璃相比,无毒副作用,其机械性能,热稳定性能,抗水、抗碱、抗酸等性质大大提高,可广泛用于化工、航天、军事、家庭、医院等各个领域,可制成灯具、餐具、标盘、望远镜片,洗衣机观察孔,微波炉盘,太阳能热水器等多种产品,具有良好的推广价值和社会效益,该种玻璃在我国出 因其优异的性能,被广泛应用于太阳能、化工、医药包装、电光源、工艺饰品等行业。它的良好性能已得到世界各界的广泛认可,特别是太阳能领域应用更为广泛,德、美等发达国家已进行了较为广泛的推广。 高硼硅玻璃的线膨胀系数是士×10-6/K,是以氧化钠(Na2O)、氧化硼(B2O2)、二氧化硅(SIO2)为基本成份的一种玻璃。该玻璃成分中硼硅含量较高,分别为硼:~%,硅:78~80%,故称此类玻璃为高硼硅玻璃 氧化硼能与许多和二氧化硅不能形成玻璃的氧化物、氟化物等形成玻璃。故可以宽广的范围内根据需要调整性能,如特高折射率、低色

散、特殊色散的光学玻璃,特高热膨胀系数的电真空封接玻璃,辐射计、测量仪器玻璃,防辐射玻璃等可由硼酸盐玻璃制造。 高硼硅玻璃,耐酸耐碱耐水,抗腐蚀性能优越,拥有良好的热稳定性、化学稳定性和电学性能,故具有抗化学侵蚀性、抗热冲击性、机械性能好、承受温度高等特性。 高硼硅玻璃,是利用玻璃在高温状态下导电的特性,通过在玻璃内部加热来实现玻璃熔化,经先进生产工艺加工而成。 高硼硅玻璃具有非常低的热膨胀系数耐高温,耐200度的温差剧变。高硼硅玻璃用于卤素灯的反光耐热灯杯和必须采用耐热玻璃的电器设备,如微波炉专用玻璃转盘、微波炉灯罩、舞台灯光反射杯、滚筒洗衣机观察窗、等耐热茶壶茶杯。 高硼硅玻璃的物理化学性能如下: 含硅量 80%以上 应变温度520℃ 退火温度 560℃ 软化温度 820℃ 折射率

第二章 玻璃马蹄焰窑炉结构设计

第二章结构设计 2.1熔化部设计 2.1.1熔化率K值确定 瓶罐玻璃池窑设计K值在2.2—2.6t/m2.d为宜。熔化率取的过小,窑炉不节能,取得过大,熔化操作困难,或是达不到设计容量,本次取2.5t/(m2·d)。理由如下: 目前国外燃油瓶罐玻璃窑炉熔化率均在2.2以上,而我国却在2.0左右,偏低的原因: (1)整个池窑缺少有助于强化熔融的配套设计。 (2)操作管理,设备,材料等使得窑后期生产条件恶化。 由于这些影响熔化能力的因素,现在瓶罐玻璃K值偏小。在全面改进窑炉结构和有关附属设备后,根据国内耐火材料配套情况和玻璃原料量与制备情况。采取了K=2.5 t/(m2·d)。 2.1.2熔化池设计 (1)确定来了熔化率K值:熔化部面积 100/2.5=40m2。 (2)熔化池的长、宽、深:L×B×H=8000mm×5000mm×1200mm 本设计取长宽比值为1.6。 长宽比确定后,在具体确定窑池长度时,要保证玻璃液充分熔化和澄清,并考虑到砖窑材料的质量以及燃烧火焰的情况,一般要求火焰转向点在窑长的2/3处。窑长应≥4m 。 在确定窑池宽度时,应考虑到火焰的扩展范围,此范围取决于小炉宽度、中墙宽度(两个小炉的间距,小炉的间距,既要便于热修,又不要降低火焰的覆盖面积,一般小炉之间的通道宽度取0.9~1.2 m )。窑池宽度约为2~7m。 长宽选定后,当然具体尺寸还要按照池底排砖情况(最好是直缝排砖)作出适量调整,池底一般厚为200~300m。具体的池底排列会在后面设计的选材方面进行说明。这里先不做细讲。 综上,本次选用L=8m ,B=5m。 窑池深度一般根据经验确定。池深一般在900—1200mm为宜。池深不仅影响

玻璃窑炉设计及先进经验技术引用

玻璃窑炉设计及先进经验技术引用第一章单元窑 第一节单元窑的结构设计 一、单元窑熔化面积的确定 二、熔池长、宽、深的确定 三、池底鼓泡位置的确定 四、窑池结构设计 五、火焰空间结构设计 六、烟道 七、通路结构设计 第二节耐火材料的选用及砌筑 一、单元窑选用的主要耐火材料 二、窑炉的砌筑技术 第三节单元窑的附属设备 一、投料机 二、鼓泡器 三、燃烧系统 四、金属换热器 第四节助熔易燃技术的应用 一、辅助电熔在单元窑上的应用 二、纯氧助燃技术的应用

第五节窑炉的启动和投产 一、投产准备 二、燃料准备 三、熟料准备 四、制定窑炉升温曲线五、采用热风烤窑技术 六、点火烤窑注意事项 七、投产 第二章玻璃球窑 第一节窑炉的结构 一、球窑的种类 二、马蹄焰球窑结构设计 三、球窑砖结构和耐火材料 第二节窑炉的熔制 一、玻璃球的熔制 二、玻璃球的成型 三、玻璃球的退火 四、玻璃球生产工艺规程 第三章全电熔玻璃窑 第一节全电熔玻璃窑概述 一、全电熔窑的优缺点 二、全电熔窑的分类 三、全电熔窑一览

四、熔制特性及对配合料要求 五、电熔窑是防止环境污染有力措施 六、玻璃全电熔窑的技术经济分析 第二节全电熔窑的结构设计 一、全电熔窑的形状 二、全电熔玻璃窑炉的加料 三、供电电源和电极连接第四章电助熔技术第一节火焰池窑电助熔的意义 一、池窑电助熔的优缺点 二、电助熔加热的技术分析 第二节电助熔池窑设计和操作 一、熔窑内电极布置和功率配置 二、熔加热功率的计算 第三节电助熔池窑的实例 一、生产硼硅酸盐BL电助熔池窑 二、生产有色BL的电助池窑 三、生产平板BI的电助熔池窑 第五章供料道的电加热 第一节供料道电加热概述 一、供料道工作原理及其加热现状 二、供料道电加热的优越性 三、供料道电加热分类

相关主题
文本预览
相关文档 最新文档