当前位置:文档之家› 一窑四线平拉玻璃熔窑设计

一窑四线平拉玻璃熔窑设计

一窑四线平拉玻璃熔窑设计
一窑四线平拉玻璃熔窑设计

摘要介绍了260~300td一窑四线平拉玻璃熔窑的设计情况,包括:熔化部设计,分支通路的布置原则,分支通路长度尺寸的设计,全窑池底结构形式和不同池深的窑底结构处理。

关键词平拉玻璃熔窑设计

天津玻璃厂是我国采用平拉工艺(格法)生产平板玻璃的重点骨干企业。该厂于1986年全套引进了比利时格拉威伯尔公司(Glaverbe1)的平拉玻璃生产技术及主要设备。建设初期为一窑二线,并留有可热接第三线的接口。后来在不停产的情况下,成功地热接了第三线,建成了国内第一条一窑三线的平拉玻璃生产线。长期稳定地生产2 mm厚优质薄玻璃,工厂取得了良好的经济效益,同时为国内多家平拉玻璃企业提供了技术支持。

随着天津市城市建设的发展和环境保护的要求,该生产线所在的地理位置已被规划为商住区,玻璃厂需要搬迁到新址。由于原一窑三线已经完成了两个窑期近17年的运行,拆后可利用的设施已不多,以及要扩大生产能力的考虑,工厂决定新建一条一窑四线平拉玻璃生产线。设计熔化能力260~300t/d,燃料为重油,窑龄8年,玻璃原板宽

度4000 mm,耐火材料立足于全部国产,现将有关设计情况介绍如下:

1 熔化部设计

在80年代引进的一窑三线平拉玻璃熔窑,从窑型尺寸到各部位细部结构看,该熔窑的熔化部在现在看来仍是一座200 t/d级的技术比较先进的熔窑。本次工厂搬迁需要新建同样技术先进的一窑四线,熔化能力为260~300 t/d的熔窑,并要积极采用近年来的各项熔窑新技术。

本设计确定一窑四线平拉玻璃熔窑的熔化部,采用近年来在国内浮法玻璃熔窑上广泛采用的熔化部结构形式,并以某建成投产多年的300 t/d浮法线熔窑做为参照,进行熔化部设计。

1.1 熔化部主要尺寸的确定

按照熔化部的池宽尺寸计算公式:

B=9000+ (P-300) ×7

求得该熔窑(按P=300 t/d)的熔化部池宽为:B=9 000 mm。

对于浮法玻璃熔窑来说,熔化部和熔化区的长宽比分别为:K1=3~3.3;K2=1.8~2.0。对于平拉玻璃熔窑来说,为了保证长通路末端玻璃液的成形温度,这两个比值要取得小一些,初步设定熔化部的长宽比为:K1=2.9;熔化区的长宽比为:K2=1.85。计算出熔化部和熔化区池长的初步尺寸:

熔化部池长:L=9 000×2.9=26100 mm,

熔化区池长:Ll=9 000×1.85=16650 mm。

根据这两个初步的长度尺寸设定以下数据:

1#小炉前长:La=3500 mm,

小炉对数:Pn=5

小炉中心线间距:1#~4#:3100mm,4#~5#:2900mm ,

5#小炉后长:Lz=10300mm。

与浮法熔窑相比,末对小炉后的尺寸要偏小一些,主要是为了提高进入通路的玻璃液温度,以保证通路末端玻璃的成形温度。根据以上的设定数据,求出一窑四线熔窑的熔化区和熔化部的实际池长尺寸如下:

熔化区池长:3500+3100×3+2900+1000=16700 mm。

熔化部池长:3500+3100×3+2900+10300=26000 mm。

熔化部池深:1180 mm (同一窑三线)。

1.2 投料池结构

20世纪90年代出现的“全窑宽投料池”结构,对于大型横火焰玻璃池窑来说是一项重要的新技术。近年来,国外新建或改建的大型横火焰玻璃熔窑上多已采用了全窑宽投料池结构。全窑宽投料池的优点是:投料口结构简单、增加熔窑的熔化能力、提高玻璃液的熔化质量、节能降耗、节省建设投资。国内多家玻璃厂已在新建或改扩建的熔窑上采用了全窑宽投料池结构,取得了良好的经济效果,显示了全窑宽投料池的优势,已是国内一项成熟可靠的玻璃熔窑新技术。本一窑四线熔窑确定采用全窑宽投料池:池宽9000 mm,池长1700 mm。前脸墙采用L型吊墙及其配套密封设施。

l_3 燃烧系统

原一窑三线熔窑为4对小炉,采用顶插式燃油喷枪,顶插式喷枪燃烧效率高,在大型玻璃熔窑上常被采用,但这种喷枪目前国内还无厂家生产,需要引进。而另一种在国内玻璃熔窑上大量采用的“炉下式燃油喷枪”,也是燃烧效率较高的喷枪,国内有多个厂家生产此种喷枪及系统,配套方便。炉下式燃油喷枪在操作和维修方面,比其他类型的喷枪都简单容易。本一窑四线熔窑确定采用国产的炉下式燃油喷枪及配套系统,5对小炉,每个小炉两支枪。

2 通路设计

通路是平拉玻璃在进入成形室之前要经过的关键部位,此部位直接关系到平拉玻璃产品的产量和质量。一窑四线的通路设计是按以下的原则进行的:首先根据生产操作要求确定好四条分支通路的分布位置形式;然后根据通路温降情况和通路结构要求确定各分支通路的长度;最后在通路窑体结构上进行配套设计。

2.1 四条分支通路横向分布尺寸的确定

原一窑三线的通路布置形式为:直形横通路连接三条平行的分支通路,运行17年多来效果良好,是很成熟的“宽板深池”通路结构。本次一窑四线设计确定:横通路仍采用直线形

的,后面连接四条平行的分支通路,横通路和四条分支通路对称布置在熔窑纵向中心线延长线的两侧。玻璃原板宽度4 000 mm 的分支通路,其通路砖结构的外宽约为5800mm,钢结构外宽约为7000mm。各平行分支通路中心线间距尺寸的要求是:对于需要有更换转向辊操作位置的,最小尺寸为12000mm;对于无更换转向辊操作位置的:最

小尺寸为8500 mm。根据这样的尺寸要求,4条分支通路中心线的横向间距分布尺寸,考虑了以下两个方案:

方案1:12000+8500+12000=32500 mm,

此方案是考虑更换转向辊的操作位置为两处,分别在1#与2#分支通路之间和3#与4#分支通路之间。

方案2:8500+12000+8500=29000 mm,

此方案是考虑更换转向辊的操作位置为3处,分别在1# 、4#分支通路的外侧和2与3分支通路之间。

方案1的1#和4#分支通路外侧不需更换转向辊操作,只需留有人行和物流通道即可,对于玻璃原板宽度为4000 mm 的通路来说,分支通路的半宽加上通道之和的尺寸应不小于6000 mm,这样一窑四线的通路区域工作面的总宽度尺寸最小为:

6000+32500+6000=44500mm,需要配跨度为45000mm的厂房。

方案2的1#和4#分支通路外侧要进行换转向辊操作,需要留有较宽的尺寸,对于玻璃原板宽度为4000 mm 的通路来说,通路半宽加换辊操作空间尺寸应不小于9000 mm,则通路区域的工作面总宽度尺寸最小为:9000+ 29000+ 9000=47 000 mm,这就需要配跨度为48000mm的厂房。

比较这两个方案,可见方案1具有优势:厂房跨度少3000mm、换转向辊操作位置少1处、换辊用的天车运动区间也小,由此本项目选定了方案1做为四条分支通路的横向间距尺寸。

2.2 各分支通路长度尺寸的确定

确定了4条分支通路的横向分布尺寸之后,再根据通路温降情况和通路结构要求确定各分支通路的长度尺寸。为了表达方便,首先定义一个术语——“通路起点”,它是指熔窑纵向中心线与横通路中心线交点处。

根据热工计算和现场测定,能够确定出原一窑三线的通路起点和3条分支通路的C形砖前的温度。实测结果与计算结果略有不同,边部的两条支通路(1#和3#)C形砖前的温度比中部的2#通路平均高出20℃左右。为什么会出现这种情况呢?

分析原因可能主要是中间通路离卡脖较近,产生回流的玻璃液比边部通路的多一些,多带走了一些热量所至。实际生产中也是边部通路末端温度偏高,拉引量偏低,与测定结果一致。搞清楚这一点对于掌握一窑多线的各通路温度情况是很必要的。

根据原一窑三线通路区域的温度制度,结合新设计一窑四线通路区域的窑体结构变化情况,特别是窑体的保温结构情况,可以确定出一窑四线熔窑的玻璃液在通路区域不同区段里的温度变化情况。

在本次设计中,考虑到4条线的布置需要,各分支通路长度要比3条线的加长一些。但仍要保持各分支通路c形砖前的温度,经过多次计算进行优化,本设计确定将“通路起点”

玻璃液温度要略提高一些,从同吨位浮法玻璃熔窑的温度制度来看,这是不难办到的。确定好了一窑四线通路区域的温度制度,就可以确定各部位通路的长度尺寸了。计算结果,一窑四线的通路起点到C形砖前的长度为:17000 mm,到板根处为:18750 mm。

根据前面已确定好的各分支通路横向布置尺寸,中间的2#和3#分支通路从横通路中心线算起到板根处的长度为:18750-(8500/2)=14500mm;边部的1#和4#分支通路这一长度为:18750-(8500/2)-12000=2500mm。

显然2500mm是太短了,不能满足分支通路末端的结构设计要求,必须加长。根据分支通路末端的结构情况,边部1#和4#分支通路的这一长度最小应为6250 mm。由此边部的1#和4#分支通路从通路起点到板根处的长度是:(8500/2)+12000+6250=22500mm,到C形砖前的长度为:22500-1750=20750mm。按这一长度计算,边部的1#和4#分支通路到C形砖前的温度要比中间的2#和3#分支通路温度低近30℃,这是按玻璃液在各分支通路区域的温降速率相同时的计算结果。前面已述及一窑三线的边部通路温度要比中部的平均高20℃左右,一窑四线的边部分支通路也会出现这一情况,因此边部的1#和4#分支通路C形砖前的实际温度可以达到设计的温度。

至此,一窑四线平拉玻璃熔窑的通路布置平面尺寸就全部确定好了。一窑四线平拉玻璃熔窑平面简图见图1。

图1 一窑四线平拉玻璃熔窑平面简图

3 窑底结构设计

原一窑三线熔窑的窑池深度为:熔化部池深1180mm,通路池深1265mm,相差85mm。池底

砖结构总厚度也不同,分别是:熔化部570mm,通路485mm,也相差85mm。熔化部与通路两部分的池深与池底砖结构厚度之和正好相等,全窑池底砖结构下平面标高相同。

新设计的一窑四线熔窑的池深与原一窑三线的相同:熔化部1180mm,通路1265mm。在窑底结构上,特别是池底铺面结构做了比较大的改动:池底铺面砖厚度减薄了,池底大砖厚度适当加厚了些,这种改动在满足设计指标对窑体要求的前提下,可节省近200万元的建窑投资。

熔化部(包括卡脖)池底采用“合页窗式” 活动保温结构,可开可闭,池底砖结构总厚度为550mm;通路池底采用固定保温结构,池底砖结构总厚度为520mm。熔化部与通路两部分的池深与池底砖结构厚度之和不相等,全窑池底砖结构下平面标高不相同。

采用这样的池底砖结构设计有两个原因:一是如何设计不同池深的窑底结构,及池深不同的过渡区域结构的处理,二是减薄池底铺面砖要确保通路区域的池底采用固定保温结构后不漂砖,通路池底安全可靠。

3.1 不同池深的窑底结构及其过渡区结构

原一窑三线熔窑的熔化部和通路的池底大砖上平面为同一标高,不同池深是通过不同厚度的池底捣打料和不同厚度的池底铺面砖来实现的,结构比较简单。而新设计的一窑四线熔窑由于采用了相同厚度的铺面砖和捣打料,熔化部和通路的不同池深(池深相差85 mm)结构就比较复杂一些了。

本设计采用的是:熔化部和通路的主纵梁上平面为同一标高,熔化部的次梁采用32a 工字钢,通路的次梁采用25a工字钢,通路次梁工字钢上面铺15mm厚的扁钢。这样熔化部和通路的池底钢结构上平标高相差320-250-15=55mm,加上池底砖结构厚度相差550-520-30 mm,熔化部和通路的池底标高相差即为:55+30=85mm,达到了熔化部和通路的池深之差要求。不同池深过渡区设在接近卡脖末端处,这里包括次梁工字钢由熔化部区域的32a变到通路区域的25a,池底大砖厚度由熔化部区域的300mm变到通路区域的270mm,过渡区结构比较复杂一些,相对来说是比较容易出问题的地方。这里主要从两处着手确保此处结构的安全可靠:一是前、后部池底大砖的接触高度不能太小,否则烤窑升温后有可能产生池底大砖受力过大出现局部碎裂,在此处本设计接触高度为215 rflrfl,比一窑三线的池底大砖厚200mm还要强一些。二是池底铺面砖在此处采用了“错缝+错台”做法,确保在烤窑升温后窑底铺面砖结构不会出现弓起、拉开、错位等情况。过渡区结构详见图2。

图2 不同池深的池底过渡区结构

3.2 通路区域的池底安全性

为什么要提出通路区域池底的安全性呢?这是因为通路区域池底采用了固定保温结构,通路内的玻璃液有可能从池底铺面砖缝和池底大砖缝往下渗漏到池底大砖和池底保温砖之间,并形成某块或某几块池底大砖完全被渗漏下来的玻璃液包围,在这个时候就可能会出现“漂砖”,出现池底破坏的事故。

要保证不出现“漂砖”现象,就必须使池底大砖及其上面的铺面砖和捣打料形成的“组合体” 的体积密度不小于玻璃液的体积密度(取900℃时玻璃液的体积密度为:2.5×96%=2.4(g /cm3。),这样就不会出现池底大砖被玻璃液包围的情况,否则就可能出问题。

首先验算一下原一窑三线熔窑通路区域的池底砖结构情况:

池底铺面砖为无缩孔Jargal M 砖,125 mm厚,体积密度为3.3g/cm3;池底捣打料为Glaverbel提供的,10 mm厚,体积密度按3.0g/cm3;池底大砖为黏土砖,200 mm厚,体积密度为2.2 g/cm3。

以上三种材料“组合体”的平均体积密度为:(12.5×3.3+ 1×3+20×2.2)/(12.5+1+20)=2.63 g /cm3。,大于玻璃液的体积密度2.4 g/cm3。,所以不会出现漂砖。

再验算一下新设计的一窑四线熔窑通路区域的池底砖结构情况:

池底铺面砖为无缩孔33#电熔锆刚玉砖,75 mm厚,体积密度3.7 g/cm。;池底捣打层为锆质捣打料,25 mm厚,体积密度3.0g/cm3。;池底大砖为黏土砖,270 mm厚,体积密度2.2g/cm3。

以上三种材料“组合体” 的平均体积密度为:(7.5×3.7+ 2.5×3+27×2.2)/(7.5+ 2.5+ 27)=2.56 g/cm3。,大于玻璃液的体积密度2.4g/cm3。不会出现池底大砖漂起的情况,池底是安全可靠的。

4 结语

本一窑四线平拉玻璃熔窑设计是将“浮法” 与“格法”进行了结合,即浮法熔窑的熔化部与宽板深池的格法通路相互配套设计后组合为一体。对于熔化部来说,主要从澄清区长度上做了减短设计,以适当提高通路起点的玻璃液温度。对于通路来说,根据一窑四线的布置要求,四条分支通路都根据计算在保证成形温度的前提下比原一窑三线通路进行了适当的加长,这是国内首次设计建造的一窑四线平拉玻璃熔窑。

一窑四线平拉玻璃熔窑设计

摘要介绍了260~300td一窑四线平拉玻璃熔窑的设计情况,包括:熔化部设计,分支通路的布置原则,分支通路长度尺寸的设计,全窑池底结构形式和不同池深的窑底结构处理。 关键词平拉玻璃熔窑设计 天津玻璃厂是我国采用平拉工艺(格法)生产平板玻璃的重点骨干企业。该厂于1986年全套引进了比利时格拉威伯尔公司(Glaverbe1)的平拉玻璃生产技术及主要设备。建设初期为一窑二线,并留有可热接第三线的接口。后来在不停产的情况下,成功地热接了第三线,建成了国内第一条一窑三线的平拉玻璃生产线。长期稳定地生产2 mm厚优质薄玻璃,工厂取得了良好的经济效益,同时为国内多家平拉玻璃企业提供了技术支持。 随着天津市城市建设的发展和环境保护的要求,该生产线所在的地理位置已被规划为商住区,玻璃厂需要搬迁到新址。由于原一窑三线已经完成了两个窑期近17年的运行,拆后可利用的设施已不多,以及要扩大生产能力的考虑,工厂决定新建一条一窑四线平拉玻璃生产线。设计熔化能力260~300t/d,燃料为重油,窑龄8年,玻璃原板宽 度4000 mm,耐火材料立足于全部国产,现将有关设计情况介绍如下: 1 熔化部设计 在80年代引进的一窑三线平拉玻璃熔窑,从窑型尺寸到各部位细部结构看,该熔窑的熔化部在现在看来仍是一座200 t/d级的技术比较先进的熔窑。本次工厂搬迁需要新建同样技术先进的一窑四线,熔化能力为260~300 t/d的熔窑,并要积极采用近年来的各项熔窑新技术。 本设计确定一窑四线平拉玻璃熔窑的熔化部,采用近年来在国内浮法玻璃熔窑上广泛采用的熔化部结构形式,并以某建成投产多年的300 t/d浮法线熔窑做为参照,进行熔化部设计。 1.1 熔化部主要尺寸的确定 按照熔化部的池宽尺寸计算公式: B=9000+ (P-300) ×7 求得该熔窑(按P=300 t/d)的熔化部池宽为:B=9 000 mm。 对于浮法玻璃熔窑来说,熔化部和熔化区的长宽比分别为:K1=3~3.3;K2=1.8~2.0。对于平拉玻璃熔窑来说,为了保证长通路末端玻璃液的成形温度,这两个比值要取得小一些,初步设定熔化部的长宽比为:K1=2.9;熔化区的长宽比为:K2=1.85。计算出熔化部和熔化区池长的初步尺寸: 熔化部池长:L=9 000×2.9=26100 mm, 熔化区池长:Ll=9 000×1.85=16650 mm。

浮法玻璃熔窑天然气和重油燃烧系统的比较

浮法玻璃熔窑天然气和重油燃烧系统的比较 诸葛勤美王曙华王伟峰(中国新型建材设计研究院杭州市310003) 摘要 从天然气和重油的组成与性能,两种燃烧系统的燃料用量及成本,工艺及设备材料费和烟气等方面对天然气和重油燃烧系统进行比较,从而得出天然气燃烧系统比重油燃烧系统更优越。 关键词天然气重油燃烧浮法玻璃熔窑 中图分类号:TQ171 文献标识码:A 文章编号:1003-1987(2013)07-0003-03 Comparison of Natural Gas with Heavy Oil for Float Glass Furnace Zhuge Qinmei, Wang Shuhua, Wang Weifeng (China New Building Materials Design and Research Institute, Hangzhou, 310003)Abstract: This article compared the natural gas and heavy oil from the compositions and properties of natural gas and heavy oil, fuel consumption and cost of the two kinds combustion system, technology and equipment material fee, as well as flue gas and other aspects, and concluded that the natural gas combustion system is more superior than heavy oil combustion system. Key Words: natural gas combustion system,heavy oil combustion system 0 引言浮法玻璃生产所用的燃料主要有重油、柴油、煤焦油、天然气、焦炉煤气、发生炉煤气和石油焦等,综合考虑熔窑寿命、环境保护、生产规模、生产成本、产品品质等各方面因素,应首选天然气或者重油。 1 燃料的组成与性能比较 1.1 天然气的组成与性能天然气是指通过生物化学作用与地质变质作用,在不同的地质条件下生存迁移,并于一定压力下储集在地质构造中的可燃气体。通常根据形成条件不同,分为油田伴生气、气田气及凝析气田气。天然气是一种混合气体,其组成随气田和产气层不同而异。根据天然气公司提供的资料,西气东输的天然气组分见表1。 表1 西气东输的天然气组分/% 组分 C1 C2 C3 C4 C5 C6+ CO2 N2 100 96.1 1.74 0.58 0.28 0.03 0.09 0.62 0.56 西气东输的天然气低位热值约34.81 MJ/Nm 3 (8 320 kcal/ Nm 3 ),高位热值约38.62 MJ/Nm 3 (9 230 kcal/ Nm 3 )。天然气热值稍低于重油,但比焦炉煤气、发生炉煤气高很多,属高热值燃料。天然气燃烧后几乎不含硫、粉尘和其它有害物质,是一种洁净环保的优质能源。天然气也是较为安全的燃气之一,比空气轻,一旦泄漏,会立即向上扩散,不易积聚形成爆炸性气体,安全性较高。 1.2 重油的组成与性能重油又称渣油,是原油提取汽油、柴油等后的剩余重质油,其特点是分子量大、黏度高,密度一般在0.82~0.95 g/cm 。重油的发热量很高,一般为40~42 MJ/kg(9 560~10 038 kcal/kg)。重油的燃烧温度高,火焰的辐射能力强,是玻璃、钢铁等生产的优质燃料。重油的化学组成比较复杂,但一般都是碳链在16 以上的烷属烃、环烷烃(如环己烷、环戊烷的衍生物)及芳香烃(如苯、甲苯)。重油中的可燃成分较多,含碳86%~89%,含氢10%~12%,同时含有少量的氮、氧、硫等。重油中的硫虽然含量不大,但危害甚大,作为燃料用时,必须严格控制。重油中的水分是在运输和贮存过程中混进去的。重油含水多时,不仅降低了重油的发热量和燃烧温度,而且还容易由于水分的汽化影响供油设备的正常运行,甚至影响火焰的稳定。水分太多应设法去掉,目前一般都是在贮油罐中用自然沉淀的方法使油水分离。 3.1 工艺比较 (1)天然气燃烧系统工艺流程 天然气管:安全放散天然气调压站分成7 根支管过滤安全切断调压总管计量天然气喷枪支管换向流量调节支管计量 2 燃料用量及成本的比较冷却气:以600 t/d 浮法玻璃熔窑为例,重油和天然气用量计算如表2。空压站总管换向天然气喷枪 (2)重油燃烧系统工艺流程重油管:表2 重油和天然气用量泄压回油稳压回油油站初级加热粗过

玻璃电熔基础

一玻璃电熔基础 1 玻璃的导电行为 (2) 1.1熔融玻璃的电导率 (3) 1.1.1玻璃的导电性 1.1.2熔融玻璃电导率和温度的关系 1.1.3熔融玻璃电阻率与化学成分的关系 1.1.4混碱效应的应用实例 1.1.5常用的熔融玻璃的电阻率—温度曲线 1.1.6失调角和稳定性准数对玻璃电熔控制的影响 1.1.7熔融玻璃电阻率的计算 1.1.8玻璃的粘度 1.2 电极间玻璃液电阻的计算 (14) 1.2.1欧姆定律的应用 1.2.2板状电极间玻璃液电阻的计算 1.2.3两支平行棒电极间的电阻 1.2.4两列平行放置的棒电极的电阻 1.2.5两支相对放置的棒电极的电阻 1.2.6三相电极的电阻计算 2 电极 (19) 2.1 电极的选择原则 (19) 2.2 钼电极 (19) 2.2.1 钼电极的物理性能 (20) 2.2.2 钼电极的的组织结构变化 (21) 2.2.3 钼电极的化学组成 (22) 2.2.4 钼电极的结构和布置 (28) 2.2.5 电极水套 (40) 2.2.6 钼电极临界电流密度和尺寸的选择 (47) 2.2.7 钼电极的蚀损与保护 (49) 2.2.8 钼电极的电缆联结 (52) 2.2.9 钼电极的使用及注意事项 (53)

2.3 氧化锡电极 (56) 2.3.1氧化锡电极的概述………………………………. 2.3.2氧化锡电极的物理性能 (57) 2.3.3氧化锡电极的化学性能 (62) 2.3.4 氧化锡电极的制造工艺 (62) 2.3.5几种常用的氧化锡电极 (63) 2.3.6 氧化锡电极的安装和使用 (64) 2.3.7 氧化锡电极的的蚀损 (66) 2.4 硅碳棒电热元件 (66) 2.4.1硅碳棒的物理性能 (66) 2.4.2 硅碳棒的化学性能 (67) 2.4.3硅碳棒的老化和涂层保护 (68) 2.4.4硅碳棒的规格与型号 (68) 2.4.5硅碳棒的电气联接 (70) 2.4.6硅碳棒的使用注意事项 (70) 2.5二硅化钼发热体 (72) 2.5.1硅钼棒的理化性能 (72) 2.5.2安装方法 (75) 2.5.3使用要点 (76) 2.6石墨电极 (80) 2.7铂电极 (81) 2.8 冷却水系统 (81) 3 供电与控制 (84) 3.1 供电及控制系统 (85) 3.1.1可控硅+隔离变压器 3.1.2可控硅+磁性调压器 3.1.3感应调压器+隔离变压器 3.1.4抽头变压器 3.1.5T型变压器 3.2 可控硅控制系统 (92)

玻璃熔窑设计

目录 前言 (1) 第一章浮法玻璃工艺方案的选择与论证 (3) 1.1平板玻璃工艺方案 (3) 1.1.1有曹垂直引上法 (3) 1.1.2垂直引上法 (3) 1.1.3压延玻璃 (3) 1.1.4 水平拉制法 (3) 1.2浮法玻璃工艺及其产品的优点 (4) 1.3浮法玻璃生产工艺流成图见图1.1 (5) 图1.1 (5) 第二章设计说明 (6) 2.1设计依据 (6) 2.2工厂设计原则 (7) 第三章玻璃的化学成分及原料 (8) 3.1浮法玻璃化学成分设计的一般原则 (8) 3.2配料流程 (9) 3.3其它辅助原料 (10) 第四章配料计算 (12) 4.1于配料计算相关的参数 (12) 4.2浮法平板玻璃配料计算 (12) 4.2.1设计依据 (12) 4.2.2配料的工艺参数; (13) 4.2.3计算步骤; (13) 4.3平板玻璃形成过程的耗热量的计算 (15) 第五章熔窑工段主要设备 (20) 5.1浮法玻璃熔窑各部 (20) 5.2熔窑主要结构见表5.1 (21) 5.3熔窑主要尺寸 (21) 5.4熔窑部位的耐火材料的选择 (24) 5.4.1熔化部材料的选择见表5.3 (24) 5.4.2卡脖见表5.4 (25) 5.4.3冷却部表5.5 (25) 5.4.4蓄热室见表5.6 (25) 5.4.5小炉见表5.7 (26) 5.5玻璃熔窑用隔热材料及其效果见表5.8 (26) 第六章熔窑的设备选型 (28) 6.1倾斜式皮带输送机 (28) 6.2毯式投料机 (28)

6.3熔窑助燃风机 (28) 6.4池壁用冷却风机 (29) 6.5碹碴离心风机4-72NO.16C (29) 6.6L吊墙离心风机9-26NO11.2D (29) 6.7搅拌机 (29) 6.8燃油喷枪 (29) 6.9压缩空气罐C-3型 (29) 第七章玻璃的形成及锡槽 (30) 第八章玻璃的退火及成品的装箱 (32) 第九章除尘脱硫工艺 (33) 9.1除尘工艺 (33) 9.2烟气脱硫除尘 (33) 第十章技术经济评价 (34) 10.1厂区劳动定员见表10.1 (34) 10.2产品设计成本编制 (35) 参考文献 (38) 致谢 (39) 摘要 设计介绍了一套规模为900t/d浮法玻璃生产线的工艺流程,在设计过程中,原料方面,对工艺流程中的配料进行了计算;熔化工段方面,参照国内外的资料和经验,对窑的各部位的尺寸、热量平衡和设备选型进行了计算;分析了环境保护重要性及环保措施参考实习工厂资料,在运用相关工艺布局的基础下,绘制了料仓、熔窑、锡槽、成品库为主的厂区平面图,具体对熔窑的结构进行了全面的了解,绘制了熔窑的平面图和剖面图,还有卡脖结构图,整个设计参照目前浮法玻璃生产的主要设计思路,采用国内外先进技术,进行全自动化生产,反映了目前浮法生的较高水平。 关键词:浮法玻璃、熔窑工段、设备选型、工艺计算。

玻璃窑炉

国外玻璃窑炉设计现状 1引言 玻璃窑炉设计实际上是综合考虑客户对玻璃窑炉投资,窑炉寿命和运行与维护成本的需求;对玻璃窑炉技术选择,节能和排放问题的设想;以及环境保护,卫生安全等相关法律规定。然后,按照一定的步骤程序提交完整的设计方案,确保窑炉所有重要的性能指标的过程。 由于全球经济相互融合,外国耐火材料企业集团不断以合资、独资、控股等方式进入中国市场,中国耐火材料企业也要走出去。即使在国内,企业最终面临的竞争对手也必然是外国企业。我国虽于2006年9月取消了包括耐火材料等产品的出口退税政策,但是参与国际竞争对激励耐火材料企业提高工艺技术和生产效率,提高耐火原料资源的利用率,强化社会节约意识,控制资源消耗等均起到积极推动作用。如果企业在未知国际化市场资源的情况下,贸然参与竞争是危险的。为此,从合同管理、工程设计和计算机仿真设计三个方面,介绍国外玻璃窑炉设计现状,有助于国内企业开拓窑炉耐火材料出口渠道,稳步进入国际市场。 2玻璃窑炉设计合同管理 国外玻璃窑炉设计代表性的合同管理程序流程如图1所示,它表示出窑炉设计者必须处理的典型问题。 该管理流程有利于客户在招投标过程及合同签署前。获得所有供决策的信息,特别是涉及投标预算编制中有关设备、建筑材料和工程成本的详尽计算数值,尽管这类信息的收集要牵涉到合同签署后的一些程序。

合同管理要求工程文件清晰规范,所有文件诸如图纸、会议记录和概算必须归档便于查询。设计公司利用数据管理系统,集中存储一个工程的所有信息,通过内部电子通讯系统(局域网)等数据共享的管理方式,让专业人员随时查找工程设计数据、工程进度、专业衔接与改进方案,保证工程进展顺畅,避免差错的产生。 3玻璃窑炉的工程设计 玻璃窑炉工程技术因素如窑炉熔化率、能耗及其窑龄,财务因素如投资成本、风险和清偿期限,以及燃料污染程度与燃烧技术的选择等生态环保因素,它们相互关联、互为因果。窑炉工程设计因而需经历一个反复比较、筛选的过程。在国外,该工程设计的许多部分仍建立在经验的基础上。但是,数学模型和测试手段的发展对玻璃窑炉工程设计中工艺参数的检验作用正在增强。表1所列是国外玻璃窑炉设计中应用的有关方法。 客户生产需求理论设计与实验方法 玻璃质量经验,数模仿真,颗粒示踪,气泡示踪排放经验,数模仿真,实验 节能热平衡计算 窑龄经验,试验室试验,无损探伤成本比较经济核算每个玻璃窑炉的熔化系统设计和技术选择取决于客户对玻璃生产数量和质量的需要。通常,在该设计阶段开始利用数学模型进行检验。有关窑炉实际运行性能的详尽知识的积累是数模合理设定的关键,数学模型的精度通过对颗粒示踪方法在模型和实际窑池中结果的比较加以验证。 滞留时间是颗粒示踪方法结果之一,该参数具常规可靠性,能用于预先评估所能获得的玻璃质量。数学模型近年来己发展至预测玻璃中气泡的变化过程。需要指出的是数学模型不能用于设计改变很小的窑炉,玻璃窑炉运行中几个不确定变量的影响足以左右数模的计算精度。数模计算即趋势分析,利用数学模型可以研究确定玻璃窑炉设计显著改善所产生的重大变化。图2所示为数学模型仿真中典型的颗粒示踪路径,其滞留时间较短。 预测玻璃窑炉排放级别的数学模型仍在开发之中,这类数学模型将来对窑炉设计的支持作用会不断增

关于浮法玻璃熔窑改进的几项措施

关于浮法玻璃熔窑改进的几项措施 3唐春桥1,孙兴银2,袁建平2,戴玖凤2 (1.深圳南玻浮法玻璃有限公司,广东 深圳 518067; 2.江苏华尔润集团有限公司,江苏 张家港 215600) 摘要:目前,我国的浮法玻璃熔窑结构设计技术有了较大的发展,使熔窑的熔化能力和熔制质量不断提高,熔窑寿命不断延长,熔窑能耗不断降低。但随着新技术的不断涌现,熔窑的结构设计仍有值得改进和完善的地方。本文就浮法玻璃熔窑改进的几项措施进行探讨,以供同仁参考。 关键词:浮法玻璃熔窑;结构;改进措施 中图分类号:T Q171.6+23.1 文献标识码:B 文章编号:1000-2871(2005)05-0023-02 So m e Acti on s Taken for I m prove m en t of Floa t Gl a ssM elti n g Furnace TAN G Chun -qiao,SUN X ing -y in,YUAN J ian -ping,DA I J iu -feng 1 概述 20世纪90年代初期,随着托利多熔窑技术的引进,国内平板玻璃熔窑在设计水平、熔化能力、窑炉寿命、能耗热效、玻璃熔制质量等方面均取得了跨越式的发展,走出了一条引进、消化、创新的路子。如今,国内设计的浮法熔窑,熔化能力从400t/d,向500t/d 、600t/d 、900t/d 稳步发展;窑龄也从5年向8年和10年迈进;熔制缺陷如气泡、结石等的大量减少,使玻璃质量从普通建筑级提高到汽车级和制镜级。 目前,国内针对浮法玻璃熔窑又进行了多方面的设计创新,如采用全等宽投料池、加长1# 小炉到前脸的间距、加长澄清带长度、大碹保温采用复合保温结构、全连通蓄热室改为“全分隔式”或“分组式”蓄热室、集中式烟道布置、采用水平搅拌和垂直搅拌混合的卡脖结构等等。但是浮法熔窑结构设计仍有改进和完善的空间,下面就浮法玻璃熔窑改进的几项措施进行探讨。2 浮法玻璃熔窑改进措施探讨 2.1 设置辅助电助熔装置 目前,在浮法玻璃熔窑上采用辅助电熔装置熔制玻璃的企业为数不多,主要集中在少数合资或外资企业和极少数国内的浮法玻璃企业中,其好处是:⑴在配合料料区采用电助熔,可大幅度提高料层下面的玻璃液温度,使料层获得更多的热量,提高料层的熔化能力,这样可大幅度增加浮法玻璃产量。而在热点区域采用电助熔,可强化热点、突出热点,从而提高玻璃液质量。⑵生产着色玻璃时,开启电加热可提高熔窑的池底温度,加强池底玻璃液对流,减少不动层厚度,同时,玻璃液可获得更多的热量,通过对流传递到配合料层,从而加快配合料的熔化,在一定程度上补偿空间热量的投入,降低熔窑的火焰空间热负荷,延长窑炉寿命。 第33卷第5期2005年10月玻璃与搪瓷G LASS &E NAMEL Vol .33No .5Oct .2005 3收稿日期:2004-10-10

玻璃窑炉设计及先进经验技术引用

玻璃窑炉设计及先进经验技术引用 第一章单元窑 第一节单元窑的结构设计 一、单元窑熔化面积的确定 二、熔池长、宽、深的确定 三、池底鼓泡位置的确定 四、窑池结构设计 五、火焰空间结构设计 六、烟道 七、通路结构设计 第二节耐火材料的选用及砌筑 一、单元窑选用的主要耐火材料 二、窑炉的砌筑技术 第三节单元窑的附属设备 一、投料机 二、鼓泡器 三、燃烧系统 四、金属换热器 第四节助熔易燃技术的应用 一、辅助电熔在单元窑上的应用 二、纯氧助燃技术的应用

第五节窑炉的启动和投产 一、投产准备 二、燃料准备 三、熟料准备 四、制定窑炉升温曲线五、采用热风烤窑技术 六、点火烤窑注意事项 七、投产 第二章玻璃球窑 第一节窑炉的结构 一、球窑的种类 二、马蹄焰球窑结构设计 三、球窑砖结构和耐火材料 第二节窑炉的熔制 一、玻璃球的熔制 二、玻璃球的成型 三、玻璃球的退火 四、玻璃球生产工艺规程 第三章全电熔玻璃窑 第一节全电熔玻璃窑概述 一、全电熔窑的优缺点 二、全电熔窑的分类 三、全电熔窑一览

四、熔制特性及对配合料要求 五、电熔窑是防止环境污染有力措施 六、玻璃全电熔窑的技术经济分析 第二节全电熔窑的结构设计 一、全电熔窑的形状 二、全电熔玻璃窑炉的加料 三、供电电源和电极连接第四章电助熔技术第一节火焰池窑电助熔的意义 一、池窑电助熔的优缺点 二、电助熔加热的技术分析 第二节电助熔池窑设计和操作 一、熔窑内电极布置和功率配置 二、熔加热功率的计算 第三节电助熔池窑的实例 一、生产硼硅酸盐BL电助熔池窑 二、生产有色BL的电助池窑 三、生产平板BI的电助熔池窑 第五章供料道的电加热 第一节供料道电加热概述 一、供料道工作原理及其加热现状 二、供料道电加热的优越性 三、供料道电加热分类

浮法玻璃熔窑设计的改进

浮法玻璃熔窑设计的改进 宋 庆 余 (蚌埠玻璃工业设计研究院 蚌埠市 233018) 近些年来,我国浮法玻璃熔窑的设计技术取得了长足的发展,20年前中国只有一座浮法玻璃熔窑,当时的熔化能力只有230t/d,窑炉的寿命只有3年,熔化率为1.13t/m2?d,热耗11675kJ/kg玻璃液,玻璃质量仅能达到当时厂标的二、三等品,总成品率为65%。现在我国已有浮法窑61座,我国自己设计的最大吨位为600t/d的窑已投产2年,与20年前相比,熔化能力增加了2.6倍,熔化率达到2.26t/m2?d,提高了近一倍,热耗为6688kJ/ kg玻璃液,降低了43%,产品质量大幅度提高,制镜级和加工级玻璃达到90%,总成品率大于80%。以上的浮法玻璃熔窑技术指标,我国只有少数生产线可以达到,多数浮法玻璃熔窑达不到。这少数的浮法玻璃熔窑与国外先进的相比还有不小的差距。本文主要讨论目前我国浮法玻璃熔窑应如何改进。1 投料池设计的改进 投料是熔制过程中的重要工艺环节之一,它关系到配合料的熔化速度、熔化区的位置、泡界线的稳定,最终会影响到产品的质量和产量。 1.1 应设计与熔化部等宽的投料池 投料池越宽,配合料的覆盖面积就越大,配合料的吸热是与覆盖面积大小成正比的。因此采用与熔化部等宽或接近等宽的投料池,有利于提高热效率,有利于节能,有利于提高熔化率。 1.2 采用无水包的45度“L”型吊墙 传统的“L”型吊墙都有水包,由于水包的寿命短、易损坏、漏水,造成吊墙砖的炸裂,吊墙砖实际上在热工作状态下无法更换,这样就影响窑炉的寿命。所谓无水包吊墙,就是水包被一排吊砖所代替,这就解决了因水包漏水所造成的吊墙砖炸裂问题,同时也解决了更换损坏水包对生产的影响。1.3 投料口采用全密封结构 投料池内的压力一般是正压,所以由窑内向外部的溢流和辐射热损失较大。采用全密封结构,构成预熔池,将减少这部分热损失,使配合料进入熔化池之前能吸收一定的热量,将其中的水分蒸发并进行预熔,这样料堆进入熔化池后很快就会熔化摊平,因此加速了熔化过程。同时,由于料堆表面被预熔,就减少了粉料被烟气带入蓄热室的量,也减轻了飞料对熔窑上部结构的化学侵蚀。投料池采用全密封结构,可以防止外界的干扰,保证窑内压力制度、温度制度的稳定,保证泡界线的稳定。特别是保证玻璃对流的稳定,有利于减少生料对池壁砖的侵蚀,延长窑炉寿命,是一条宝贵的经验。 2 熔化部设计的改进 2.1 加长1#小炉至前脸墙的距离 加长1#小炉至前脸墙的距离,可开大1#小炉,提高熔化效率和热效率。从辐射传热公式可以清楚地看出这个问题。 Q=C? T1 100 4 - T2 100 4 ?F 式中:Q——配合料吸收的热量,kJ; T1——火焰的温度,K; T2——配合料的温度,K;

《玻璃专业熔制车间毕业设计》指导书分析

玻璃专业熔制车间毕业设计指导书 一、说明书 1.总论: 内容:生产方法概况、特点、设计指导思想以及设计原则。 2.玻璃的成分设计 内容:设计原则、成分确定及性质计算(熔化温度、温度-粘度曲线、退火温度和密度)3.总工艺计算 内容:(1)主要技术经济指标的确定; ①年工作日:冷修年,310~320天;非冷修年365天。 ③玻璃原板宽度:2.5~4.5m。 ④机组利用率:96~98%。 ⑤总成品率:72~75%。可达90~95%。 ⑥碎玻璃损失率:0.5%。 (2)工艺平衡计算; ①玻璃成品产量的计算: 计算出各种规格产品的产量;各种规格产品的全年平均生产天数。 ②玻璃液熔化量: ③配合料需要量: 4.熔窑设计 内容:(1)熔窑种类的确定; (2)熔窑结构设计; ①熔化部设计: 熔化率的初步确定: 平板池窑:熔化率K=2.0~3.0(t/m2d); 500吨窑,K=2.35(t/m2d);700吨窑,K=2.78(t/m2d);

熔化部面积的初步确定: 熔化面积:F m = Q k(m 2) 式中:Q —熔窑的产量(t/d) 熔化部窑池的长度和宽度的确定: 熔化区宽度的确定: 平板池窑:B m = 0.75Х10-2Q + 6.75 (m) TOLETO公司的经验公式: B m = 95002.5 Q/400 (m) 熔化区长度的确定:l m = K1ХB m (m)式中:K1—熔化区的长宽比,一般为1.8~2.4。 l m = d1 + d2(n-1)+ 1.0 式中:d1—1#小炉中心线到前脸墙的距离,一般为3~4m, 900吨窑达6.8mm。 d2—小炉中心线间距,一般为2.8~3.5m。 n—小炉对数。 澄清区长度的确定:一般在8.3~19m。 熔化部窑池深度的确定:熔化部窑池深度为1.2m。 熔化部面积的调整和复核: 熔化率的复核: 熔化部窑池大碹股跨比的确定:大型窑为1 7.5~ 1 8,中小型窑为 1 8~ 1 9。 大碹的厚度确定: 熔化部胸墙的高度和厚度的确定: 熔化部胸墙的高度:由燃料的种类、喷嘴的安装方式确定。平板池窑:烧煤气时,为0.8 ~ 0.9m; 烧油时,为1.5 ~ 2.0m。 熔化部胸墙的厚度:450 ~ 500mm; 熔化部火焰空间的高度和宽度的确定: 火焰空间的宽度:比窑池宽400 ~ 500mm;

t浮法玻璃熔窑熔制制度的确定

玻 璃 熔 制 组别:第二组 组长:黄忠伦 组员:孙印持、黄忠伦、张彬、何洋、赖世飞、朱子寒

“玻璃熔制”课程任务 一、任务目的: 400t/d浮法玻璃熔窑熔制制度的确定 二、主要内容: 1、确定玻璃熔制过程的温度-黏度曲线; 2、确定玻璃熔制的各种熔制制度; 3、分析熔制制度对玻璃质量的影响; 三、基本要求: 1、玻璃熔制制度应符合实际生产情况要求,便于组织生产; 2、熔制制度参数选择合理、先进; 3、熟悉玻璃熔制制度对玻璃质量的影响; 4、提交一份打印的任务说明书及电子文档; 5、提交本小组各成员的成绩表(100分制);

(一)黏度与温度的关系 1.由于结构特性的不同,玻璃熔体与晶体的黏度随温度的变化趋势有显著的差别。晶体在高于熔点时,黏度变化很小,当到达凝固点时,由于熔融态转变晶态的缘故,黏度呈直线上升。玻璃的黏度则随温度下降而增大,从玻璃液到固态,玻璃的黏度是连续变化的,其间没有数值上的突变。 (1)应变点:应力能在几小时内消除的温度,大致相当于粘度为1013.6Pa·s时的温度,也称退火下限温度。(2)转变点(Tg):相当于粘度为1012.4Pa·s时的温度。高于此点脆性消失,并开始出现塑性变形,物理性能开始迅速变化。 (3)退火点:应力能几分钟内消除的温度,大致相当于粘度为1012Pa·S时的温度,也称退火上限温度。(4)变形点:相当于粘度为1010-1011Pa·S时的温度范围。(5)、软化温度(Ts):它与玻璃的密度和表面张力有关,相当于黏度为3×106~1.5×107Pa·s的温度范围。对于密度约等于2.5的玻璃它相当于粘度为106.6Pa·S时的温度。(6)操作范围:相当于成型玻璃表面的温度范围。T上限指准备成型的温度,相当于粘度为102-103Pa·S时的温度;T下限相当于成型时能保持制品形状的温度,相当于粘度>105Pa·S时的温度。操作范围的粘度一般为103-106.6Pa·S

第二章 玻璃马蹄焰窑炉结构设计

第二章结构设计 2.1熔化部设计 2.1.1熔化率K值确定 瓶罐玻璃池窑设计K值在2.2—2.6t/m2.d为宜。熔化率取的过小,窑炉不节能,取得过大,熔化操作困难,或是达不到设计容量,本次取2.5t/(m2·d)。理由如下: 目前国外燃油瓶罐玻璃窑炉熔化率均在2.2以上,而我国却在2.0左右,偏低的原因: (1)整个池窑缺少有助于强化熔融的配套设计。 (2)操作管理,设备,材料等使得窑后期生产条件恶化。 由于这些影响熔化能力的因素,现在瓶罐玻璃K值偏小。在全面改进窑炉结构和有关附属设备后,根据国内耐火材料配套情况和玻璃原料量与制备情况。采取了K=2.5 t/(m2·d)。 2.1.2熔化池设计 (1)确定来了熔化率K值:熔化部面积 100/2.5=40m2。 (2)熔化池的长、宽、深:L×B×H=8000mm×5000mm×1200mm 本设计取长宽比值为1.6。 长宽比确定后,在具体确定窑池长度时,要保证玻璃液充分熔化和澄清,并考虑到砖窑材料的质量以及燃烧火焰的情况,一般要求火焰转向点在窑长的2/3处。窑长应≥4m 。 在确定窑池宽度时,应考虑到火焰的扩展范围,此范围取决于小炉宽度、中墙宽度(两个小炉的间距,小炉的间距,既要便于热修,又不要降低火焰的覆盖面积,一般小炉之间的通道宽度取0.9~1.2 m )。窑池宽度约为2~7m。 长宽选定后,当然具体尺寸还要按照池底排砖情况(最好是直缝排砖)作出适量调整,池底一般厚为200~300m。具体的池底排列会在后面设计的选材方面进行说明。这里先不做细讲。 综上,本次选用L=8m ,B=5m。 窑池深度一般根据经验确定。池深一般在900—1200mm为宜。池深不仅影响

玻璃窑炉设计及先进经验技术引用

玻璃窑炉设计及先进经验技术引用第一章单元窑 第一节单元窑的结构设计 一、单元窑熔化面积的确定 二、熔池长、宽、深的确定 三、池底鼓泡位置的确定 四、窑池结构设计 五、火焰空间结构设计 六、烟道 七、通路结构设计 第二节耐火材料的选用及砌筑 一、单元窑选用的主要耐火材料 二、窑炉的砌筑技术 第三节单元窑的附属设备 一、投料机 二、鼓泡器 三、燃烧系统 四、金属换热器 第四节助熔易燃技术的应用 一、辅助电熔在单元窑上的应用 二、纯氧助燃技术的应用

第五节窑炉的启动和投产 一、投产准备 二、燃料准备 三、熟料准备 四、制定窑炉升温曲线五、采用热风烤窑技术 六、点火烤窑注意事项 七、投产 第二章玻璃球窑 第一节窑炉的结构 一、球窑的种类 二、马蹄焰球窑结构设计 三、球窑砖结构和耐火材料 第二节窑炉的熔制 一、玻璃球的熔制 二、玻璃球的成型 三、玻璃球的退火 四、玻璃球生产工艺规程 第三章全电熔玻璃窑 第一节全电熔玻璃窑概述 一、全电熔窑的优缺点 二、全电熔窑的分类 三、全电熔窑一览

四、熔制特性及对配合料要求 五、电熔窑是防止环境污染有力措施 六、玻璃全电熔窑的技术经济分析 第二节全电熔窑的结构设计 一、全电熔窑的形状 二、全电熔玻璃窑炉的加料 三、供电电源和电极连接第四章电助熔技术第一节火焰池窑电助熔的意义 一、池窑电助熔的优缺点 二、电助熔加热的技术分析 第二节电助熔池窑设计和操作 一、熔窑内电极布置和功率配置 二、熔加热功率的计算 第三节电助熔池窑的实例 一、生产硼硅酸盐BL电助熔池窑 二、生产有色BL的电助池窑 三、生产平板BI的电助熔池窑 第五章供料道的电加热 第一节供料道电加热概述 一、供料道工作原理及其加热现状 二、供料道电加热的优越性 三、供料道电加热分类

浮法玻璃熔窑的结构

浮法玻璃熔窑的结构 浮法玻璃熔窑和其他平板玻璃熔窑相比,结构上没有太大的区别,属浅池横焰池窑,但从规模上说,浮法玻璃熔窑的规模要大得多,目前世界上浮法玻璃熔窑日熔化量最高可达到1100t以上(通常用1000t/d表示)。浮法玻璃熔窑和其他平板玻璃熔窑虽有不同,但它们的结构有共同之处。浮法玻璃熔窑的结构主要包括:投料系统、熔制系统、热源供给系统、废气余热利用系统、排烟供气系统等。图1-1为浮法玻璃熔窑平面图,图1-2为其立面图。 一投料池 投料池位于熔窑的起端,是一个突出于窑池外面的和窑池相通的矩形小池。投料口包括投料池和上部挡墙(前脸墙)两部分,配合料从投料口投入窑内。 1.投料池的尺寸 图1-1 浮法玻璃熔窑平面图 1-投料口;2-熔化部;3-小炉;4-冷却部;5-流料口;6-蓄热室 图1-2 浮法玻璃熔窑立面图 1-小炉口;2-蓄热室;3-格子体;4-底烟道;5-联通烟道;6-支烟道;7-燃油喷嘴

投料是熔制过程中的重要工艺环节之一,它关系到配合料的熔化速度、熔化区的热点位置、泡界限的稳定,最终会影响到产品的质量和产量。由于浮法玻璃熔窑的熔化量较大,采用横焰池窑,其投料池设置在熔化池的前端。投料池的尺寸随着熔化池的尺寸、配合料状态、投料方式以及投料机的数量。配合料状态有粉状、颗粒状和浆状(目前一般使用粉状);投料方式由选用的投料机而确定,有螺旋式、垄式、辊筒式、往复式、裹入式、电磁振动式和斜毯式等。(目前多采用垄式投料机和斜毯式投料机)。 (1)采用垄式投料机的投料池尺寸采用垄式投料机的投料池宽度取决于选用投料机的台数,投料池的长度可根据工艺布置情况和前脸墙的结构要求来确定。 (2)采用斜毯式投料机的投料池尺寸斜毯式投料机目前在市场上已达到了普遍使用,它的投料方式与垄式投料机相似,只是投料面比垄式投料机要宽得多,因此其投料池的尺寸在设计上与采用垄式投料机的投料池尺寸没有太大的区别,仍然决定于熔化池的宽度和投料面的要求。 随着玻璃熔化技术的成熟和熔化工艺的更新,浮法玻璃熔窑投料池的宽度越来越大。因为配合料吸收的热量与其覆盖面积是成正比的,投料池越宽,配合料的覆盖面积越大,越有利于提高热效率和节能,有利于提高熔化率。因此,目前在大型浮法玻璃熔窑的设计中,均采用投料池与熔化池等宽和准等宽的模式。随着投料池宽度的不断增大,大型斜毯式投料机也应运而生,熔化池和投料池宽度均在11m的熔窑,采用两台斜毯式投料机即可满足生产和技术要求。 二熔化部 浮法玻璃熔窑的熔化部是进行配合料熔化和玻璃液澄清、均化的部位。熔化部前后由熔化区和澄清区组成;上下又分为上部火焰空间和下部窑池。其中上部空间又称为火焰空间,由前脸墙、玻璃液表面、窑顶的大碹与窑壁的胸墙所围成的充满火焰的空间;下部池窑由池

玻璃窑炉设计技术之单元窑

玻璃窑炉设计技术之单元窑 第一章单元窑 用来制造E玻璃和生产玻璃纤维的窑炉,通常采用一种称为单元窑的窑型。它是一种窑池狭长,用横穿炉膛的火焰燃烧和使用金属换热器预热助燃空气的窑炉。通过设在两侧胸墙的多对燃烧器,使燃烧火焰与玻璃生产流正交,而燃烧产物改变方向后与玻璃流逆向运动。因此在单元窑内的玻璃熔化、澄清行程长,比其它窑型在窑内停留时间长,适合熔制难熔和质量要求高的玻璃。单元窑采用复合式燃烧器,该燃烧器将雾化燃料与预热空气同时从燃烧器喷出,经烧嘴砖进入窑炉内燃烧。雾化燃料处在燃烧器中心,助燃空气从四周包围雾化燃料,能达到较好的混合。所以与采用蓄热室小炉的窑型相比,燃料在燃烧过程中更容易获得助燃空气。当空气过剩系数为1.05时能完全燃烧,通过调节燃料与助燃空气接触位臵即可方便地控制火焰长度。由于使用多对燃烧器,分别调节各自的助燃风和燃料量,则可以使全窑内纵向温度分布和炉内气氛满足玻璃熔化与澄清的要求,这也是马蹄焰窑所无法达到的。单元窑运行中没有换火操作,窑内温度、气氛及窑压的分布始终能保持稳定,这对熔制高质量玻璃有利。现代单元窑都配臵有池底鼓泡,窑温、窑压、液面及燃烧气氛实行自动控制等系统,保证了难熔的E玻璃在较高熔化率下能获取用于直接拉制玻璃纤维的优质玻璃液。所以迄今在国际上单元窑始终是E玻璃池窑拉丝的首选窑型。 单元窑与其它窑型相比的不足之处是能耗相对较高。这是因为单元窑的长宽比较大,窑炉外围散热面积也大,散热损失相对较高。采用金属换热器预热助燃空气的优点是不用换火,缺点是空气预热温度,受金属材料抗氧化、抗高温蠕变性能的制约,一般设计金属换热器的出口空气温度为650~850℃。大多数单元窑热效率在15%以内,但如能对换热器后的废气余热再予利用,其热效率还可进一步提高。 配合料在单元窑的一端投入,投料口设在侧墙的一边或两边,也有设在端墙上的。熔化好的玻璃从另一端穿过沉式流液洞流至称为通路的拉丝作业部。 第一节单元窑的结构设计

全电熔玻璃窑

第二篇全电熔玻璃窑 6 全电熔玻璃窑概述 (1) 6.1全电熔窑的优缺点 (1) 6.1.1全电熔窑的优点 (1) 6.1.2全电熔窑的缺点 (1) 6.2全电熔窑的分类 (3) 6.2.1热顶电熔窑 (3) 6.2.2半冷顶电熔窑 (4) 6.2.3冷顶电熔窑 (5) 6.2.4含有高挥发性组份的玻璃电熔窑 (5) 6.2.5熔化深色玻璃的电熔窑 (6) 6.2.6小型电熔窑 (7) 6.2.7中型和大型熔窑 (7) 6.3 全电熔窑一览 (7) 6.3.1Gornelius电熔窑 (7) 6.3.2 Souchon-Neuvesel窑 (11) 6.3.3 Borel窑 (12) 6.3.4 W. Konig窑 (15) 6.3.5 Grebenshtchirkov窑 (16) 6.3.6 Penberthy窑 (17) 6.3.7双室电熔窑 (19) 6.3.8铅晶质玻璃电熔窑(T型窑) (25)

6.3.9六角形竖井式电熔窑(德国SORG公司设计的VSM电熔窑) (27) 6.3.10“波歇”(Pochet)窑 (28) 6.4全电熔窑的熔制特性及其对配合料的要求 (28) 6.4.1电熔窑中的液流情况 6.4.2配合料的制配 6.4.3配合料的化学反应 6.5 玻璃电熔窑是玻璃厂防止环境污染的有力举措 (30) 6.5.1全电熔窑的熔化反应降低了有毒气体(如SO2、NO X)的排放量 (31) 6.5.2降低有害的挥发性玻璃组份 (32) 6.5.3降低挥发到空气中的尘粒 (32) 6.5.4降低了窑炉周围的操作温度 (32) 6.5.5降低了燥音 (32) 6.6玻璃全电熔窑的技术经济分析 (33) 6.6.1粉尘或废气净化设备 (33) 6.6.2能源消耗和热效率 (34) 6.6.3基建投资 (35) 6.6.4节约的挥发性原料 (36) 6.6.5全电熔窑的技术经济分析实例 (36) 7 全电熔窑的结构设计 (38) 7.1全电熔窑的形状 (38) 7.2全电熔玻璃窑炉的加料 (41) 7.2.1垄式加料机 (42)

浮法玻璃熔窑卡脖深层水包的使用

浮法玻璃熔窑卡脖深层水包的使用 浮法玻璃熔窑卡脖水包深浅的使用与玻璃熔窑设计有关,深层水 包一般使用在平底、浅池、小冷却部窑炉,使用不同深度的水包,会改变玻璃液对流,对流的改变,玻璃质量和能耗也会发生相应 的改变,控制好深层水包的深度对玻璃生产有着重大的意义。 卡脖水包是玻璃液分隔设备,在我国浮法熔窑上应用极其广泛。其作用:一 是阻挡熔化部未熔化好的粉料浮渣或者不能熔化的难熔物进入冷却部,参与成型,提高玻璃的产质量;二是调节玻璃液进入冷却部的流量和降低玻璃液的温度。 一、池窑内玻璃液流的对流 1、由于窑体的散热,造成池窑内玻璃液产生温度差,而玻璃液的密度与温 度成反比,温度差必然造成密度差,窑池内各部位存在不同密度玻璃液的情况下,形成表层玻璃液由高温向低温侧流动,低温玻璃液由深层向高温侧流动现象,玻璃液的温度梯度越大,其对流越激烈。 2、投料推力,配合料在投入玻璃熔窑以后,靠投料机的推力把配合料由投 料口向熔窑中部推,自然配合料会带动料层下的表层玻璃液向前移动。 3、玻璃液出口,成型拉引造成的液面低洼,产生的表面流动。 玻璃液在窑内的流动图 由热点到投料口的对流我们称为环流一。 热点到卡脖的对流我们称为环流二。 热点到冷却部、流道的对流我们称为环流三。 卡脖水包的深浅直接控制者进入冷却部的供回流玻璃液量,水包插入越深,进入冷却部的供回流玻璃液越少,冷却部降温速度越快。

卡脖水包对熔化的影响,应考虑以下两点,一是熔化能耗。二是玻璃的熔化、澄清。 二、卡脖开度对玻璃熔化能耗、澄清、均化的影响 1、能耗:卡脖水包加深后,减少冷却部的供回流量,冷却部回流量减少, 熔化所需要加热的低温玻璃液减少,熔化池玻璃液整体温度升高,熔化速度加快,玻璃液澄清温度升高,能耗降低。但另一方面讲,进入冷却部的热玻璃液 量少了,降温速度加快,而流道的温度是一定,必须满足成型的要求,这就需 要提高末对小炉温度,来满足成型需要,增加能耗。一个窑炉上采用不同深度 的水包,水包插入深度由浅逐渐加深,其能耗变化是从能耗高逐渐降低,到达 最低点后又逐渐升高,它是一个抛物线形式的变化曲线。 2、玻璃液的澄清: 玻璃的澄清,在卡脖开度减少的情况下,成型流玻璃液进入冷却部的玻璃 液量减少,冷却部回流量减少,熔化部玻璃液整体温度上升,玻璃液在高温时 澄清排泡能力增加,有利于玻璃液的高温澄清。而玻璃液澄清过程应分为两部分,一是玻璃液的高温排泡澄清;二是玻璃液在冷却过程中的残余气泡吸收,冷却微泡吸收澄清。 减少卡脖开度,玻璃液高温澄清效果明显转好,但卡脖开度的改变,势必 改变了玻璃液的冷却温度曲线,冷却曲线的改变对微泡的吸收有着较大的影响,总的澄清效果应进行多方面的测试,试验得出良好的澄清效果。 正常的玻璃液冷却温度曲线应均匀稳定,无突变的曲线,如下图: 如果温度缩小卡脖开度,即增加卡脖插入深度,其玻璃液温度曲线会在卡 脖处产生一个温度剧变点,如下图,从而改变玻璃液冷却过程中的微泡吸收的 热历史,使微泡难以被玻璃液吸收,存在于成品中影响玻璃质量。 玻璃液在卡脖处产生一个剧烈降温段,在此处,玻璃液中气体微泡中的二 氧化硫气体会与玻璃中的钠离子重新结合,以液态形式附着在气泡内壁上,阻 止微泡被玻璃液吸收。

玻璃浮法熔窑毕业设计开题报告

玻璃浮法熔窑毕业设计开题报告 毕业设计(论文)开题报告 系(部): 材料科学与工程 2012年3月9日课题名称日产600吨天然气浮法熔窑及锡槽初步设计—普通玻璃 毕业设计 B080106 学生姓名丁博专业班级课题类型 指导教师陈文娟职称副教授课题来源教学 1. 综述本课题国内外研究动态,说明选题的依据和意义 1.1选题背景 自1959年2月,英国Pilkington玻璃兄弟有限公司宣布浮法工艺成功以来,浮法玻璃技术得到迅速推广。2010年世界浮法玻璃生产利用率高达94%,库存约小于6%,其中市场消耗优质浮法玻璃已经超过了10亿重量箱以上。目前,国外一些大公司掌握了较为先进的玻璃制造技术,可以生产出0.5,25mm之间各种厚度的浮法玻璃,其玻璃熔窑拉引规模也在150,1000t/d之间不等。 1981年中国“洛阳浮法”诞生,从此我国玻璃工业进入了一个快速发展时期。浮法玻璃技术被迅速推广,一批采用“洛阳浮法”技术的浮法玻璃生产线陆续建成,目前我国已成为世界上生产规模最大的平板玻璃生产国。截止2011年,全国共有242条浮法玻璃生产线,2010年平板玻璃总产量达7.07亿重量箱,约占全球总产量的50%以上。 由于玻璃产量日益扩大,再加上玻璃多元化的发展,玻璃的价格越来越低,质量方面也要求越来越高。我国玻璃厂技术水平不高,产品比较单一,质量普遍不高,在市场上处于不利的位置。因此,我们迫切需要提高自己的技术水平,扩大规模,完善管理制度,向多元化高质量方面发展。

在平板玻璃原片制造技术上,目前国际上还没有新的更好的方法能取代浮法成型工艺,但浮法技术如超薄技术、在线镀膜技术、一窑多线技术仍需继续提高和完善。 本设计主要是针对浮法玻璃熔窑及锡槽方面进行的,综合目前国内外的先进技术,对600万吨浮法玻璃熔窑及锡槽部分进行设计。 1.2选题的目的及意义 了解浮法玻璃熔窑及锡槽的结构,对浮法玻璃的熔窑及锡槽工艺有一个全面的了解。培养学生严谨的工作作风和求实努力的科学态度,弄清浮法玻璃熔窑及锡槽工艺制度的设计方法,进一步培养学生独立思考、综合运用已学理论知识及其它途径分析和解决实际问题的工作能力、锻炼学生理论结合实际的能力、看图和制图的能力、设计和科研的能力,提高学生的工厂设计能力。 1.3选题的可行性在校期间,本人已经系统的学习了浮法玻璃工艺,硅酸盐热工基础及其设备等相关专业课程,还参加过玻璃厂参观实习的实践课程,将理论与实践很好的结合,对玻璃生产工艺有了直观的认识和了解,这些都为本科设计奠定了良好的理论和实践基础。此外学校也为我们提供了良好的设计环境。 国内外的浮法玻璃工艺技术经过半个多世纪的发展已日益成熟,熔窑及锡槽的结构更加合理和稳定。洛阳作为我国浮法玻璃工艺技术的诞生地也为本次设计提供了更好的条件和环境。同时国家的节能减排及产业结构调整政策也给我们的设计提出更高的要求。 2. 研究的基本内容,拟解决的主要问题 2.1设计的主要内容 1参考国内同类产品的组成,确定玻璃的组成; 2选择原料,并进行料方计算; 3对浮法玻璃熔窑及锡槽工艺做整体的了解;

相关主题
文本预览
相关文档 最新文档