当前位置:文档之家› 高等计算流体力学讲义(2)

高等计算流体力学讲义(2)

高等计算流体力学讲义(2)
高等计算流体力学讲义(2)

高等计算流体力学讲义(2)

第二章 可压缩流动的数值方法

§1. Euler 方程的基本理论 0 概述

在计算流体力学中,传统上,针对可压缩Navier -Stokes 方程的无粘部分和粘性部分分别构造数值方法。其中最为困难和复杂的是无粘部分的离散方法;而粘性项的离散相对简单,一般采用中心差分离散。所以,本章主要研究无粘的Euler 方程的解法。在推广到Navier -Stokes 方程时,只需在Euler 方程的基础上,加上粘性项的离散即可。Euler 方程是一种典型的非线性守恒系统。下面我们将讨论一般的非线性守恒系统以及Euler 方程的一些数学理论,作为研究数值方法的基础。

1非线性守恒系统和Euler 方程

一维一阶非线性守恒系统(守恒律)可写为下列一般形式

=??+??x

F t

U ,0,>∈t R x

(1)

其中U 称为守恒变量,是有m 个分量的列向量,即T m u u u U ),...,(21=。T m f f f F ),...,(21=称为通量函数,是U 的充分光滑的函数,且满足归零条件,即:

0)(lim

=→U F U

即通量是对守恒变量的输运,守恒变量为零时,通量也为零。

守恒律的物理意义

设U 的初始值为:0(,0)(),U x U x x =∈R 。如果0()U x 在x ∈R 中有紧支集(即0U 在有限区域以外恒为零),则0(,)()U x t dx U x dx =??R

R

。即此时虽然(,)U x t 的分布可以随时

间变化,但其总量保持守恒。

多维守恒律可以写为

)(=++??+??k H j G i F t

U

(2)

守恒律的空间导数项可以写为散度形式。

守恒系统(1)可以展开成所谓拟线性形式

)

(=??+??x

U U A t

U (3)

A 是m m ?矩阵,称为系数矩阵或Jacobi 矩阵,其具体形式为

111122

221

21

2......

...m m m m m

m f f f u u u f f f u u u A f f f u u u ?????

??

???????????????=??????????????????

(4)

,容易验证:

F U A

x

x

??=??,通常也记F A U

?=?。流体力学无粘流动的Euler 方程是典型的

非线性守恒律,可以写为

=??+??x

F t

U (5)

其中:

T

T

uH p u u F E u U )

,,()

,,(2

ρρρρρρ+== (6)

这里ρ,u ,p ,E ,H 分别为密度、速度、压力、总能和总焓。对于完全气体,2

2

1u e E +=,2

2

1u

h H +

=,ρ

γ)1(-=

p e 为内能,ρ

p

e h +

=为焓。γ为比热比,对于空气,γ=1.4。

把(5)式写成拟线性形式,其Jacobi 矩阵为:

?

???

???

?

?

?--------=u u

E uE u u

u

A γγγγγγγγ2

3

2

2

1

3

)1(1)3(2)

3(0

10

(7)

守恒型方程和非守恒型方程。 原始变量对应的非守恒型Euler 方程

()0t x W A W W +=

2

0()0

1/0u W u A W u

p a

u ρρρρ????

???

?==??

????????

?

?

为什么要研究守恒型方程?

使用非守恒型方程计算有激波间断的流动,激波位置或激波速度可能不对。

2.双曲型方程的定义

令Jacobi 矩阵的特征值为m

k

k ,,2,1,)( =λ,则如果A 的所有特征值均为实数且A 可以

对角化(即有m 个线性无关的特征向量),则(3)式(以及(1)式)称为双曲系统。如果A 的所有特征值为互异实数,则(3)式称为严格双曲系统。 矩阵A 的特征值λ,由下式定义:

0=-I A λ

(8)

显然,对于m m ?阶矩阵,(8)式有m 个根m

k

k ,,2,1,)( =λ。

对于一维Euler 方程,有:

a

u u a u +==-=)

3()2()1(λ

λλ (9)

其中ρ

γp a =

为音速。显然Euler 方程为双曲型方程。

双曲型系统有m 个独立的特征向量,设m l l l ,,21为左特征向量,则

m

k l A l k k k ,2,1,)

(==λ

(10)

左特征向量为行向量。设左特征向量组成的矩阵

??????

? ??=m

l l l

L 2

1 (11)

则:

L LA Λ= (12)

其中:

(1)

(2)

()

(,,,)m diag λλ

λ

Λ= (13)

设m r r r ,,21为右特征向量,则

k

k k r r A )

= (14)

右特征向量为列向量。设右特征向量组成的矩阵为 ()m

r r r R

,,,21 = (15)

则:

Λ

=R AR (16) 由(12)式,(16)式分别有

1

-Λ=L

L A

(17) 1

-Λ=R

R A

(18) 矩阵A 与一个对角阵相似,我们称A 可以对角化。显然

1

-=L

R 。

(19)

3.特征线与Riemann 不变量

以左特征向量左乘(3)式

=??

? ????+??x U A t U l k (20)

考虑到 ()k k k l A l

λ=,有:

()()0

=???

??

??+??x U t

U l

k k λ (21)

我们称由

()()

()U dt

t dx k λ

= (22)

定义的一族曲线k Γ为(3)式的特征线。

沿特征线

k

k

D U U

U dx D t

t x dt Γ

Γ????=+ ?????

显然在特征线上:

k

Dt

DU

l k

,m

k

,,2,1 = (23)

特征线的意义:对于两个自变量的双曲系统,通过引入特征线,可把偏微分方程组(3)式化为特征线上的常微分方程组(23)。(23)式称为特征相容关系。

具体到一维Euler 方程,左特征向量为:

212

22

22

232

(1),,12211(1)2,2,221(1),,122

11u ua a

l u a a l u u a u ua a l u a

γγγγγγγγ??-=+--??--??

??-=--??-????-=--+??--??

特征相容关系为

0=±Dt

Du a

Dt

Dp ρ,

a

u dt

dx ±= (24)

=Dt

DS ,

u dt

dx = (25)

其中γ

ρ

p

C S

v ln

=为熵。对于均熵流动,(24)式可以积分出:

const

R

,沿

a

u dt

dx ±=

其中

a

u R

1

2

γ。此时(25)式退化为:

S const =

4. 广义解(弱解)

考虑 Bergers 方程

0,0 t x u uu x R t +=∈>

(26)

0(,0)()u x u x =

考虑如下初始条件,

010()10101

x u x x

x x ≤??

=-<≤??>?

当存在连续解时,

0(,)(,0)()u x t u x ut u x ut =-=-

由此可知

11(,)110

1

x t x

u x t t x t x ≤??

-?=<≤?

-?>?? 参见图1

即1→t 时

11,1

(,)|0,1

t x u x t x →

>? 可见,对于非线性问题,即使初始值是连续的,其解仍然可能出现间断。对于Euler 方程,其解的结构中可能出现激波或接触间断,此时,不存在古典意义下的解(古典解要求解是充分光滑的)。为此,必须拓展双曲型守恒律解的概念。

定义(广义解或弱解):

设U(x ,t )是分片连续可微的函数,在≥t 0的半平面,如果对于与U(x ,t )的间断线只有有限个交点的任意分段光滑的闭曲线Γ,都有:

()0F U dt U dx Γ

-=? , (27)

则称U(x ,t )为方程

0=??+

??x

F t

U 在初值U(x ,0)=U 0(x),∞<<∞-x 下的广义解或弱解。

如果已知U(x ,t )是光滑的,设Γ围成的区域为Ω,则由(27)式利用Green 公式知

(

)0U F dxdt Fdt U dx t

x

Ω

Γ

??+

=

-=????? (28)

由于闭曲线可以在光滑区内任取,由(28)式可得:

0=??+??x

F t

U

(29)

即,在光滑区,弱解就是古典解。

假定),(t x U 是由一条间断线()t X X =分隔开的分片连续可微函数,取如图所示的闭曲线Γ

在Γ上应用(27)式,有

()()()()()

?

?

-++=+???

?

???

?+-+ε

ε

ε

εε)()(2)(222

1

),(,,t x t x t t t x x dx t x U dt dt dx t t x U dt t t x U F

()()()

()()112

1()1()(),,(,)0t x t t x t x x t dx

F U x t t dt U x t t dt U x t dx dt εε

ε

εε+-=-??

+---+=?

????

?

?

?

令0→ε,则上式可简化为:

()()()()()()()()()()

?

=?

???

??

?

?-+--+-+==2

1

,0,0,0,0)()

(t t t x x t x x dt dt dx

t t x U t t x U F dt dx

t t x U t t x U F 令 ()()t t x U U

,0+=+

()()t t x U U

,0-=-

)

(t x x dt

dx D ==

并考虑到t 1,t 2可以任意取值,有:

[][]F D U =

(30)

其中[]()()-

+

-=U F U

F F ,[]-

+

-=U

U

U 。

上述关系(30)式称为Rankine-Hogoniot 关系。综上所述,双曲型守恒律的弱解()t x U ,是被有限个间断线分开的分片光滑函数。在光滑区,()t x U ,满足微分方程(29)式,在间断线的两侧,()t x U ,满足R-H 关系。

广义解是不唯一的。为了说明这一问题,我们举一个例子:考虑Burgers 方程在初值为

01

0()1

x u x x -≤?=?

>?

时的解。此时,Bergers 方程为2

(/2)0t x u u +=,初值在0x =处有一个间断。0x =处的

Rankine-Hogoniot 条件为:

2

2

0000(/2)|(/2)|(||)x x x x u u D u u =+=-=+=--=-

由上式知0D =。所以,0(,)()u x t u x =在间断处满足Rankine-Hogoniot 条件,在其他地方满足微分方程,即0(,)()u x t u x =是Bergers 方程的一个广义解。另外,容易验证

1(,)/1x t u x t x t t x t x t -≤-??

=-<≤??>?

也是Bergers 方程的一个广义解。所以广义解一般不唯一,但是对于由明确物理意义的守恒

律,其中只有一个解是有物理意义的,我们称之为物理解。为了得到我们关心的物理解,广义解除了必须满足(27)式外,还必须满足附加的条件,这个条件因为与热力学第二定律所起的作用相同,被称为熵条件。

5.熵条件

熵条件1)物理解: 方程

2

2U F U t

x

x

ε

???+=???的解如果当0ε→时,几乎处处有界的收敛到分片连续可微函数

(,)U x t ,则(,)U x t 是0U F t

x

??+=??的物理解。

熵条件2)解析熵条件:

我们首先针对Euler 方程讨论熵条件。对于Euler 方程,熵有明确的物理意义。对于完全气体/S

p γ

ρ

=,其中γ是绝热指数(比热比)。在光滑区,有

0D S D t

=

0S uS t

x

ρρ??+

=??。

这个方程称为熵守恒方程。当存在间断时,

[]0S S S +-

=->

这里我们假定激波前后的物理量分别记为(),()-

+

??。此时Rankine-Hogoniot 关系为:

[][]

2

(,,)

(,,)

T

T

F D U U u E F u u p uH ρρρρρρ===+

其中D 是激波运动速度。由上述关系式的第一个方程,有

[][]u D ρρ=,

即:

[]()0u D ρ-=

所以

[][]()()()()0

u D S u D S u D S

u D S ρρρρ+

+

+

-

-

-

+

+

-=

---=->

这里我们用到了()()0u D u D ρρ++---=->的条件,容易验证在激波上,这个关系总是成立的。所以,我们有:

[][]0uS D S ρρ->

由于在光滑区0S uS t

x

ρρ??+=??,仿照弱解的定义,在包含有限间断线的分片光滑区域内,有

0uSdt Sdx ρρΓ

-≥? 。

我们称这个条件为Euler 方程的熵条件。通常我们定义熵函数为s U S ρ=-,而s F uS ρ=-称为熵通量,因此,熵条件也可以写为

0s

s U

dx F dt Γ

-≥? 。 (31)

对于一般的双曲型守恒律,熵函数和熵通量的定义并不是很明显。一般我们要求满足下列条

件:

(1)相容性条件:s

s F U F U

U U

???=

???。由这个条件,当在光滑区0=??+??x

F t

U 满足时,则

0s s U U U F U

t

U x

????+

=????

0s s U U U F U U

t

U U x

?????+

=?????

由相容性条件

s s U F U U U

t

U x

????+=????

所以

0s s U F t

x

??+

=??。

也就是说,由守恒型方程

=??+??x

F t

U ,我们可以得到熵守恒方程0

s

s U F t

x

??+=??。

(2)凸条件:121201,((1))()(1)()s s s U U U U U U U ααααα?≤≤+-≤+-。这个条件反映了熵的性质。

可以验证,上述针对Euler 方程定义的熵函数和熵通量满足这些条件。

熵条件3)几何熵条件:

关于熵条件,我们还可以从另一个角度进行启发性分析:我们假定满足熵条件的广义解是存在和唯一的。因此,必须存在某种机制,使得广义解可以唯一确定。因为,当不存在间断时,广义解就是古典解,讨论熵条件没有意义,所以,我们只考虑存在间断的情况。此时,设间断的速度为D ,则间断两侧由2m +1个未知量。但是,Rankine-Hogoniot 关系只提供了m 个方程。所以为了唯一确定间断两侧的解,必须补充m +1个关系。这m +1个关系应该由m +1个特征关系给出,也就是说,必须有m +1条特征线与间断相交。设一般的双曲型守

恒律0=??+??x

F t U 的特征值为(1)

(2)

()

m λ

λ

λ

≤≤≤ 。如图所示

当D 满足

(1)()()(1)k k k k D D λλ

λ

λ

---

+

++

<<<< (32)

时(上标中的,+-代表间断的前、后侧),共有(1)1m k k m -++=+条特征线与间断相交。此时,间断两侧的解应可唯一确定。满足(32)的间断称为k -激波,(32)称为几

何熵条件。

熵条件4) O.A.Oleinik 熵条件 (1957):设(,)u x t 是定义在t ≥0上半平面上,除了存在有限条的光滑间断线的可微函数;对于标量方程

??

??

?==??+??)()0.(0x x u x f

t u ? 的弱解 , 若(,)u x t 在间断线上满足

()()()()()()f u f w f u f u f u f w u w

u u

u w

-

+-

+

-+

-

+

---≥

---

其中w 为任意属于集合I 的函数,集合}),max{},,(min{-+-+=u u u u I

则弱解是唯一的,并且就是物理解。同时,在L 1范数的意义上,物理解也是连续依赖于初始条件的,即是稳定的。

在熵条件中

-

+

-

+--u

u

u f u f )

()(是间断面的传播速度dx D dt

=

。在间断左侧,若令-

→u w ,

则()()lim

w u

f u f w u w

-

-

-

→--表示间断负侧的特征线斜率()()f u u u

λ-

-

?=

?。在右侧,令w u

+

→则

()()

lim w u

f u f w u w

+

+

+

→--表示间断正侧的特征线()()f u u u

λ+

+

?=

?。所以对于标量守恒律,

O.A.Oleinik 熵条件蕴涵了几何熵条件()()u D u λλ-

+

≥≥。

x

1)k ++

熵条件小节:对于标量守恒律,熵条件的研究已经比较成熟。人们已经证明,对标量守恒律,满足熵条件4)的弱解以及通量函数为守恒变量的凸函数时满足2)或者3)的弱解均为物理解。对于守恒方程组,熵条件的研究还不够充分。

6. 守恒型格式

计算含有间断的广义解,对计算格式有一定的要求,即要求格式是守恒型的。下

面给出守恒型格式的定义:

()()()0,,0,0,f u u x t t x u x x x ????

?+=-∞<<+∞>??????

??=-∞<<+∞??

(33)

定义:对于一维守恒型方程, 差分格式

()1

1,n n

n

n

j

j l j l j l u G u u u +--++= (34)

称为守恒型差分格式,如果

()

1

11

2

2

,n

n

n n n n

j l

j l j l

j

j j t G u

u

u

u g g x --+++-??

?=-- ????

(35) 1122

(,,)n n

n

n

j l j l j l j g

g u u u -+-+++=

g 称为数值通量。为使差分格式相容,则g 必须满足:

()(),,g w w w f w =

如果差分方程对微分方程是相容的,且在求解域内,对于任意网格点数和任意网格尺度,都精确地满足离散型的积分方程,则称差分方程是守恒型的。容易看出:如果某个差分格式满足上述条件,则有:

11/21/2R

R

L R L

L

j j n n n n

j

j j j j j j j x u

x u tg tg +-+==?=?+?-?∑∑

上式相当于守恒型方程(散度形式)下列积分形式的离散化方程:

1

1

1/2

1/2

1/2

1/2

1

1/21/2(,)(,)(,)(,)n n j j R R n

n

L R j

j

L L x x t t t t n n

j j x x t t

t t

u x t

dx u x t dx f x t dt f x t dt ++++--==+-+===+

-

?

?

?

?

如果n

u 在x ∈R 中有紧支集(即在有限区域以外恒为零),则有

1R

R

L

L

j j n n

j

j j j j j x u

x u +==?=?∑∑

有限体积格式是守恒格式。

The Lax-Wendroff 定理:假定有限差分格式是守恒律(33)的相容的守恒格式. 如果 n

j u 在某种范数下(如1

L 或2

L ,其中1/[]

k

k

k

L

dx =?x

x )收敛到(,)u x t , 则(,)u x t 是(33)的

一个弱解。

注意到:Lax-Wendroff 定理并不保证弱解的存在性和相容的守恒格式的收敛性。同时,该定理也并不保证得到的弱解满足熵条件。但是,通过该定理我们知道可以通过守恒的相容格式计算双曲型守恒律的弱解。

高等流体力学重点

1.流体的连续介质模型:研究流体的宏观运动,在远远大于分子运动尺度的范围里考察流体运动,而不考虑个别分子的行为,因此我们可以把流体视为连续介质。 它有如下性质: (1)流体是连续分布的物质,它可以无限分割为具有均布质量的宏观微元体。 (2)不发生化学反应和离解等非平衡热力学过程的运动流体中,微元体内流体状态服 从热力学关系 (3)除了特殊面外,流体的力学和热力学状态参数在时空中是连续分布的,并且通常 认为是无限可微的 2.应力:有限体的微元面积上单位面积的表面力称为表面力的局部强度,又称为应力,定义如下:=n T A F A δδδlim 0→ 3.流体的界面性质:微元界面两侧的流体的速度和温度相等,应力向量的大小相等.方向相反或应力分量相等。 4.流体具有易流行和压缩性。 5.应力张量具有对称性。 6.欧拉描述法:在任意指定的时间逐点描绘当地的运动特征量(如速度、加速度)及其它的物理量的分布(如压力、密度等)。 7.拉格朗日描述法:从某个时刻开始跟踪质点的位置、速度、加速度和物理参数的变化,这种方法是离散质点的运动描述法称为拉格朗日描述法。 8.流线:速度场的向量线,该曲线上的任意一点的切向量与当地的的速度向量重合。 迹线:流体质点点的运动迹象。 差别:迹线是同一质点在不同时刻的位移曲线。 流线是同一时刻、不同质点连接起来的速度场向量线。 流线微分方程:ω dz v dy u dx == 迹线微分方程:t x U i i ??= 9.质点加速度:质点速度向量随时间的变化率。 U U t U a )(??+??= 质点加速度=速度的局部导数+速度的迁移导数。 物理量的质点导数=物理量的局部导数+物理量的对流导数。

全日制工程硕士研究生培养方案-北航研究生院-北京航空航天大学

大型飞机高级人才培养班 航空工程全日制工程硕士研究生培养方案 一、适用类别或领域 航空工程(085232) 二、培养目标 材料工程、电子与通信工程、控制工程、航空工程领域全日制工程硕士 (以下简称航空工程等领域全日制工程硕士)是与以上各工程领域任职资格相联系的专业学位,主要为国民经济和国防建设等领域培养应用型、复合型高层次工程技术和工程管理人才。大飞机班旨在探索一条“以国家大型项目人才需求为索引,培养具有献身精神、团结协作精神、开拓创新精神的设计型和复合型人才”的研究生培养新模式,是北航研究生培养体系的一部分。 航空工程等领域全日制工程硕士培养的基本要求是: 1、坚持党的基本路线,热爱祖国、遵纪守法、品行端正、诚实守信、身心健康,具有良好的科研道德和敬业精神。 2、在本领域掌握坚实的基础理论和系统的专门知识,有较宽的知识面和较强的自立能力,具有大飞机设计、制造、运营、管理等领域需求的创造能力和工程实践能力。 3、掌握一门外国语。 三、培养模式及学习年限 1.航空工程等领域全日制工程硕士研究生培养实行导师负责制,或以导师为主的指导小组制,负责制订硕士研究生个人培养计划,选课、组织开题报告、论文中期检查、指导科学研究和学位论文,并与中国商飞、第一飞机设计研究院、西飞公司等航空企业联合培养,实行导师组指导。 2.硕士研究生一般用1学年完成课程学习,课程学习实行学分制,具体学习、考核及管理工作执行《北京航空航天大学研究生院关于研究生课程学习管理规定》。 3.专业实习是全日制工程硕士研究生培养中的重要环节,全日制工程硕士研究生在学期间,应保证不少于0.5年的工程实践。 4.学位论文选题应来源于航空工程等领域工程技术背景。鼓励实行双导师制,其中第一导师为校内导师,校外导师应是与本工程领域相关的专家,也可以根据学生的论文

高等计算流体力学讲义(2)

高等计算流体力学讲义(2) 第二章 可压缩流动的数值方法 §1. Euler 方程的基本理论 0 概述 在计算流体力学中,传统上,针对可压缩Navier -Stokes 方程的无粘部分和粘性部分分别构造数值方法。其中最为困难和复杂的是无粘部分的离散方法;而粘性项的离散相对简单,一般采用中心差分离散。所以,本章主要研究无粘的Euler 方程的解法。在推广到Navier -Stokes 方程时,只需在Euler 方程的基础上,加上粘性项的离散即可。Euler 方程是一种典型的非线性守恒系统。下面我们将讨论一般的非线性守恒系统以及Euler 方程的一些数学理论,作为研究数值方法的基础。 1非线性守恒系统和Euler 方程 一维一阶非线性守恒系统(守恒律)可写为下列一般形式 =??+??x F t U ,0,>∈t R x (1) 其中U 称为守恒变量,是有m 个分量的列向量,即T m u u u U ),...,(21=。T m f f f F ),...,(21=称为通量函数,是U 的充分光滑的函数,且满足归零条件,即: 0)(lim =→U F U 即通量是对守恒变量的输运,守恒变量为零时,通量也为零。 守恒律的物理意义 设U 的初始值为:0(,0)(),U x U x x =∈R 。如果0()U x 在x ∈R 中有紧支集(即0U 在有限区域以外恒为零),则0(,)()U x t dx U x dx =??R R 。即此时虽然(,)U x t 的分布可以随时 间变化,但其总量保持守恒。 多维守恒律可以写为 )(=++??+??k H j G i F t U (2) 守恒律的空间导数项可以写为散度形式。 守恒系统(1)可以展开成所谓拟线性形式

计算流体力学课后题作业

课后习题 第一章 1.计算流体动力学的基本任务是什么 计算流体动力学是通过计算机数值计算和图像显示,对包含有流体流动和热传导等相关物理现象的系统所做的分析。 2.什么叫控制方程?常用的控制方程有哪几个?各用在什么场合? 流体流动要受物理守恒定律的支配,基本的守恒定律包括:质量守恒定律、动量守恒定律、能量守恒定律。如果流动包含有不同组分的混合或相互作用,系统还要遵守组分守恒定律。如果流动处于湍流状态,系统还要遵守附加的湍流输运方程。控制方程是这些守恒定律的数学描述。 常用的控制方程有质量守恒方程、动量守恒方程、能量守恒方程、组分质量守恒方程。质量守恒方程和动量守恒方程任何流动问题都必须满足,能量守恒定律是包含有热交换的流动系统必须满足的基本定律。组分质量守恒方程,在一个特定的系统中,可能存在质的交换,或者存在多种化学组分,每种组分都需要遵守组分质量守恒定律。 4.研究控制方程通用形式的意义何在?请分析控制方程通用形式中各项的意义。 建立控制方程通用形式是为了便于对各控制方程进行分析,并用同一程序对各控制方程进行求解。

各项依次为瞬态项、对流项、扩散项、源项。 6.CFD商用软件与用户自行设计的CFD程序相比,各有何优势?常用的商用CFD软件有哪些?特点如何? 由于CFD的复杂性及计算机软硬件条件的多样性,用户各自的应用程序往往缺乏通用性。 CFD商用软件的特点是 功能比较全面、适用性强。 具有比较易用的前后处理系统和其他CAD及CFD软件的接口能力,便于用户快速完成造型、网格划分等工作。 具有比较完备的容错机制和操作界面,稳定性高。 可在多种计算机、多种操作系统,包括并行环境下运行。 常用的商用CFD软件有PHOENICS、CFX、SRAR-CD、FIDAP、FLUENT。PHOENICS除了通用CFD软件应该拥有的功能外,PHOENICS软件有自己独特的功能:开放性、CAD接口、运动物体功能、多种模型选择、双重算法选择、多模块选择。 CFX除了可以使用有限体积法外,还采用基于有限元的有限体积法。用于模拟流体流动、传热、多相流、化学反应、燃烧问题。其优势在于处理流动物理现象简单而几何形状复杂的问题。 SRAR-CD基于有限体积法,适用于不可压流体和可压流的计算、热力学的计算及非牛顿流的计算。它具有前处理器、求解器、后处理器三大模块,以良好的可视化用户界面把建模、求解及后处理与全部的物理模型和算法结合在一个软件包中。

北京航空航天大学五系流体力学实验染色液流动显示实验报告

研究生《流体力学实验》 ——飞机标模染色液流动显示 实验报告 班级 姓名 实验日期 指导教师 北京航空航天大学流体力学研究所

一、实验目的 1. 掌握染色流动显示技术的基本原理、应用方法和实验过程中应注意的技术问题。 2. 了解战斗机典型绕流现象和特性,包括机翼前缘涡(边条涡)、机头涡的形态、特征、涡 系间相互作用,以及攻角影响等,并分析这些流动现象对飞机气动性能的影响。 二、基本原理 流动显示技术是显示技术包括方法、设备、记录手段、图像处理和数据分析等方面,逐渐形成专门的实验技术。 水洞中常用的流动显示技术有氢气泡方法和染色方法等(属于示踪粒子方法),配以激光片光源等辅助手段可以得到很多有意义的细节结果。染色线流动显示是在在被观测的流场中设置若干个点,在这些点上不断释放某种颜色的液体,它随流过该点的流体微团一起往下游流去,流过该点的所有流体微团组成了可视的染色线。染料选取应注意:1.所选取的染料应使染色线扩散慢、稳定性好;2.染色液应与水流具有尽可能相同的密度(与酒精混合); 3. 染料颜色与流场背景形成强的反差(荧光染料)注入方式;4.在绕流物体表面开孔;5.直接注入流场中所需要观测的位置。 本实验选用飞机标模,利用染色液方法观察其绕流的典型流动现象,重点关注机头涡、边条涡及其对基本翼(主翼也称后翼)流动的影响。 三、实验装置及模型 1.实验模型 飞机标模由机身、机翼、尾翼构成,见图2。机身为尖拱型头部加圆柱形后体,机翼为大后掠边条加中度后略三角翼主翼,尾翼包括水平尾翼和垂直尾翼(单立尾)。各部分表面都布有染色液出孔。

2.实验风洞 北航1.2米多用途低速串联水平回流式水洞。该水洞实验段尺寸大、流场品质高,与同类设备比较,不但在国内领先,而且达到国际先进水平。设备主实验段1.2米×1米×16米(高×宽×长),流速范围0.1~1.0米/秒。主实验段主要流场品质:湍流度0.27%~0.45%,截面速度不均匀度:0.46%。 四、实验步骤 1.实验准备,将染色液注入系统; 2.开启水洞,水流速度稳定到10cm/s; 3.调整攻角; 4.待流场稳定后,调节染色液流量,得到清晰的流动结构显示形态; 5.待流动稳定后,观察稳定的流态,拍摄照片; 6. 将攻角分别调整到0 o,5o,10o,15o,20o,25o,30o,35o,40o,45o,50o,55o,60o,重复步骤5,直到所要求的攻角状态实验全部完成。 五、实验结果报告 1.实验条件: ①水温t=20o C; 水的运动粘性系数υ=0.878×10-6米2秒; 附:水的运动粘性系数随温度的变化: ②水流速度 U = 0.1 米/秒; ③特征长度C=0.115m (C为模型机翼平均弦长) 计算:雷诺数 Re = UC /υ= 1.310×104; 2.实验结果和分析

计算流体力学作业习题

2014级西安理工大学计算流体力学作业 1.写出通用方程,并说明其如何代表各类守恒定律。 由守恒型对流-扩散方程: ()()() div U div T grad S t φφρφρφφ?+=+? 其中φ为通用变量;T φ为广义扩散系数;S φ为广义原项。 若令1;1;0T S φφφ===时,则得到质量守恒方程(mass conservation equation ) ()()()() 0u v w t x y z ρρρρ????+++=???? 若令;i u φ=时,则得动量守恒方程(momentum conservation equation ) 以x 方向为例分析,设;u P u S S x φφ?==- ?,通用方程可化为: ()()()()(2)u uu vu wu P u divU t x y z x x x ρρρρλη???????+++=-++??????? z v u u w F y x y z z x ηηρ???????????? ??+++++?? ? ????????????????? 同理可证明y 、z 方向的动量守恒方程式 若令;;T p T T S S C φφλ φ===时,则得到能量守恒方程(energy conservation equation) ()()() ()h h div Uh div U div gradT S t ρρρλφ?+=-+++? ()()()T p h div Uh div gradT S t C ρλ ρ?+=+? 证毕 2.用控制体积法离散 0)(=+++s dx dT k dx d dx dT u dt dT ,要求对S 线性化,据你的理解,谈谈网格如何划分?交界面传热系数何如何计算?边界条件如何处理? 根据守恒型对流-扩散方程: ()()()u T S t x x x ρφρ?φ ????' +=+????,对一维模型 进行分析,则有: 0)(=+++s dx dT k dx d dx dT u dt dT

计算流体力学教案

计算流体力学教案 Teaching plan of computational fluid mechanics

计算流体力学教案 前言:本文档根据题材书写内容要求展开,具有实践指导意义,适用于组织或个人。便于学习和使用,本文档下载后内容可按需编辑修改及打印。 一、流体地基本特征 1.物质地三态 在地球上,物质存在地主要形式有:固体、液体和气体。 流体和固体地区别:从力学分析地意义上看,在于它们对外力抵抗地能力不同。 固体:既能承受压力,也能承受拉力与抵抗拉伸变形。 流体:只能承受压力,一般不能承受拉力与抵抗拉伸变形。 液体和气体地区别:气体易于压缩;而液体难于压缩; 液体有一定地体积,存在一个自由液面;气体能充满任意形状地容器,无一定地体积,不存在自由液面。 液体和气体地共同点:两者均具有易流动性,即在任何 微小切应力作用下都会发生变形或流动,故二者统称为流体。 2.流体地连续介质模型

微观:流体是由大量做无规则运动地分子组成地,分子之间存在空隙,但在标准状况下,1cm3液体中含有3.3×1022个左右地分子,相邻分子间地距离约为3.1×10-8cm。1cm3气体中含有2.7×1019个左右地分子,相邻分子间地距离约为3.2×10-7cm。 宏观:考虑宏观特性,在流动空间和时间上所采用地一切特征尺度和特征时间都比分子距离和分子碰撞时间大得多。 (1)概念 连续介质(continuum/continuous medium):质点连续充满所占空间地流体或固体。 连续介质模型(continuum continuous medium model):把流体视为没有间隙地充满它所占据地整个空间地一种连续介质,且其所有地物理量都是空间坐标和时间地连续函数地一种假设模型:u =u(t,x,y,z)。 (2)优点 排除了分子运动地复杂性。物理量作为时空连续函数,则可以利用连续函数这一数学工具来研究问题。 3.流体地分类

北航考研之科研成果及重点实验室汇总

北航考研之科研成果及重点实验室汇总 学校在尖端技术研究领域居于国内高校前列,有40多项科研成果具有开辟意义;该校研制发射成功的多种型号飞行器填补了国内多项空白,如中国第一架轻型旅客机“北京一号”、亚洲第一枚探空火箭“北京二号”、中国第一架无人驾驶飞机“北京五号”、“蜜蜂”系列飞机、共轴式双旋翼无人驾驶直升机等。自2001年至2013年,北航共获国家三大科技奖励49项;特别在2005年至2013年,该校连续7年获得7项国家级科技奖励一等奖。 2013年学校科研经费到款23.23亿元,6项成果获得国家奖励,3位教授及其团体获国家自然科学二等奖,获批5项973项目、12项自然科学基金重点项目,以及237项面上项目,重大工程项目进展顺利并获嘉奖。以“3D打印”为代表的技术创新取得重大进展,“月宫一号”实验装置取得实质进展,物理科学与核能工程学院参与的发现四夸克物质Zc(3900)被评为2013美国《物理》杂志年度研究热点、生物与医学工程学院两篇文章分别名列ESI 近两年热点论文和材料领域近十年高引用论文。 标志性成果 昆虫飞行的空气动力学和飞行力学 实时三维图形平台BH-GRAPH 航空航天、先进制造等复杂工程系统 过渡金属及其化合物纳米材料的可控制备、微结构及特性研究 六方铁磁体的稳定磁结构耦合及其可控磁功能特性 科研机构 截止2013年,北京航空航天大学拥有1个国家实验室、9个国家级重点实验室、4个国家级工程研究中心、42个省部级重点实验室、3个省部级工程中心和3个中关村开放实验室。 国家实验室 航空科学与技术国家实验室 国家重点实验室 虚拟现实新技术国家重点实验室、软件开发环境国家重点实验室、国家计算流体力学实验室、航空发动机气动热力国家科技重点实验室、“863”高技术CIMS设计自动化工程实验室、惯性技术国家级重点实验室、可靠性与环境工程实验室、飞行器控制一体化技术实验室、国家空管新航行系统技术重点实验室。 省部级重点实验室 航空可靠性综合航空科技重点实验室、数字化设计与制造技术北京市重点实验室、网络技术北京市重点实验室、计算机新技术实验室、材料力学实验室、流体力学教育部重点实验室、先进仿真技术航空科技重点实验室、航空电子航空科技重点实验室、特种功能材料与薄膜技术北京市重点实验室、聚合物基复合材料北京市高技术实验室、“复杂系统分析与管理决策”教育部重点实验室、“城市运行应急保障模拟技术”北京市重点实验室等。 研究所 航空探测研究所、A TE技术研究所、可靠性工程研究所、外国语言研究所、设备工程

计算流体力学大作业

1 提出问题 [问题描述] Sod 激波管问题是典型的一类Riemann 问题。如图所示,一管道左侧为高温高压气体,右侧为低温低压气体,中间用薄膜隔开。t=0 时刻,突然撤去薄膜,试分析其他的运动。 Sod 模型问题:在一维激波管的左侧初始分布为:0 ,1 ,1111===u p ρ,右侧分布为:0 ,1.0 ,125.0222===u p ρ,两种状态之间有一隔膜位于5.0=x 处。隔膜突然去掉,试给出在14.0=t 时刻Euler 方程的准确解,并给出在区间10≤≤x 这一时刻u p , ,ρ的分布图。 2 一维Euler 方程组 分析可知,一维激波管流体流动符合一维Euler 方程,具体方程如下: 矢量方程: 0U f t x ??+=?? (0.1) 分量方程: 连续性方程、动量方程和能量方程分别是: 2 22,,p u ρ

() ()()()2 000u t x u u p t x x u E p E t x ρρρρ???+ =?????????++=? ??????+?????+ =????? (0.2) 其中 22v u E c T ρ?? =+ ?? ? 对于完全气体,在量纲为一的形式下,状态方程为: ()2 p T Ma ργ∞ = (0.3) 在量纲为一的定义下,定容热容v c 为: () 21 1v c Ma γγ∞= - (0.4) 联立(1.2),(1.3),(1.4)消去温度T 和定容比热v c ,得到气体压力公式为: ()2112p E u γρ??=-- ??? (0.5) 上式中γ为气体常数,对于理想气体4.1=γ。 3 Euler 方程组的离散 3.1 Jacibian 矩阵特征值的分裂 Jacibian 矩阵A 的三个特征值分别是123;;u u c u c λλλ==+=-,依据如下算法将其分裂成正负特征值: () 12 222 k k k λλελ±±+= (0.6) 3.2 流通矢量的分裂 这里对流通矢量的分裂选用Steger-Warming 分裂法,分裂后的流通矢量为 ()()()()()()()12312322232121212122f u u c u c u u c u c w γλλλργλλλγλλγλ?? ? -++ ?=-+-++ ? ? ? -+-+++ ??? +++++++ ++ ++ (0.7)

流体力学实验报告

流体力学 实验指导书与报告 静力学实验 雷诺实验 中国矿业大学能源与动力实验中心

学生实验守则 一、学生进入实验室必须遵守实验室规章制度,遵守课堂纪律,衣着整洁,保持安静,不得迟到早退,严禁喧哗、吸烟、吃零食和随地吐痰。如有违犯,指导教师有权停止基实验。 二、实验课前,要认真阅读教材,作好实验预习,根据不同科目要求写出预习报告,明确实验目的、要求和注意事项。 三、实验课上必须专心听讲,服从指导教师的安排和指导,遵守操作规程,认真操作,正确读数,不得草率敷衍,拼凑数据。 四、预习报告和实验报告必须独自完成,不得互相抄袭。 五、因故缺课的学生,可向指导教师申请一次补做机会,不补做的,该试验以零分计算,作为总成绩的一部分,累计三次者,该课实验以不及格论处,不能参加该门课程的考试。 六、在使用大型精密仪器设备前,必须接受技术培训,经考核合格后方可使用,使用中要严格遵守操作规程,并详细填写使用记录。 七、爱护仪器设备,不准动用与本实验无关的仪器设备。要节约水、电、试剂药品、元器件、材料等。如发生仪器、设备损坏要及时向指导教师报告,属责任事故的,应按有关文件规定赔偿。 八、注意实验安全,遵守安全规定,防止人身和仪器设备事故发生。一旦发生事故,要立即向指导教师报告,采取正确的应急措施,防止事故扩大,保护人身安全和财产安全。重大事故要同时保护好现场,迅速向有关部门报告,事故后尽快写出书面报告交上级有关部门,不得隐瞒事实真相。 九、试验完毕要做好整理工作,将试剂、药品、工具、材料及公用仪器等放回原处。洗刷器皿,清扫试验场地,切断电源、气源、水源,经指导教师检查合格后方可离开。 十、各类实验室可根据自身特点,制定出切实可行的实验守则,报经系(院)主管领导同意后执行,并送实验室管理科备案。 1984年5月制定 2014年4月再修订 中国矿业大学能源与动力实验中心

最新北航计算流体力学第15课

北航计算流体力学第 15课

进口 出口

n n n 外边界 l l 外流边界形状 n n n 周期边 进口边界 出口边界 (b )叶栅流 n n n n 进口边界 出口边界 (a )通道流 固体壁 内流边界形状

二.几个重要概念 边界条件的定义: 边界条件表示求解域外的信息(扰动)对求解域边界的影响。 确定边界条件的原则: 1.若一信息由边界传入求解域,就应指定该信息的边界条件(第一原则); 2.若一信息由求解域内传出边界,则不应指定该信息的边界条件(第二原则)。 由第一原则确定的边界条件称为解析边界条件; 由第二原则确定不给边界条件,但在数值求解中必须补充的边界条件称为数值边界条件。 由于信息传播的方式由方程的类型所决定,所以边界条件如何确定是由方程的类型所决定的。 又由于信息(扰动)是沿特征线传播的,所以边界条件的确定与特征线与边界交汇的方式有关。

进口 出口 三.进口与出口条件 (一) 一维Euler 方程 0t x U F += 式中: U u e ρρ?? ??=?? ???? ()2u F u p e p u ρρ???? =+????+?? 补充状态方程 21 12 p e u ργ= +- 1.进口边界(用下标 “in ”表示) 1)超音流(u a ∞>) 3个解析边界条件均由来流条件决定,即 in u u ∞= ,in ρρ∞= ,in p p ∞= 2)亚音流(u a ∞<) 2个解析边界条件,1个数值边界条件 in u u ∞= ,in ρρ∞= ,in inner p p = 下标inner 表示内场值。

计算流体力学实例

汽车外部气体流动模拟 振动和噪声控制研究所 1.模型概述 在汽车外部建立一个较大的长方体几何空间,长度约为30m,宽度和高度约为5m,在空间内部挖出汽车形状的空腔,汽车尺寸参照本田CRV为4550mm*1820mm*1685mm。由于汽车向前开进,气体从车头流向车尾,因此将汽车前方空间设为气体入口,后方空间设为气体出口,模拟气体在车外的流动。另外为了节省计算成本将整个模型按1:100的比例缩小,考虑到模型和流体均是对称的,因此仅画出几何模型的一半区域,建立对称面以考虑生成包含理想气体的流体域。在Catia中建立的模型如图1.1所示。 图1.1几何模型 2.利用ICEM CFD进行网格划分 a)导入有Catia生成的stp格式的模型; b)模型修复,删除多余的点、线、面,允许公差设为0.1; c)生成体,由于本模型仅为流体区域,因此将全部区域划分为一个体,选取方法可以 使用整体模型选取; d)为了后面的设置边界方便,因此将具有相同特性的面设为一个part,共设置了in, out,FreeWalls,Symmetry和Body; e)网格划分,设置Max element=2,共划分了1333817个单元,有225390个节点; f)网格输出,设置求解器为ANSYS CFX,输出cfx5文件。 3.利用ANSYS CFX求解 a)生成域,物质选定Air Ideal Gas,参考压强设为1atm,浮力选项为无浮力模型,

域运动选项为静止,网格变形为无;流体模型设定中的热量传输设定为Isothermal,流体温度设定为288k,湍流模型设定为Shear Stress Transport模型,壁面函数 选择Automatic。 b)入口边界设定,类型为Inlet,位置选定在in,质量与栋梁选定Normal Speed,设 定为15m/s,湍流模型设定类型为Intensity and Length Scale=0.05,Eddy Len.Scale=0.1m。 c)出口边界设定,边界类型为Outlet,位置选out。质量与动量选项为Static Pressure,相对压强为0pa。 d)壁面边界设定,边界类型为Wall,位置选在FreeWalls。壁面边界详细信息中指定 WallInfluence On Flow为Free Slip。 e)对称边界设定,边界类型为Symmetry,位置选在Symmetry。 f)汽车外壁面设定,边界类型为Wall,位置设在Body,壁面详细信息选项中指定Wall Influence On Flow为No Slip,即汽车壁面为无滑移壁面。 g)初始条件设定,初始速度分量设为U方向为15m/s,其他两个方向的速度为零。 h)求解设置,残差类型选为RMS,残差目标设定为1e-5,当求解达到此目标时,求解 自动终止。求解之前的模型如图3.1所示。 图3.1求解之前的模型 4.结果后处理 从图4.1中可以看出计算收敛。

2015北航工程力学考博(航空科学与工程学院)参考书、历年真题、报录比、研究生招生专业目录、复试分数线

2015北京航空航天大学工程力学考博(航空科学与工程学院)参考 书、历年真题、报录比、研究生招生专业目录、复试分数线 一、学院介绍 航空科学与工程学院(以下简称航空学院)是北航最具航空航天特色的学院之一,主要从事大气层内各类航空器(飞机、直升机、飞艇等)、临近空间飞行器、微小型飞行器等的总体、气动、结构、强度、飞行力学与飞行安全、人机环境控制、动力学与控制等方面的基础性、前瞻性、工程性以及新概念、新理论、新方法研究与人才培养工作。 航空学院前身是清华大学航空系,是1952年北航成立时最早的两个系之一,当时称飞机系(设飞机设计和飞机工艺专业),1958年更名为航空工程力学系,1970年更名为五大队,1972年更名为五系,1989年定名为飞行器设计与应用力学系,2003年成立航空科学与工程学院。早期的航空学院荟萃了一批当时国内著名的航空领域的专家,如屠守锷、王德荣、陆士嘉、沈元、王俊奎、吴礼义、张桂联、徐鑫福、徐华舫、何庆芝、伍荣林、史超礼、叶逢培等教授,屠守锷院士(两弹一星元勋)是首任系主任,他们为本院发展奠定了坚实基础。在北航发展史上,航空学院不断输出专业和人才,先后参与组建七系、三系、十四系、宇航学院、飞行学院、无人机所、土木工程系、交通学院等院系。 自建校以来60多年,学院已培养本科毕业生万余人,硕士毕业生两千余人,博士毕业生近千人。毕业生中涌现出王永志、戚发韧、崔尔杰、乐嘉陵、王德臣、张福泽、王浚、钟群鹏、陶宝祺、郭孔辉、赵煦、唐西生、郭孔辉、唐长红等14位两院院士,改革开放后毕业生中也涌现出了“航空报国英模”/原沈飞董事长罗阳、中国商飞董事长金壮龙、第十一届“中国十大杰出青年”/原“神舟”飞船总指挥袁家军、歼15等飞机型号总师孙聪、C919大型客机总师吴光辉以及李玉海、耿汝光、姜志刚、屠恒章、孙聪、方玉峰、王永庆、孙兵、曲景文、李东、余后满、傅惠民、秦福光、陈元先、宋水云、吴宗琼、陈敏、高云峰等一批航空航天院所的年轻总师、总指挥、省市及部门负责人、民营企业家,为我国航空航天、国防事业及国家发展做出突出贡献。 学院作为主力曾先后研制成功我国第一架轻型旅客机“北京一号”、国内第一架高空高速无人侦察机、靶机、蜜蜂系列轻型飞机和第一架共轴式双旋翼直升机等,创造了多项全国第一。学院参与了所有国家重点航空型号以及大部分导弹型号的攻关工作。60多年来,学院取得了上百项国家和省部级教学与科研成果,其中国家级奖20多项。 学院师资力量雄厚,在北航乃至全国同类及相近学院中名列前茅。学院有教授56名(其中博士生导师51名),副教授50名,青年教师中有博士学位的比例为97%。拥有许多国内外著名专家学者,如中国科学院院士高镇同教授、李天教授,中国工程院院士李椿萱教授、王浚教授,“长江学者”特聘教授傅惠民、孙茂、杨嘉陵、高以天、武哲、王晋军、向锦武教授,国家教学名师及“万人计划”王琪教授,杰出青年基金获得者4名,跨/新世纪优秀人才的获得者10名,全国百篇优秀博士学位论文获得者2名;有国家级教学基地2个、国

《计算流体力学》结课作业要点.doc

2012~2013学年第1学期 12级研究生《计算流体力学》结课作业 适用专业:供热供燃气通风及空调工程 一、结合某一具体学科,阐述纯理论方法、实验方法及数值方法在科学研究中的各自优缺点,在此基础上论述数值模拟方法的发展前景。(不少于4千字)。 流体力学是力学的一个重要分支, 是研究流体(液体和气体)的力学运动规律及其应用的学科, 主要研究在各种力的作用下,流体本身的静止状态和运动状态特征,以及流体和相邻固体界面有相对运动时的相互作用和流动规律。在人们的生活和生产活动中随时随地都可遇到流体,流体力学与人类的日常生活和生产事业密切相关。按其研究内容的侧重点不同,分为理论流体力学和工程流体力学。其中理论流体力学主要采用严密的数学推理方法,力求准确性和严密性,工程流体力学侧重于解决工程实际中出现的问题,而不追求数学上的严密性。当然由于流体力学研究的复杂性,在一定程度上,两种方法都必须借助于实验研究,得出经验或半经验的公式。 在实际工程的诸多领域流体力学都起着十分重要的作用。如气象、水利的研究,船舶、飞行器、叶轮机械和核电站的设计及其运行,可燃气体或炸药的爆炸,都广泛地用到流体力学知识。许多现代科学技术所关心的问题既受流体力学的指导,同时也促进了流体力学自身的不断发展。1950年后,计算机的发展给予流体力学以极大的推动作用。 目前,解决流体力学问题的方法主要有实验方法、理论分析方法和数值方法三种。 实验方法 同物理学、化学等学科一样,流体力学的研究离不开实验,尤其是对新的流体运动现象的研究。实验能显示运动特点及其主要趋势,有助于形成概念,检验理论的正确性。二百年来流体力学发展史中每一项重大进展都离不开实验。流体力学实验研究方法有实物实验、比拟研究和模型研究三类:实物实验是用仪器实测原型系统的流动参数,适用于较小的原型;比拟实验是利用电场和磁场来模拟流场,实施起来限制条件较多;模型研究是实验流体力学最常用的研究方法。 实验研究的一般过程是:在相似理论的指导下建立实验模型,用流体测量技术测量流动参数,处理和分析实验数据。建立实验模型要求模型与原型满足相似理论,即满足两个流场

高等流体力学试题

1.简述流体力学有哪些研究方法和优缺点? 实验方法就是运用模型实验理论设计试验装置和流程,直接观察流动现象,测量流体的流动参数并加以分析和处理,然后从中得到流动规律。实验研究方法的优点:能够直接解决工程实际中较为复杂的流动问题,能够根据观察到的流动现象,发现新问题和新的原理,所得的结果可以作为检验其他方法的正确性和准确性。实验研究方法的缺点主要是对于不同的流动需要进行不同的实验,实验结果的普遍性稍差。 理论方法就是根据流动的物理模型和物理定律建立描写流体运动规律的封闭方程组以及相应初始条件和边界条件,运 用数学方法准确或近似地求解流场,揭示流动规律。理论方法的优点是:所得到的流动方程的解是精确解,可以明确地给出各个流动参数之间的函数关系。解析方法的缺点是:数学上的困难比较大,只能对少数比较简单的流动给出解析解,所能得到的解析解的数目是非常有限的。 数值方法要将流场按照一定的规则离散成若干个计算点,即网格节点;然后,将流动方程转化为关于各个节点上流动 参数的代数方程;最后,求解出各个节点上的流动参数。数值方法的优点是:可以求解解析方法无能为力的复杂流动。数值方法的缺点是:对于复杂而又缺乏完整数学模型的流动仍然无能为力,其结果仍然需要与实验研究结果进行对比和验证。 2.写出静止流体中的应力张量,解释其中非0项的意义. 无粘流体或静止流场中,由于不存在切向应力,即p ij =0(i ≠j ),此时有 P =00000 0xx yy zz p p p ??????????=000000p p p -????-????-??=-p 00000011????1?????? = -p I 式中I 为单位张量,p 为流体静压力。 流体力学中,常将应力张量表示为 p =-+P I T (2-9) 式中p 为静压力或平均压力,由于其作用方向与应力定义的方向相反,所以取负值;T 称为偏应力张量,即 T =xx xy xz yx yy yz zx zy zz τττττττττ?????????? (2-10) 偏应力张量的分量与应力张量各分量的关系为:i =j 时,p ij 为法向应力,τii = p ij - p ;当i ≠j 时p ij 为粘性剪切应力,τij =p ij 。τii =0的流体称为非弹性流体或纯粘流体,τii ≠0的流体称为粘弹性流体。 3.分析可压缩(不可压缩)流体和可压缩(不可压缩)流动的关系. 当气体速度流动较小(马赫数小于0.3)时,其密度变化不大,或者说对气流速度的变化不十分敏感,气体的压缩性没有表现出来。因此,在处理工程实际问题时,可以把低速气流看成是不可压缩流动,把气体可以看作是不可压缩流体。而当气体以较大的速度流动时,其密度要发生明显的变化,则此时气体的流动必须看成是可压缩流动。 流场任一点处的流速v 与该点(当地)气体的声速c 的比值,叫做该点处气流的马赫数,用符号Ma 表示: Ma /v c v == (4-20) 当气流速度小于当地声速时,即Ma<1时,这种气流叫做亚声速气流;当气流速度大于当地声速时,即Ma>l 时,这种气流称为超声速气流;当气流速度等于当地声速时,即Ma=l 时,这种气流称为声速气流。以后将会看到,超声速气流和亚声速气流所遵循的规律有着本质的不同。 马赫数与气流的压缩性有着直接的联系。由式(4-11)可得 所以有 222Ma d ρv dv dv ρc v v =-=-。 (4-21) 当Ma≤0.3时,dρ/ρ≤0.09dv /v 。由此可见,当速度变化一倍时,气体的密度仅仅改变9%以下,一般可以不考虑密度的变化,即认为气流是不可压缩的。反之,当Ma>0.3时,气流必须看成是可压缩的。 4.试解释为什么有时候飞机飞过我们头顶之后才能听见飞机的声音. 5.试分析绝能等熵条件下截面积变化对气流参数(v ,p ,ρ,T )的影响.

北航研究生课程实验流体力学重点

实验流体力学 第一章:相似理论和量纲分析 ①流体力学相似?包括几方面内容?有什么意义? 流体力学相似是指原型和模型流动中,对应相同性质的物理量保持一定的比例关系,且对应矢量相互平行。 内容包括: 1.几何相似—物体几何形状相似,对应长度成比例; 2.动力相似—对应点力多边形相似,同一性质的力对应成比例并相互平行 (加惯性力后,力多边形封闭); 3.运动相似—流场相似,对应流线相似,对应点速度、加速度成比例。 ②什么是相似参数?举两个例子并说明其物理意义 必须掌握的相似参数:Ma ,Re ,St 。知道在什么流动条件下必须要考虑这些相似参数。 相似参数又称相似准则,是表征流动相似的无量纲特征参数 。 1.两物理过程或系统相似则所有对应的相似参数相等。例如:假定飞机缩比模型风洞试验可以真正模拟真实飞行,则原型和模型之间所有对应的相似参数都相等,其中包括C L , C D , C M : S V L C L 22 1 ρ= S V D C D 22 1 ρ= Sb V M C M 22 1 ρ= 风洞试验可以测得CL, CD, CM 值,在此基础上,将真实飞行条件带入CL, CD, CM 表达式,可以求得真实飞行的升力、阻力和力矩等气动性能参数。 2.所有对应的相似参数相等且单值条件相似则两个物理过程或系统相似。例如:对于战斗机超音速风洞试验,Ma 和Re 是要求模拟的相似参数,但通常在常规风动中很难做到。 由于对于此问题,Ma 影响更重要,一般的方案是保证Ma 相等,对Re 数影响进行修正。 ; Re V p Ma a RT a V L l St V ρ ρωμ∞∞= ====

流体力学讲义

流体力学讲义 课程简介:流体力学是动力、能源、航空、环境、暖通、机械、力学等专业的重要基础课。本课程的任务是系统介绍流体的力学性质、流体力学的基本概念和观点、基础理论和常用分析方法、有关的工程应用知识等;培养学生具有对简单流体力学问题的分析和求解能力,掌握一定的实验技能,为今后学习专业课程,从事相关的工程技术和科学研究工作打下坚实基础。 流体力学学科既是基础学科,又是用途广泛的应用学科;既是古老的学科,又是不断发展、充满活力的学科。当前,流体力学进入了一个新的发展时期:分析手段更加先进,与各类工程专业结合更为密切,与其他学科的交叉渗透更加广泛深入。但由于流体力学理论性较强,概念抽象,学生普遍缺乏对流体的感性认识,使流体力学课程历来被认为是教师难教、学生难学的课程之一。为改进流体力学教学质量,所以,我们采用多媒体教学的方式,尽可能多地给学生提供大量的图片,增加感性认识。 学生在学习的过程中,要特别注意学习目标、学习方法、重点内容、注意事项等问题。 第一章绪论 第一节工程流体力学的研究对象、内容和方法 一、研究对象和内容 研究对象和内容:工程流体力学以流体(包括液体和气体)为研究对象,研究流体宏观的平衡和运动的规律,流体与固体壁面之间的相互作用规律,以及这些规律在工程实际中的应用。 自然界存在着大量复杂的流动现象,随着人类认识的深入,开始利用流动规律改造自然界。最典型的例子是人类利用空气对运动中的机翼产生升力的机理发明了飞机。航空技术的发展强烈推动了流体力学的迅速发展。 流体力学是一门基础性很强和应用性很广的学科,是力学的一个重要分支。它的研究对象随着生产的需要与科学的发展在不断地更新、深化和扩大。60年代以前,它主要围绕航空、航天、大气、海洋、航运、水利和各种管路系统等方面,研究流体运动中的动量传递问题,即局限于研究流体的运动规律,和它与固体、液体或大气界面之间的相互作用力问题。60年代以后,能源、环境保护、化工和石油等领域中的流体力学问题逐渐受到重视,这类问题的特征是:尺寸小、速度低,并在流体运动过程中存在传热、传质现象。这样,流体力学除了研究流体的运动规律以外,还要研究它的传热、传质规律。同样,在固体、液体或气体界面处,不仅研究相互之间的作用力,而且还需要研究它们之间的传热、传质规律。

计算流体力学作业

计算流体力学课程作业 任课教师:魏文礼 姓名: 学号: 指导老师:

目录 1.写出通用方程,并说明如何代表各类守恒方程。 (1) 2.推导流体运动的质量、动量守恒方程。 (2) 3.简述源项线性化、网格划分问题。 (5) 4.用ddxKeTex+S=0,谈谈边界条件如何处理。 (8) 5.用有限体积法离散ρceTet=eexKeTex,并推广到二维、三维问题,写出过程。 (9) 6.从不同角度对流体运动分类。 (12) 7.谈谈物理模型试验与计算流体力学方法的关系。 (12) 8.讨论离散对流项时离散格式的进化过程。 (13) 9.利用幂函数格式离散二维、三维通用方程的离散方程。 (15) 10.解释交错网格的概念。 (15) 11.简述压力校正法解N-S方程的过程。 (16) 12.思考anbvnb′为什么可以省去。 (17)

1.写出通用方程,并说明如何代表各类守恒方程。 答:(1)写出通用方程。 在Cartesian坐标系下单位体积黏性流动N-S方程组微分形式如下: { eρ et +??(ρV)=0 (1) eρu +??(ρuV)=??(μ?u)+ 1 μ[ e (??V)]? ep +F x+S mx(2a)eρv et +??(ρvV)=??(μ?v)+ 1 3 μ[ e ey (??V)]? ep ey +F y+S my(2b) eρw et +??(ρwV)=??(μ?w)+ 1 3 μ[ e ez (??V)]? ep ez +F z+S mz(2c)eρe et +??(ρeV)=??(k?T)?p(??V)+Φ+Q (3) 上述微分形式黏性流动N-S方程组中,式(1)为连续性方程,式(2a)、 (2b)、(2c)分别为x、y、z方向上的动量方程,式(3)为能量方程。 上述方程组中各个方程具有不同变量,代表不同的守恒定律,但他们的形式都十分相似。若引入一个通用的特征变量?,在不同的方程中?代表不同的变量,就可以把它写为通用变量形式。 非定常通用变量N-S方程为: e(ρ?) et +??(ρ?V)=??(Γ???)+S? 若流场中速度等物理量不随时间变化,则e(ρ?) et =0,可得定常通用变量N-S方程为: ??(ρ?V)=??(Γ???)+S? 其中,?为通用变量,可代表u、v、w、T等求解变量;Γ?为扩散和热传导系数,S?为方程组源项。 (2)用通用方程代表各类守恒方程 用通用方程代表各类守恒方程是,通用变量在各守恒方程中的取值如表1所示。

北航GPA算法

1、GPA算法 网上流传着各种各样的算法,但是需要强调的是,美国人知道中国的大部分学校不用GPA,因此相当多的学校在网申系统里明确指出,不允许将自己的成绩换算成美国的GPA,比如Caltech,Princeton,Stanford等,这一栏留着不填即可。有的学校则要求按照我们的评定成绩规则填写,北航是用百分制的平均分,那么我们可以填写在保研是用的大学前三年的必修课平均成绩,到时候教务会算好。还有很多的学校没做要求,就按照北航的GPA算法计算。 其实自己填写的GPA只是一个参考,可以写在简历里辅助申请,对方学校会按照他们的标准重新计算。可能具体的教授还会拿出你的某些重要的课程评估你的GPA,因此其实研究哪种算法算的更高没有意义,之所以这么说还有一点原因就是北航的学生在算GPA时必须严格按照自己学校的GPA算法计算。 2、北航的GPA算法 在开成绩单时,学校不给算GPA,但是在成绩单上有GPA的算法,那么在计算GPA是就应该按照这个算法来计算,不可以采用其他的算法。当然也没规定一定严格按照这个算法,但是既然写在了官方的成绩单上,就应该这么算,要不然会有作弊之嫌。 2.1、具体算法如下:85~100/A:4; 70~84/B:3; 60~69/C:2; 不及格/F:0; 按照通过与不通过评分的,算法如下: 通过/P: 3.3; 不通过/F:0; 例如,有三门课,学分分别为1、2、3,得分分别为86、76和通过,那么这三门课的GPA 就是(4×1+3×2+3.3×3)/(1+2+3)=3.32 总体来讲,北航的GPA算法还是很有优势的。 2.2、计算GPA的课程范围: 全部课程,包括所有的必修,任何形式的选修,只要是出现在成绩单上的都要算,大学前三年学过的所有课程都会出现在成绩单上。不要试图去修改成绩,北航也不允许去掉更不允许修改成绩。

相关主题
文本预览
相关文档 最新文档